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Abstract. The results of a study of the long-range propagation of
low-frequency acoustic waves in shallow water over distances
much greater than the water depth are presented. The primary
focus is on the characteristics of the sound fields due to the
influence of an inhomogeneous seabed. The effect of the physi-
cal properties of the bottom on the attenuation and refraction of
acoustic waves is given special attention. Emphasis is placed on
sound propagation on the Arctic shelf, where the inhomogeneities
in the upper layer of the bottom sediments are particularly
pronounced. Examples of the inhomogeneities obtained from
3D seismic surveys and shallow seabed drilling are given.
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1. Introduction

The term ‘shallow water’ appeared in underwater acoustics a
long time ago and is mainly associated with studies of the
long-range propagation (r > H, where r is the distance and
H is the depth) of low-frequency acoustic waves (less than
1 kHz) on the ocean shelf [I, 2]. Sound propagation in a
shallow water has a waveguide character, with the sea surface
and the seabed being the waveguide boundaries. Using the ray
language, one can say that the sound field at large distances is
mainly formed by rays reflected many times from the seabed.
In this respect, a principal difference between a shallow water
and a deep ocean is the significant influence of the bottom,
and mainly its upper sediment layer, on the formation of the
sound field. A good illustration of this statement is paper [3],
which demonstrates the sensitivity of transmission loss to a
variation in the parameters of the upper sediment layer in the
Shallow Water 2006 experiment carried out on the US
Atlantic shelf.

The effect of the bottom is most evident on the Arctic
shelf. This is confirmed, for example, by the strong spatial
sound attenuation in a near-bottom sound channel (an
acoustic waveguide formed by the bottom and the sea
surface) measured in experiments carried out by the Pro-
khorov General Physics Institute (GPI RAS). The experi-
ments were conducted in seven different regions of the
Barents Sea on acoustical tracks up to 400 km long. The
tracks were located in the southern part of the area which was
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explored. Signals were emitted by towed quasi-point sound
sources, and a vertical array of hydrophones, crossing a
significant part of the waveguide, was used as a receiver. The
coefficient of sound field attenuation was calculated as the
tangent of the slope angle of the experimental logarithmic
dependence of sound intensity d(r, z) on distance r for
receiver depth z. (The bar indicates spatial averaging over an
interval exceeding the spatial period of the interference beat.
The reduction in wave intensity due to geometrical divergence
of the sound wave front was excluded from consideration.)
The technique used to estimate the attenuation coefficient is
described in more detail in [4]. The results of the measure-
ments for each track and for different receiver depths were
averaged over the depth. The mean value of the attenuation
coefficient on these paths was found to be' f=0.106=+
0.057 dB km~! at a frequency of 100 Hz, which is at least an
order of magnitude higher than the values found in the deep
ocean where sound does not interact with the seafloor.

We note here a rather large confidence interval for the
values of f which, as shown by additional simulations, cannot
be caused by varying depth in the area or by different vertical
sound speed profiles in water on the explored acoustic tracks.
(The simulation technique is described below.) Most likely,
the cause lies in quasi-random seafloor inhomogeneities with
different acoustic properties and different horizontal and
vertical spatial scales. This hypothesis is indirectly confirmed
by the distribution of density in the upper (0—5 m) sediment
layer, as measured in bottom sediment samples in the Barents
Sea taken by the P P Shirshov Institute of Oceanology RAN
with geological tubes at the step of ~ 30 km [5] (Fig. 1). This
distribution, with significant density variations between
sampling points, was obtained along a straight line cutting
the central Barents Sea from its southern to northern
boundaries.

It should be noted that strong spatial variability in ocean
bottom characteristics is present everywhere on the ocean
shelf (see, e.g., [6]). The Arctic shelf has its own specific
features, partly related to natural gas seeps from deep layers
[7]. As a result, based on low-frequency seismic profiling, the
observed features in the northern seas of Russia are:

e layered sedimentary regions up to tens of kilometers in
length, including wedge-shaped layers;

e narrow vertical channels formed by natural gas seeps,
with pockmarks (craters) at the water—bottom interface;

e diapiric structures (dome-shaped folds formed by
natural gas pushing high-plasticity bottom layers upward
from below);

e paleovalleys of rivers filled with material that is different
from the surrounding material.

In addition, as shown by recent geophysical studies [8, 9],
the observed features are alternating regions of frozen,
thawed (multi-year cooled), and gas-saturated bottom [10],
where the physical parameters in the upper sediment layer —
sound speed, density, and sound attenuation coefficient—
vary over a wide range.

From the point of view of physical acoustics, the upper
sediment layer thus represents a medium characterized by a
random spatially distributed specific acoustic impedance
(wave resistance) Z, = c¢1p;/(1 +1ia1/2), where ¢, p;, and
o are the local values of the sound speed, density, and loss
parameter defining the imaginary part of the wavenumber k;

! The confidence interval, calculated using the Student’s criterion, corre-
sponds to a probability of 95%.
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Figure 1. Distribution of density (g cm~3) in the upper sediment layer in the
Barents Sea. Colored lines are density isolines.
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Figure 2. Experimental (solid) and simulated (dashed) dependences of
o(r, z) for different values of the sound attenuation coefficient in the sea
bottom f,,.

in the seabed, respectively (k; = w(1 +1i0;/2)/c;, where w is
the sound frequency). Unfortunately, the randomly inhomo-
geneous spatial fields of the physical quantities ¢;, p;, and o;
are, as a rule, unknown. As a consequence, in shallow water
acoustics, it is often assumed that the seafloor is a homo-
geneous liquid medium with some constant effective para-
meters: sound speed ¢, density p¢', and parameter of loss
¢ (see [2] and references therein). The effective parameters
are usually chosen so that the experimental . and simulated
dw curves of the sound field attenuation

I in(r,2) r
—— 7 4+ 101lg — 1
I i (ro, 2) g Fo m

Oe.tn(r,z) = 101g
are as close as possible to each other. Here, I (r,z) is the
sound field intensity (experimental and simulated with ‘e’ is
for experimental, “‘th” is for simulated) at the horizontal
distance r from the sound source and at the depth z, and ry is
the initial distance usually chosen so as to make this technique
adequate.

Welook at this method of choosing the seabed parameters
in more detail, using the studies carried out by GPI RAS in
the Barents Sea (Fig. 2). Here, the sound frequency was

f= w/2m = 100 Hz. The distance ry was taken to be 0.5 km.

The water column depth was H = 230 m. The depths of the
source zy and the receiver z were zo = 40 m and z = 65 m.
The bottom sound attenuation coefficient f, = 27.301 /¢,
[dB (km Hz)~'] was the effective parameter that was deter-
mined. It should be noted that this coefficient is characterized
by the largest uncertainty compared to other seabed para-
meters: sound speed ¢; and density p;. The degree of closeness
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between the experimental and calculated attenuation curves
in Fig. 2 was estimated using the following criterion:

K:K-i'K, 5e,th:56,th+5e,th7
[/ 3edyp dr (2)
Jaor Se2 dr+ Jor Stzh dr’

K= ([Or 5eéth dr K=
Jﬁor Se2 dr+ Jor Stzh dr’

where S ¢ corresponds to the sound field intensity ()
averaged over the longitudinal length greater than the
maximum horizontal scale of the interference beat, and Je n
corresponds to the fluctuating part of the intensity
I=1—(I). The value of K close to one corresponds to the
best agreement between the experiment and the simulations.
As can be seen from Fig. 2, the experimental and calculated
dependences are closest to each other (K= 0.92) for
By =0.167 [dB (km Hz)']. This value was taken as the
effective one. In the simulations, it was assumed that
¢;=1630ms'and p, =2 gem™.

Another well-known approach is to treat the seabed as a
consolidated or unconsolidated sediment layer lying on an
elastic half-space (see, e.g., [2, 11-14]). In this case, the
efficient parameters include additionally the density p5™ and
the propagation speeds ¢5™ and ¢§" of the longitudinal and
transverse waves in the half-space, as well as the speed of
transverse waves in the layer ¢f" if it is considered to be
consolidated. Some studies deal with even more complex
models with several layers above the half-space, and select
effective parameters for each layer [15-17]. In all such models,
the values of the above parameters are commonly chosen to
give approximately the same sound attenuation in the water
layer for waveguide propagation as for the real randomly
inhomogeneous bottom.

The quantities ¢; and p, vary practically randomly within
a shallow water region. Their statistical distributions are
different in different shallow waters, and it is likely that
these random fields have the largest variance for the Arctic
shelf. In this region, the spatial variability scales of these
quantities are not large, less than about 10 km on average. At
the present time, with advances in speed analysis techniques
for 3D seismic survey data, it has become possible to measure
the dependence of sound speed ¢; on spatial coordinates for
given regions on the ocean shelf. (The methodology of such
measurements using reflected waves is presented, for exam-
ple, in [18-20].) When seismic surveys are also accompanied
by bottom drilling with material sampling and density
measurements, new tasks in shallow-sea acoustics become
possible in the study of acoustic wave propagation in shallow
regions where the bottom impedance is approximately known
and varies in some way along the sound propagation track.
One such task worth mentioning first of all is the comparative
estimation of sound field attenuation in the water layer for
different distances from the source and different propagation
directions, i.e., for acoustic tracks over the sea floor with
significantly different and variable impedance. The problem
of comparing the real mean sound speed in the bottom with
the effective sound speed also arises here.

A special case in these tasks is when ¢; = ¢, where ¢ is the
sound speed in the water layer. Such a bottom is called water-
like.

Knowledge of impedance variations with high spatial
resolution allows estimates of the horizontal refraction of
sound waves caused by variations in the seabed acoustic
properties. What is of interest are the variations in the

direction transverse to the wave propagation. The effects of
horizontal sound refraction in the ocean were studied for a
sufficiently long time. The first theoretical studies on this
subject were carried out in the 1980s [21, 22]. The results of
experimental observations can be found, for example, in [23—
25]; however, in all these studies, the refraction was caused
either by transverse changes in the waveguide depth or by
hydrodynamical perturbations in the water column (internal
waves, mesoscale eddies, etc.). Only Ref. [26] mentioned
variations in seabed properties as a cause of horizontal
refraction. Here, this wave phenomenon was studied on the
shallow US Atlantic shelf, which is also characterized by
transverse depth variations, which in the end were the main
cause of horizontal refraction.

In contrast to the US Atlantic shelf, most of the regions of
the Russian Arctic shelf are characterized by smooth depth
variability. For example, in the above-mentioned studies
carried out by the GPI RAS in the Barents Sea, the depth
gradient did not exceed AH/Ar <1073, In such circum-
stances, horizontal refraction caused solely by changes in
seabed properties can be seen well.

