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Abstract. The review is devoted to a new branch in magnetic
resonance spectroscopy based on the optical detection of sto-
chastic spin precession: laser spin noise spectroscopy (SNS).
The SNS method, like EPR spectroscopy, makes it possible to
study the energy structure of the magnetic states of the medium
but does not imply excitation of regular spin precession and, due
to the use of a laser-polarimetric signal detection channel, has a
number of unique properties. In the review, we consider the
specific information capabilities of the magnetic resonance
noise technique and describe experiments demonstrating the
efficiency of this approach for studying the energy-related and
dynamic properties of spin subsystems in solid and gaseous
paramagnets. Via the example of exciton-polariton condensate
emission, we consider the specific features of polarization noise
in secondary emission, including the case of unpolarized light. A
rigorous theoretical description of the polarimetric spin noise
signal formation is given based on the model of inelastic (Ra-
man) light scattering by elementary angular momentum car-
riers.
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1. Introduction

The magnetic properties of matter are of great interest both
for fundamental research and for its applications. An
important role in the study of these properties is played by
the spectroscopy of electron paramagnetic resonance (EPR)
and nuclear magnetic resonance (NMR), spanning the
frequency range of 10*-10'! Hz and allowing the study of
the magnetic energy structure of matter in the frequency
region adjacent to the far IR range. In this spectral region, the
energy spectrum of most physical objects demonstrates a
dependence on the applied magnetic field —a fact that gave
the name to this kind of spectroscopy. This dependence plays
the key role in magnetic resonance spectroscopy, since the
magnitude and configuration of the magnetic field can be
controlled by the experimenter, which turns out to be
extremely valuable in implementing and interpreting original
experiments, as well as in numerous applications of the
magnetic resonance effect.

In typical magnetic resonance spectroscopy experiments,
a weak AC magnetic field B at a frequency of v is applied to
the sample of interest placed in a DC magnetic field
B, exp (—ivt), and the sample response ' to the AC field as a
function of frequency v is observed. This response exhibits
resonances at the frequencies of transitions between Zeeman
energy levels, which provides information on the properties of

! Usually, this response is magnetization M(¢) observed directly or
indirectly.
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the elementary magnetic moment carriers of the system
studied. Since in the simplest case the sample magnetization
response M(7) = M, exp (—iv?) is described by the magnetic
susceptibility y, = . +1ix), M, = z,B,, it is possible to say
that, in traditional experiments of magnetic resonance
spectroscopy (EPR and NMR), the frequency dependence
of the magnetic susceptibility y, of the sample is observed, the
resonances of which carry information of its energy structure
in the magnetic field. In the present paper, we discuss an
alternative method of obtaining such information possessing
a number of new properties and capabilities.

The frequency dependence of the magnetic susceptibility
is known to be related to the power spectrum of the
magnetization spontaneous noise by the fluctuation-dissipa-
tion theorem [1]; therefore, the information obtained by the
methods of standard magnetic resonance spectroscopy can
be, in principle, obtained by recording the power spectrum of
the spontaneous noise of magnetization. This possibility was
probably first pointed out by F Bloch [1], who showed that
the spectrum of the magnetic susceptibility of sample nuclei
can be recorded by observing the noise of nuclear magnetiza-
tion. Successful experiments on such nonperturbative?
observation of the nuclear magnetization noise [2-4] have
shown the viability of this experimental approach and
demonstrated its capabilities [5, 6].

In the papers cited above (as well as in many others), the
technique typical of EPR and NMR was used to observe
magnetization noise. It is based on recording electric signals
from an oscillatory circuit (resonator) containing the studied
sample. In many cases, this allowed using the standard high-
sensitivity instrumentation of NMR spectroscopy to observe
the noise. However, this method is not the only possible one.
In earlier Ref. [7], the possibility of observing spin noise by
detecting the Faraday rotation (FR) fluctuations in a probe
light passed through a paramagnet was studied. The method
of spin noise spectroscopy (SNS) (also referred to in the
Russian literature as spin fluctuation spectroscopy) based on
this approach in many cases demonstrates unique capabil-
ities. Along with classical magnetic resonance spectroscopys, it
is now an important instrument for studying the structure of
energy levels and the dynamics of elementary magnetic
moment carriers of matter (see, e.g., reviews [8—12]).

The SNS method, which can be considered a variant of the
optical detection of magnetic resonance [13], lies at the
intersection of two directions of research in two different
branches of physics, namely, light intensity fluctuation
spectroscopy (IFS) from optics [14] and the magnetic
resonance method from radio spectroscopy [15]. The combi-
nation of properties of these two different methods of study
determines the specific features of the experimental approach
considered. As mentioned above, the spin (magnetic) noise,
whose spectrum corresponds to that of the system’s magnetic
susceptibility, is recorded in SNS as polarization fluctuation
in the probe light beam, which determines the conceptual
difference between SNS and the classical Zavoysky EPR
method. In particular, the spin noise method does not imply
system exposure to a high-frequency resonant perturbation,
does not require magnetic polarization of the medium, and, as
will be seen below, allows implementing high spatial resolu-
tion in all three coordinates. The SNS method has proven its
effectiveness in studying the resonant magnetic susceptibility

2 That is, with no excitation of the system by an AC magnetic field, needed
in the conventional techniques.

of nanoobjects (quantum wells, quantum dots) [16, 17] and
for observing the nuclear relaxation dynamics [18, 19] and
nonlinear phenomena in such systems [20]. At present, this
technique is actively applied to study atomic systems [21], in
one of which (sodium vapor) pioneering study [7] in this field
was carried out and which serve as a perfect model subject for
studying the capabilities of the SNS method. Thus, Refs [22,
23] demonstrated the possibility of using the noise technique
to reveal the degree of inhomogeneous broadening in optical
spectra, for which the spectral dip burning technique is
commonly used. The presence of an optical channel in SNS
provided this technique with additional informative capabil-
ities that bring it closer to the methods of nonlinear optics
[24]. The optical specific features of the method also made it
possible to propose a double-beam scheme experiment that
allows studying both time and spatial correlations in spin
systems [25]. As was shown in Ref. [26], the SNS method
allows observing not only the noise of the magnetization
vector spectrally localized at the Larmor frequency but also
the fluctuations described by a second-rank tensor, giving rise
to a noise component at the doubled Larmor frequency
(alignment noise). As to extending the scope of SNS objects,
the possibility of applying SNS to classical objects of EPR
spectroscopy, namely, to dielectric crystals activated with
paramagnetic ions, was recently demonstrated [27].

Regardless of the large number of English language
publications on SNS, there is only one review on the SNS
theory [28] in domestic journals. Therefore, the present review
containing a description of SNS experiments and their
interpretation will be useful for the Russian reader interested
in SNS.

The review is organized as follows. Section 2 presents
basic knowledge on SNS and estimates of the noise polari-
metric signal values. Section 3 describes SNS experiments
demonstrating a variety of capabilities of this experimental
approach. In Section 4, the noise signals observed in SNS are
interpreted in terms of scattering theorys; it is shown that SN'S
con be considered as the heterodyne detection of Raman
scattering. In Section 5, the review content is briefly
summarized and the prospects of further SNS development
are outlined.

2. Basic spin noise spectroscopy

2.1 Setting up the experiment

The SNS experiment implies detecting the spin fluctuations
(fluctuations in magnetization) of the medium via the noise of
its Faraday rotation. The basic schematic diagram of the
corresponding experiment is extremely simple. A linearly
polarized light beam (referred to below as the probe beam)
passes through the medium studied and is detected with a
polarimetric detector, the output signal of which is digitized
and mathematically processed (Fig. 1). A wavelength-tunable
laser with a low level of excess noise, e.g., a diode or a ring
titanium-sapphire laser, is conventionally used as a source /
of CW monochromatic light. The linear polarization of the
probe light and its azimuth is specified by the combination of
optical elements 2 (e.g., a half-wave phase plate of a
combination of a quarter-wave plate and a polarizer). A
magnetic field created by an electromagnet 4 is applied to
the sample 3. Sometimes, a strong permanent magnet is used
instead of an electromagnet (see, e.g., [29]), which makes it
possible to change the field direction, preserving its magni-
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Polarimetric detector

Figure 1. Schematic diagram of setup for observing spin noise. See text for
element notation and explanation of operation principle.

tude. The light passed through the sample is directed to the
polarimetric detector comprising phase plates 5, a polarizing
beam splitter 6, and a differential (balanced) photodetector 7.
The output electric signal from the photodetector is deter-
mined by the difference among currents from photodiodes
illuminated by the output beams from the polarizing beam
splitter. In the balanced state, when the intensities of light in
the arms of the polarizing beam splitter are equal, the mean
output voltage of the polarimetric detector is zero. Before the
measurements, the polarimetric detector, as a rule, is
balanced so that its output signal is determined only by the
changes in the polarization of the probe beam, caused by spin
fluctuations in the sample. The output signal of the photo-
detector thus obtained arrives at the input of the digital
radiofrequency spectrum analyzer §.

The phase plates 5 serve to balance the detector and switch
between the modes of recording the noise of FR and
ellipticity. When observing the FR fluctuations, the /2
plate used to balance the detector is installed before the
beam splitter 6. When observing the ellipticity fluctuations,
a A/4 plate oriented at 45° to the beam splitter polarizations is
also installed before the beam splitter 7, which allows
converting the ellipticity changes into the rotations of the
polarization pane registered by the polarimetric detector.

The change in the output voltage U of the balanced
polarimetric detector operating in the FR recording mode is
proportional to the change 8¢ in the polarization azimuth of
the incident light: U ~ 6¢. If the sample contains magnetic
particles (e.g., atoms or ions) and the projection of the
magnetic moment of the ith particle on the propagation
direction of the probe beam equals y;, then the linearly
polarized probe beam experiences a rotation of the polariza-
tion plane by the angle 6¢ (Faraday effect), proportional to
the total projection of the magnetic moment of the particles
that find themselves inside the beam 8¢ = x>, ;, x being the
proportionality coefficient. If the magnetic moments compos-
ing the sample are oriented in space in a chaotic way, then the
mean Faraday rotation of the probe beam polarization plane
will be zero, (5¢)=0; however, its mean square fluctuation
(8¢2), the Faraday rotation noise, can differ from zero. The
mean square fluctuation (8U?) of the polarimetric detector
output voltage will also be nonzero (see Fig. 1).

A magnetic field applied to paramagnetic material not
only causes its magnetization but also radically changes the
nature of its magnetization noise. This fact is of great
informative value and forms the base of the spin noise
spectroscopy method.

The mechanism of magnetic resonance noise signal
formation can be presented in a simplified way as follows. If
a transverse (with respect to the probe beam) magnetic field B

is applied to the sample (see Fig. 1), then the magnetic
moment of every particle of the sample will precess around
it with the Larmor frequency Qp = gfB/l (here, g is the
g-factor, characterizing the particle, f is the Bohr magne-
ton, 7 is the Planck constant), due to which the contribution
of each particle to the total Faraday rotation d¢ will oscillate
at the same frequency. Since the phases of magnetic moment
precession of the particles are random, the mean Faraday
rotation will be zero again, (3¢) = 0. However, the power
spectrum of its noise A(v) determined by the Fourier
transform of the correlation function (3¢(0)3¢(¢)) of the
Faraday rotation N(v) = (2r)"" [exp (ivt)(84(0)8¢ () dt
will exhibit a maximum? at the Larmor frequency Q; . This
power spectrum (calculated instrumentally by the spectrum
analyzer 8) is the main result of measurements in SNS.

From the above consideration, it follows that, in the SNS
experiment, the spectrum analyzer § actually records the
spectrum of magnetization noise of the ensemble of sample
particles that find themselves inside the probe beam.* As was
already mentioned, according to the fluctuation-dissipation
theorem [1], this spectrum is determined by the imaginary
part of the sample magnetic susceptibility, which is detected in
the standard EPR spectroscopy. This demonstrates the
relationship between SNS and EPR spectroscopy, noted as
far back as in Ref. [7].

From all of the above, it is obvious that the SNS technique
reduces the problem of observing magnetization noise to the
observation of the probe beam polarization noise. As a rule,
the sensitivity of differential polarimeters used in SNS (see
Fig. 1) is limited only by the shot noise of the probe beam [31]
and, as follows from estimates presented below, turns out to
be sufficient for reliable observation of the magnetization
noise (spin noise) in many paramagnetic structures.

