
Abstract. Historical aspects of the specific properties of the
melting thermodynamics and superfluid state of helium are dis-
cussed.

Keywords: helium, melting, superfluidity

1. Melting of helium

As is well known, liquid helium (3He and 4He) does not
crystallize at atmospheric pressure. To obtain solid helium, it
is necessary to apply some pressure, as shown in Fig. 1. To
explain this situation, it is commonly, although not quite
correctly, stated that the crystal lattice of helium is destroyed
by `zero' vibrations. In fact, the `zero' energy increases the
equilibrium volume of helium so significantly that the
existence of crystalline helium at atmospheric pressure
becomes energy unfavorable (a detailed discussion of this
issue is given in the book by F London [1]). Let us consider
plot 2 in Fig. 1, representing the melting curve of 3He. We
recall that the observed minimum of pressure was predicted
by I Pomeranchuk [2] as resulting from the entropy loss in
liquid helium when ordering nuclear spins. This effect
manifests itself in negative values of the dT=dP derivative
observed at the lowest temperatures down to < 1 mK, at
which nuclear spin ordering occurs in solid helium. However,
the 3Hemelting curve is plotted on a logarithmic scale (Fig. 2),
which masks the true nature of its behavior.

Here, it is worth noting the poorly known feature of the
4Hemelting curve (Fig. 3), where a hardly noticeable pressure
minimum is observed, related probably to the specific
behavior of the entropy in superfluid helium (see Ref. [9] on
this issue). Figure 4 also demonstrates the poorly known
details of the behavior of the 3Hemelting curve. It is seen that,
at a temperature of the order of 1 mK, the curve slope
experiences a jump, apparently related to a magnetic phase
transition in the solid medium. Figure 5 shows the above
behavior of the derivative in more detail. We emphasize that

the following relation is apparently valid: dP=dT! 0;T! 0,
i.e., according to the Nernst theorem, turning dP=dT into
zero should be expected exactly at T � 0 (which is known to
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Figure 1.Melting curves for 3He and 4He from data from Refs [3±8]. 1Ð
4He, 2Ð 3He, 3Ð phase transition to superfluid state in 4He.
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Figure 2. Logarithm of 3He melting temperature as a function of pressure

(plotted using data from Refs [6, 8]).
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be impossible), and before that the slope of the 3He melting
curve is always finite.

Figure 6 presents the dependences of melting entropies for
helium and argon isotopes as functions of the dimensionless
melting temperature. It is seen that in the classical limit at
T!1 the melting entropies of Ar and He take the same
value, whereas at low temperatures the melting entropy of
helium is always smaller than that of argon. The next two
figures at least partially clarify this problem. Figure 7 shows
the melting entropies of helium isotopes as functions of their
mean interatomic distance along the melting curve. The
substantial difference in the melting entropy values in
isotopes reduced to the same volume is obvious. In this
connection, note that, in the case of helium isotopes, the
effects of quantum statistics decay rather rapidly with
temperature, and in the region of temperatures considered,
quantum effects manifest themselves only as a consequence of
space quantization, written in the known expression for the
classical partition function back by Sackur and Tetrode. As a
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Figure 3. Melting curve for 4He (plotted using high-resolution data from

Ref. [7]).
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Figure 4.Melting curve of 3He from data from Refs [6, 8, 10]. Inset shows

low temperature part of the curve, testifying to a phase transition in solid
3He.
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Figure 5.Temperature dependence of derivative ofmelting pressure of 3He

dP=dT according to data from Refs [8, 9]. Sharp discontinuity of the

derivative is seen at� 1 mK.Apparently, derivative dP=dT! 0 exactly at

T! 0.
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Figure 6.Melting entropy of argon and isotopes of helium as a function of

reduced melting temperature from data of Refs [4, 11]. Here,

eAr � 119:3 K, eHe � 10:22 K are minimum values of the pair interaction

potential for Ar and He, respectively.
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Figure 7. Dependence of melting entropy of helium isotopes on intera-

tomic distance d � �V=N �1=3 of solid helium along the melting curve.

(Calculated using data from [4].)
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result, if we scale the interatomic distances to the thermal de
Broglie wavelength lT � h=�2pmT �1=2, then, as is seen from
Fig. 8, the melting entropies of He isotopes become
practically undistinguishable. It is useful to write the known
expression for the entropy of a classical ideal gas:

S

kN
� ln

�
V

Nl 3
T

�
� 5

2
; �1�

or

S

kN
� 3 ln

�
d

lT

�
� 5

2
; �2�

meaning that the thermal wavelength lT in this case plays the
role of a scaling factor or, if you wish, a reduction parameter.
It is obvious that lT maintains this role in the case of
interacting systems as well, which finds its implementation
in the data presented in Figs 6 and 8.