This review extends and generalizes the results of studies
of low-frequency acoustical fields on the Arctic shelf in
regions with almost constant depth but a spatially inhomo-
geneous bottom, within one and the same framework. The
bottom characteristics (its sound speed and sometimes
density) are known and were obtained as a result of
geophysical studies. The main focus is placed on estimates
of sound field intensity at distances from sound sources that
are much larger than the waveguide depth. We also include a
case when the sound field amplitude depends not only on
sound attenuation along a straight line between the source
and receiver but also on the degree to which a sound ray
deviates from this line due to horizontal refraction. These
studies were carried out at the GPI RAS. The data from 3D
seismic surveys, drilling, and numerical modeling are utilized
(see Refs [27-31] for details).

The simulations are based on a modal description of the
sound field. We need to provide details of methodological
approximations that are used. Specifically, the analysis of
speeds in 3D seismic surveys does not provide estimates of the
quantity o; which defines the attenuation of sound waves in
seabed sediment matter. Therefore, the sound attenuation
coefficient in a seabed ﬁlf = 27.301 /¢; was chosen based on
the published data, which, in turn, show a substantial scatter
in possible values. Here, it is assumed that the coefficient does
not vary with spatial coordinates but varies with frequency:
Biy=1.07x 107416 [dB(km Hz)"'] [32], where f is the
frequency in Hz. The factor 1.07 x 10~* was chosen so as to
reproduce typical attenuation values in the range of 100-
250 Hz in the shallow eastern part of the Barents Sea found in
experiments carried out by the GPI RAS (see above). The
available results of test drilling in this region were also
insufficient to assess the spatial distribution of seabed
density p,. The value of p, used in simulations was kept
constant and set to the mean value of seabed density obtained
from drilling.

It should be stressed that all simulations were conducted
assuming a constant sound speed ¢ in seawater and the
absence of the sea ice cover, which was the case during the
seismic survey (the period of summer and fall). The value of ¢
can certainly depend on the depth z, and it is known that the
gradient of vertical sound speed profile ¢(z) shows seasonal
variability ranging from significant negative values in



174 A A Lunkov, V A Grigorev, V G Petnikov

Physics— Uspekhi 67 (2)

summer to positive values in winter. The simulated results are
quantitatively dependent on the selected profile of ¢(z);
however, as follows from additional simulations, they do
not change qualitatively. In this review, we present only the
results for ¢(z) = const. These results, on the one hand, reflect
some ‘average’ situation for a shallow (depth A < 30 m)
Arctic shelf, and on the other hand, correspond to a typical
situation. Therefore, we intend to draw the reader’s attention
to the seabed influence on sound propagation.

Sound propagation was considered at moderate distances
(up to 10 km) and at low frequencies (up to 1 kHz). This
selection was motivated by concern for protecting marine
mammals from intense anthropogenic acoustical noise.
Intense acoustical noise with the specified parameters is
commonly produced in seismic prospecting for hydrocarbons.
Foreseeing noise intensity is necessary to aid protection.

2. Example of bottom structure
on the Arctic shelf

In this section, as an example, we present results of 3D seismic
surveys and sample drilling in a region of the Kara Sea, as
described in [27]. The data includes the field of sound speed in
the bottom as a function of Cartesian coordinates ¢ (x, y, z),
where the coordinate origin is taken on the sea surface, and
the z-axis is directed vertically downward. The resolution
along the z-axis is 4 m, and the resolution along the x-axis and
y-axis is 100 m on average. As an illustration, Fig. 3 shows
transects of the sound speed field: horizontal and vertical
(along line A), which allow an assessment of the degree of
inhomogeneity of bottom sediments. The transect in Fig. 3a
was taken in the bottom at a depth of 51 m, for a sea depth of
25-50 m. In the transect in Fig. 3b, the water—bottom
interface is at an approximately constant depth of ~ 28 m
(horizontal dashed line in Fig. 3b).

In Fig. 3, one can see dark regions at the bottom, which are
oriented nearly vertically in Fig. 3b. These are the regions of
water-like bottom where the sound speed is close to that in water
(c = 1460 m s~!), which are related to gas seeps from deep
layers. Figure 3b also clearly illustrates a transitional layer along
the bottom surface with a width of 10 m, covering the entire
bottom from above, in which the sound speed ranges from
values similar to those in water to values found in deep layers.

The low-speed transitional layer in the upper part of the
bottom sediment layer, where no deep gas seeps are observed,
can be caused by two factors: (1) the presence of gas formed
via decomposition of local organic matter and also the
presence of cryogenic gas; (2) the presence of silty, water-
saturated sediments, in which, as is well known, the sound
speed is close to that in water.

To analyze these factors, consider Fig. 4, which presents a
comparison of the profiles of the sound speed and seabed
density on the same vertical line. The horizontal coordinates
of this line are shown in Fig. 3a by a circle. Figure 4a shows
the sound speed profile averaged over the scales AxAy Az =
100 x 100 x 4 m. The solid bold line in Fig. 4b shows the
mean density profile down to a depth of 40 m taking into
account the confidence interval (the region with a significance

21t should be noted that random spatio-temporal fluctuations of sound
speed in water, caused by ongoing hydrodynamical processes, particu-
larly, by internal waves, can also be observed on the ocean shelf. While
such fluctuations have the potential to affect the sound propagation [56]
discussed in this study, they are at a significant level primarily on the
Atlantic and Pacific shelves.
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Figure 3. (a) Horizontal and (b) vertical (along line A) sections of the
sound speed in the bottom obtained in 3D seismic surveys in the Kara Sea.
Horizontal dashed line in panel b shows the water—bottom interface.
Intervals numbered 14 in panel a show acoustical tracks used to analyze
sound propagation. Dotted rectangle marks the region where mode
coupling and horizontal sound refraction were studied.

of 0.95 by the Student’s criterion is shaded gray). The density
was measured by taking samples from 16 boreholes drilled in
the seabed and located approximately uniformly in a square
300 x 300 m in size. (The center of the square coincides with
the center of the circle in Fig. 3a.) The total number of
samples was 358. The size of each sample was 10 x 10 x
10 cm, and the step in the vertical direction was varied in the
range of 0.2—2.2 m, with a mean step of 0.8 m. One borehole
was drilled down to a depth of 65 m. The density data from
this borehole are displayed in Fig. 4b by a thin dashed line.

The bold dashed line in Fig. 4b shows a theoretical
density profile calculated from the sound speed profile
(Fig. 4a) under the assumption that there is no gas in the
bottom material. The calculations were based on the
empirical formulas of Akal [33], which represents a general-
ization of observational data over the entire global ocean:
e = ¢(1.631—1.78x + 1.2x2), p, = p(2.604—1.606x), where
c=1460 m s~!, p =1 g cm™3 are the sound speed in water
and water density near the bottom, respectively, and « is the
bottom porosity. Note that the Akal formulas agree well with
the analytical expressions for a two-component medium
(water plus mineral particles) [34].

From Fig. 4, it can be seen that the monotonic increase
in the sound speed in the bottom by 150 m s~! for a depth
increase of 14 m from the bottom interface must be
accompanied by a monotonic increase in the density from
1.7 to 1.95 g cm 3 in the absence of gas in the sediments. The
actual seafloor density in Fig. 4b is rather constant with
depth at 1.85 g cm™3 than following the theoretical
dependence. In our opinion, the near-surface sediment
layer should be considered a three-component, i.e., contain-
ing gas whose concentration decreases with depth, leading to
an increase in sound speed.
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Figure 4. Experimental profiles of (a) sound speed and (b) sediment density at location shown by the circle in Fig. 3a. In panel b: solid line is the mean
density profile over 16 drillings, gray area is confidence interval, thin wavy dashed line is profile for the deepest drilling, bold dashed line is theoretical
density profile computed by panel a assuming that there is no gas in sediments.

The factors that lead to a relatively uniform distribution of
gas concentration in the upper bottom sediment layer, with
decreasing concentration downwards, are unknown to us. It is
possible that, on the one hand, in addition to areas of active gas
release, small amounts of natural gas percolate through
microcracks. On the other hand, there is a mechanism that
prevents gas bubbles from penetrating into the water, resulting
in gas accumulation near the interface. This may be caused by
the predominantly clay composition of the uppermost layer of
the Holocene marine sediments. Nor can we rule out possible
processes of organic matter decomposition in the near-bottom
sediment layer, accompanied by gas release.

3. Acoustical model of a shallow-water
waveguide with an inhomogeneous bottom

Consistent with the observational data presented in Section 2,
consider a model of a waveguide composed of three layers and
having a cylindrical symmetry with respect to the vertical
z-axis of the cylindrical reference frame (Fig. 5). The
cylindrical symmetry in the model is necessary to eliminate
horizontal sound refraction when the source is placed on the
symmetry axis. Here, we assume that the effects of horizontal
refraction are present in reality, but that they are weak and
only noticeable for tracks up to 5 km in length and for some
track orientations, which will be discussed in Sections 6 and 7.
We denote r = y/x2 + y2. The water layer 0 < z < H(r) is
assumed to have constant parameters ¢ and p (the sound
speed and density) and to be bounded at the top by a free
space. The upper bottom layer at H(r) < z < H; is assumed
to be liquid, with variable sound speed ¢;(r,z) and constant
parameters p; and o). The parameters of the lower bottom
layer at H; < z < oo match the parameters of the layer above
at z = Hy: ¢\(r, Hy), p;, o1. Note that the parameters of the
third layer are chosen to exclude unwanted reflections from
the interface at z = H;, below which there are no observa-
tional data of the seabed structure.

Let a point omnidirectional source of frequency w = 2n f’
be located in the water layer at 0,z,. The sound pressure
received at an arbitrary point r,z of the waveguide at time

0 T
[
|
Z()0>>> ?(V,Z)
[
¢ p |
H(r) ;
€1 (1‘7 Z)’ P> %1
H,
al(r,Hn), pr, o

Figure 5. Model of a waveguide.

instant ¢ will be written as p = Re {P4exp (—iw?)}, where
P4 = AP is the complex pressure amplitude, 4 is the quantity
characterizing power and the initial phase of the source
(which does not play any further role and is assumed to be
A =1Pa m for certainty), and P is the Green’s function
found by solving the Helmholtz equation under appropriate
boundary conditions [35],

Plgy=0, Pl_py_=Pl_p,, mlg s H— :% ity e
Pl_y_=Pl_y, ZIZDLH] :g —Hit
where

__® il P
kl(r,z)—q("’z) <1+1 2), m i

o(+) is the Dirac delta function, and 0/0n is the derivative
along the normal to the interface between layers. An
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additional condition on (3), which emphasizes the unique
solution, is the radiation condition at infinity, which in the
case of an absorbing bottom is reduced to the boundedness of
the field amplitude at infinity, | P| = O(1) for (r,z) — oc.

