
Abstract. We discuss difficulties arising from the description of
spin waves in themagnetostatic approximation, in which neither
the microwave electric field nor the Poynting vector is asso-
ciated with the wave. To overcome these difficulties, we present
for the first time a correct solution to the problem of electro-
magnetic wave propagation in an arbitrary direction along a
tangentially magnetized bi-gyrotropic layer (a special case of
this problem is the propagation of spin waves in a ferrite plate).
It is shown that the wave distribution over the layer thickness is
described by two different wave numbers kx21 and kx22, which
can take real or imaginary values; in particular, three types of
spin wave distributions can occur inside the ferrite plate Ð
surface-surface (when kx21 and kx22 are real numbers), vol-
ume-surface (kx21 is imaginary and kx22 is real), and volume-
volume (kx21 and kx22 are imaginary numbers), which funda-
mentally distinguishes the obtained description of spin waves
from their description in the magnetostatic approximation.

Keywords: spin waves, ferrite plates, electromagnetic waves, bi-
gyrotropic layers, wave distribution over layer thickness

1. Introduction

Studies of electromagnetic wave propagation in anisotropic
media started long ago as applied to magnetically ordered
media, uniaxial crystals, and plasmas (see, e.g., monographs
[1±12] and references therein). An analysis of the results of
these studies is given in Ref. [13], which describes some
regularities (similar to the laws of geometrical optics in
isotropic media) that accompany the propagation, reflec-
tion, and refraction of waves in anisotropic media in two-
dimensional geometries. It turns out that, in these media, the
occurrence of certain phenomena (nonreciprocal wave
propagation, the appearance of multiple reflected or
refracted rays, negative reflection and refraction, the absence
of reflection, etc.) is defined by the geometrical and
mathematical properties of the isofrequency wave depend-
ence, such as the presence of asymptotes, inflection points,
central or axial symmetry, or the uniqueness or multi-valued
character of the dependence. In addition, as is well known
(see, e.g., [14, 15]), the presence of inflection points in thewave
dispersion dependences leads to the appearance of quasi-
linear intervals in them, which can be used for a distortion-
free transmission of a signal modulating the wave. Later, it
was also found that the isofrequency dependences also define
wave diffraction properties. In particular, Ref. [16] shows that
the angular beam width in anisotropic media depends on the
curvature of the isofrequency wave dependence and can not
only be larger or smaller than l0=D (where l0 is the
wavelength and D is the transducer size) but, under certain
conditions (when the wave vector k is directed to the
inflection point in the wave isofrequency dependence), can
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be zero, which was confirmed in subsequent experimental
studies of spin-wave beams [17, 18].

It is therefore of great significance in the field of wave
processes to ascertain the isofrequency and dispersion
dependences of waves in anisotropic media. Nevertheless, a
precise dispersion wave equation is required for a specific
anisotropic medium or structure in order to perform calcula-
tions.

That said, even in such a successfully developing branch of
science as magnonics (see, e.g., reviews [19±24]), the spin
waves (SWs) in ferrite slabs and structures are still described
in the magnetostatic approximation. It is well known that
SWs are of an electromagnetic nature and represent oscilla-
tions of atomic magnetic moments propagating from atom to
atom [25]. In Ref. [26], it has been proposed to consider that
the wavenumber of the SW k4 k0 � o=c (where o is the SW
cyclic frequency and c is the speed of light), so that the terms
containing o=c as multipliers in Maxwell's equations can be
omitted, resulting in the equations ofmagnetostatics. Because
of its mathematical simplicity, this approximation has been
used to date to calculate the properties of SWs for wavenum-
bers k < 105 cmÿ1 (when the exchange interaction can be
discarded), with the waves themselves being referred to as
magnetostatic waves. In the time since the publication of [26],
researchers have used the magnetostatic approximation to
derive dispersion relations for SWs in various structures
based on ferrite slabs in an analytical form, to compute a set
of SW characteristics in these structures, and to construct a
variety of setups and devices using SWs on this basis [10±12,
19±24].