2. On the superfluidity of HeII

In 1938, two papers were published in the journal Nature:
``The Viscosity of Liquid Helium Below the l-Point'' by
P Kapitza [12] and ``Liquid Helium Flow II'' by J F Allen
and A DMisener [13], which reported the discovery of a new
physical phenomenonÐsuperfluidity in the low-temperature
phase of liquid helium. This discovery and the subsequent
experimental and theoretical studies gave rise to general
revolutionary concepts in physics. It was exactly this circum-
stance that impelled the Nobel Committee to award the
Nobel Prize to Pyotr Kapitza in 1978, 40 years after the
publication. And what about Allen and Misener? They are
not among the laureates. There is evidence that Kapitza
refused to receive the prize together with Allen and Misener,
and this is why the process of awarding the prize took somuch
time. The events related to the discovery of superfluidity and
the publication and awarding of theNobel Prize are described

by many authors (see, e.g., [14±16]). Here, it is important to
note that it was P L Kapitza who proposed the very term
`superfluidity,' which prophetically combined the newly
discovered phenomenon with another `superproperty' of
matter, superconductivity. Concerning the paper by Allen
andMisener, Griffin wrote [16]: ``Without the stimulus of the
earlier work of both Allen andMisener, it is doubtful whether
Kapitza would ever have become interested in measuring the
viscosity of helium-II or have received the Nobel prize.''
Indeed, Kapitza new about the work of Allen and Misener,
including from his correspondence with Rutherford on the
studies of liquid helium, carried out in theMond Laboratory,
and understood their significance. Kapitza himself said [14]:
``For the first time in my life I managed to find such a
fundamental property of matter. I carried out many experi-
ments in various fields, but this was already a matter of good
or bad luck. When such an opportunity comes up, you can't
miss it.'' It is difficult to interpret Kapitza's words, especially
in connection with Griffin's statement above, but one thing is
clear: Kapitza did not miss his chance.

Next, it remained to construct a theory of helium super-
fluidity. To begin with, Kapitza achieved the miraculous
release of Lev Landau from the hands of the Chekists (for
details about Landau's release, see [14]). Landau got to work,
and in 1941 published an article entitled ``The Theory of
Helium Superfluidity'' [17]. In parallel, F London and
L Tisza, Landau's former postdoc from his Kharkov days,
worked on this problem. It was Tisza who proposed the two-
fluid model of superfluid helium. Both London and Tisza
considered Bose±Einstein (BE) condensation to be the main
factor determining superfluidity [1]. Landau reformulated
Tisza's two-fluid theory, removing from it the analysis of the
behavior of individual helium atoms, operating instead with
the elementary excitations of a macroscopic systemÐ
phonons and rotons. Landau completely ignored the possi-
ble effect of BE condensation and believed, following
Kapitza, that since `superproperties' are found both in Bose
and in Fermi systems, then, apparently, these properties are
not determined by statistics. To explain the phenomenon of
helium superfluidity, Landau postulated the existence of a
special spectrum of excitations, consisting of two branches
with an energy gap between them (Fig. 9), separating the
states with potential and vortex motions of the liquid.
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Figure 8. Dependence of the melting entropy of helium isotopes on

reduced mean interatomic distance d=lT, where d � �V=N �1=3,
lT � h=�2pmT �1=2 is the thermal de Broglie wavelength for solid helium

along the melting curve (calculated using data from [4]). It is interesting

that the dependence of melting entropy of helium isotopes on interatomic

distance is scaled using the thermal de Broglie wavelength in correspon-

dence with the Sackur±Tetrode formula.
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Figure 9. Spectrum of elementary excitations in superfluid helium, initially

proposed by Landau [17].
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However, on October 21, 1946, at the general meeting of
the Physics and Mathematics Department of the USSR
Academy of Sciences, N N Bogolyubov reported his work
entitled ``To the Theory of Superfluidity,'' where he con-
structed a microscopic theory of a weakly nonideal Bose gas
possessing the property of superfluidity [18].

Judging by some evidence, this report by Bogoliubov was
sharply criticized by Landau (see, e.g., [19]). Nevertheless,
after a very short time, Landau published a brief report [20],
where he actually used the results of Bogoliubov's work
(Fig. 10). Subsequently, the shape of the spectrum of
elementary excitations in helium, proposed in the papers by
Landau and Bogoliubov, found complete experimental
confirmation in the results of neutron studies (Figs 11±13).
Theoretical studies of the spectrum of excitations in a Bose
liquid carried out by L Pitaevskii [23] showed that at large
momenta the phonon-roton (PR) excitation should decay

into two excitations, each with energy D, and, therefore, the
curve e�p� tends to the limiting value 2D, which has been
experimentally confirmed [24].