A solution of problem (3) is sought in the framework of
the modal approach and the method of transverse sections

(2]

P(r,2) =3 Pu(r,2) =Y Aw(r;20) ¥, (r,2), (4)
m=1 m=1

where P,,(r,z) is the field of the mth mode, 4,,(r; zy) is the
amplitude of the mth mode, and ,,(r, z) is the local vertical
profile of the mth mode. The modal amplitudes 4,, in (4) can
be found in the adiabatic approximation (we will act in this
way in this section) as well as taking into account mode
coupling or horizontal refraction (see the following sections).
The modal profiles (normalized eigenfunctions) v, together
with corresponding eigenvalues ¢, are obtained from the
solution to the Sturm—Liouville problem for 0 < z < H;:

W’Z+(f<27631)wm:0a 0<z< H,

l:[/m(Plf) = lﬁm(H+) ) Inllﬁ;;(H*) = l//);(H+) ) (5)

lﬂm([‘h) +gmlp;;7(H|) =0,

H H,
jo w,i<z>dz+ij V2 dz+ B g2 () = 1,

mi Ju 2m
where for brevity we leave only the variable z on the list of
arguments of the function y,,(-), and the prime denotes the
derivative with respect to z. For z > H\, the eigenfunctions
are V,, = ¥,,(H,) exp [ie1n(z — Hy)]. The quantities g, and
&m will be described below. The summation in (4) is
performed by the first M modes of the discrete spectrum,
which are sufficient to describe the full discrete spectrum
contribution in the field at the selected distance from the
source. The contribution from the continuous spectrum is
ignored in (4). Taking into account the estimates obtained in
[35], the continuous spectrum can be ignored at distances
larger than r ~ H if the Pekeris branch cut is used in the
modal calculations. In this case, the discrete spectrum
includes, in addition to the normal modes, so-called quasi-
modes, which are necessary for field calculations over a
water-like  bottom (¢=c¢;) at short distances
(r~(1-10)H).

Let us explain the terms of discrete and continuous
spectra, normal modes, and quasi-modes, as well as the
closely related term branch cut. In any cross section of the
so-called reference waveguide (i.e., a horizontally homoge-
neous waveguide with the parameters of the original
waveguide at a distance r), a problem analogous to (3) has
an exact solution, written in the integral form as
P = [ ¢(&)d¢. Using the residue theory, the integral can
be transformed into

M
P=2mi) Res[9(0), ] + [0(6)de = DS+ 5,

m=1

where DS is the discrete spectrum (the sum of the residues
¢ (&) at the poles &, = &,,(r) for Im& > 0) and CS is the
continuous spectrum (the integral over the sides of the branch

cut beginning at the branch point ki (H;) = ky(r, H;), caused
by the presence of the complex square root &y, in ¢(&); see
below). Note that the discrete spectrum is given by formula
(4), while the continuous spectrum appears only for open
waveguides, i.e., those with infinite depth.

In the transformation of the integral which is described
above, the branch cut can be drawn arbitrarily. It is only
important that the Jordan lemma is valid and that the residue
theory is applicable. Depending on how the branch cut is
drawn, the relationship between DS and CS may vary, but the
net field P remains unaffected. Often, one tries to reduce the
field description only to the discrete spectrum: P =~ DS. It is
therefore important to find such a branch cut that minimizes
the continuous spectrum.

For the field description in the lower half-space (z > H),
this is the EJP cut (after the author’s names: Ewing,
Jardetzky, Press), which leads to a discrete spectrum
composed of a complete and finite set of normal modes
[35, 53, 54]. In this case, the normal modes are particular
solutions of the Helmholtz equation that satisfy the
boundary condition and the radiation condition at infinity.
For the field description in the upper waveguide layers
(0 < z < H)), in addition to the EJP cut, the Pekeris cut
can be used, which gives a discrete spectrum consisting of
normal modes and quasi-modes [35, 53, 54]. The quasi-
modes differ from the normal modes in only one respect:
they do not satisfy the radiation condition at infinity, i.e., if
the quasi-modes are continued into the lower half-space,
their amplitudes will grow infinitely with depth. For this
reason, the Pekeris cut cannot be used in the lower half-
space (the Jordan lemma is not observed). However, this
property of quasi-modes does not play a negative role in
their applicability region (0 < z < H;), where the quasi-
modes are in fact no different from the normal modes.
Furthermore, the quasi-modes play a positive role, by
replacing the description of the continuous spectrum from
the EJP cut. Estimates [35] show that, when a few modes are
excited, the use of the EJP cut leads to an approximate
equality P~ DS at distances larger than r ~ 10H in the
water layer, while the use of the Pekeris cut allows this
distance to be reduced to r ~ H.

Note that, by using the concept of ‘quasi-modes,” we
follow L M Brekhovskikh [55]. In his words, the quasi-
modes are “‘illegitimate’” modes that are “quite legitimately”
used in ocean acoustics, for example, in the description of
soft-bottom waveguides (¢ > ¢;), as well as in some adjacent
branches of physics, for example, in the study of waves in
electromagnetic and optical waveguides. It is worth noting
that quasi-modes belong to the class of leaky modes and
fully span this class in the analysis of fields in lossless
waveguides.

Now, consider the solution to problem (5). It is solved in
cross sections for each fixed r. Taking into account the
homogeneity of the water layer and the lower bottom layer,
we find from (5)

sin (g,z) , 0<z<H,
lpm:]vm l?m(z)a H<Z<H1, (6)
!ﬁm(H])exp [iglm(Z*Hl)] , z=Hp,
e M C
& = {‘Clmﬂ»/[ ém ¢ P (7)
—Eim s ém S C’
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Figure 6. (a) Real and (b) imaginary parts of eigenvalues of waveguide modes as functions of distance along path 4 from left to right.

where ,,(z) is the solution to the Sturm-Liouville problem
for H< z < Hy,

l/_//;’,l Jr (k12 - 6}31) lpﬂ? = 07

le(H) = Sin (SH1H)7

':bm(Hl) +gm!/_//;1(Hl) = 07

H<z< H,

W) (H)=mjeycos (e,H), (8)

H sin(2e,H) 1 (T, 8&m 72 e
N,=(=->"—""r"/, d H

" <2 4e,, +nﬂ JH V() Z+2m1 VnlHU)

Em = \/ k? — ;121’ Flﬁr/plq = \/ klz(Hl) - 6)121’ Em = i/81”7’ and Cis

the domain in which the conditions Imel, <0 and
Re¢,, > Rek;(H,;) hold.

All square roots /- in the above formulas and further in
the text are understood in the same way as the principal
value® of a complex square root, such that Re /- > 0. If
Re /- = 0, then the value with Im /- > 0 is taken. We note
that such a rule for root selection is implemented in the
Matlab software (the sqrt function).

Formula (7) for computing the square root on the upper
sheet of a Riemann surface of a complex plane &, where the
eigenvalues &,, of the Sturm—Liouville problem (8) are sought,
corresponds to the choice of the Pekeris cut, which is drawn
vertically upwards from the branch point ki(H;). As
mentioned above, for open waveguides lying on a liquid
half-space, the Pekeris cut minimizes the contribution of the
continuous spectrum in the full field in the region above the
boundary of the half-space, i.e., in water and in the bottom to
depth Hy, as compared to the EJP cut. This is explained by the
presence in the discrete spectrum of not only normal modes
(Im €1, > 0) but also quasi-modes (Im ¢y, < 0) in the case of
the Pekeris cut.

We mention the peculiarities of the numerical solution of
the Sturm-Liouville problem (8). As is well known, the
solution to this problem is reduced to finding the roots ¢&,, of
an equation of the form &(£) =0, which is the boundary
condition at the lower boundary. A technique for finding &,,
directly was proposed. First, in a prescribed rectangular
search domain in the complex &-plane, on a sufficiently
dense nonuniform grid, local minima of the function |®(&)]
were determined. Then, the position of the local minima, i.e.,

3 The second, not principal, value of the complex square root differs from
the principal one by its sign.

the position of &,,, was refined by recursive subdivision until
the required accuracy was achieved. It was found that, when
moving from one transverse section to another in the case of
inhomogeneous tracks, the positions of &,, on the complex
plane also change continuously (see Fig. 6, which shows the
real and imaginary parts of £,, at a frequency of 250 Hz as a
function of the coordinate along track 4 marked in Fig. 3a). In
some cross sections, unusual situations were observed where
the complex eigenvalue of one mode appeared directly above
the analogous value for another mode, Re¢,, = Reé,,
Im¢&,, # Im ¢, (see the behavior of the dashed line in Fig. 6).
We note that, in such situations, and also for a sufficiently
high coefficient of sound attenuation in the bottom, char-
acteristic of the Arctic shelf, the use of standard computa-
tional software (such as KRAKEN) to find &, can lead to
errors. The technique of finding the eigenvalues £, and also
the eigenfunctions &,, in a waveguide which is inhomogeneous
along the track is presented in more detail in Refs [27, 41].

Note that, for a homogeneous bottom model with k| =
const, (4)—(7) lead to well-known expressions for y,,(z) for the
Pekeris waveguide [1, 37].

Based on (4), for r = r, the intensity 7 (r, z) = (2p¢) " |P.4|*
the depth average intensity 7(r) = H~! IOHI (r,z)dz, and the
logarithmic intensity (attenuation curve)

1(r) r

J(r)=10lg Tro) +101g P 9)
are calculated. We will take the values of r and r( such that the
field is well described by the discrete spectrum of modes only,
while the contribution from the continuous spectrum is small.
Note that formula (9) differs from formula (1) in that it is written
for the depth averaged sound field intensity. This averaging, as
well as averaging over the distance r in the interval exceeding the
period of interference beats, serves to eliminate the variations in
intensity caused by intermodal interference.

We also note that I(r) depends on the source depth z;
however, this dependence is weak provided the source is
located further than one wavelength from the waveguide
boundaries [36]. We will use this in the calculations below.

The quantity J(r) is related to the value of transmission
loss [38] TL = 10 Ig[I(r = 1 m)/I(r)], which is accepted in
hydroacoustics, by the following relationship:

(r=1m)

I
J(r)=101g —

T(r0) (10)

r10lg - - TL.
ro
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The curves J(r), calculated for different tracks and sound
frequencies, will be considered the main result of the
numerical experiment; they can be obtained in observations
by recording signals with the help of a vertical hydrophone
array crossing the entire water column.

4. Sound propagation in a waveguide

with smooth inhomogeneities

Assuming that the water—bottom interface is horizontally
smooth, which implies 0/0n ~ 0/0z, solution (4) in the
adiabatic approximation (without considering mode cou-
pling and refraction) takes the form [35]

:GXp (17‘[/4) - lpm(o7 ZO)
\/g m=1 rqm(r)

P(r,2) exp (i () a2,

(11)

where ¢,, = Re¢,,. In this case, the complex modal ampli-
tudes are written as

-z :CXp(ITE/4) Ipm(O,ZO) X i ! r, r,
Anir; 20) V8T \rgm(r) a ( Jo Sn(r) d > '

4.1 Dependence of transmission loss

on the sound speed in the bottom

In order to explain the aspects of sound propagation in a
waveguide with an inhomogeneous bottom, we start with a
limit case where the bottom is a homogeneous half-space
with constant parameters. The sound speed in the bottom
will vary in wide limits ¢; = 100—1700 m s~': from an
acoustically soft bottom (¢; < ¢) to an acoustically hard
bottom (c¢; > ¢). The other parameters are taken as follows:

¢ = 1467 m s~! is the sound speed in water, p = 1 gem™ is

the water density, p; = 1.6 g cm ™ is the seabed density,
o; = 0.02 describes the loss in the bottom, and H = 120 m is
the waveguide depth. It should be noted that a shallow
hydroacoustical waveguide with a practically constant
sound speed in water is characteristic, e.g., of the Barents
Sea in spring.