2.2 Estimating the signal value

To estimate the noise signal value, let us consider the
following Gedankenexperiment. Let us apply to the sample
a magnetic field parallel to the probe beam (i.e., in the y-axis
direction in Fig. 1). Let the magnetic field be so strong that all
elementary magnetic moments of the sample turn out to be
oriented along it. Under equilibrium conditions, this means
that the magnitudes of Zeeman splitting of magnetic energy
sublevels of the system substantially exceed the thermal
energy k7. In this case, a probe beam passed through such
fully polarized sample will experience a rotation of the
polarization plane ¢, which we will call the saturated
rotation and which, in principle, can be measured. We denote
by N the number of particles contributing to this rotation.>
The contribution of each particle 8¢, (i=1,...,N) to the
observed rotation ¢, will, in this case, be similar, since the
magnetic moment projection on the probe beam direction is
the same for all particles in the beam and has the maximum
possible value. We denote it by u. Therefore, the total

3 From the relation presented, it is seen that the area under the noise power
spectrum curve equals the mean square fluctuation of the Faraday
rotation: [N (v)dv = (8¢7).

4 This statement is valid when the Van Fleck theorem of proportionality
between FR and magnetization holds. A more general case, when the
relation between Faraday rotation of the probe beam and the medium
magnetization is not scalar, is more thoroughly considered in Ref. [30].

5 This is the number of particles that find themselves in the beam both
spatially and spectrally, i.e., resonant to the probe beam (in the case of
strong inhomogeneous broadening of the optical line, not all the particles
geometrically inside the beam will make the same contribution).
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recorded rotation ¢, can, in the considered case, be expressed
by means of the proportionality coefficient x introduced
above as follows:

N N
b= 0= k> 1y = N
i=1 i=1

Now, let us turn off the magnetic field and wait until the
sample reaches a state of thermodynamic equilibrium. The
observed rotation of the probe beam polarization plane d¢
will be, as above, the sum of contributions from particles:
3¢ =N 8¢, =Y, ;, in which the quantities Sy, will
be random with zero mean values, because the magnetic field
aligning the magnetic moments is now absent. Direct
calculation of the mean square fluctuation (8¢ *) shows that
(8¢%) = k>N(u?). Here, (u?) is the mean square of the
magnetic moment of a certain particle, for instance, the first
one (due to statistical equivalence, this value is independent of
the particle number). Combining the expression for (8(;52)
with the expression for ¢, and bearing in mind that
(uf)/u? ~ 1, we arrive at the following relation between the
saturated rotation and the mean square fluctuation of
rotation in the absence of a strong polarizing field:

¢;

(39 ~ % (1)

Relation (1) can be applied to estimate the Faraday
rotation noise in the SNS experiments, since the value of ¢,
can be evaluated from the static Faraday rotation in the
sample in relatively small magnetic fields (we denote it by ¢),
when gfB < kT—in this case, ¢, ~ ¢y kT/gpB.

From Eqn (1), it is clearly seen that for SNS experiments it
is advantageous (to a certain degree) to focus the probe beam.
Indeed, as long as the focusing is not accompanied by optical
nonlinearity, the saturated rotation ¢, is independent of
whether the probe beam is focused or not. At the same time,
the number N of particles in the beam decreases upon
focusing, which leads to an increase in the value of (8¢) (1)
observed in SNS. It should be noted that the signal observed
in SNS thus exhibits a sensitivity to the known Z-scan
technique in the absence of any optical effects nonlinear in
light power [9, 32] and, therefore, possesses a tomographic
potential, considered in Section 3.6 in more detail.

To assess the possibility of detecting the spin noise in the
noises of Faraday rotation (8¢?), let us compare the spectral
density of these noises with the density of probe beam shot
noise, unavoidably present at the output of a polarimetric
detector (see Fig. 1). Let us first estimate the values of (6(/52>
for a typical SNS object — a cell with alkali metal vapor 1 cm
in size with a concentration of metal atoms n = 10'> cm™3.
Let us perform the calculation for the case when the cell is
probed with a nonfocused laser beam with a diameter of 3 mm
and power I =5 mW, the beam frequency being detuned
from the frequency of atomic transition by 1-2 GHz, which is
of the order of Doppler broadening. In this case, the cell
remains transparent for the probe beam, and the absorption
of light in the medium can be ignored. Since in the case
considered the polarization noise is created by atoms whose
magnetic moment precesses in the applied transverse mag-
netic field (see Fig. 1), the noise power spectrum will have a
maximum at the precession frequency Q) = gfB/h, and the
width of the maximum will be ~ 1/T5 (T, being the time of
spin transverse relaxation).

g
=]
T

—_
w

—
(=]

‘Noise of the noise’

Signal power spectral density

(=]
o)
T
=

3

Qp Frequency

Figure 2. Schematic illustration of the signals observed in SNS.

Using the fact that the area under the noise spectrum
curve [N (v)dv = (8¢2) can be estimated as N (Qy)/T>, we
get the following estimate for the noise power density at the
precession frequency, where this density is maximum:
N(QL) ~ (8¢3)T> = $2T>/N. As shown in Ref. [31], for a
polarimetric detector (see Fig. 1), the shot noise of photons is
equivalent to fluctuations in the polarization azimuth of the
input beam with a white spectrum whose density N, (v) is
independent of frequency v and determined by the relation
Na(v) ~ hiw/I [rad®> Hz™'] (here, I and %o are the probe
beam power [W] and the energy of its quantum [J], respec-
tively). Thus, the ratio of the spin noise magnitude to the shot
noise of the polarimetric detector can be estimated as follows:

N(e) ~ @ £ ()
N N ho’

In the case under consideration, 7> ~ 10~ s, saturated
rotation ¢, ~ 1, the number of atoms in the beam N ~ 102,
and the photon production rate //fiw ~ 10'7 s=!. Therefore,
N(QL)/Ng =~ 1, from which it follows that the spin noise
spectrum at the output of the spectrum analyzer will have a
bell-shaped (Lorentzian) profile with a width of 1/T5, placed
on a horizontal pedestal corresponding to the shot noise of
the photodetector. The magnitudes of the bell and the
pedestal in the example considered should be approximately
equal, as shown in Fig. 2.

Note that the equal amplitudes of the spin and shot noise,
playing in the described experiments the role of signal and
noise, respectively, do not mean at all that the signal-to-noise
ratio is of the order of unity, since the real noise that limits the
possibility of observing spin fluctuations is determined by the
stochastic fluctuations of the shot noise pedestal, rather than
by the pedestal itself, i.e., by ‘noise of the shot noise.” As is
known [33], the accuracy of determining the white noise
power in a bandwidth of y with the measurement time 7t is
described by the factor (yt)fl/ 2. This factor, which is often a
few orders of magnitude, allows measuring the spin noise on a
substantially subshot scale. The paper by Forrester [34],
written back in the pre-laser epoch, can serve as an out-
standing example of observing informative light intensity
noise (at a level of 10~* of the shot noise). In a real
experiment using a focused probe beam and the most
favorable study subjects, the relative value of the spin
component of the noise can reach hundreds of percent.



March 2024

Development of laser spectroscopy of spin noise 255

2.3 Calculating the magnetic moment correlation function

Let us now perform the simplest model calculation of the
noise power spectrum N (v) recorded in SNS, when the
magnetic moment of the particles is described by the
effective spin 1/2.° As was mentioned above, this spec-
trum is determined by the correlation function N(v) =
2n)™! Jexp (ivt)(8¢(0)3¢ (1)) dt of the random polarimetric
signal 6¢, which, in cases typical of SNS, can be
considered the sum of contributions from N particles of
the sample (atoms, ions) that find themselves within the
probe beam: 8¢ = Zgl 3¢, = KZ,]L Y;. Bearing in mind
the statistical independence and equivalence of the parti-
cles, as well as the fact that the contribution from each
particle to the Faraday rotation polarimetric signal is
determined by the projection of its magnetic moment on
the direction of the probe beam (in the case considered —
the direction of the y-axis), we obtain the following
expression for the noise spectrum N (v):

N
K2

N () =5 [ exp v

- (e (0)) d

i k=1

2

LN = ]\;—’;Jexp v0)(S,()S,(0))dr.  (3)

Here, we ignored the mean values of the form (u;) (1), i # k,
which play no essential role in SNS, and denoted as S, = p;
the y-projection of the magnetic moment of an arbitrary (e.g.,
the ith) particle.

We will refer to the laboratory system of coordinates with
the y-axis parallel to the probe beam as the K-system (see
Fig. 1). Let us calculate the correlator (S,(#)S,(0)) for the
case of an tilted magnetic field, when, in addition to the
component B. (shown in Fig. 1), there is a component B,
along the direction of the probe beam, and the total field
B= (B} + B? )1/2 is tilted by angle ¢ = arctan (B,/B.) with
respect to the direction z of the laboratory K-system of
coordinates.

Now, let us move to the coordinate system K’, rotated by
angle ¢ relative to the x-axis of the system K. In such a system,
the magnetic field will have only a z-component B =
(0,0,B) = (0,0, (B} + B2)'/?). Magnetic moment projec-
tions in the K’ system (we denote them by M, M,, and M)
satisfy the Bloch equations [35]

. M

My = @M, — 2
2 2

. M, uB ”\/B)J"_Bz
M,=-QM, -~ tQ=b=—Y -~ 4

Y LM x T2 a L 7i 7i ()
M. Mg — M.

T,

Here, 1 = gf determines the magnetic moment of the particle
considered,” T} and T are the longitudinal and transverse
relaxation times, and Mq = 0.5uth [uB/2kT] is the thermo-
dynamically equilibrium value of the particle magnetic
moment projection on the magnetic field direction. The
solution of these equations with given values of the project-

®In the case of arbitrary effective spin, the calculation is similar.
" Here, g is the g-factor of the particles considered and f is the Bohr
magneton.

ions M, (0), M, (0), M.(0) at t = 0 has the form

(5)

The transition to the laboratory K-system of coordinates
is implemented through the following transformation of the
spin projections (rotation by an angle of —¢):

Sy 1 0 0 M,

S, | =0 cos¢p —sing M, |, (6)

S. 0 sin¢g cos¢ M.

from which we obtain
(S,(0)8,(2)) = (M, (0)M,(t)) cos? ¢

+ (M(0)M. (1)) sin” ¢
+ (M, (0)M-(1)) cos ¢ sin ¢
— (M-(0)M, (1)) cos ¢ sin¢. (7)

Let us substitute the expressions for M, (¢) and M(¢) from (5)
into relations (7). In this case, average values will arise that
have the form

MO),  (m20), "
(M,(0)M-(0)), (M,(0)M(0)).

They are thermodynamic averages of the operators of
magnetic moment projections, the matrices of which M, , -
are expressed in terms of Pauli matrices M, , . = uoy , .. The
averaging is performed in the K’ system of coordinates with
the equilibrium density matrix, in the present case, of the
effective spin 1/2 that has the form

When calculating the mean values of the form
(M(0)M,(0)), one should take into account that the Pauli
matrices in the operators M and M, do not commute, so that
the mean value is calculated as (M, (0)M,(0)) =
u>Sp Peql0x0y + ,0,]/2. Only those mean values diagonal
with respect to the projections will be nonzero:

E (MeqgM:(0)) = Mg,

(M2(0)) = (M2(0)) =7

B
—Ethu_

Meq = )
1972 2kT

(10)
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from which

Here, we made use of the fact that correlators are even
functions of time. Substituting these equations into (7) and
calculating the noise power spectrum AN(v) as a Fourier
transform of the correlation function (S,(0)S,(¢)), we obtain

N()  T,u?cos’¢
Nk? 8
Ty[u? — 4M2]sin?
1[:“ . eq] ¢ r

ﬁ([\) — QL]T2> -+ £([v -+ QL]TQ)

(vTy) +sin® gMZ, 5(v), (12)
where the Lorentzian is £(x) = [n(1 + x2)]”". From expres-
sion (12), it is seen that, in an tilted magnetic field, the noise
spectrum is not monomodal [9]: along with the Lorentz peak at
the Larmor frequency @, a peak at the zero frequency
appears with a width of ~ 1/Tj. Thus, the noise spectrum
carries information not only about the magnitude of the
magnetic field in which the sample is placed but also about
the orientation of this field relative to the probe beam. This
property can be useful when using the SNS technique in
magnetometry.