Over time, the use of the magnetostatic approximation
became a kind of scientific tradition to be followed, so that
researchers often began to assume that they were dealing with
a special 'magnetostatic' waveÐ in fact, it is not associated
with a microwave electric field (which is considered to be
negligibly small) nor with the Poynting vector (although there
have been attempts to calculate it, without using the electric
field, the expressions that followed were incorrect [10, 12,
27]). Moreover, within the framework of the magnetostatic
equations, it followed that the characteristics of such a
magnetostatic wave are independent of the dielectric permit-
tivities of the ferrite slab and the half-spaces on both its sides.

At the same time, approximately in the 1980s, some
researchers working with magnetostatic waves began to face
questions that could not be solved in the magnetostatic
approximation. As a result, papers began to appear in which
SWs were treated without the magnetostatic approximation
[1, 10±12, 27±42]. Some of these papers [28±32, 34±37, 43]
studied the change in characteristics of SWs in the region of
small wavenumbers k; among them are also [31, 32, 35], where
the mechanism of radiation accompanying SW propagation
in a non-uniformly magnetized structure ferrite± dielectric for
k! k0 has been explored. In Ref. [33], the effect of negative
dielectric permittivity of the media attached to the ferrite
layer on the dispersion dependences and properties of SWs
was studied. In Ref. [36], as a result of simplifying Maxwell's
equations for SWs, propagating in the plane of an arbitrarily
magnetized ferrite slab, a system of two differential equations
was obtained that defines the dependences of the tangent
components of the microwave electric field in the SW on the
coordinate normal to the slab plane. The same study also
considers the characteristics of the volume SW for special
cases of this geometry, when the slab is magnetized either
longitudinally or tangentially, and its two surfaces are

metallized. References [40±42] have calculated the distribu-
tion of the vector lines of the microwave fields of an SW
propagating in different ferrite structures perpendicularly to
the vector of the homogeneous magnetic field H0. In
particular, it was found that the vector lines of microwave
magnetic induction in the SW form two rows of oppositely
directed vortices localized near the opposite surfaces of the
ferrite slab, with the vector lines of adjacent vortices being
oppositely directed. The boundary between these rows of
vortices is a plane (located inside the ferrite slab) where the
microwave electric field in the SW is zero. Thus, such SWs can
be considered vortices of magnetic induction propagating in
time and space along the ferrite slab.

It should be noted that, in almost all the studiesmentioned
above, which do not rely on the magnetostatic approxima-
tion, the properties of SWs have been studied only for the case
when the vectors of SW group and phase velocities are
collinear 1 (i.e., when the wave propagates perpendicular to
or along the direction of the external magnetic field).

It is obvious that for the further successful development of
magnonics it would be valuable to find an analytical solution
for the propagation of SWs in any direction, based on
Maxwell's equations without using the magnetostatic
approximation. The solution to this problem would bring
the description of SWs to a qualitatively new level and would
allow us, in the end, not only to perform exact calculations of
the characteristics of SWs with noncollinear orientation of
the wave and group velocity vectors but also to associate
the microwave electric field with this wave and, for the first
time, to compute the Poynting vector, the direction and
density of the energy flux, the polarization, and the
structure of the force lines of magnetic and electric
microwave fields. We note here that an attempt was made
earlier (see, e.g., [27]) to derive a formula for the Poynting
vector in the magnetostatic approximation. However, the
derived formula 2 P �ÿoRe �iC �B�=8p, which also appears
in the known monographs (see formulas (5.8) in [10] and
(6.10) in [12]), turned out to be incorrect, as proved by
calculations in Ref. [39].

In the following, we present an exact analytical
solution for the propagation of electromagnetic waves in
an arbitrary direction in a tangentially magnetized bi-
gyrotropic layer characterized by dielectric permittivity
and magnetic permeability described by Hermitian sec-
ond-rank tensors. Obviously, the propagation of spin waves
in a ferrite slab is a special case of this general problem. Using
this particular case, we will show below how the obtained
theoretical results can be used to study SWs, which (in the
absence of the magnetostatic approximation) have six
components of the microwave electromagnetic fieldÐ three
magnetic and three electric.