To estimate the sound attenuation with distance, we
calculate the intensity of the sound field averaged over all
depths of the source zy and the receiver z in the range from 0 to
H

’

1 JHJH|PA7(W’Z°)|2 dzdz

0= | 5 (12)

0

We insert the resulting dependence I(r) into (9) in place of
I(r). As shown by simulations, the dependences I (r) and I (r)
practically coincide when the source is separated from
boundaries by a wavelength or more. For this reason,
replacing 7 (r) with I(r) is appropriate. The distance rg in (9)
for which the continuous spectrum can be ignored is in this
example ryp = 300 m. The results of simulations for different
speeds of sound in the bottom and for sound frequencies of 50
and 300 Hz are shown in Fig. 7 [39].

As can be seen from Fig. 7, there is strong sound
attenuation for a soft bottom; it is most pronounced at
low frequencies and when the sound speed ¢ is close to the
sound speed in the water layer (c; ~c¢, a water-like
bottom). In this case, the waveguide propagation is only
related to the difference in density between water and the
bottom. For a water-like bottom, the intensity drops by
30 dB compared to a hard bottom (¢; = 1700 m s~!) or
very soft bottom (¢; = 100 m s~') already at the distance
r =5 km from the source. It should be emphasized that the

0~ 50 Hz, soft bottom

J,dB

—-20 +

=30

Distance, km

50 Hz, hard bottom

1467

300 Hz, hard bottom

0 1 2 3 4 5
Distance, km

Figure 7. Decay of mean intensity in dB for (a, ¢) a soft and (b, d) a hard bottom for a constant sound speed in the water layer. Magnitude of ¢; (ms~') in
the bottom is indicated near the curves. Solid thin line corresponds to equal sound speeds in water and the bottom (1467 m s='). Bold line is the
dependence (13)— the ‘3/2 law.” Panels (a) and (b) correspond to a sound frequency of 50 Hz, and (c) and (d) correspond to 300 Hz.
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6 It is interesting to note that, for low frequencies and
almost equal speeds of sound in the bottom and in water,

not only does the intensity decrease with distance much more

5+ than predicted by formula (13), but it also decreases more
than in a free space, where Iy (r) = 1(ro)(r/ro) 2. This is due

N 50 Hz to the fact that in this case we are dealing with sound radiation

70 Hz in the vicinity (at distances comparable to the wavelength) of

;gg g; the reflecting upper boundary, which is known to have a

Attenuation coefficient, dB km~!
o w
T T

—_
T

0 | | | | | | 11 | |
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Figure 8. Dependence of attenuation coefficient f# on the sound speed in
the bottom for constant sound speed in the water layer. Sound frequency is
given in the figure. Vertical dashed line marks sound speed in water.

anomalously high attenuation due to absorption in the
bottom (o) # 0) occurs when the values of ¢; differ slightly
from the values of ¢. For o =0, anomalously high
attenuation is observed for ¢; = c.

The dependence of sound attenuation on ¢; can be
graphically illustrated using a technique accepted in engineer-
ing hydroacoustics by approximating each line shown in Fig. 7
by a straight line, using the slope of this line to estimate the
mean intensity decay rate for different frequencies. The slope
coefficient f is called the attenuation coefficient. Figure 8
shows the resulting dependences of f# as a function of the
sound speed in the bottom at fixed values of frequencies of 50,
70, 100, and 300 Hz. For a soft bottom, the value of
increases monotonically as the sound speed in the bottom
increases, and for a hard bottom, it decreases monotonically.
The maximum of f§ is reached, as expected, when the sound
speeds in water and the bottom are approximately equal. If ¢
differs significantly from ¢, regardless to which side, the
reflection from the bottom is additionally increased due to the
interfacial jump in the sound speeds, and the attenuation
decreases. The maximum of f for a soft bottom is highly
frequency dependent. If the frequency is reduced from 300 to
50 Hz, the maximum of f increases from approximately 2 to
6 dB km~! (for o; = 0 up to 10 dB km™!). This is mainly
related to the fact that, for a waveguide mode with the same
number, the attenuation coefficient decreases with increasing
frequency.

It is interesting to compare these numerical results with
the well-known simplified analytical dependence for shal-
low basins with a constant sound speed — the so-called
‘3/2 law’ [1]:

1(ro) F32

32
o

13/2(7') ~ (13)

From Fig. 7, it can be seen that the approximate law (13)
describes the waveguides with a hard bottom better. For a soft
bottom, dependence (13) gives values that are too high, which
is explained by the presence of only leaky modes in the soft
bottom case, leading to a higher energy removal from the
waveguide.

dipole character [1]. It should be remembered that, for dipole
radiation, Iy (r) = I (ro)(r/ro) .

4.2 Sound attenuation in a waveguide

with an inhomogeneous bottom

In order to analyze the transmission loss for a bottom model
based on seismic survey data (see Section 2), we consider
four tracks, each 5 km in length. They are shown in Fig. 3a
by lines numbered 1-4. Tracks 1-3 are located in regions
with an approximately homogeneous bottom structure,
which differs among the tracks. Track 1 has a water-like
bottom. In terms of the color scale in Fig. 3a, tracks 1, 2, and
3 lie in dark, light, and intermediate regions. Track 4 is
essentially nonuniform, with one half lying over a dark
region and the other half over a light region. Figure 9
shows vertical transects of the sound speed field in the
bottom for tracks 1-4.

The thickness of the water layer is H=28 m for tracks 1, 2,
and 4, and H = 32 m for track 3. The water—bottom interface
is represented by a dashed line in Fig. 9. The sound speed in
water is ¢ = 1460 m s~

The sound speed in the bottom ¢ (r,z) was taken from
experimental data for each track (Fig. 9). The bottom density
was equal to p; = 1.85 g cm™3, and the loss in the bottom
were given by the parameter 8, mentioned above. Note that
the available observational data on the sound speed profile
were limited to a depth of 80 m.

The source frequencies of 137 and 250 Hz are taken the
same as in Ref. [36]. It will be noted that these frequencies
correspond to local maxima in the low-frequency part of the
spectra of signals emitted by whales on the Arctic shelf. (We
mean the protected species of whales found in the Arctic.) The
sound source was placed approximately in the center of the
water layer at a depth of zy = 15 m.

For all four tracks (Fig. 3a,9), the source is located at
the leftmost point of the track and is fixed, while a
distributed receiver measuring the depth-averaged intensity
is moved from the source to the right, so that the source—
receiver distance varies in the range ro<r<35 km, where
ro=100 m. From a distance of 100 m, the field is well
described by the discrete spectrum of modes, and the
contribution of the continuous spectrum is small. For
track 4, we also consider an inverse case, where the source
is at the rightmost point, and the receiver is moved to the
left. Note that, in practice, the role of the distributed
receiver, measuring the depth-averaged intensity, can be
played by a vertical array of hydrophones placed half a
wavelength apart.

Figure 10a—d shows the attenuation curves J (r) simulated
in the adiabatic approximation (i.e., the sums of independent
modes) according to (9) for tracks 1-4 and frequencies of 137
and 250 Hz, obtained by moving the receiver to the right of
the source fixed at the leftmost positions on the tracks. The
ratio of the distance to the water column thickness varies for
tracks 1, 2, and 4 in the limits r/H = 3.6—179, and for track 3
itisr/H = 3.1—156.
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Figure 10. Attenuation curves in adiabatic approximation for acoustical tracks 1-4 (a—d) for frequencies of 137 Hz (solid line) and 250 Hz (dashed line)
Analogous curves for track 4 and propagation in direct and inverse directions are shown in d, e.
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Figure 10e, f shows for comparison the case of track 4 with
the source placed not only in the leftmost position but also in
the rightmost position (the receiver is moved to the left). In
the latter (inverse) case, the attenuation curve will be denoted
Jim,(}’).

Let us summarize the main details of sound decay that
follow from Fig. 10.

(1) For a fixed sound frequency, the decay increases (the
attenuation curves shift downwards) as the mean sound
speed in the bottom ¢; (for ¢; > ¢) decreases. This is
explained by the decrease in the reflection coefficient for a
weaker contrast between the media. For ¢; ~ ¢ (track1,
water-like bottom), the sound attenuation is anomalously
high (up to 20 dB km™!), which is probably a characteristic
feature of certain regions of the Arctic shelf. Note that, in the
case of a soft bottom, when ¢ is significantly smaller than ¢
(by more than 100 m s~!), the attenuation curves behave in
the opposite way (see Fig. 7). Such behavior was found by the
authors in shallow freshwater regions [39].

(2) For a higher sound frequency, the attenuation curves
generally shift downwards (higher loss), which is explained by
the frequency dependence of 8, (tracks 2-4), except for the
case when ¢; ~ ¢ (track 1). Additional simulations for other
values of f3;, showed that, regardless of the model function
By (f) chosen by us, there is an anomalously high attenuation
of sound for ¢; =~ c. In this case, all or almost all modes turn
out to be leaky and carry energy away from the water layer.
We note that an increase in sound attenuation in the water
layer with frequency was observed in studies conducted by the
GPI RAS in the Barents Sea.

(3) For r>1 km, the functions J(r) transform into
straight lines, and for r < 1 km, there is an irregular interval
where the shape of the curves has a slightly wavy character.
The slope of the curves varies from 1.5 to 20 dB km~! for a
frequency of 137 Hz and from 2 to 10 dB km~! for a frequency
of 250 Hz. Comparing Fig. 10b—d, it can be seen that the
attenuation curves r > 1 are similar except for Fig. 10a and
the frequency of 137 Hz, and also Fig. 10e, f for the inverse
propagation, where a significant change in the slope angle of
the curves is observed.

(4) The curves in Fig. 10e,f show an approximate
equality of attenuation at a distance of 5 km for direct
(from left to right) and inverse (from right to left) sound
propagation, i.e., when the source and receiver are
exchanged. This fact is a consequence of the reciprocity
theorem (or principle), according to which the sound field is
invariant with respect to the exchange of point source and
receiver [40]. The approximate nature of our result is due to
the use of a distributed receiver in the form of a vertical
array intersecting the entire water column. For other
distances other than 100 m and 5 km, the curves of J(r)
and Jiny(r) diverge significantly, by almost 10 dB. This is
caused by a significant change in the vertically mean sound
speed in the bottom along track 4 (see Fig. 9). As a result,
the depth of sound penetration in the bottom, and hence
the attenuation, is different at different intervals of the
track.