As is seen from the above estimates, the observation of
spin noise in alkali metal vapors with strong narrow lines of
allowed optical transitions, in principle, requires no exotic
instrumentation (low-noise amplifiers, complex algorithms of
data processing, etc.). In particular, this is confirmed by the
fact that the first experiment on SNS [7] was carried out using
conventional electronics of that time. However, to apply the
SNS technique to objects with less favorable magnetooptical
characteristics, it became necessary to substantially modify
the technique of noise signal acquisition and processing.
Thus, the application of digital spectrum analyzers based on
the fast Fourier transform instead of scanning-type spectrum
analyzers allowed a radical increase in the sensitivity of the
method [36-39]. As a result, the SNS method was successfully
applied to study semiconductor structures and became a
working tool in this important field of modern physics. A
special place among the objects of SNS is occupied by
paramagnets with inhomogeneously broadened optical tran-
sitions, in which the noise power can undergo immense
growth under the conditions of resonance probing. The
most striking example of this kind is dielectric crystals
doped with rare earth ions. They will be considered in
Section 3.3.

3. Experiments on spin noise spectroscopy

In the present section, we describe some SNS experiments
demonstrating the capabilities of this technique. In pioneer-
ing experiment [7], which initiated SNS, the object of study
was alkali metal vapors, but the technique became wide-
spread after its application to solid state semiconductor
media, which are of great interest for up-to-date photonics
and microelectronics [36-40]. That is why we begin this
section by describing experiments with semiconductor
systems. The efficiency of applying the SNS method to
them is due to their sufficiently high magnetooptical

activity and the possibility of using microcavities that
enhance the SNS technique sensitivity and lead to several
specific effects.

Let us briefly recall the properties of semiconductor
materials and microcavities based on them that are impor-
tant for SNS. First, note that an intrinsic semiconductor
probed in the transparency region should exhibit no noises of
optical susceptibility observed in SNS, since they are mainly
related to fluctuations in the populations of electron energy
levels in the bands. These fluctuations are strongly suppressed
in an intrinsic semiconductor: the valence band is completely
filled, the conduction band is completely empty, and at low
temperatures spontaneous interband transitions are practi-
cally excluded. Optical susceptibility fluctuations become
possible in the case of partial population of the conduction
band levels by electrons or when vacant energy levels (holes)
occur in the valence band. Both can be implemented by
doping the semiconductor sample or by its additional optical
excitation in the absorption region (optical doping). For
example, let the sample be doped by a shallow donor
impurity, so that the elctrons from the impurity levels are
thermally excited in the area of the conduction band, partially
populating the energy levels of this band. In this case, the
optical transitions from the valence band to the populated
states of the conduction band become impossible due to the
Pauli principle, and the optical susceptibility associated with
such transitions decreases. Possible fluctuations in the
distribution of impurity electrons over the conduction band
levels (including their spin dynamics) cause fluctuations in
optical susceptibility, which can be observed using the SNS
method. A similar situation can be obtained by optically
populating the levels of the sample conduction band. In both
cases, the electrons that appeared in the conduction band of
the semiconductor sample can be to a certain extent
considered particles involved in the analysis in the above
section, the concentration of these particles being controllable
in a wide range by changing the impurity concentration or the
intensity of the sample optical excitation.

The latest nanotechnologies allow manufacturing extre-
mely thin layers of semiconductor materials (quantum wells,
ensembles of quantum dots), which are intensely investigated
by methods of traditional optical spectroscopy and reveal
properties that are important for fundamental research and
applications [41]. Spin noise spectroscopy can offer addi-
tional and, sometimes, unique facilities for studying such
structures; however, their small thickness can complicate
direct observation of the polarization noise. To overcome
this difficulty, structures are grown where the studied part of
the medium is located inside a microcavity (Fabry—Perot
interferometer) formed by two closely spaced Bragg mirrors.
Placing the studied layer in a microcavity is equivalent to an
increase in the thickness of the studied part by Q times (Q
being the cavity Q-factor). This increase is due to the multiple
reflection of the probe beam from the resonator mirrors and,
therefore, multiple passage of the probe beam through the
structure part located between them. Note that, however,
when recording the noise signals of Faraday rotation, in
contrast to regular signals, the phenomenon of an effective
increase of the medium length in the resonator has specific
features. In SNS experiments, the dependence of the noise
polarimetric signal ((8¢ 2))l/2 on the sample length L usually
turns out to be a square root one, since, as is shown in
Section 2, ((8¢>))"/? = k(N{(u?))"/* ~ /L. From the quali-
tative point of view, such a dependence follows from the fact
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that the contributions from different regions of the sample to
the total fluctuation of Faraday rotation 8¢ are not
correlated. It is important that, when using microcavities,
one should expect a linear (stronger) dependence of the noise
polarimetric signal amplitude on the effective sample length
QL for the following reason. As noted above, the probe beam
multiply reflected in the microcavity actually passes through
the sample Q times. The time required for this multiple
passage in the thin resonators used in SNS experiments is
estimated as ~ QLyes/c, where Ly is the microcavity length,
c is the speed of light. As a rule, this is much smaller than the
period of Larmor precession of the sample spins. Therefore,
the presence of a microcavity is equivalent to passing the
probe beam through Q similar samples, whose contributions
to the polarimetric signal are fully correlated. Note that the
polarimetric noise from samples with a microcavity can be
observed not only in the transmitted but also in the reflected
beam.

Now, let us describe some particular studies of such
systems, based on using microcavities and illustrating the
capabilities of SNS.

3.1 Observation of nuclear spin relaxation

and the optical Stark effect

First, let us dwell on one of the most effective applications of
SNS for detecting internal fields arising in a semiconductor
system under optical pumping. The studied nanostructure
and a schematic diagram of this experiment are presented in
Fig. 3. The noise signal was observed from the mirror
interspace of the microcavity, which was a layer of n-doped
GaAs. Protocol of the experiment were as follows. The
frequency of a linearly polarized probe beam was set equal
to the resonance frequency of a microcavity, and the noise
spectrum of the Faraday rotation was observed in the
reflected beam. The observed maximum in the spectrum of
spin fluctuations corresponded to the Larmor precession
frequency of the conduction band electrons in the applied
magnetic field. Then, using a quarter-wave phase plate (see
Fig. 3), a small ellipticity was imparted to the probe beam,
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Figure 3. Observation of nuclear polarization and the optical Stark effect.
The studied microcavity (a) and a schematic of the experiment (b).
(Adopted from [19].)
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Figure 4. Observation of a self-induced effective magnetic field and
dynamic polarization of nuclei in a layer of n-GaAs under the conditions
of high density of probe light power. (a) Shift of the noise spectrum
maximum upon increasing and decreasing the degree of light ellipticity.
(b) Comparison of characteristic change in the shape of the spin noise
spectrum upon increasing the ellipticity of the probe beam (left) and
upon switching on an additional transverse magnetic field (right). The
magnitude of the transverse magnetic field B. is similar and constant in
all experiments.

after which the frequency maximum of the noise spectrum
shifted, the temporal dynamics of the shift having two
components, a slow exponential one with a characteristic
time of about 20 s and a second, virtually inertialess one. After
‘switching off” the ellipticity of the probe beam, the noise
spectrum returned to the initial state, demonstrating analo-
gous dynamics (Fig. 4a).

The experiment could be interpreted [19] assuming that
the slow component is due to the polarization of nuclei,
induced by the elliptically polarized pumping light, and the
inertialess one is due to the optical Stark effect. The known
effect of optical orientation of nuclear spins [42] leads to an
appearance of the effective magnetic field (Overhauser field)
acting on the spins of the conduction band electrons and
shifting the frequency maximum of the polarimetric noise
associated with them. To orient the nuclei, a pump using light
carrying angular momentum is required; therefore, the effect
takes place only under elliptic polarization of the probe beam,
which plays the role of pumping light. The characteristic
times of the nuclear dynamics can be on the scale of tens of
seconds, as was observed in the described experiment.

The phenomenology of the inertialess component of the
noise spectrum dynamics corresponds to the so-called inverse
Faraday effect [43, 44]. In Ref. [19], it was related to
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renormalization of the Hamiltonian of electrons in a strong
optical field; in the case of elliptic polarization of this field, the
renormalization turns out to be equivalent to the action of an
effective magnetic field (‘optical’ field) giving rise to addi-
tional splitting of spin levels and shifting the maximum of the
noise spectrum. The ‘optical’ field is directed parallel to the
probe beam, which is why in the experiments with transverse
orientation of the static magnetic field (the Voigt geometry)
the ‘optical’ field leads not only to a shift of the precession
component of the noise spectrum but also to the appearance
of a maximum at the zero frequency, analogous to the case of
applying a certain tilted field (see Eqn (12) and Fig. 4b). Based
on the results of Section 2.3, the value of the generated
‘optical’ field can be estimated in units of magnetic induction
(see Fig. 4b).

Both effects described (optical orientation of nuclei and
light-induced effective magnetic field) require sufficiently
high density of the optical radiation and, therefore, most
vividly manifest themselves in samples placed in a micro-
cavity.

3.2 Information content of optical spectra of noise signals
One of the important features of SNS distinguishing it from
classical EPR spectroscopy is the presence of an additional
optical degree of freedom, the use of which substantially
enriches the capabilities of studying spin systems. In the
present section, we consider the specific features of the spin
noise behavior under resonance probing of the medium and
show that the dependence of spin fluctuation power on the
frequency w of the probe beam contains information on the
character of the optical transition broadening unavailable for
linear optics. This circumstance played an important role in
the development of the SNS method and extending the scope
of its attributes.

As was mentioned above, in cases typical of SNS, the
recorded polarimetric signal 8¢ can be presented as the sum
of contributions d¢; from individual particles making up the
samples studied, the contribution of the ith particle being
proportional to its magnetic moment yx;. Now, let us keep in
mind that the proportionality coefficient (we denoted it by k)
can depend on the frequency of the probe beam w and be
different in different particles: 8¢; = i;(®)y;. If we ignore the
contribution to the magnetooptical activity related to the
frequency shift of the particle’s energy levels in the magnetic
field (the so-called A-term [45], which is usually small), then,
within the simplest consideration, the particle may be char-
acterized by one optical resonance frequency wg, @; = wyg. In
this case, the frequency dependence x;(w) has a dispersion-like
form® and it turns out that 8¢, = a;u;[wo — ]/[(we — w)*+
5,-2], where a; is determined by the oscillator strength of the
optical transition and §; characterizes its homogeneous width.
It is natural to assume that the oscillator strength ¢; and the
homogeneous width J; do not fluctuate in time and in the first
approximation are similar for all the particles, i.e., a; — a and
0; — J. The magnetic moment y; of each particle randomly
precesses with the Larmor frequency Qp, as considered in
detail above. As to the transition frequencies w;, three
substantially different cases are possible.

(1) The spread of frequencies w; is smaller than the
homogeneous width § and we can assume that w; = wy
(homogeneous broadening).

8 If the Faraday rotation noise is recorded [45].

(2) The frequencies w; are different in different particles
and are constant in time (static inhomogeneous broadening).

(3) The frequencies w; are different and stochastically
depend on time (dynamic inhomogeneous broadening).

The first two cases are implemented when the source of the
spin noise are localized magnetic moments in solid-state
matrices. At relatively high temperatures, the homogeneous
broadening of optical transitions due to thermal vibrations of
the crystal lattice is often prevalent. Upon decreasing the
temperature, the homogenecous width decreases, and the
static inhomogeneous broadening of spectra begins to play a
role due to various kinds of inhomogeneities in the system. In
some cases, €.g., in ensembles of quantum dots of semicon-
ductor structures, the static inhomogeneous broadening has a
morphologic nature and is the key factor of the optical
spectrum formation. The third case is implemented mainly
in classical SNS objects —alkali metal vapors—when the
inhomogeneous broadening of the transition is determined by
the Doppler effect.