Although the issue of the BE condensation role was
almost forgotten due to the total success of Landau's theory
of superfluidity, the problem remained unresolved. However,
in 2012, an article appeared with the intriguing title,
``Phonon-roton modes in liquid 4He coincide with Bose±
Einstein Condensation'' [26], concluding that the phonon-
roton mode in the excitation spectrum of liquid helium arises
only with Bose±Einstein condensation. Indeed, the width of
the scattering function in the normal phase of liquid helium is
extremely large; the full width at half maximum (FWHM) of
the function S�Q;o� in the normal phase of helium is 2000±
3000 times greater than the width of the phonon-roton mode
at 1 K (Fig. 14), which corresponds to a very short lifetime of
excitations. The existence of a rotonic peak, albeit a strongly
broadened one, does not mean anything, since this feature is
observed in many classical liquids and is due to fairly
universal interparticle interactions. Let us recall here the
well-known Feynman formula [27], relating the frequency
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Figure 10. Spectrum of elementary excitations in superfluid helium

proposed by Landau in Ref. [20].
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Figure 11. First experimental confirmation of existence of rotons in

spectrum of elementary excitations, following from data on neutron

inelastic scattering [21].
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Figure 12. Results of detailed studies of excitation spectrum of superfluid
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spectrum and the structure factor: E �k� � �h 2k 2=2mS�k�, or
o�k� � �h 2k 2=2mS�k�. As can be seen, the roton minimum
o�k� corresponds to the maximum of the static structure
factor, which, in turn, means the existence of short-range
structural order.

References

1. London F Superfluids Vol. 2 (New York: Wiley, 1954)

2. Pomeranchuk I Zh. Eksp. Teor. Fiz. 20 919 (1950)

3. Domb C, Dugdale J S, in Progress in Low Temperature Physics

Vol. 2 (Ed. C J Gorter) (Amsterdam: North-Holland, 1957) p. 338

4. Grilly E R, Mills R L Ann. Physics 8 1 (1959)

5. Mills R L, Grilly E R, Sydoriaik S G Ann. Physics 12 41 (1961)

6. Grilly E R J. Low Temp. Phys. 4 615 (1971)

7. Grilly E R J. Low Temp. Phys. 11 33 (1973)

8. Greywall D S Phys. Rev. B 33 7520 (1986)

9. Goldstein L Phys. Rev. 122 726 (1961)

10. Ni W et al. J. Low Temp. Phys. 99 167 (1995)

11. Stishov S M Sov. Phys. Usp. 18 625 (1975); Usp. Fiz. Nauk 114 3

(1974)

12. Kapitza P Nature 141 74 (1938)

13. Allen J F, Misener A D Nature 142 643 (1938)

14. Rubinin P E Phys. Usp. 40 1249 (1997); Usp. Fiz. Nauk 167 1349

(1997)

15. Balibar S J. Low Temp. Phys. 146 441 (2007)

16. Griffin A Phys. World 21 (08) 27 (2008) http://doi.org/10.1088/

2058-7058/21/08/36

17. Landau L D J. Phys. USSR 5 71 (1941); Zh. Eksp. Teor. Fiz. 11 592

(1941)

18. Bogolubov N J. Phys. USSR 11 23 (1947); Izv. Akad. Nauk SSSR.

Ser. Fiz. 11 (1) 77 (1947); Usp. Fiz. Nauk 93 552 (1967)

19. Shirkov D, Dubna. JINR Periodical (31±32) 3 (2009)

20. Landau L J. Phys. USSR 11 91 (1947)

21. Yarnell J L et al. Phys. Rev. Lett. 1 9 (1958)

22. Henshow D G, Woods A D B Phys. Rev. 121 1266 (1961)

23. Pitaevskii L P Sov. Phys. JETP 9 830 (1959);Zh. Eksp. Teor. Fiz. 36

1168 (1959)

24. Glyde H R et al. Europhys. Lett. 43 422 (1998)

25. Diallo S O et al. Phys. Rev. Lett. 113 215302 (2014)

26. Bossy J et al. Europhys. Lett. 98 56008 (2012)

27. Feynman R P Phys. Rev. 94 262 (1954)

28. Glyde H R Rep. Prog. Phys. 81 014501 (2018)

2

2D

T � 2.5 Ko
,m

eV
1

0

0 1 2 3 4
Q, �Aÿ1

Figure 14. Dispersion of the center and half-width of function S�Q;o� of liquid helium at T � 2:5 K and saturated vapor pressure (squares). Phonon-

roton dispersion curve at low temperature (triangles) [28].

342 S M Stishov Physics ±Uspekhi 67 (4)


	1. Melting of helium
	2. On the superfluidity of HeII
	 References