Next, we turn to the question of selecting c¢— the
effective sound speed in the bottom — based on the attenua-
tion curves (see Section 1). In Ref. [27], it is shown that, due to
the difference between J (r) and Jiyy (1) on highly inhomoge-
neous tracks, the value of ¢ should be chosen by minimizing
the differences in attenuation at the end point of the track,
and not for the whole track. We mean the differences among

the attenuation curves* shown in Fig. 10 and similar curves
calculated for the model of a bottom as a homogeneous half-
space with the sound speed ¢£'. Reference [27] also shows that
the mean sound speed in the bottom defined as a double
integral over the distance r and depth 7,

~ B 1 r rH+h , ,
ci(r h) = ci(r'yz)dzdr’, (14)

rh 0JH

is approximately the value of ¢f for ha 0.64;, where
J1 = ¢{"/f. In other words, the effective sound speed in the
bottom is approximately the real sound speed in the bottom
averaged over the track and over the depth equal to 0.6/,.

5. Accounting for mode coupling
in describing a sound field

We abandon the adiabatic approximation and continue by
treating the sound field further as the sum of coupling
modes. A solution to problem (3) that satisfies the appro-
priate boundary conditions and the radiation condition at
infinity, taking into account mode coupling, is written as
[37]

M .z r
Pro =Y Cm(r)% exp (i L am(r') dr’) . (15)
m=1 m\I') ¥

where C,,(r) are the modal excitation coefficients given for
r=0 by the formula C,(0) = [exp (in/4)/v8n|,,(0,z).
(Note that, in solution (15), as before, the term due to the
continuous spectrum is omitted because of its smallness.)

In order to obtain the coefficients C,,(r) for r > 0, we
insert (15) into (3), with zero on the right-hand side of the
Helmholtz equation. Using standard approximations which
disregard all terms in higher orders of smallness (as done in
[37]), and also using the equation for the eigenfunctions
W (K? = E2) i, = 0, we find

S BN — S (W ey \ 16
(ll/n ”) ’1_7; "(F+Ewn) ns ( )

n=1

where for convenience of further presentation we replaced the
summation index m—n, C)=(dC,)/dr, E,=
Vanexp (i J; gu(r)dr'), and 3,/2 = Im &,

Furthermore, we will need the orthogonality condition for
the eigenfunctions in the form [37]

H, P
J ml//ml//n dz + Ly = 5/71/1 ) (17)
0
where
p(Z):{p’ 0<z<H I :ilpm(Hl)‘pn(Hl)
Py, 22> H o ml(slm + gln) .

I, m=n
5}71;1: 0 n17én'

The parameter &, , is calculated according to (7). It is
important that we use the Pekeris cut as before and
consider both the normal modes and the quasi-modes. We
mention that the orthogonality condition in the form of

4 Recall that the attenuation curves shown in Fig. 10 can be measured
experimentally.
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(17) and also the related normalization rule for the
eigenfunctions for m =n are the same for the normal
modes and the quasi-modes.

We use (17) to exclude the depth dependence of the
eigenfunctions from (16). To do this, we multiply both sides
of (16) by ,,,p/p(z) and integrate over the depth from 0 to H.
Repeating this operation for the indices m=1,..., M, we
obtain the system of M linear equations

Z mn — mn n C, - Z C |: mn + = yn (5mn - [ml1):| En )
(18)

H,
I/mn = J L lﬁ libn

where V,,, are the mode coupling coefficients.

Solving system (18) for known C,,(r) gives the values of
the derivatives C,, (r), which allows the modal coefficients to
be calculated at the next step C,,,(r + Ar) = Cy,,(r) + C,,(r)Ar.
As a consequence, knowing C,,(0), the functions C,, () can be
found for any r.

We emphasize that the procedure described for deter-
mining C,(r) from the solution of system (18) takes into
account the interaction of all modes, both normal and quasi-
modes. This can be important for waveguides in which
¢] < c¢ or ¢ = ¢, where all or almost all modes are leaky,
and where the contribution of quasi-modes, which belong to
the class of leaky modes, can be significant. We also note
that condition (17) differs from its known analog, which
only considers the interaction of normal modes [37]. In the
known approach, the normal modes form a discrete
spectrum when the EJP cut is used [35]. In the lower half-
space for z > H;, the normal mode -eigenfunctions
Y = ¥,,(Hy) exp [ie1n(z — Hy)] decay with depth, since for
them Im ¢, > 0. In this case, we have

7M:J\w% lﬁmlﬁﬂdz’
H P\Z

I, =
" ml(glm + Sln)

and condition (17) takes the form

“ p
"N Ym¥n dz =y - 20
J, 554 20
Using (20) leads to a system analogous to (18),
Z 5mnEn Z C < mn + I 5mn> ns (21)
Umn = J ( ) l//m i (22)

which, thanks to the Kroneker symbol d,,,, is solvable in
terms of derivatives, taking the classical form? [2]

Cl = /m C/n Z Umn - 11 .

Wl

3 There is a typo in [37]: there should be no imaginary unit before the sum
symbol in formula (3.143).

Its approximate solution® can be written in the following

form:
Co(r) = Co(0) exp K _ V; - Umm>r]

M
i 4n Ui .
i oGl Ao exXp IAQII r)—1 R 23
n:;n;ém qdm l( ) A‘[nm(l’) [ ( m ) ] ( )

where Agm = qn — -
The absence of mode coupling implies the smallness of the
parameter

|Unn|

K~
‘Aqnm‘

<1. (24)

Inequality (24) can be rewritten in a different form if we
consider that 1/|Agy,| is a quantity of the order of the length
of the ray cycle in channel D, and |U,,,,| = L~k‘ ! where Ly is the
characteristic scale on which the waveguide properties (e.g.,
the bottom properties) vary. Inequality (24) takes the form

D
e <1, (25)
Ly

The parameter k¥ can be called the degree of waveguide
nonadiabaticity.

If the coefficients V,,, and U,, are equal to zero, it can
be shown that we return to the approximation of noninter-
acting modes [41], and formula (15) transforms into formula
(11). Under the condition of adiabatic approximation, each
mode propagates independently of other modes. In the
presence of interactions, sound propagation in the wave-
guide is accompanied by an energy exchange between the
modes, the magnitude of which is defined by the absolute
value | V.

Note that the amounts of energy scattered from one mode
into the other and vice versa, described by the coefficients V,,,
(expression (19)), are notequal, i.e., | V| # | Vim|. Indeed, we
differentiate (17) over the variable r for m # n. We find
Vi + Vim + ALy, /dr = 0, which implies | V| # | Vim|. For
the coefficients U,,, a similar differentiation gives |U,,| =
| Unm ‘ .

The results of numerical simulations of sound propaga-
tion in a shallow-water waveguide, taking into account mode
coupling, are given further in Sections 5.1 and 5.2. (For details
see [41].)

5.1 Details of mode coupling as a function

of the sound speed in the bottom

In order to develop a general understanding of mode coupling
caused by bottom inhomogeneities, we calculate |V,,,| for an
idealized model of the bottom, where we set the thickness of
the bottom layer at H < z < H; to zero. In other words, we
assume that ¢; does not depend on z, but only on r, and that
the dependence is linear, ¢; = ¢y + ¢{r, where ¢y = 100 m s1,
¢{ =0.23 s7!. These values imply that, for r =0...10 km,
the sound speed in the bottom varies in the range
c1 = 100...2400 m s~!. The other waveguide parameters

© 1t is assumed that ¢y, (r), 7,,(r), and ,,,(r) are weakly varying functions
and that the combination \/¢,/qu Cy(r) Uy, varies slowly compared to
exp (1AGunr).
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Figure 11. Absolute values of coupling coefficients for neighbor mode pairs in the idealized model of an inhomogeneous bottom. Mode numbers mn are

given near the respective curves. (a) f'= 137 Hz, (b) f = 250 Hz.

are taken as in Section 4.2 for H = 28 m. Taking into account
a one to one relation between c¢; and r, we consider the
dependences |V,,,(c1)| for the pairs of neighboring modes
which interact most strongly (Fig. 11).

From Fig. 11, it can be seen that such dependences are
not monotonic. Each curve has two local maxima, except
curves 12 and 23 for a frequency of 250 Hz, where two
maxima merge in one. The left peak is located on the side of
the soft bottom (¢; < ¢), the right one corresponds to the
hard bottom (c¢; > ¢), and either can be dominant. The
distance from the peak positions to the sound speed in
water (¢ = 1460 m s~!') increases with the number of
coupling modes. The highest peak, corresponding to max-
imal coupling, is observed for mode pair 12 for ¢; ~ ¢
(a water-like bottom). We note that the maximum value of
the coupling coefficient, ~ 1073 m~!, obtained for sound
speed inhomogeneities in the bottom, corresponds, for
example, to the coefficient of interaction between the Ist
and 2nd modes in a waveguide with the same depth and
sound speed, but with an absolutely rigid sloping bottom.
The slope angle in this case should be 1.7°.

The maxima for a soft bottom are explained by the fact
that, first, as ¢; decreases from the value ¢, the energy of the
modes in the bottom is increased due to the increase in the
amplitude and deeper penetration into the bottom. It can be
said that in this case each mode becomes increasingly leaky,
leading to an increase in the energy scattered between the
modes due to irregularities in the bottom, which is equivalent
to an increase in |V,,|. Conversely, as ¢; continues to
decrease, the energy of the modes in the bottom decreases
due to the increase in the reflection coefficient at the water—
bottom interface. This leads to a reduction in |V, even
though the modes remain leaky. As a result, there is an
optimum ¢; for each mode pair where |V,,| reaches a
maximum, i.e., where the mode coupling is maximal in the
soft bottom range.

For a hard bottom, the maxima of the mode coupling
are related to the moment when the propagating modes turn
into leaky modes, i.e., when the condition Reé,, = Rek;
holds. In the ray treatment, when this condition is fulfilled,
the Brillouin rays corresponding to the modes pass through
the critical angle for the water—bottom interface. For
example, at a frequency of 137 Hz, this happens for
modes 2, 3, 4 when ¢; = 1528, 1665, 1965 m s~!, respec-

tively, which practically coincides with the right peaks on
curves 12, 23, 34 (Fig. 11a). The physical situation is such
that, when the Brillouin rays corresponding to mode 3, for
example, pass through the critical angle (this happens for
c1 = 1665 m s~!), a strong scattering of these rays (of this
mode) is observed into all other rays (modes) and also into
the continuous spectrum. For this reason, in Fig. 11a, a
maximum of the quantity |Vp;| is observed at ¢} =
1665 m s~!, which characterizes the energy scattered from
mode 3 into mode 2. In general, all curves like | V3|, as
follows from the calculations, reach the right maximum for
the same value ¢; ~ 1665 m s~!, which corresponds to the
scattering of mode 3 into mode m when passing through the
critical angle. However, the curve |V3;|, which characterizes
the energy scattered from mode 2 into mode 3, has the right
maximum for the other value ¢; ~ 1528 m s~!, as do all
other curves like |V,;].