It should be noted that at present a bi-gyrotropic medium
is no longer a hypothetical scientific abstraction but a rather
promising and desired medium that can be realized based on
rapidly developing techniques aimed at designing new
artificial media and metamaterials, in which the propagation
of electromagnetic waves is actively studied, motivated by the
possibility of developing various functional arrangements for
the terahertz frequency range (see, e.g., Refs [44, 45] devoted

1 The exceptions are only [29, 37], which describe the propagation of SWs

in an arbitrary direction; however, as will be shown further, the results

obtained in these studies are incorrect.
2 Here, C is the magnetic potential and B is the vector of microwave

magnetic induction.
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to ferro- and antiferromagnetic semiconductors and Ref. [46]
devoted to the imitation of left media based on ferromagnetic
metamaterials).

It is obvious that the above-mentioned papers show in a
transparent way that the theory presented below can be used
to study the characteristics of electromagnetic waves in
anisotropic antiferromagnetic layers, plasmas, and uniaxial
optical crystals, as well as in new artificial media and
metamaterials.

2. Problem statement

Consider a bi-gyrotropic layer of thickness s tangentially
magnetized by a homogeneous magnetic field H0 (Fig. 1).
Such a layer, as is well known [1], is characterized by a
dielectric permittivity and a magnetic permeability which are
described by the Hermitian second-rank tensors e2

$
and m2

$
:

m2
$ �

m in 0
ÿin m 0
0 0 mzz

������
������ ; �1�

e2
$�

e ig 0
ÿig e 0

0 0 ezz

������
������ : �2�

It will be shown below that it is possible to solve analytically
the system of Maxwell's equations (without any approxima-
tions) and to find the dispersion equation for electromagnetic
waves propagating in an arbitrary direction along such a bi-
gyrotropic layer.

Since the results to be derived can be used to study
electromagnetic waves in various anisotropic mediaÐ
gyrotropic layers of ferrite, antiferromagnetic, or plasma
(which are special cases of bi-gyrotropic media and have
either the tensor e2

$
or the tensor m2

$
described by expressions

(1) and (2))Ðall mathematical derivations and formulas are
given for the general case of electromagnetic wave propaga-
tion in a bi-gyrotropic layer 3 and are valid for arbitrary
frequency dependences of the components of the tensors e2

$

and m2
$
.

At the same time, in order to make the proposed theory
less abstract, we will use the formulas obtained to calculate
the characteristics of electromagnetic waves propagating
along a ferrite slab,4 for which the diagonal and off-diagonal
components of the tensor m2

$
are described, as is well known

[11], by the expressions

m � 1� oMoH

o2
H ÿ o2

; n � oMo
o2

H ÿ o2
; �3�

where oH � gH0, oM � 4pgM0, o � 2pf, g is the gyromag-
netic constant, 4pM0 is the saturation magnetization of the
ferrite, and f is the frequency of electromagnetic oscillations.

We note that the mathematical description of the problem
to be solved is somewhat cumbersome, so that in the
following we are forced to omit some intermediate manipula-
tions and to introduce special notations for various inter-

mediate quantities in order to write the obtained results
compactly.

3. Equations describing propagation
of electromagnetic waves in a tangentially
magnetized bi-gyrotropic layer

We will describe the electromagnetic fields in the bi-
gyrotropic layer 2 and the adjacent dielectric half-spaces 1
and 3 (see Fig. 1) using the indices j � 1, 2, and 3. We assume
that the half-spaces 1 and 3 have scalar relative dielectric
permittivities and magnetic permeabilities e1, m1 and e3, m3.