As was already mentioned, due to the statistical equiva-
lence of the sample particles, the noise power spectrum is
determined by the Fourier transform of the correlator of the
contribution from one (e.g., the first) particle N(v) =
N[2n] " [exp (ive)(86,(1)8¢;(0)) dz. In the simplest model,
it is possible to consider y,(7) and w;(#) to be independent
random processes and to perform ‘uncoupling’ when calcu-
lating the correlator (8¢, (7)d¢,(0)). Then, the correlator
takes the form

(861 (1) 861 (0)) = a*(uy (1)1, (0))
o (t) —w 01(0) —
X<[w1(l)_w]2+52 [wl(O)—w]2+52> . (13

D(1)

The spin motion correlator (u;(#)p;(0)) was calculated
above (see Eqns (3)—(12)) and in the simplest case
(g (D)1 (0)) = [u?/4] exp (—|t|/T2) cos (Qrt). The correlator
D(f) (13) depends on which of the three cases mentioned
above is realized in the experiment. In the simplest (first)
case of homogeneous broadening, w;(¢) = wy = const, and
we get

wo — W
[y — ] + 62

2
(561 (1)56,(0)) = a2<m<r>u1<o>>[ } e

In the second case (static inhomogeneous broadening),
the frequency w (7) is independent of time, but random. Let
us denote by p (w1 — wy) its distribution function, which will
be considered normalized, jpd(wl — wp)dw; =1, having a
characteristic width of 4 and centered at w; = wy. In this
case, the correlator (3¢,(#)d¢,(0)) is determined by the
relation

(8¢, (1)3¢,(0)) = 02<H1 (1)u1(0))
X JpA(wl - wO)[

2
W —w
[wl—w]2+52:| doy, (15)
which transforms into Eqn (14) at 4 <. At 4> 0, the
integral in Eqn (15) can be calculated using the fact that the
contribution of the second term in square brackets is
substantially nonzero only within a small domain
| — wy| ~ d and in fact behaves like ©d(w; — w)/d. There-
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fore,

2
(861(0)891(0)) == (s (D (0))ps(@ = w0).  (16)
From Eqn (16), it is seen that the optical spectral dependence
of the noise signal in the case of inhomogeneous broadening
practically reproduces the absorption profile ~ p (o — wy)
and substantially differs from zero in its center at @ = w.
This is qualitatively different from the case of homogeneous
broadening when the spectral dependence of the noise signal
(14) becomes zero in the center of the absorption profile at
o = wy. Thus, the observation of the optical spectral
dependence of the noise signal in the SNS experiment offers
a possibility of determining the character of broadening of the
optical absorption line [22].

Consistent analysis of the third case (dynamic inhomo-
geneous broadening) requires specifying a model of atomic
collisions; however, all results of importance for SNS can be
obtained using the following simplified consideration. The
observed frequency of the atomic resonance w(t) differs
from the atomic transition frequency wy by the Doppler
shift w(f) = wo + kv, () (here, k = w/c, and v,(t) is the
projection of atomic velocity onto the direction of the probe
beam, which experiences random changes under interatomic
collisions). The correlator D(t = 0) = Dy can be calculated
as

2

k_
DFROZ®D 1 (v) dv.

Do =
‘ ,”[wo+kvw]2+52

(17)

Here, py(v) = [vrv/a] " exp (=[v/v7])?) is the Maxwell dis-
tribution (vr being the mean thermal velocity of an atom). Let
us denote by 7. the mean time between the atomic collisions.
Since during time ¢ < 7, the change in the atom velocity is
hardly probable, it is obvious that D(¢ < t.) & Dy. At time
t> 1., the velocities v,(f) and v,(0) become independent
random quantities, having Maxwellian distribution func-
tions. Therefore, the averaging of each of the factors (13) of
the correlator D(¢) can in this case be performed indepen-
dently, and we obtain

wo +kv—w r
v)dv| .
[wo + kv — w]* + 62 Pu(®)

D(t>» 1) =Dy = “

(18)

In order to calculate the correlator D(¢) at arbitrary time, it is
possible to use the interpolation formula

D(t):Doo—i—[Do—Dx}exp(—'Ti'). (19)

Itis now worth paying attention to the fact thatat § < kvrthe
quantities Dy and D, have substantially different depen-
dences on the frequency w of the probe beam. The argument
analogous to that preceding Eqn (16) shows that Dy
approximately reproduces the absorption profile and
reaches a maximum at w = wq, whereas D, becomes zero in
the center of the absorption profile at ® = wy due to the
evenness of the Maxwell distribution py(v).

Substituting Eqn (19) into (13) and performing the
Fourier transform for the simplified spin correlator pre-
sented after Eqn (13), we conclude that the frequency
dependence of the noise spectrum observed in SNS has the

form®

N () ~ Dy ToL ([v — QL] T2) +[Do — Doc]t L ([v — QL]7)
(20)

where 1/t = 1/t. + 1/T>.

In a real experiment with alkali metal vapors, the time
between the collisions 7. can be substantially smaller (in the
presence of a buffer gas in the cell) or substantially larger (in
its absence) than the spin relaxation time 75. In the case of
T> < 1., the observed noise spectrum is determined by the
expression N (v) ~ DoT> L([v — Q1]T>) and depends on the
probe beam frequency w repeating the absorption profile and
characteristic of an inhomogeneously broadened system.
When T, > t,7., the noise spectrum recorded in the fre-
quency window vy, such that 1/7, < vy < 1/, has the form
N () ~ Dy Ty L([v — QL] T>) and at ® = wy becomes zero as
in the case of homogeneous broadening [22]. This effect of
homogenization of the noise spectrum in an atomic system
with inhomogeneous (Doppler) broadening was discovered
and studied in Ref. [46]. Qualitatively, this homogenization
effect can be considered to result from the fact that the
spectrum of optical frequencies of each atom experiencing
multiple collisions with atoms of buffer gas has enough time
to fill practically the entire Doppler profile of the optical
transition during time 75.

3.3 Effect of giant amplification of spin noise

in inhomogeneously broadened systems

The optical spectroscopy of spin noise, implying the depend-
ence of spin fluctuation characteristics on the wavelength of
the probe light, radically differs from common linear optical
spectroscopy in its capabilities. The latter, as is known, is
unable to determine the character of optical transition
broadening, whereas the spin noise can differ in the most
radical way not only in spectral but also in amplitude
characteristics in cases of homogeneous and inhomogeneous
broadening.

To estimate the value of the noise signal under conditions
of resonant probing of the optical transition profile with
mainly inhomogeneous broadening, we return to Eqn (1)
relating the saturated Faraday rotation ¢, in the sample with
the expected noise signal (8¢2). In this formula, the
calculation of the number N of sample particles illuminated
by the probe beam as nl (where n is the concentration of
particles and V'is the sample volume illuminated by the probe
beam) is fraught with a strong underestimation of the noise
signal (8¢ 2) due to the following reason. If the frequency w of
the probe beam hits within the inhomogeneously broadened
absorption line, then the number of particles N entering
Eqn (1) and contributing to the polarimetric signal can be
substantially smaller than V', since this contribution is due to
particles for which the detuning of their optical resonance
from the probe beam frequency w does not exceed the
homogeneous width § of this resonance. The number N of
such ‘resonant’ particles can be estimated as N~ nlo/4
(here, 4 is the inhomogeneous width), after which Eqn (1)
takes the form

4 ¢}

(8%) ~ 5 v (21)

% For brevity, we do not write here the Lorentzians centered at negative
frequencies (see Eqn (12)).



260 G G Kozlov, I I Ryzhov, A V Kavokin, V S Zapasskii

Physics— Uspekhi 67 (3)

0.020

0.015

0.010

Magnetic field B, mT

SrF,: Yb3; 0.005
2=965.15nm;
T=5K N

b - 0.01
B, =15mT

Signal related
to shot noise level

0 200 400 600 800
Frequency, MHz

1000

Figure 5. Dependence of spin fluctuation spectrum of the ytterbium ion
in a strontium fluoride crystal on the magnitude of an applied
transverse magnetic field (a) and one of the dependence spectra (b)
(section position is indicated on color map by the dashed straight line).
(Adopted from [27].)

Expression (21) shows that the samples with large relative
inhomogeneous broadening 4/¢ can exhibit high-power noise
signals and serve as good subjects for SNS even if their regular
magnetooptical activity (¢,) is not high. It is interesting that, in
the case of forbidden optical transitions with extremely small
values of homogeneous linewidths, such gain can be huge.
Qualitatively, this can be explained by the fact that the loss in
the noise signal related in this case to the small value of the
saturated rotation ¢, is abundantly compensated for by the
gain related to the huge value of the relative inhomogeneous
broadening A/¢. This effect, called giant spin noise amplificat-
ion, has been recently demonstrated experimentally [27] in
some dielectric crystals with trivalent rare-earth ions. For
parity-forbidden intraconfiguration (4f—4f) transitions in
such ions, the ratio of inhomogeneous to homogeneous
linewidth can reach 7-8 orders of magnitude, providing the
appropriate gain in the value of the noise signal. The described
effect allowed the first application of the spin noise technique
to crystals with paramagnetic impurity centers and thus
included them in the scope of SNS objects. Note that the
preliminary studies carried out and estimates made [47]
showed no prospect for using allowed interconfiguration (4f—
5d) transitions in rare-earth ions that possess high magne-
tooptical activity as subjects for SNS.

As anillustration, Fig. 5 presents one of the first results of
detecting magnetic resonance spectra by the method of spin
noise spectroscopy in strontium fluoride crystals with Yb3*
impurity ions [27]. The spin precession signal was recorded
under resonant probing of the sample at the frequency of the
intraconfiguration f—f transition of the impurity ion. As a
source of probe radiation, a ring titanium-sapphire laser
capable of ensuring the required sufficiently narrow spec-
trum was used.

Successful experiments on detecting magnetic resonance
in the spectrum of spin noise in crystals allowed expecting a

possibility of applying SNS to these ions in glassy matrices,
where the ratio of inhomogeneous widths of f—f transitions to
the homogeneous ones can reach huge values. The chances for
success in this case were obviously decreased by the large
linewidths of magnetic resonance lines formed by chaotically
oriented impurity centers differing in g-factors. In experi-
ments with glassy matrices doped with neodymium and
ytterbium ions, indeed, no Faraday rotation noises due to
spin magnetization were detected. However, polarization
fluctuations of a different nature not earlier observed were
detected in the frequency region up to 1 GHz, which were
characterized by a ‘white’ spectrum and manifested them-
selves as ellipticity noises rather than noises from the
polarization plane rotation. The detected noise was attrib-
uted to the fluctuations of the structural environment of the
impurity ions specific to glasses [48]. The results obtained
demonstrated the applicability of polarization fluctuation
spectroscopy for the study of the structural dynamics of
disordered media, usually described within the model of
double-well potentials.

3.4 Observing spin noise in birefringent media

The Faraday effect underlying the SNS method always
determined, as was believed earlier, one of the most
important requirements regarding the object of study — the
condition of its optical isotropy (or, at least, isotropy in the
plane perpendicular to the propagation direction of the
probing light). The logic of this requirement seemed quite
natural: the measurement of the noises of Faraday rotation
implies the possibility of measuring the Faraday rotation
itself, which is practically impossible in birefringent media.
However, theoretical analysis of the problem has shown that
this is not true and that the stochastic fluctuations of gyration
or linear birefringence in strongly anisotropic media can be
detected as successfully as in isotropic media. Qualitatively,
the difference in the effect of linear birefringence on a regular
and noisy gyration can be explained as follows. The effect of
FR suppression by linear birefringence is observed at
anisotropic medium distances exceeding or comparable to
the thickness of the half-wave plate. For this reason, linear
anisotropy of the medium by no means affects the spatially
noncorrelated gyration (with zero correlation length). The
authors of Ref. [49] presented a rigorous theoretical con-
sideration of this problem and showed that strongly aniso-
tropic optical crystals capable of affecting most radically the
polarization of light passed through them turn out to be
practically isotropic from the point of view of noise spectro-
scopy — the power of spin fluctuations exhibits no visible
dependence on either the polarization state of the probe light
or the direction of its propagation.

The success of [49] was also developed in application to
semiconductor materials currently in demand — halogenide
perovskites. Reference [50] reported a substantial suppres-
sion of Faraday rotation in an MAPbDI; single crystal
under the phase transition from the cubic to the low-
temperature phase; however, in this case, the signals of
Faraday rotation fluctuations were successfully detected,
which, in combination with the rotating field technique,
allowed investigating the anisotropy of the spin subsystem
and detecting crystal twinning [51]. The presented results
substantially extend the scope of SNS subjects and are of
extreme importance for using the considered spectroscopic
technique both in fundamental studies and in practical
applications.