Comparing Fig. 11a and 11b, we can see that the height
of the right peaks depends on the sound frequency. The
higher the frequency, the lower the peaks. This is explained
by the fact that the density of Brillouin rays is higher at
higher frequencies. The same scattered energy in a given
angular sector around the critical angle is distributed over a
larger number of Brillouin rays (or modes) contained in that
sector.

We considered both normal modes and quasi-modes in
constructing Fig. 11. For 137 Hz, 4 modes were calculated
(Fig. 11a). Among them, mode 1 is a normal mode in the
whole range from 100 to 2400 m s~!. Modes 2, 3, and 4 are
quasi-modes within the respective intervals 896-1480, 637—
1610, and 488-1894 m s~! (and normal modes beyond these
intervals). For 250 Hz, 7 modes were considered (Fig. 11b).
Of these, modes 1-5 are normal modes over the whole range
considered. Modes 6 and 7 are quasi-modes within the
intervals 998-1168 and 889-1157 m s~', respectively. It
can be seen from Fig. 11 that, as ¢; changes, the transition
from the normal mode state to the quasi-mode state is in no
way reflected in the shape of the curves.

The curves in Fig. 11 were calculated for the gradient
¢ = 0.23 s7!. There are no qualitative changes in Fig. 11 for
any gradient: for larger ¢{, the curves will be higher than in
Fig. 11, and they will be lower if the gradient is smaller. This
circumstance allows us to use Fig. 11 to estimate mode
coupling in other, more realistic, situations.
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Figure 12. Attenuation curves taking into account mode coupling (M1, solid lines) and in the adiabatic approximation (AA, dashed lines) for a single

source for direct (A) and inverse (B) propagation on path 4. Solid and dashed lines practically coincide. (a) f' =

137 Hz, (b) f = 250 Hz.

5.2 Mode coupling in estimates of sound attenuation

in a waveguide with an inhomogeneous bottom

As an example, consider a sound field from a point source
located at depth zp = 14 m on track 4 shown in Figs 3 and 9.
Simulations use formula (15), which accounts for mode
coupling. To estimate their effect, the attenuation curves
J(r) obtained using (15) and (9) are compared with the
results of simulations J (r) based on formulas (11) and (9) in
the adiabatic approximation.

In Fig. 12, we present the dependences of J(r) for a
single source and sound propagation on track 4 from the
left to right (direct radiation) and in the opposite direction,
from right to left (inverse radiation). Practically ideal
agreement between the curves with and without considera-
tion of mode coupling is observed (the solid and dashed
lines are very close). An important ensuing conclusion is
that the decay with distance of the mean intensity of the
sound field emitted by a point source bears an adiabatic
character in a shallow water with an inhomogeneous
bottom. This does not exclude the effect of mode coupling
on individual waveguide modes (see [41] and Section 7 for
more details).

6. Horizontal refraction
of sound waves in a waveguide
with an inhomogeneous bottom structure

All the situations considered above are in fact two-dimensional
(or have a cylindrical symmetry) in the coordinates (r, z) — the
distance—depth, i.e., in the vertical plane. Solutions (4), (11),
and (15) for the complex amplitude of a sound field can be
generalized to the three-dimensional case, which includes the
angular coordinate ¢ in the horizontal plane if the sound
propagation along different directions ¢ can be considered
independent. This is known as the N x 2D approximation, or
the approximation of uncoupled azimuths, where N is the
number of directions [40]. This approximation, however, does
not work in the presence of three-dimensional effects, e.g.,
when the propagation direction changes due to refraction of
sound waves in the horizontal plane.

To analyze possible three-dimensional effects associated
with the inhomogeneous structure of the bottom, the
contributions of each waveguide mode are considered
separately, assuming that the modes are adiabatic. The
resulting field at a given point in the waveguide can be
conveniently written in the Cartesian frame of reference
(x,y,z) and, by analogy with (4), expanded in the sum of
local modes ¥, (r, z),

M

ZPm r, Z ZAm(r; ZO)Wm(LZ) )

m= =1

(26)

where r = (x,y) is the radius-vector of a point in the
horizontal plane, and the modal amplitude 4,,(r) satisfies
the equation

ArAp(t) 4+ EX(0) A (r) = 0.

(27)
Here, &,,(r) = ¢u(r) +1iy,,(r)/2 is the complex propagation
constant of the mth mode, and A, = 8%/(dx2) +0%/(dy?) is
the Laplace operator. The initial condition is defined by the
excitation coefficient of the given mode: 4,,(r=0) ~
W,,(r =0,zp), where z is the depth of the sound source.

We consider several lower modes, as only they contribute
significantly in the resulting field. The local propagation
constants &, (r) and the profiles of the modes V,,(r,z) are
defined by expression (6).

To calculate the modal amplitudes 4,,(r), equation (27) is
reduced to a parabolic equation [42] by considering only
forward scattering and using the Padé approximation for the
square root operator

04 m

. Ajn Am
o 1,(1+Zl+ban )A

The expansion coefficients a;,, b;, are chosen to ensure
stability and the required accuracy of the solution:

-2 0 2 2
X ql/(l)1 <a 2+ém_f?1>7

(28)
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where ¢? is the real part of the horizontal wavenumber of
the mth mode at the source point. The numerical solution of
the differential equation can be obtained with the help of the
split-step Padé algorithm [43]. Here, it is assumed that the
sound waves propagate predominantly in some angular
sector around the x-axis direction, and that the gradients
of the waveguide parameters are mostly parallel to the y-
axis.

To estimate the sound attenuation with distance, we
calculate the depth-averaged intensity levels in the horizontal
plane for individual modes,

; [ Am(r)|
Ja(r) =201g ——=, 29
(1) =201g 200 (29)
and for the full field,
H 2
- P d
Jr) = 101g B P®2)7dz (30)

I()H |P(r0, z)|2 dz

The reference point ry is placed at a distance |rg| = 100 m
along the axis X. The field at |r| > |r| is determined by the
discrete spectrum of the modes, and the continuous spectrum
can be ignored. Note that, unlike formula (9), there is no
additional compensation for the cylindrical divergence of the
sound wave front.

In the following, we consider in detail two models of an
inhomogeneous bottom: (1) an idealized model in which it is
assumed that the sound speed depends only on one,
horizontal, coordinate; (2) a model that is as close as possible
to a realistic case, constructed on the basis of 3D seismic
surveying data in the Kara Sea (for details, see [29]).

6.1 Idealized waveguide with a linear profile

of sound speed in the bottom

Let us consider the idealized shallow-water waveguide shown
in Fig. 13, which represents a homogeneous water layer of
constant thickness H = 28 m over an inhomogeneous bottom
half-space.

We analyze the sound field in a transitional region from an
acoustically soft bottom (c¢; < ¢) to an acoustically hard
bottom (¢; > ¢). The sound speed in the bottom varies in a
piecewise-linear fashion along the y-axis, but is independent
of the coordinates x and z:

1400 m s~! for y < —1000 m (soft bottom),
(1500 +0.1y) m s~! for — 1000 < y < 1000 m ,
1600 m s~! for y > 1000 m (hard bottom).

a(y) =

To limit the domain in which equation (28) is integrated,
artificial sponge layers are introduced for y < —2000 m and
y > 2000 m.

Figure 14 shows the dependences of the phase speed
VPR = /g, and the attenuation coefficient y, /2 of the first
mode of the sound speed in bottom ¢; computed for the set of
frequencies f: 29, 55, 81, 108, and 134 Hz. (For the sake of
demonstration, we deliberately took a wider range for the
variation in the sound speed in the bottom than in the
explored transitional region; its limits are marked by two
vertical dashed lines.) It can be seen that the phase speed in
this region has a global minimum, which is deeper for a lower
frequency. By placing the transducer close to this minimum,
one can expect to see manifestations of horizontal refraction.
It should also be noted that the mode attenuation drops by
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Figure 13. Schematics of model waveguide with the distribution of sound
speed in a bottom in the transitional region from an acoustically soft to an
acoustically hard bottom. Black circle indicates the position of the source
in simulations.
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Figure 14. Dependence of (a) phase speed and (b) attenuation coefficient of
the first mode on the sound speed in bottom. Vertical lines mark the
boundaries of transitional domain.

approximately two orders of magnitude on passing from an
acoustically soft to an acoustically hard bottom. This
peculiarity should be taken into account when solving
equation (28). Similar behavior is observed for modes with
other numbers.

The sound field is calculated for a sound source placed at
the depth zp = 15 m in the center of the transition region, i.e.,
in the immediate vicinity of the minimum of the phase speed.
To illustrate the three-dimensional effect, a frequency of the
55 Hzis chosen, at which the sound field is effectively formed
by only one (the first) waveguide mode. Figure 15 presents the
dependence of the mode phase speed on the coordinate y and
shows the modal ray trajectories in the horizontal plane. As
can be seen, when the source is placed close to the local
minimum, the rays deviate from straight lines— they are
horizontally refracted. Maximum refraction angles reach
7.5°. (The refraction angle is the angle between the straight
line connecting the source and the receiver and the ray
arriving at the receiver.)
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Figure 15. (a) Spatial dependence of phase speed of the first mode at a frequency of 55 Hz and (b) respective trajectories of modal rays in horizontal plane
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Figure 16. Two-dimensional distribution of depth averaged sound inten-
sity levels J(r) in horizontal plane at frequencies of (a) 55 Hz and
(c) 134 Hz; difference in levels AJ(r) calculated with and without
accounting for horizontal refraction for frequencies of (b) 55 Hz and
(d) 134 Hz.

Let us see how much the curvature of the modal
trajectories affects the energy redistribution in the horizontal
plane. The distribution of the relative intensity level J (r) in
the plane (x, y) is shown in Fig. 16a. Note that, in this case,
J(r) = Ji(r), where J; is the sound field level in the first mode
(29). The first thing we notice is a strong anisotropy in the
intensity decay as a function of the selected direction, which is
explained by significant spatial variability in the attenuation
coefficient and is not related to horizontal refraction. To
isolate the effect of refraction proper, the level J(r) is
compared with the level Jy(r) computed in the uncoupled
azimuth approximation (the N x 2D approximation). The
spatial distribution of the difference in intensity levels
AJ (r) = J (r) — Jo(r) is shown in Fig. 16b. It can be seen
that, due to the horizontal refraction, there is an additional
insonification of part of the bottom transitional region. The
explanation is that a curved ray, despite its larger trajectory
length, travels a shorter distance in the region of strong
attenuation than a direct ray does. The maximum increase
in the amplitude under the given conditions reaches
AJmax = 22 dB.

Moving to higher frequencies and a multimodal regime,
the effect of refraction for the first mode weakens, yet
becomes expressed for other modes, which, however, decay
more strongly [28]. Figure 16c shows the results of computa-
tions for a frequency of 134 Hz, when the field is composed of
three modes. Due to the dominance of the first mode in the
total field, the maximum difference in levels between the
three-dimensional case and the N x 2D approximation does
not exceed AJpa = 12 dB (Fig. 16d).