An electromagnetic field of frequency o and a harmonic
time dependence � exp �iot� propagating in the plane of the
bi-gyrotropic layer should satisfyMaxwell's equations for the
complex amplitude in each media,

rotEj � ioBj

c
� 0 ;

divBj � 0 ;

rotHj ÿ ioDj

c
� 0 ;

divDj � 0 ;

8>>>>>>><>>>>>>>:
�4�

where Ej, Hj and Dj, Bj are the complex amplitudes of the
vectors of the microwave electric andmagnetic fields and also
of the electric and magnetic inductions, which are related as

Dj �ej$ Ej and Bj �mj
$

Hj : �5�

We note here that, in previous studies that tried to solve
this problem (see, e.g., [29, 37]), it was proposed from the very
beginning to look for the solution to system (4) in the form of
a plane wave � exp �ÿikxxÿ ikyyÿ ikzz�. We claim that this
approach is incorrect from a mathematical standpoint and
does not allow finding a general solution to the system of
Maxwell's equations (4). In a mathematically correct
approach, the dependence of the wave on the coordinate x
(normal to the bi-gyrotropic layer) should be found in the
process of solving the differential equations that follow as a
result of adapting system (4) to the problem geometry.
Therefore, we should seek the solution to system (4) in the
form of a homogeneous plane wave propagating in the plane
yz of the layer and characterized by an arbitrary vector k. In
other words, in contrast to [29, 37], we allow, as in the
previous study [36], an arbitrary dependence of the fields E
and H on the coordinate x normal to the layer and assume

H0

x

x � s
z

y

1

2

3

0

Figure 1. Problem geometry: 1 and 3 are half-spaces of isotropic dielectric

(or vacuum), 2 is a bi-gyrotropic layer (a ferrite slab in a particular case)

with thickness s.

3 Furthermore, the results obtained can be used to describe light

propagation in a layer of uniaxial optical crystal with the dielectric

permittivity tensor in the diagonal form [7], which will correspond to

expression (2) for exx � eyy � e if we set g � 0.
4 It is obvious that, according to the definition of an SW [4, 11], SWs with

wavenumbers k < 105 cmÿ1 will correspond to these waves; the exchange

interaction can be ignored in their description.
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that these components vary harmonically in the plane of the
layer as well as with time according to

Ej � ej�x� exp �ÿikr� or
Exj; yj; zj � exj; yj; zj�x� exp �ÿikyyÿ ikzz� ; �6�

Hj � hj�x� exp �ÿikr� or
Hxj; yj; zj � hxj; yj; zj�x� exp �ÿikyyÿ ikzz� ; �7�

where, together with the Cartesian coordinate system SD �
fx; y; zg, we have also introduced the related polar (cylin-
drical) reference frame SP � fx; r;jg, in which angles j are
counted from the y-axis, and the counterclockwise direction is
taken as positive. The coordinates of the systems SP and SD

are connected by the relationships y � r cosj, z � r sinj.
Obviously, the module of the wave vector k and its
components ky and kz are also connected by the relationships
ky � k cosj, kz � k sinj, and k 2 � k 2

y � k 2
z .

Inserting expressions (6) and (7) into (5) and then (5) into
(4), and solving system (4), we find for the bi-gyrotropic
medium 2, by analogy with Refs [1, 47], the system of two
equations containing only the x-dependent amplitudes ez2
and hz2 of the components Ez2 and Hz2,

1

k 2
0

q2ez2
qx 2

ÿ Fnez2 ÿ imzzFnghz2 � 0 ;

1

k 2
0

q2hz2
qx 2

ÿ Fghz2 � iezzFngez2 � 0 ;

8>>>><>>>>: �8�

where the dimensionless functions Fn, Fg, and Fng have the
form

Fn �
k 2
y

k 2
0

� ezz
e

k 2
z

k 2
0

ÿ ezz
m
�m 2 ÿ n 2�

� k 2

k 2
0

�
cos2 j� ezz

e
sin2 j

�
ÿ ezzm? ; �9�

Fg �
k 2
y

k 2
0

� mzz
m

k 2
z

k 2
0

ÿ mzz
e
�e 2 ÿ g 2�

� k 2

k 2
0

�
cos2 j� mzz

m
sin2 j

�
ÿ mzze? ; �10�

Fng � kz
k0

�
g

e
� n
m

�
� k

k0
sinj

�
g

e
� n
m

�
; �11�

and also the notation

m? �
m 2 ÿ n 2

m
; �12�

e? � e 2 ÿ g 2

e �13�

is used. Note that both the off-diagonal components n and g
of the tensors e2

$
and m2

$
enter only the function Fng, while the

function Fn contains only the component n, and the function
Fg contains only the component g (this explains the notation
used).