March 2024

Development of laser spectroscopy of spin noise 261

3.5 Alignment noise

In the above consideration, fluctuations in Faraday rotation
or fluctuations of gyrotropy (circular birefringence) detected
in SNS are a result of the fluctuating difference in the number
of spins oriented parallel and antiparallel to the direction of
probe light propagation. It is possible to say that the
gyrotropy noise reflects the noise of spin orientation. The
gyrotropy is described by the antisymmetric part of the
polarizability tensor or by the gyration vector dual to it.
Hence, in the standard SNS geometry, the fluctuations in the
antisymmetric part of the polarizability tensor of the medium
are recorded. From purely symmetry considerations, how-
ever, it is possible to hypothesize that a fluctuating anisotropy
of the medium may arise as a result of a difference in the
number of spins oriented across the light beam in two
orthogonal directions, e.g., horizontal and vertical. Such
fluctuations generally are not accompanied by fluctuations
in magnetization and gyrotropy of the medium and manifest
themselves as noises of the symmetric part of the medium
polarizability or noises of linear birefringence. In atomic
physics, this kind of spin ordering (regular or stochastic) is
called alignment. In contrast to the noises of orientation, the
noises of alignment are observed as noises of the ellipticity of
light passed through the medium rather than as fluctuations
in its polarization azimuth. Below in Section 4, where SNS is
interpreted in terms of scattering theory, it is shown that such
noise can be observed in a usual SNS setup, where the
polarimetric detector operates in the mode of recording the
ellipticity of the input beam. In the general case, the alignment
noises are detected both at the Larmor frequency (2 ) and at
the frequency of its second harmonic (2Qy) [26].

In contrast to the orientation noises, alignment noises
most vividly manifest themselves in the Faraday geometry,
when the probing light beam propagates along the external
magnetic field. Experimentally, the alignment noise was
observed in [26] in cesium atomic vapor. Figure 6 illustrates
the results obtained in this study. We emphasize that the
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Figure 6. Dependence of ellipticity fluctuation spectra of cesium atoms on
the magnitude of an applied magnetic field in Faraday (a) and Voigt (b)
geometries.

presence of the second harmonic of the Larmor frequency
in the alignment noise spectrum is not a manifestation of
the studied system’s nonlinearity. Therefore, the appear-
ance of such noise should be considered in the experimental
study of the nonlinear effect and constructing models to
describe it.

3.6 Spin noise tomography

The technique uses the specific spatial locality of the noise
signal recorded in SNS. As is known, the magnitude of the
regular Faraday rotation (in linear optics) does not depend on
the cross section of the probe beam. On the contrary, in SNS,
where the stochastic rather than regular signal of Faraday
rotation is measured, thisis not true. As was already noted, as
the cross section of the probe beam decreases (keeping its
total power unchanged), the relative value of the spin
fluctuation (~ 1/v/N) grows and, correspondingly, the value
of the noise signal grows.

Therefore, for a focused Gaussian probe beam, the main
contribution to the noise signal comes from the waist region,
the length of which in the direction of beam propagation
(Rayleigh length) is evaluated as p2// (here, p, is the waist
radius, 4 is the light wavelength). If the beam is formed by a
fully illuminated lens with focal length f'and diameter d, then
at A ~ 1 pm the radius of the beam waist (p, =~ Af/d) can be
easily made to be a few microns and the Rayleigh length of the
order of tens of microns. Moving the sample in such a beam
and observing the noise signal, it is possible to measure the
spatial distribution of spins that create the noise signal with
the spatial resolution mentioned above. The described
method of tomography was first demonstrated in [52] using
the example of the depth spatial resolution of two n-GaAs
layers of submillimeter thickness with different levels of
doping. In Ref. [53], the spin noise spectroscopy of the
gigahertz range was applied to study the relief of the
electronic g-factor in bulk gallium arsenide near the crystal
boundary. Thanks to using wide-aperture optics, the long-
itudinal spatial resolution reached in this study amounted to
~ 11 pm.

Note that the possibility of SNS-based three-dimensional
tomography demonstrates again the closeness of SNS to the
effects of nonlinear optics, since the dependence of the signal
(in the present case, the noise signal) on the cross section of
the beam (its intensity being constant) is nothing but a
dependence of the signal on the density of light power,
which is commonly direct evidence of optical nonlinearity.

3.7 Extending the frequency range

of spin noise spectroscopy

Using optical detectors to record light intensity modulation
signals at the Larmor frequency may seem to impose a
substantial limitation on the frequency range of EPR spectro-
scopy measurements using the SNS method. However, this is
not true. The simplest way to overcome such a limitation
consists in using the method of signal heterodyning by
intensity modulation. For this purpose, a probe beam is
used with the intensity modulated at the frequency vy beyond
the upper boundary of the detection range. In this case, a
frequency shift of the noise spectrum occurs, N(v) —
N (v —vr), which allows it to be transfered to the frequency
region available for observation. The method was first
applied in Ref. [53], where, for the optical heterodyning, the
radiation of a mode-locked laser was used. This radiation is a
comb of short pulses, the repetition period of which 1/vr
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substantially exceeds the duration of each pulse. Since the
time dependence of the intensity of such radiation comprises
multiple harmonics nvy,n = 1,2,3,..., the heterodyning in
this case yields a series of shifted noise spectra N(v) —
N —nvy),n==+1,42,43,..., which can be selected by
moving the frequency window of the noise signal detection.
In Ref. [53], using this method, it was possible to measure spin
noise spectra in the range of a few GHz.

It is worth noting that a harmonic modulation of CW
radiation can also be used as a heterodyne, implemented, e.g.,
by means of a Pockels cell and a high-frequency synthesizer.
Another option is to use as a probe beam the mixed radiation
of two stabilized CW lasers with frequencies detuned by vy.
Continuous frequency tuning of one of the sources in this case
will allow measuring the frequency vy and thus transfer the
SNS signal from the frequency regions of tens or even
hundreds of GHz, which can be used to measure Larmor
frequencies in very strong magnetic fields or to study energy
level splitting of a different origin.

The application of a probe beam with high-frequency
modulation of intensity also allows realizing an interesting
method of direct measurement of time dependence of the
polarimetric noise correlation function in a range of extre-
mely short times. Below, we present a simplified description
of the method of optical observation of noise precession of
spins at a frequency of ~ 30 GHz proposed in Ref. [54]. This
frequency significantly exceeds the transmission band Avp of
photodetectors and analog-to-digital converters (ADCs) used
in SNS. The observation of the spin precession in Ref. [54]
was implemented using ultrashort (with a duration of the
order of hundreds of femtoseconds) laser pulses, repeated at a
rate of vy =~ 100 MHz. From such a sequence of pulses by
means of a delay line (or using special laser systems), a
sequence of pulse pairs was formed, separated by time
interval At, which could be varied during experiments in the
range from zero to hundreds of picoseconds. This sequence of
pulse pairs was used to probe samples in the SNS scheme
(Fig. 7), the transmission band of the photodetectors being
Avp ~vr < 1/Al

Consider probing of the sample with the nth pair of
optical pulses passed through the sample at times n7 and
nT + At, respectively. The output signal of the polarimetric
detector S U will be determined by the Faraday rotation of the
sample (or the magnetization M(¢) proportional to it) only at
the moments nT and nT + At, when the sample is probed by
the light. Since the transmission band of the photodetectors is
relatively narrow, Avp < 1/At, the considered pair of optical
pulses is not resolved in the output signal, due to which
dU~ M(nT)+ M(nT+ At). According to the technique
proposed in [54], the output signal 6U was digitized,
squared, and averaged:

(BU?) ~ (M*(nT)) + (M*(nT + A1))
+2(M (nT)M (nT + At))

=2(M?*) +2(M(0)M (A1), (22)

and the obtained result was recorded as a function of the delay
At between the pulses. As is seen from the presented relation,
the part of (5U?) depending on At is proportional to the
correlation function of magnetization (M(0)M(Ar)), the
Fourier transform of which (magnetization noise power
spectrum) is observed in the standard SNS experiments.
Doped GaAs served as a sample in experiment [54], the
delay time At was varied from zero to hundreds of

AL Polarimetric detector

Sample
in magnetic
field B —— ;0
= @ (8U?)
Sequence of pulse pairs
(M(0)M(Ar))

Figure 7. Schematic diagram of detecting spin precession in the microwave
range significantly exceeding frequency band of polarimetric detector.

picoseconds, and the function (M(0)M(At)) demonstrated
oscillations with a period of about 100 ps, damping with the
characteristic nanosecond time. Such behavior of the corre-
lator (M(0)M(At)) corresponds to spin precession frequen-
cies of the order of tens of gigahertz and a spin relaxation time
of ~ 1077 s.

An interesting version of the development of the above
technique is presented in Ref. [55], where a system of two
independent pulsed mode-locked lasers was used for probing.
The radiation from the lasers was combined into a single
probe beam and passed through the sample to a standard
polarimetric scheme, similar to that in Fig. 7. A minor
difference in the pulse repetition rate ensures continuous
‘scanning’ of the delay & between the pulses. The spectrum
is reconstructed by means of the fast Fourier transform of the
signal, which in this case is an autocorrelation function. Here,
a registration bandwidth is reached that is determined by the
value of 87! with the constant resolution 8fmay ', where
Otmax 18 the maximum delay between the pulses. In Ref. [55],
the detection bandwidth reached in this way amounted to
more than 150 GHz.

3.8 Double-beam spin noise spectroscopy

In all the SNS experiments described above, the frequency
spectrum of spin noise power was recorded, related to the
temporal correlation function of spontaneous fluctuations of
the sample magnetization. In Ref. [25], it was shown that,
using the SNS method, it is, in principle, also possible to
measure the spatial correlation function of the magnetization
of the system studied, using an additional light beam coherent
with the probing one and tilted with respect to it by the angle 6
(Fig. 8).

As will be considered in more detail in Section 4, in SNS
we actually observe the optical field inelastically scattered by
the sample, the susceptibility of which experiences random
fluctuations (Raman scattering of light). In the conventional
geometry of the SNS experiment, this field acts on photo-
detectors together with the field of the probe beam and
undergoes amplification due to the effect of heterodyning in
quadratic photodetectors. It is important that the role of local
oscillator in this experiment is played by the probe beam that
gives rise to the scattered field. In the presence of an
additional tilted beam scattered by the sample, an additional
component appears, generated by the second beam. A part of
this component hitting the aperture of the detector device is
also heterodyned (the probe beam still serving as a local
oscillator, since the tilted beam does not hit photodetectors)
and contributes to the output signal of the polarimetric
detector. As is shown in Ref. [25], this contribution naturally
depends on the overlap of the probe and tilted beams in the
sample region. However, the fact of primary importance is
that, under certain conditions (in particular, when the size of
the beam overlap region substantially exceeds the light
wavelength A = 2m/k), this contribution is proportional to
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Figure 8. Double-beam SNS configuration.

the Fourier transform of the total spatiotemporal correlation
function [exp (i[krsin 0 + ve])(M(0,0)M(r, )} dedr of the
sample magnetization (gyrotropy). Thus, observing the
contribution to the noise polarimetric signal related to the
tilted beam at different angles 0, it is possible, in principle, to
measure the total spatiotemporal correlator of the sample
magnetization. The contribution of the tilted beam to the
polarimetric signal of spin noise was detected in Ref. [56]. It
is also worth mentioning Ref. [57], where an experimental
technique analogous to that mentioned above was reported,
in which the scattered field was mixed with the local
oscillator field. The phase of the latter was controlled,
which allowed monitoring not only the spin precession
frequency but also the wave vector of the scattered light.
As an example, a study of a layer of bulk n-doped CdTe was
presented, for which the absence of spatial correlations was
demonstrated.

Note that this double-beam heterodyning scheme can
also be applied for high-sensitivity detection of elastically
scattered light. In this case, the spectrum of the detected
scattering signal turns out to be centered at the zero
frequency, its width being determined by the dynamics of
the medium’s inhomogeneity. Since the intersection region
of the two beams forming the signal can be made small
enough, such a technique allows implementing not only high
sensitivity to a weak inhomogeneity of the medium but also
high spatial resolution in tomographic measurements. The
advantages of this technique were experimentally demon-
strated in Ref. [58].