The simulations show that, after moving the source with a
frequency of 134 Hz relative to the position where the phase
speed of the first mode is minimum by 500 m in a positive or
negative direction along the y-axis, AJmax decreases to 6 dB.
At a frequency of 55 Hz, the width of the source region for
which the reduction in the level difference Ajmax exceeds 6 dB
with respect to maximum is about 2000 m.

It should be noted that such effects of horizontal refraction
can, in principle, be observed not only at the transition from
acoustically soft to acoustically hard bottom but also, for
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Figure 18. Spatial distribution of (a) phase speed and (b) attenuation
coefficient of the first mode at a frequency of 55 Hz.

example, when hard bottom regions with different sound
speeds, close to the sound speed in water, follow each other.

6.2 Shallow-water waveguide

with an inhomogeneous bottom

Simulations of transmission loss based on the simplified
waveguide model show that horizontal refraction can occur
in a shallow water waveguide in a transitional region between
an acoustically soft and hard bottom even if the water layer
thickness is uniform. But a question arises: do such regions
exist in nature? In order to observe refraction, the transitional
region should not only be sufficiently long (several km in
length) but also have a sufficiently uniform interface.

An example of a shallow water waveguide with a constant
water layer thickness can be given by some regions of the Kara
Sea (see Fig. 3). To study the three-dimensional effects in the
propagation of sound waves, we selected a rectangular region
of the seafloor, marked by dashed lines in Fig. 3a and shown
separately in Fig. 17, where the strongest sound speed
gradients are observed, while the sound speed is close to that
in water (a water-like bottom). From the data shownin Fig. 17,
it can be seen that the sound speed in the bottom ¢; varies from
1460 m s~! (blue regions) to 1700 m s~! (yellow regions).

The distributions of the phase speed leh and attenuation
coefficient y,/2 of the first mode at a frequency of 55 Hz

Figure 19. (a) Two-dimensional distribution of level of depth-averaged
intensity J (r) in horizontal plane at a frequency of 55 Hz with super-
imposed trajectories of modal rays of the first mode. (b) Difference in
transmission loss calculated with and without accounting for horizontal
refraction.

calculated for the selected region are shown in Fig. 18.
Figure 18a clearly shows a strong spatial variability of the
modal phase speed in the region of a low-speed bottom. The
gradient of phase speed at the boundary of the region reaches
0.06 (ms~"ym~". The highest values of modal attenuation are
also observed in this region (up to 1.5x 1073 m~', or
13dB km™).

The canyon-like distribution of the phase speed in Fig. 18a
leads to the effect of horizontal refraction, which is demon-
strated in Fig. 19 for a source located at the point with
coordinates x =0, y =0. As in the case of an idealized
waveguide model, attention is drawn to the curved modal
ray trajectories in the horizontal plane, shown by white lines
in Fig. 19a. The maximum refraction angle in this case is 6°.
The maximal difference in the levels of depth-averaged
intensity in the horizontal plane Ajmax, calculated with and
without taking the horizontal refraction into account, is
found in the region where the sound speed in the bottom is
low and is equal to 7 dB. Note that if the source is moved to
the point with the coordinates x =0, y = —1000 (in the
middle of the ‘canyon’), the level difference reaches 10 dB. If
the sound frequency is increased to 134 Hz, this difference
decreases to 4 dB.

7. Manifestation of the effects
of mode coupling and horizontal refraction
for broadband signals

All the results presented above refer to tonal acoustical
signals. It may be interesting to study the effects discussed
above for a broad frequency band and for pulse signals. This
is important, for example, for a more accurate prediction of
the acoustical impact on underwater animals at low frequen-
cies [44] and for estimating the feasibility of underwater
acoustical communication at higher frequencies [45]. A
typical low-frequency broadband source (30-80 Hz) is an
airgun used for seismic survey (see, e.g., [46]). The most
promising range for long-distance underwater acoustical
communication on the shallow-water Arctic shelf is the 500—
1000 Hz interval.

Modeling of broadband signals in complex waveguides
was carried out in Refs [47-49], but three-dimensional
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inhomogeneities in the bottom were only considered in [31].
References [31, 50, 51] show in the framework of numerical
modeling that the frequency dependence of modal ampli-
tudes due to mode coupling on a compact irregularity (local
bottom feature, an internal wave soliton, ice keel, etc.) gets
characteristic modulation with a period depending on the
distance to the irregularity. By measuring the period of this
modulation, one can estimate the distance from the sound
source to the irregularity on a stationary acoustic track.

We further consider the formation of a broadband
acoustic field by an omnidirectional source in the frequency
range of 35 to 1000 Hz in a shallow water waveguide with a
constant depth but an inhomogeneous sound speed structure
in the upper sediment layer (see [31, 50, 51] for details). As in
Section 6, two models of bottom are chosen, one ideal and one
realistic. Mode coupling are analyzed for sound propagation
across the inhomogeneity, and horizontal refraction is
analyzed for propagation along the inhomogeneity. The first
effect is more pronounced at higher frequencies (100-
1000 Hz), and the second one is better seen at low frequencies
(up to 100 Hz) in a single mode regime.

The Green’s function of problem (3) for different
frequencies w = 2 f will be denoted as P(w,x,y,z). It is
calculated according to (15) or (26) for individual frequency
components with a step of 1 Hz in the frequency band f'= 35—
1000 Hz. Calculations of P (w,x,y,z) in the case of mode
coupling can be conveniently performed using the wide-angle
parabolic equation with subsequent mode isolation on a
vertical array [43].

Let So(w) be the spectrum of an emitted signal, defined as
an additional multiplier on the right-hand side of the
Helmholtz equation (3). In this case, the spectrum of the
received signal is S (w,x,y,z) = So(w) P(w,x,y,z). After
matched filtering with the emitted signal, the temporal
realization of the received signal at the output of the
correlation receiver is obtained by Fourier synthesis

u(t,x,y,z)=2Re { LOO|S0(w) |2P (w,x,y,z)exp (—iwt) dw}.
(1)

For the sake of simplification, it is assumed in this work that
the emitted signal has a uniform spectrum |Sp(w)| = 1 in the
range of 35-1000 Hz. With a high degree of accuracy, this
corresponds to a signal with linear frequency modulation
(LFM).

The amplitude of the signal at the output of the
correlation receiver will be presented on a logarithmic scale
(in dB),

uenvel(taxayvz) (32)
max; Uenvel (1, X = 1m, 0,0) /’

SL (t,x,y,z) =20 1g <

where uenvel = || is the envelope of the signal u obtained as
the absolute value of the analytical signal u=
2 [ |So* Pexp (—iwr) do>.

We describe the technique of approximate isolation of the
modal amplitudes 4,, from the spectrum of the signal u, i.e.,
from U = |So|2P, with the aid of a vertical receiving array
passing through the entire water layer column. From (15) or
(26), we have U= |So]* S A,p,. We replace the exact
orthogonality condition for eigenfunctions (17) with an
approximate one, fOH Y, W,dz = 6,,. We multiply the first
equality by v, and integrate from 0 to H. It follows that

|So|2Am ~ fOH Uy, dz. In practice, if the source spectrum is
not corrected, the product is |So|2Am. In our theoretical
analysis, taking into account the unity spectrum of the
source, we find

H

Ap(,x,7) ::j P(@,x,3,2) (@, x,3,2)dz. (33)

0

In the following, we will only give absolute values of (33), i.e.,
| (e, x,y)].

7.1 Idealized waveguide

with a linear sound speed profile in the bottom

We begin with an idealized model of shallow water waveguide
shown in Fig. 13. There is a water layer of constant thickness
H and a constant sound speed ¢ on an inhomogeneous bottom
half-space. The width Ay of the transitional region between
acoustically soft and hard bottom types varies in the range
from 600 to 4000 m.

Interaction of modes. To study the details of mode
coupling, an acoustical track of length of r=4km is
oriented along the y-axis. A sound source is located at a
point with the coordinates xy = 4000 m, yo = 2000 m at
depth zp = 10 m. A vertical receiving array, which filters
modes using (34), traverses the entire waveguide depth with
a step of 1 m at a point x4 = 4000 m, y, = —2000 m. Modal
filtering (33) shows that the sound field at the end of the
acoustical track is dominated mainly by the first, most
energetic mode. This is caused by a strong increase in modal
attenuation with the mode number in the region of the low-
speed bottom.

Figure 20 presents frequency dependences for the
amplitude of the first mode at the receiving array for
different sizes Ay of the transitional domain. It can be seen
that the frequency dependence of the first mode amplitude in
the case of sound propagation over the inhomogeneous
bottom contains oscillations whose amplitude increases as
the width of the inhomogeneity Ay decreases. The appear-
ance of the modulation is the consequence of mode coupling
and serves as an indicator of the presence of inhomogeneities
in the bottom structure. This effect is pronounced at
frequencies above 200 Hz. In the absence of bottom
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Figure 20. Frequency dependence of the first mode amplitude in a
waveguide with a linear sound speed profile in the bottom for various
sizes of transitional region Ay.
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Figure 21. Frequency modulation of the amplitude of the first mode
depending on the shift of the center of transitional region y.. Width of
transitional region is fixed: Ay = 600 m.

inhomogeneities, the first mode amplitude is a monotonic
function of frequency.

Fixing the track length to r = 4 km and the length of the
transitional region to Ay =600 m and varying only the
position of the center of this region y., one can find that the
period of modulation varies approximately 7-fold (Fig. 21).
Moreover, the frequency period of oscillations depends
uniquely on the distance between the sound source and the
bottom inhomogeneity, which can be used to localize this
inhomogeneity [50].

The following remark should be made here. It has been
shown in Refs [50, 51] that such a modulation in the
frequency domain should accompany the mode coupling
only on a compact inhomogeneity (a local irregularity in the
relief, a separate ice keel, a soliton of internal waves), the size
of which is smaller than the period of the interference beat of

the first and second modes. The inhomogeneity, in the form
of a transitional region between different bottom types, does
not satisfy the compactness criterion. However, as men-
tioned in Section 5, intense interaction between the first
and second modes takes place only on that part of the
acoustic track where the sound speed in the bottom ¢ is
approximately equal to the sound speed in the water layer c:
outside this part the mode coupling is negligibly small.
Taking this detail into account, the inhomogeneity consid-
ered by us can be seen as compact. The same can explain the
shift of the dependences along the frequency axis in Fig. 21.
The change in the width of the transitional region Ay leads to
a change in the distance from the sound source to the track
point where ¢; =~ ¢. For Ay = 600 m, this pointislocated ata
distance of 2090 m, and for Ay = 4000 m, at a distance of
2600 m.