By substituting the quantity hz2 from the first equation of
system (8) into the second equation, we obtain the following
differential equation for the amplitude ez2:

q4ez2
qx 4

� 2Z
q2ez2
qx 2

� aez2 � 0 ; �14�

where

Z � ÿ k 2
0 �Fn � Fg�

2
; �15�

a � k 4
0FnFg ÿ mzzezzk

4
0F

2
ng : �16�

Equation (14) defines the following characteristic equation
for the values of the wavenumber kx2 inside the bi-gyrotropic
layer

k 4
x2 � 2Zk 2

x2 � a � 0 : �17�

Finding the discriminant of (17), taking into account (15) and
(16), it can be easily shown that it is positive,

Z2 ÿ a � k 4
0 �Fn � Fg�2

4
ÿ k 4

0 �FnFg ÿ mzzezzF
2
ng�

� k 4
0

� �Fn ÿ Fg�2
4

� mzzezzF
2
ng

�
> 0 : �18�

The characteristic equation (17) has four roots which are
given by the relationship

k 2
x2 � ÿZ�

�������������
Z2 ÿ a

p
� k 2

0

2

�
Fn � Fg �

�����������������������������������������������
�Fn ÿ Fg�2 � 4mzzezzF 2

ng

q �
; �19�

and all of them are simple (no multiple roots):

kx21 �
������������������������������
ÿZÿ

�������������
Z2 ÿ a

pq
� k0

�����������������������������������������������������������������������������
Fn � Fg

2
ÿ 1

2

�����������������������������������������������
�Fn ÿ Fg�2 � 4mzzezzF 2

ng

qr
; �20�

kx22 �
������������������������������
ÿZ�

�������������
Z2 ÿ a

pq
� k0

�����������������������������������������������������������������������������
Fn � Fg

2
� 1

2

�����������������������������������������������
�Fn ÿ Fg�2 � 4mzzezzF 2

ng

qr
; �21�

kx23 � ÿkx21 ; �22�
kx24 � ÿkx22 : �23�

4. Solutions describing electromagnetic waves
in a bi-gyrotropic layer

To write down a solution to differential equation (14), we
need to find what values the roots kx21 ÿ kx24 of the
characteristic equation can take. We start by noting that the
roots kx21 ÿ kx24 cannot be complex (since Z2 ÿ a > 0 always,
according to (18)), but are either real or imaginary, depending
on the signs of the expressions under the roots in (20) and (21).
As can be seen from these expressions, if a < 0, then jZj is
always smaller than

�������������
Z2 ÿ a

p
, whose sign defines the sign of

the expression under the root; in this case, the root kx21 is
always imaginary, while the root kx22 is real (regardless of the
sign of Z). If a > 0, then, conversely, jZj >

�������������
Z2 ÿ a

p
always,

and for Z > 0, the quantities kx21 and kx22 are imaginary, and
for Z < 0, they are real.

Thus, based on the conditions formulated above and
using concrete parameters for the bi-gyrotropic layer and
expressions (15), (16), and (9)±(11), we can construct in the
coordinate space fky; kz; f g (or in the coordinate space
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fk;j; f g) boundary surfaces
Z � 0 or Fn � Fg � 0 ; �24�
a � 0 or FnFg ÿ mzzezzF

2
ng � 0 : �25�

The boundary surfaces have the following physical meaning:
when these surfaces cross a certain dispersion surface f �ky; kz�
of electromagnetic waves,5 they will separate on it the regions
with real and imaginary values of the roots kx21 ÿ kx24 of
characteristic equation (17).

We note here that equality (25) is identical to the dispersion
equation for electromagnetic waves in an unbounded bi-
gyrotropic medium (see expressions (20)±(23) in Ref. [47])
when this equation is reduced to a two-dimensional case by
setting to zero a wavenumber corresponding to one of the
coordinates normal to H0 (e.g., kx).