3.9 Spin noise of a polariton laser

and hidden polarization of nonpolarized light

Finally, let us consider a nonstandard option of SNS
application: the detection of polarization fluctuations in the
coherent light emitted rather than scattered by the object of
study. To observe a signal in a ‘classical’ experimental setup, a
reference beam is required, the role of which can be played
either by light passing through the sample (standard scheme)
or by a split external beam mixed with the scattered field (the
so-called homodyne scheme [59]). However, the light emitted
by any system can also be subjected to a similar procedure of
polarimetric analysis. A trivial but, in practice, sought-after
example is the analysis of polarization or intensity fluctua-
tions of the radiation from a laser source, which allows
determining the overall level of its excessive noises and the
presence of sharp spectral features, related, e.g., to intermode
beats. For this purpose, it is sufficient to direct the radiation
of source I (see Fig. 1) exactly either to the balance
polarimetric detector (to study the polarization noise) or to
the single photodetector (to study the intensity noise). Much
more in-depth results can be obtained when studying

coherent radiation sources of a new type, the Bose—Einstein
condensates of exciton polaritons, or polariton lasers, the
radiation from which possesses hidden polarization even
when on average it is not polarized. We consider this SNS
application in a separate section, thus completing the review
of SNS experiments by returning to semiconductor struc-
tures, since the existing polariton lasers are based on
semiconductor microcavities.

Polarization characteristics of light are often described in
terms of the Stokes vector (a vector on the Poincaré sphere),
which allows assaying the predominant polarization of the
beam or its absence. In the latter case, when all polarization
components of the Stokes vector are zero, the light is
considered unpolarized. Such light can be a result of
averaging the light field polarization over time, spectrum, or
in some other way; however, the Stokes vector contains no
information about these details. Such a situation can be
realized in practice, e.g., in the case of enhanced spontaneous
emission, a superposition of many classical emitters, or the
radiation from a polariton laser.

For light unpolarized on average, the distribution of
Stokes vectors over the Poincaré sphere can be substantially
different. Figure 9 presents several realizations of such
‘unpolarized’ sources: (a) linear emitters with random
orientation of the polarization plane azimuth, (b) an equal
number of right-hand and left-hand circularly polarized
emitters, (c) a set of elliptic emitters with fixed orientation of
the ellipse axes, (d) fully random emitters (truly unpolarized
light). The above types of unpolarized radiation can be
distinguished from each other by the character of polariza-
tion fluctuations. The hidden polarization character can be
revealed by choosing a quarter-wave plate as 5 (see Fig. 1) and
recording the integral noise signal depending on its orienta-
tion [60]. Figure 9e presents the corresponding theoretical
dependences for the cases (a,b,d). When transmitting the
light from the radiator with the distribution (a) through the
quarter-wave plate, it becomes similar to the radiation with
the distribution (c); therefore, it can be detected by rotating
the balanced photodetector itself.

Thus, in some cases, it is possible to reveal the hidden
polarization of the radiator, which can help in the interpreta-
tion of microscopic mechanisms of the formation of the
radiating medium. We used this fact to study the polariton
laser below and above the lasing threshold [61]. The radiation
of polariton lasers is generated by an ensemble of exciton
polariton quasiparticles formed in semiconductor hetero-
structures under the action of optical pumping [62] or direct
electric injection [63]. The particles rapidly accumulate in one
of the quantum states of the lower energy dispersion branch
of exciton polaritons because of boson stimulation [64]. Due
to this effect, the greater the number of particles already
occupying this state, the higher the probability and, therefore,
the rate of the transition to the state. The recombination of
exciton polaritons from thus formed Bose condensate, the
energy and wave vector of which are well defined, leads to the
emission of light, possessing all characteristics of laser
radiation: it is coherent, monochromatic, canalized, and
polarized, at the same time remaining spontaneous. For
SN, these objects are of interest because theory predicts the
appearance of giant polarization noise of the radiation [65].
The nature of this noise is related directly to the stochastic
process of condensate formation, on the one hand, and to the
bosonic stimulation effect, on the other hand. Moreover, as
was shown in Ref. [66], the total polarization degree of the
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Standard deviation in units N{/?)

/2
¢, rad /
Figure 9. (a—d) Some special cases of distribution of individual emitters
over the Poincaré sphere for light unpolarized on average. (¢) Dependence
on orientation of the quarter-wave plate before the detector for some
distributions. See text for explanation.

polariton laser emission, i.e., the square root of the sum of
squares of linear, diagonal, and circular polarization degrees,
can be considered an order parameter of the transition from
the incoherent gas of exciton polaritons to the Bose con-
densate. Thus, the formation of polariton condensate is
always accompanied by a sharp growth of the polarization
degree of light emitted by a microcavity. In the general case,
the polarization of radiation from a polariton laser is random
[64], but frequently it is pinned to one of the crystallographic
axes [67]. Such a pinning can be caused by a slight optical
anisotropy of Bragg mirrors forming the microcavity. When
the pinning is absent, the polarization degree averaged over
the time or the ensemble of exciting pulses can be close to zero,
while its instantaneous total polarization can reach 80-90%
[68]. Such unusual behavior of the emitted light polariza-
tion distinguishes the polariton laser from conventional
semiconductor lasers. Spin noise spectroscopy is a method
capable of revealing and characterizing this feature of the
polariton laser [65].
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Figure 10. (a) Setup for recording the polariton-laser emission noise in
from a polariton laser in an optical trap. (b) Dependence of the normalized
integral of polarization plane rotation fluctuations of emitted light on its
power (inset shows examples of the theoretical calculation of the
dependence). (c) Dependence of the fluctuation integral of the polariza-
tion plane rotation (circles) and ellipticity (diamonds) on pump power in
the case of a ring trap (inset shows a magnified detail of the dependence
near the lasing threshold, indicated by an arrow).

As a sample, a high-Q microcavity was used based on
GaAs containing four sets of three quantum wells located in
the resonator antinodes [69]. Nonresonant pumping spec-
trally tuned above the mirror stop-band created a reservoir of
hot excitons that then relaxed and emitted into the photonic
mode of the resonator (see inset in Fig. 10a). The experiment
is schematically presented in Fig. 10a. The pump / reflected
from a micromechanical array of mirrors 2 was focused on the
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sample 3 by the objective lens 4. The light emitted by the
sample along the direction of its epitaxial growth was filtered
from the scattered pump light by the element 5 (e.g., a
diffraction grating of a bandpass filter). Then, the beam was
directed to the standard SNS scheme 6 to record the
fluctuations in the polarization plane rotation.

First, a series of experiments has been carried out with a
Gaussian profile of the pump beam, which yielded several
important results. To being with, the radiation was indeed
characterized by excess noises of polarization and intensity,
exceeding by many times the level of shot noise. The observed
power density spectrum of the fluctuations was ‘white’ in the
frequency region available for detection under any conditions
of experiment; therefore, the total signal was recorded in some
limited frequency band (up to 100 MHz). This value was
recorded depending on the power of pumping or emitted
light, and the dynamic range of its variation turned out to be
more than two orders of magnitude wider than the range of
variation of the total light power,'? which testifies to a very
high sensitivity of the SNS technique to the changes in the
studied polariton system. In addition, the dependence of
normalized ! fluctuations of the polarization plane rotation
on the emitted light power turned out to be substantially
nonmonotonic: first, the fluctuations grow (segment I in
Fig. 10b), then decrease (segment II), and then grow again
(segment I11). The authors of Ref. [61] established the following
proportionality of the fluctuations of polarization P normal-
ized to the mean number of particles in the ground polariton
state (N ):

(3P2),
(N)

(N)
To+ o (N)?'

(23)

where I'y is the rate of recombination of polaritons in the
linear regime, and « is the effective constant of polariton-
polariton interaction of polaritons with parallel spins, in
turn, depending on the decay rate of the number of particles
in the ground state (see [61]). In the initial segment I, the noise
grows at the expense of decreasing the decay rate of
fluctuations because of Bose stimulation and the correspond-
ing decrease in the first term of the denominator in Eqn (23).
When the polariton-polariton interaction increases, the
second term begins to dominate in the denominator, and
the normalized polarization noise decreases, which corre-
sponds to segment II. The growth in the last segment III,
apparently, testifies to the failure of the strong coupling
mode and transition to the classical laser regime.

When the sample polariton laser is characterized by
birefringence due to stresses or structure defects, the emitted
light has some preferential polarization (thanks to the effect
of polarization pinning mentioned above [67]). However, in
the case of a high-quality structure and the absence of selected
directions in it, the light can be practically fully depolarized in
the static meaning, but characterized by polarization fluctua-
tions, like those considered above. Indeed, in the experiment

01n experiments studying polariton lasers, the plot of emitted versus
pump power is often used to determine the lasing threshold position (see,
e.g., [70]).

' When measuring the spin noise spectra of light with variable intensity, it
is almost always reasonable to normalize the result to the power of the
beam incident on the detector, since this allows a direct comparison of the
measurement results, while excluding from consideration the pedestal of
the shot noise of light, which always linearly depends on the light intensity
on the detector.

with such samples, it was found in [60] that the composition of
their unpolarized radiation is close to a distribution of
random emitters around the equator of the Poincaré sphere
(Fig. 9a). These measurements were performed with a
Gaussian shape of the pump beam.

By changing the spatial profile of the pump beam, one can
create optical traps for the condensate due to the arising
spatial gradient of the polariton energy — in the higher energy
region, a blue shift of exciton polariton energy levels occurs,
which leads to an accumulation of quasiparticles in the local
minima of the potential. By varying the shape and size of such
traps, one can substantially change the emission mode of the
resulting condensate [71, 72]. In Ref. [73], using the SNS
method, the dependences of fluctuations of polarization
plane rotation and ellipticity of radiation from condensates
in traps of various shapes were studied. The general and most
significant feature of the observed signals (Fig. 10c) was their
substantially different dependence on the pump power. The
polarization plane rotation fluctuations arise in the radiation
long before reaching the polariton lasing threshold (marked
with an arrow), whereas the ellipticity fluctuations sharply
arise after the threshold and significantly increase upon
increasing the pump power, beginning to dominate over the
rotation noises. The described effect can be interpreted as
follows. In the unperturbed sample, there are small mechan-
ical stresses due to the lattice mismatch of the materials
forming the heterostructure. The magnitude of this aniso-
tropy is insufficient to cause the pinning of the emitted light
polarization; nevertheless, it suppresses the elliptic polariza-
tion of radiation and its fluctuations. An increase in the pump
power beyond the threshold leads to a growth in (N) and an
increase in the effective magnetic field arising due to spin-
dependent polariton-polariton interactions [74]. Because of
their strong spin anisotropy, the fluctuations of the population
difference between the circularly polarized components of the
condensate induce a rotation of its pseudospin. This effect is
referred to as self-induced Larmor precession and is consid-
ered in detail in Ref. [73]. Note that, in terms of the distribution
of emitters over the Poincaré sphere, this fact corresponds to a
transition from configuration (a) at pre-threshold pump
powers to distribution (b) above the threshold.

Thus, SNS is a method capable of revealing and character-
izing the hidden polarization of radiation. This capability turns
out to be of extreme importance for studies of a polariton laser.
The method’s sensitivity is particularly high in semiconductor
microcavities with a high Q-factor, where the spin noise signal
is amplified due to repeated circulation of light between the
mirrors [16]. In particular, spin noise spectroscopy allows
revealing the ‘hidden’ instantaneous polarization of the
polariton condensate in those cases where the time-averaged
polarization of the condensate is close to zero [60].

4. Spin noise spectroscopy from the point
of view of scattering theory

4.1 Expression for the signal recorded

in spin noise spectroscopy

In the above sections, when describing SNS experiments and
performing numerical estimates, we implicitly assumed that
the studied sample can be considered a homogeneous rotator 2

2That is, a part of the homogeneous medium possessing circular
birefringence or gyrotropy.
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that rotates the polarization plane of the probe beam through
a random angle 8¢, representable as a sum of contributions
from N particles of the sample that find themselves within the
probe beam: 8¢ = Zgl d¢;, 6¢; = kp; (see Section 2). Such
an assumption needs to be substantiated, since the noise
signals observed in SNS are generally a result of scattering
of the probe beam by the sample, whose optical susceptibility
is inhomogeneous in space and fluctuates in time. Let us
clarify the mechanism of forming the noise signals in SNS
from this point of view.