Horizontal refraction. In the framework of the study of
horizontal refraction, the sound source was placed in the
center of the transitional region at the point with coordinates
xo =0, yo =0 at the depth zp = 15 m. An analysis of the
sound field was carried out mainly at the location of a vertical
array which was placed at distance r = 10 km from the source
at the point x4 = 10,000 m, yo = 0.

In studies of horizontal refraction, we are most interested
in the frequency range up to 100 Hz, where the manifestations
of this effect are maximal. At such frequencies, there is only
one energy carrying mode in the waveguide, i.e., a one-mode
regime is realized. The dependence of the group and phase
velocities of the first mode, as well as its attenuation
coefficient, on the sound frequency and the sound speed in
the bottom are shown in Fig. 22. We note that the group
velocity V§" has a global minimum at frequencies of 50—
100 Hz (Fig. 22a), which is located in the region where the
sound speed in the bottom ¢ is close to that in the water c.
This is closely related to the presence of a minimum of the
phase speed leh in the same region. In Section 6, we
mentioned that the placement of a point tonal transducer in
this region leads to horizontal refraction.
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Figure 22. Dependence of (a) group velocity, (b) phase speed, and (c) attenuation coefficient of the first mode on source frequency and sound speed in the

bottom.
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Figure 24. Envelopes of received pulse on a logarithmic scale at distance
x = 10,000 m from the source for y = 0 and different transverse sizes of
transitional region Ay. Lower blue curve is calculated without taking into
account horizontal refraction in the N x 2D approximation. Triangles
show the positions of maxima.

The effect of horizontal refraction for a broadband signal
can be demonstrated by analyzing a low-frequency acoustical
pulse obtained as the output of a correlation receiver (31).
Since the refraction effect is more pronounced at lower
frequencies and bottom absorption increases significantly
(Fig. 22¢), the frequency range of 50-70 Hz was chosen for
studies, for which the loss accompanying sound propagation
are still moderate. It is important to note that this range is
most relevant for seismic studies of the sea bottom, as it
contains a dominant fraction of the energy of an airgun [46].

Figure 23 shows the pulse envelopes normalized with the
maximum value,  Uenyel (2, X, ¥, 2)/ MaX, Uenvel (1, X, ¥, 2), at
points x =100 m and 10 km from the transducer for
propagation along the straight line y = 0 and for the fixed
transverse size of the transitional region Ay = 2000 m
between acoustically soft and acoustically hard bottom

types. It can be seen that, as the pulse propagates, its width
doubles at the 0.5 level (from 0.05 s to 0.1 s) due to the
frequency dependence of the attenuation coefficient of the
first mode and its intramodal dispersion.

Figure 24 shows envelopes of the pulses on a logarithmic
scale SL(z,x,y,z) for transitional regions of different trans-
verse sizes Ay. The pulses were calculated using the modal
parabolic equation method as well as the uncoupled azimuth
approximation (the N x 2D approximation), when the hor-
izontal diffraction is ignored, and the modeling is performed
independently for different vertical slices of the waveguide.
The following conclusions can be drawn from Fig. 24.

(1) The maximum amplitude SLmax(x,¥,2) =
max, SL(z, x,y,z) of a low-frequency pulse increases by up
to 65 dB compared to the N x 2D approximation due to
horizontal refraction, which occurs because the pulse propa-
gating along a curved trajectory passes over the bottom where
sound attenuation is smaller. The effect of the width of the
transition region Ay on the magnitude of SLy.y is only
noticeable up to a certain limit value Ay =~ 1.0 km.

(2) As Ay decreases, the pulse propagation time increases,
indicating significant horizontal refraction. The delay of
arrival is 0.1 s for a distance of 10 km when the width of the
transitional region is Ay ~ 1.0 km.

7.2 Shallow water waveguide

with an inhomogeneous bottom

To study the manifestations of mode coupling and horizontal
refraction in a realistic waveguide model with an inhomoge-
neous bottom structure, we selected the same region as in
Section 6.2 (see Fig. 17).

Mode coupling. To analyze the mode coupling, we took a
vertical waveguide section along the y-axis for x = 3500 m,
shown separately in Fig. 25a. The sound source depth is
zo = 5 m. The length of the acoustic track is r = 4 km. Unlike
the ideal waveguide model discussed above, here, the sound
speed in the bottom ¢; does not fall below the sound speed in
water ¢. In addition, the sound source and the receiving array
are located above an acoustically hard bottom. These two
factors imply the presence of several energy carrying modes at
frequencies below 1 kHz.
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Figure 25. (a) Sound speed along an acoustical track; white dashed line marks position of sound speed minimum in the bottom; (b) frequency dependence
of modal amplitudes of first four modes on a vertical array; (c) frequency dependence of amplitude of first mode at the distance of 4 km for sound
propagation in direct (from left to right) and reversed (from right to left) directions. Red rhombus shows source position, red chain shows position of

receiving array.

The frequency dependence of the amplitudes of the first
four modes is shown in Fig. 25b. It can be seen that the main
contribution to the sound field comes from the 1st, 2nd, and
3rd modes, while their amplitudes show significant oscilla-
tions in the frequency domain. This is the result of mode
coupling. Figure 25c presents the frequency dependences of
the first mode amplitude for the direct (from left to right) and
reversed (from right to left) orientations of the acoustical
tracks. As can be seen, the period of oscillations is very
different, which is most evident at frequencies below 500 Hz.

The region of the low-speed bottom is located approxi-
mately in the middle of the acoustical track, closer to the
sound source: the minimum of the sound speed in the bottom
is located at y = —500 m (Fig. 25a). As for the idealized
bottom model, this region can be considered a compact
inhomogeneity. In a waveguide with a constant sound speed
in water, the distance ry from a sound source to a compact
inhomogeneity is directly proportional to the number L of the
first mode amplitude maxima that occur in a fixed frequency
band, i.e., rs ~ L [50]. This fact can be used to localize the
inhomogeneity. We skip the solution to the problem of the
proportionality factor between ry and L and use the following
approach. Denote by L the number of maxima for the direct
track orientation, and by L’ the inverse one. The distances
from the source to the inhomogeneity are denoted as rs and r/,
respectively, and ry+r] =r is the total acoustical track
length. In this case, the relation r{/r; = L’/L will hold , or
(r—rs)/rs = L'/L, from which the distance to the inhomo-

geneity can be estimated as ry =r/(1 + L’/L). The ratio
L’/L = 2 for frequencies below 500 Hz, taking into account
the track length r = 4000 m, gives the distance from the
source to the inhomogeneity r; &~ 1330 m. This value coin-
cides up to 170 m with the position of the sound speed
minimum in the bottom, which is marked by the horizontal
dashed line in Fig. 25a.

Horizontal refraction. To demonstrate horizontal refrac-
tion, a sound source is placed at point xo =0, y; =0,
zo = 15 m (as in Section 6.2), and a vertical receiving array
is placed at point x4 = 10,000 m, y4 = 0. Figure 26a shows a
horizontal section of the sound speed field in the bottom at a
depth of 14 m relative to the water—bottom interface, with the
source and array positions indicated. The pulses simulated for
the frequency range from 35 to 65 Hz are shown in Fig. 26b—d.
The sound field at these frequencies is formed by only one
energy-carrying mode.

As in the case of an idealized model waveguide, an
increase in the level SL (Fig. 26b) is observed at the receiver
point at a distance of 10 km, calculated with the horizontal
refraction taken into account, compared to the case where
horizontal refraction is disregarded (N x 2D approximation).
The difference between the maximum levels is ASL.x ~
11 dB. The delay in the arrival time of a pulse signal is about
At = 0.1 s. These effects are manifestations of horizontal
refraction.

Figure 26¢, d shows how the pulse duration changes as the
pulse travels along the acoustical track. The pulse width at the
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Figure 26. (a) Horizontal section of the field of sound speed in the bottom
at a depth of 14 m relative water-bottom interface (rhombus and triangle
show positions of source and array, respectively). (b) Envelopes of
received pulse on a logarithmic scale at a distance of 10,000 m from the
source, at the point of the array location with and without taking into
account horizontal refraction. (c,d) Pulse envelopes normalized by
maximum value at a distance of 100 m and 10,000 m along the x-axis.

0.5 level increases by a factor of 1.5 times at a distance of
10 km, compared to the width at 100 m from the source.

8. Conclusions

Let us summarize the main features of low-frequency sound
propagation in a shallow water waveguide, which are related
to the details of the internal structure of the underlying half-
space (seabed).

As follows from the results of three-dimensional engineer-
ing seismic surveys of the Arctic shelf, the ocean bottom has
considerable inhomogeneities in its spatial structure. In terms
of shallow water acoustics, these inhomogeneities manifest
themselves in the form of complex spatial distributions of
sound speed ¢ (x, y, z) in the bottom sediments.

The attenuation of the depth averaged intensity of the
sound field for long-range propagation in such a waveguide is
strongly dependent on the quantity c¢;(x,y,z), which is
determined by, among other things, the extent to which the
bottom sediments are saturated with gas. The sound wave
attenuation coefficient in this case varies over a wide range:
from a few tenths to ten dB km~!. Such contrasts can be
observed even for closely spaced acoustical tracks, including
those emanating from the same point. For rather small but
nonzero gas concentrations, a situation can be realized where
the sound speed in the sea floor is close to that in the water.
Such a sea bottom can be called water-like. For this type of
bottom, the energy loses for waveguide sound propagation
are maximal.

In addition to strong attenuation, effects of horizontal
sound refraction can be manifested in the region of or close to

the water-like bottom. This is possible even if the water
surface and bottom are flat and the water layer is uniform.
Horizontal refraction accompanies sound propagation along
the boundary of the water-like bottom and is most pro-
nounced at low frequencies, when only one mode propagates
in the acoustical waveguide. Due to this effect, the sound
intensity increases by 10 dB or more, and the sound pulse
propagation time increases by 1.5%. The horizontal refrac-
tion angle may reach ~ 10°.

These features of low-frequency sound propagation are
efficiently simulated in the framework of a modal sound field
description. Coupling between modes should be considered at
relatively high frequencies when sound waves propagate over
the region of water-like sediments. The coupling has an
almost negligible effect on the attenuation character of the
depth averaged intensity of the sound field emitted by a point
source. However, the mode coupling cause oscillations in the
frequency dependence of the amplitudes of modes propagat-
ing over the water-like bottom. This fact can be used to
localize such regions in experiments on stationary acoustical
tracks. In regions where water-like sediments are absent,
modal propagation can be treated as adiabatic (without
coupling), and horizontal refraction can be disregarded (the
uncoupled azimuth approximation is valid).

The material of this review can be useful for laying the
physical foundations for acoustical monitoring of the
Russian Arctic shelf. First and foremost, we mean monitor-
ing aimed at large-scale acoustical thermometry of Arctic
marginal seas [52] and at control of the level of anthropogenic
noise that may affect protected marine mammals in this area.

This review was prepared with the support of a grant from
the Russian Scientific Foundation, no. 22-72-10121, https://
rscf.ru/en/project/22-72-10121/.
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