In SNS, we observe fluctuations of the optical suscept-
ibility caused by the random precession of magnetic moments
of sample particles at the Larmor frequency Q. = gfiB/fi and
giving rise to components with frequencies @ £+ Qp in the
spectrum of the scattered radiation (spin flip Raman scatter-
ing effect). In the relevant case of weak scattering, the optical
field at the input of the polarimetric detector (see Fig. 1) can
be considered a sum of the probe beam field and the scattered
field. The interference of the probe field and the components
of the scattered field frequency-shifted by +Q; are accom-
panied by beats of intensity at the frequency Qp (effect of
heterodyning). The effect gives rise to a spectral component at
the frequency Q1 '3 in the output current of photodetectors 7,
which is recorded as SNS polarimetric noise spectrally
localized at this frequency. Note that, to observe these beats,
it is necessary to install a polarizing beam splitter 6 before the
photodetectors (see Fig. 1), since the intensity beats occur
only due to the interference of similarly polarized fields and,
as we will see below, the polarization of the scattered and the
probing fields can be different. From the presented considera-
tion, it is seen that SNS is, in essence, a heterodyne
registration of Raman scattering, as was pointed out in
Ref. [73].

Before proceeding to the calculation of the scattered field
discussed above, let us describe a quantitative model of a
polarimetric detector in Fig. 1 and present expressions for
calculating its output signal. We will consider the case where
the polarimetric detector operates in the mode of Faraday
rotation recording (i.e., 5 is a half-wave phase plate). Let us
introduce the coordinate system with the z-axis directed along
the magnetic field (the Voigt geometry), the y-axis parallel to
the probe beam (see Fig. 1), and the zx-plane parallel to the
planes of photosensitive surfaces of photodetectors 7. The
principal directions of the polarizing beam splitter 6 are
rotated by the angle ¢ with respect to the axes z and x of the
above coordinate system. !4 Let us denote by E the complex
optical field which would act on the lower (upper) photo-
detector if the polarizing beam splitter 6 is removed from the
detector (replaced with a mirror directing the radiation to the
upper photodetector); only the real part of E which will be
denoted by the calligraphic character €= ReE will be
considered to have physical meaning. Then, the photocur-
rent, e.g., of the lower photodetector, to a factor inessential
for us here, is determined by the following integral:

T
T’IJ dtJ dxdz &7,
0 s

13 Since the photodetectors 7 of the polarimetric detector are quadratic,
their output current is proportional to the intensity of the field on the
photosensitive surface.

4 With fixed polarization beamsplitter 6, the angle ¢ can be changed by
rotating the phase plate 5, which in this case is a half-wave one.

where S is the photosensitive surface of the photodetector,
and the averaging over time ¢ is performed in the interval T
containing a large number of optical periods 2n/w and small
compared to the characteristic time of the polarimetric signal
change—in our case, the period of Larmor precession:
2n/w < T < 21/Qp. Due to the presence of the polarizing
beam splitter 7 in the scheme, each of the photodetectors is hit
by one of the projections &y, . of the field £ introduced above,
and, due to the bridge connection of the photodetectors, the
output signal U is determined by the differences in their
photocurrents. Bearing all this in mind, we can derive the
following expression for the signal U:

U= % LT dr Js dxdz [cos 2] (€7 — £2) — 2sin 2¢]E-€,] ,
(24)

where £, . = Re E, ..

In correspondence with what is stated above, the complex
field E can be presented as E = Ej + E;, where Ej is the field
of the probe beam and E; is the field scattered by the sample.
In SNS experiments, only part U of the output signal of the
polarimetric detector proportional to E; is recorded. For this
part, using Eqn (24), it is possible to obtain the expression

2 T
oU = —[ dl‘[ dde{COS [2(]5}(50)(51;( — 502512)
T)o s

— sin 2] (Enn&: + E0-E10) } (25)

where &y, = Re Ey, - and &)y, = Re E| .. Let us proceed
to the calculation of the scattered field E; entering this
expression.

4.2 Calculating the scattered field
We will carry out a calculation of the scattered field E; under
the following simplifying assumptions:

(1) the polarimetric noise observed in SNS experiments is
produced by an ensemble of some particles (atoms, ions) that
find themselves within the probe beam;

(ii) the optical field acting on each particle can be
considered equal to the field of the probe beam, which is
assumed to be known (the approximation of single scattering
and absence of self-action);

(iii) the optical response of each particle can be calculated
in the linear approximation.

With the above assumptions, the calculation of dU
reduces to determining the contribution to the polarimetric
signal from one particle and summing over all particles
located inside the probe beam. Let us find the field scattered
by one particle (keeping for it the notation E;) and calculate
using (25) the contribution OSu, of this particle to the
polarimetric signal. Let the particle have the radius vector R
(see Fig. 1) and be a point dipole executing forced oscillations
in the field of the probe beam E,. The polarization distribu-
tion created by such a particle in space has the form

(d)
(dy)
(d:)

P(r) = 6(R—r) exp (—iwt), (26)

where (d. , .) are the projections of the dipole moment
oscillation amplitudes for the considered particle. The
desired field E; is the radiation field of a point dipole and
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can be found by solving the inhomogeneous Helmholtz
equation

AE; + k*E| = —4nk> P, k;%. (27)

Since we are interested in the radiation of the particles in
the direction of the y-axis (the sample is displaced with respect
to the polarimetric detector exactly in this direction; see
Fig. 1), we omitted on the right-hand side of Eqn (27) the
term —4nVdiv P—direct verification shows that, for the
considered geometry of detection of the scattered radiation
field E,, it is negligible. I For the same reason, it is possible to
omit the component (d,), since the dipole radiation in the
direction of the y-axis is related only to the components
orthogonal to this axis.

Equation (27) is derived assuming that the time depend-
ence of all involved fields is harmonic, ~ exp (—iwt). We will
also use this equation when the oscillation amplitude of the
polarization field P(r) experiences slow (compared to the
frequency of optical oscillations ) modulation at the
frequency of spin precession Qp < . The solution to
Eqn (27) can be obtained using the Green’s function of the
Helmholtz operator I'(r)=—exp (ikr)/4nr, satisfying the
equation AI'(r) + k2 I'(r) = (r):

E (r) = —4T[k2Jd3l'IF(l‘ -1 )P(r')

:kzjdz,/wp(r/),

[r —r/| (28)

Recalling that £ = Re E; and substituting (28) into (25),
we obtain the following expression for the contribution du, of
one particle to the detected signal:

Su, = &Tz Re JOleJd3r’{ cos [2¢] (@X(TI)Px(r/)

— @.(r') P-(r')) —sin 2¢] (P (r") P-(x")+@.(r') Py(r")) },
(29)

where

: !
q)j(l',) = J dde 501' (x:)th l) exp(lk_|7r/r|)
s [r —r’| yL

@/ (r') exp (—iwt) + @; (r') exp (iwt), i=x,z.
(30)

Here, r = (x,y,z) and L determines the position of the
plane of the surface S of photodetectors, over which the
integration in Eqn (25) is performed (see Fig. 1). The
polarization P(r’) (26) depends on time as exp (—iwt);
therefore, after averaging over time, only the component
@ of function @; will enter the expression for the detected
signal. We present the results of calculating this component
for the case when the probe beam is a linearly polarized
Gaussian beam with the polarization azimuth 0, propagat-
ing in the direction of the y-axis and having a waist at
y =0. The complex electric field of such a beam has the

15 The presence of this term follows from Maxwell’s equations.

form [25]

. BW  k
Eo(r) = exp [i(ky — )] — ﬁ

sz(x2+22) B .
50k iy P = At Dexp (o).

sin 0
D=1| 0 ,
cos 0

where r = (x,y,z), and the parameter Q is defined as
0 =2/p., where p, is the e-level radius of the beam waist
(caustic). The polarization of the beam is determined by the
unit Jones vector D having only x and y components in the
present case. '® The calculation of the components ®;” for a
Gaussian beam (31) given in the Appendix yields the
following result [58]:

(31

®—(r/) (32)

i .
(@x (l' )> _ _D% .Ag(l'/), |l',| <L,
where Aj(r’) is determined from Eqn (31). Substituting
Eqgns (26) and (32) into Eqn (29), we arrive at the following
expression for the contribution of the considered particle to the
polarimetric signal: du, = 2mk Im A™(R){(d,)sin [0 — 2¢]—
(d;)cos [0 — 2¢]}.

In the above calculation, we considered the polarimetric
detector to be operating in the Faraday rotation detection
mode, when 5 in Fig. 1 is a half-wave phase plate, its rotation
corresponding to the change in angle ¢. Let us now take into
account that in a real experiment the polarimetric detector is
always balanced to compensate for excess noise. For this
purpose, the angle ¢ is chosen such that the output signal U
of the detector, illuminated only by the probe beam E,,
turns into zero.!” If, as we considered above, the probe
beam is linearly polarized, this means that ¢ = 0 + n/4 (see
Eqn (24), where & — E¢ is determined in Eqn (31)) and,
therefore, the signal of Faraday rotation from one particle,
recorded by the balanced detector, is expressed as du, =
21tk Im A*(R)[{(d.) sin 0 — (d.) cos 0)].

Now, we consider the case where the polarimetric detector
operates in the ellipticity detection mode. To transit to this
mode, a quarter-wave phase plate is installed as 5, which is
oriented so that its axes form an angle of 7t/4 with the principal
directions of the polarizing beam splitter 6. It can be verified
that, with an arbitrarily oriented /linearly polarized input
optical beam, the output signal of the detector, operating in
this mode, is zero and appears only if the polarization of the
input beam becomes elliptic. As a result of calculations like
those presented above, it turns out that the expression for the
ellipticity signal from one particle (we denote it by du,) differs
from the expression for du, only by replacing symbol Im with
symbol Re. Hence, the signals u, and du, can be presented in a
compact form as an imaginary and real part of one complex
signal du determined by the relation

du = du, + idu, = 2mk A*(R)((d-) sin 0 — (d) cos 0)

— 2k A"(R)[d x D], . (33)

19 This is a consequence of the electromagnetic wave transversity. We
ignore the polarization change at the beam edges.

17 In this case, the occurrence of the output signal is related to the scattered
field E[ .
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In correspondence with the above assumptions, the vector d
of the particle dipole moment can be expressed in terms of the
probe beam field strength amplitude using the polarizability
tensor o of the considered particle (atom, ion): d; =
A (R)oix Di. Under typical SNS experimental conditions,
the studied sample particles are not externally excited and
are in the quantum state which is a random linear combina-
tion of the stationary states split by the magnetic field. Such a
superposition state is nonstationary and necessarily time
dependent, the characteristic frequencies of this dependence
being determined by the magnetic splitting frequencies
mentioned above. In turn, this leads to the time dependence
of the tensor o and the polarimetric signal du recorded
in SNS.

The calculation of time dependence of the polarimetric
signal is seen to reduce to the calculation of time-dependent
susceptibility (the polarizability tensor) of the sample
particles in a superposition state. The general character of
such calculations is illustrated by the case where such
particles are atoms, in which the ground energy level in a
zero magnetic field is a multiplet with the total angular
momentum F (i.e., a set of 2F + 1 states B = 0 degenerate at
| M) with the projection /iM of the angular momentum on the
z-axis, M = —F,1 — F,... F). Let us choose one of these
atoms and consider it at the time instant when it enters the
probe beam (let this instant be 1 = 0). Assume that the energy
distance to the nearest excited state of the considered atom is
so large that the atomic wave function |¥ (¢ = 0)) = |¥(0))
can be represented by a linear combination of the states
belonging to the considered multiplet only, [¥(0)) =
S Cu(0)| M), where Cy(0) are random complex num-
bers, and Y ;__.|Cy(0))* = 1. The matrix Hp of the
interaction Hamiltonian of the atom with the external
magnetic field B in the representation of wave functions of
the ground atomic multiplet |M), M = —F,..., F, has the
form Hz=h"'g.p (B,J) = (Q,J), where J, , . are the
known matrices of the angular momentum projection
operators [76], and gy, is the Lande factor of the considered
multiplet. The atomic wave function satisfies the Schrodinger
equation i¥ = HgV; therefore, ¥(t) = exp (—iHpt)¥(0).
Since exp (—iHpt) = exp (—(Qr,J)?) is the operator of
spatial rotation around vector @ by the angle Q7 [76], the
dynamics of the wave function in our case consist of its spatial
rotation around the magnetic field direction with the Larmor
frequency Qy . Similar rotation is experienced by all quantities
related to the wave function. For example, the magnetic
moment vector of the atom u = g f(¥V|J|¥ ) rotates around
the magnetic field with the Larmor frequency. In the linear
response theory, the polarizability tensor o interesting for us
is also determined by the atomic wave function |¥(¢)) (or the
appropriate density matrix). Therefore, in the measurement
of the atomic wave function described above, the atomic
polarizability tensor experiences the transformation, equiva-
lent to a rotation of the coordinate system around the
magnetic field with the Larmor frequency. With some
simplifications, this transformation can be thought of as
follows.

If the studied atomic system is transparent to the probe
beam, then the tensor « can be considered Hermitian in a
reasonable approximation o = o, and be written as the sum
of a real symmetric part and an imaginary antisymmetric
part, o = o® 4+ ¢, where oc;f“) = [o + (=)o) /2. Using the
Levi-Civita symbol &y, a real gyration vector o [77] can be
put into correspondence to the imaginary antisymmetric part

G: oj =iey;G;. The real tensor o’ can be completely
described by its principal values and the positions of the
principal axes. With these simplifications, the above
dynamics of the atomic polarizability tensor can be pre-
sented by a rotation of the gyration vector G and the
principal axes of the tensor o® around the magnetic field
with the Larmor frequency Q. Note here that, since all
vectors determined by the superposition wave function of a
multiplet with the given total angular momentum are
proportional to each other, the gyration vector G introduced
above is proportional to the magnetization vector y which we
used in previous sections to describe the contributions of
sample particles to the Faraday rotation signal.

Equation (33) written in terms of the symmetric tensor o*
and gyration vector G takes the form

8u =2k |A(R)[*([z* D x D], +iG,) = 2nk| A (R)|’

s | %2 P gy (20) — a2, cos (20) +1G, | .

- (34)

4.3 Basic configurations of the experiment
Using the above formula, let us analyze two base geometries
of an experiment on optical detection of spin fluctuations.

In the first of them, the Voigt geometry (typical of SNS),
the Faraday rotation noise is observed, the magnetic field
being oriented along the z-axis perpendicular to the probe
beam (see Fig. 1). In such a setting of the experiment, from
each particle only the imaginary part of the polarimetric
signal Su, = 21k | A(R)[G, (1), related to the y projection of
the gyration vector, is recorded. Since in this case the gyration
vector of each particle rotates around the z-axis with the
Larmor frequency €y, its projection G, harmonically
oscillates at the same frequency. Therefore, the Faraday
rotation noise observed in this geometry will be spectrally
localized at the Larmor frequency Qp. As was indicated
above, the gyration vector is proportional to the magnetiza-
tion vector used in the previous sections to describe such an
experiment; therefore, the considered case confirms the
analysis presented in these sections from the point of view of
scattering theory.

Now, let us consider an alternative geometry of SNS,
called the Faraday geometry, when the magnetic field is
directed parallel to the probe beam, and the polarimetric
detector operates in the ellipticity detection mode. In this
case, only the real part du, =27k |A (R)|* x [«*(r) DxD], of
the polarimetric signal is recorded from every particle. As was
mentioned above, the time dependence of the tensor of
corresponds to a rotation of its principal axes around the
y-axis, along which in this case the magnetic field is directed.
We denote by Y (¢) the matrix of coordinate transforma-
tion for the coordinate system rotation by the angle ¢
around the y-axis. Then, o*(7) =Y (—Qrt)a(0) Y (Q¢). Since
the y projection of a vector product of any two vectors A
and B remains unchanged under such a transformation,
[AxB] =[Y(QL)Ax Y (QLt)B],, we can write for the
recorded ellipticity signal du, the following chain of equalities:

du, = 2mk| A (R)|*[ Y (—=Qut) 2°(0) Y (1) D x D]

¥

— 2k A(R)[*[*(0) Y (Qu) D x Y (Que)D] . (35)

i

This chain shows that the transformation of the polarizability
tensor o in this case is equivalent to the rotation of the Jones
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vector D of the probe beam around the y-axis through the
angle Qrr. Such a rotation corresponds to the change
0 — 0 + Qtin expression (31) for the vector D:

sin [0 + Q1]
Y(.QLI) D= 0
cos [0 + Q1]

(36)

Thus, the expression for the polarimetric signal du,
observed in the Faraday geometry can be obtained by
performing the change 6 — 6 + Q. 1, o, — o (0) in Eqn (34)

and keeping only the real part of the quantity du:

u = 2mk| A(R)[ {M sin [2(0+ Qu1)]

(37)

X

— o (0) cos [2(94—9”)}} .

From the last formula, it is seen that in the Faraday geometry
the contribution of every particle oscillates in time at the
doubled Larmor frequency 2Q;, due to which the ellipticity
noise recorded in this geometry turns out to be spectrally
localized at the frequency 2Q;, as it was in experiment [26],
described in the previous section.

Thus, it turns out possible to substantiate the simplified
picture of polarimetric noise formation used in the previous
Sections from the point of view of the scattering theory.

To finalize this section, we note that the power spectra of
polarimetric noise recorded in the SNS, strictly speaking, are
determined by the Fourier transforms of the correlation
functions (du,(¢)du,(0)) and (du,.(¢)du.(0)), the calculation
of which requires considering the relaxation processes and
constructing a specified model of moving the sample particles
through the probe beam. Such calculations are performed in
Refs [25, 26].

5. Conclusions

The spectroscopy of spin fluctuations is one of the rare cases
where the content of the fluctuation-dissipation theorem is
used directly, implying the possibility of extracting the
spectrum of the system’s linear susceptibility from the spec-
trum of its spontaneous noise. Studies of the spectra of
luminescence or other spontaneous emission from objects can
in part be considered noise measurements of this kind.
However, only in two methods of spectroscopy, spin noise
spectroscopy and EPR spectroscopy, do these two approaches
meet in such a refined form. The experimental comparison of
these approaches made it possible for the first time to compare
their capabilities and to reveal several interesting features of the
magnetic resonance noise technique. Of course, it is necessary
to bear in mind that the noise technique in the implemented
form uses an optical method of detecting the magnetization,
which substantially enriches its capabilities. The achievements
of SNS have shown that, using stochastic signals, regardless of
their statistically small value in macroscopic samples (com-
pared to regular response signals), it is possible to implement a
quite practical method of investigating the susceptibility
spectrum and internal dynamics of a medium.

The prospects of further development of the SNS method
are determined by the variety of its possible applications in
radio spectroscopic and optical studies of paramagnetic
media, as well as by the continuously growing significance

of spin degrees of freedom in the devices of modern photonics
and informatics. In recent times, the scope of SNS objects has
been substantially extended; along with atomic and semi-
conductor systems, which can already be called classical SNS
objects, it includes dielectrics with impurity paramagnetic
ions, and the potentiality of applying this technique to
subjects with weakly allowed optical transitions has been
demonstrated. The information capabilities of multibeam
SNS methods are under intense research. With further
development of this research field and clarifying its informa-
tive potential, the issues of correct theoretical description of
SNS signal formation in media with various kinematics of
spin carriers under various conditions of medium probing
and various configurations of measurement setup will
become more and more important. This is exactly why so
much attention in this review was paid to rigorous solutions
to basic SNS problems in the model of inelastic light
scattering.
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6. Appendix

Let us calculate the function @; (Eqn (30)). We
introduce the following auxiliary functions: F(r') =
JgdxdzEo(r)I(r—r') ~ exp (—iwr) and P(r') = [(dxdz x
E;(r)['(r—r’) ~ exp (iw?), depending on time, respectively,
as exp (—iwt) and exp (iw?) (see Eqn (31)). Then, it is not
difficult to see that @,(r’) = —2n[F,(r’) + Py(r’)] and, there-
fore, @, (r') exp (iwt) = —2nP,(r’). To calculate the integral
in the expression for P,(r’), we use the Kirchhoff formula for
the field:

or(r—R)

5 = [ ki R i tr)

R) o\

—I'(r—
(r on

ds. (38)

Here, 0V is an arbitrary closed surface enclosing the point R,
and the symbol 0/0n denotes a derivative along the normal to
the surface 0V. For definiteness, we assume that the
photosensitive surface S of the photodetectors is larger than
the ‘section’ of the probe Gaussian beam, so that the
photodetectors ‘catch’ practically all the flow of its energy
(recall that S is in the plane y = L > |R]). In addition, we
assume that the size of the surface S (we denote it as v/S) is
substantially smaller than the distance L from the scattering
particle to the photodetectors, v/'S < L. We now choose the
surface 0V in the form of a cylinder whose axis is parallel to
the y-axis, resting on the surface S (v = L) on the right and on
the surface S’ (y = —L symmetric to it with respect to the
origin of coordinates on the left (Fig. 11)).

Since the probe beam is inside the cylinder constructed in
such a way, the integral in the Kirchhoff form (38) can be
calculated only over the surfaces S and S’—on the side
surface of the cylinder the probe beam field strength is
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Figure 11. See explanation in the text.

negligibly small. Both surfaces are perpendicular to the y-axis
and have oppositely directed normal vectors; therefore, on
the surface S the normal derivative is calculated as
0/0n — 0/0y, and on the surface S’, as 0/0n — —0/0y. We
calculate the derivative of the Green’s function 0I'(r—R)/0n
on the surface S (i.e., at y = L):

or(r—R)| or(r—R) 0I'(r—R) 0r—R|
om |¢ Oy  Qr—R| Oy
B or'(r—R) y—R,
~ Jr—R| |r—R|
, 1 1L-R, .
—— T N——
~L! <k ~1

(39)

The approximations used are justified because R, /S < L
(R =|R|) and, therefore, |[L—R,|,|[r—R| ~ L. This allows
ignoring the second term in the square brackets, since
F—R| ' ~ L' <k=2n/i. Moreover, the factor
[v—=R)])/Ir—R] at r,y > R is practically equal to that on the
surface S. The Green’s function derivative 0I'(r—R)/0n on

the surface S’ (i.e., at y = —L) is calculated similarly:
or(r—R) _or(r—R) _ 0I'(r—R) d[r—R|
on S oy olr—R| Oy
_ _OI'(r—R) y—R,
Or—R| |r—R|
1 —L—R,
= _I'(r—R)|ik - — | =¥
k- gy | 7w
—— T N——
~L-' <k ~—1
~ ikl (r—R). (40)

Thus, we conclude that on both surfaces S and S’ the relation
is valid:

or(r—R)
on

We now proceed to the calculation of the derivative
OE;(r)/0On that enters Eqn (38). First, we calculate it on
the surface S, where 0/0n =0/0y. In this case, in the
expression for Ej(r) that follows from (31), we take into
account only the first exponential factor, because it most
strongly depends on y. The dependence on y of the rest of
the factors describing the field oscillation amplitude
distribution in the probe beam can be ignored if the
Rayleigh length of the beam ~ p?2// substantially exceeds
the wavelength A (which is commonly so). Keeping this in

= ikl (r—R). (41)

mind, we obtain

O, (r) | _ OE,(r)
o |y

= —ikES(r). (42)

A similar calculation of the derivative OE;(r)/0n on the
surface S’ leads to the expression

OE; (r) OE;(r) . .
é)n =—— 22 = ikE;(r).

43
= (43)

Substituting the obtained relations into Eqn (38), we get

E;(R) = L {Eg(r) W’ It—R) aanilf‘)} ds
+J | {Eg(r) %’;R)f [(r—R) aEg}f‘)} ds

=0

- 21/«[ E; (1)[(r—R) dS = 2ik P (R). (44)
s
Recalling that @, (r) exp (iwt) = —21P,(r’), we get
. ik .
Eg(R) = = @, (R)exp (o), (45)

from which, using Eqn (31), we obtain the result (32).
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