To get an idea of the shape of the surfaces a � 0 and Z � 0,
we perform calculations for the case when layer 2 in Fig. 1 is a
ferrite slab (which is a special case of a bi-gyrotropic layer)
with the saturation magnetization 4pM0 � 1750 G and the
dielectric permittivity e2 � 15, magnetized to saturation by a
permanent homogeneous magnetic fieldH0 � 300 Oe.

First, it should be mentioned that, for the ferrite slab,
the quantity a additionally changes its sign when the
frequency is varied from the values f < f? to the values
f > f? (since, according to (3) and (12), for f? � o?=2p �
�o2

H � oHoM�1=2=2p, we have m � 0 and m? ! 1).
In order to identify the values that the roots kx21 and kx22

of the characteristic equation take in different regions of the
space fky; kz; fg, we determine and construct the surfaces
a � 0, Z � 0 and the plane f � f? in this space. The regions of
space bounded by these surfaces and the sections of these
surfaces by the planes ky � 0, kz � 0, and f � 7000 MHz are
shown in Fig. 2.

The schematics in Fig. 2 offer the capability to learn what
the distribution of the wave amplitude is within the tangen-
tially magnetized ferrite layer (of arbitrary thickness) when
the wave dispersion surface is in one region or another of the
space fky; kz; f g. In reality, we already know this relying only
on the properties of differential equation (14), even thoughwe
have not yet obtained the wave dispersion equation!

By analyzing Fig. 2, we can see that the largest regions are
those labeled SS and colored yellow, where a > 0 and Z < 0.
The part of the dispersion surface located in region SS will
correspond to solutions with real values of the roots kx21 and
kx22 and the general solution of equation (14) in the form

ez2 � A exp �kx21x� � B exp �ÿkx21x�
� C exp �kx22x� �D exp �ÿkx22x� : �26�

The wave distribution inside the ferrite slab is described only
by exponential functions, and such a wave can be provision-
ally called surface±surface, or an SS-wave.

The smallest domain in Fig. 2 is occupied by the regionVV
colored orange, where a > 0 and Z > 0. The part of the wave
dispersion surface located in region VV will describe the
solution with imaginary roots kx21 and kx22, which corre-
spond to the general solution of equation (22) in the form

ez2 � A cos �jkx21jx� � B sin �ÿjkx21jx�
� C cos �jkx22jx� �D sin �ÿjkx22jx� : �27�

The wave distribution within the slab is described only by
trigonometric functions, and such awave can be provisionally
called volume±volume, or a VV-wave.

The regions VS colored blue in Fig. 2 are characterized by
a < 0, while the surfaces Z � 0 (their sections 11±15 are shown
by the dashed lines) are always located inside these regions. As
mentioned above, in this case, regardless of the sign of Z, the
root kx21 takes imaginary values and the root kx22 takes real
values. In other words, the part of the dispersion surface
located in region VS will describe the waves corresponding to
the general solution of (22) in the form

ez2 � A cos �jkx21jx� � B sin �ÿjkx21jx�
� C exp �kx22x� �D exp �ÿkx22x� : �28�

Thus, the wave distribution within the ferrite slab for this part
of the dispersion surface will be described by both trigono-
metric and exponential functions, and this wave can be
provisionally called volume±surface, or a VS-wave.

It should be noted that the remaining case, where the
general solution of differential equation (22) is of the form

ez2 � A exp �kx21x� � B exp �ÿkx21x�
� C cos �jkx22jx� �D sin �ÿjkx22jx� ; �29�

which corresponds to an SV-wave with the real root kx21 and
imaginary root kx22, is never realized in ferrite slabs.6

Thus, the wave distribution inside a ferrite slab can vary
depending on the wave parameters, and on one part of the
dispersion or isofrequency dependence7 this distribution can
correspond to, e.g., an SS-wave (described by expression
(26)), and on the other part, to a VS-wave (described by
expression (28)). This is the fundamental difference between
the exact description of spin waves and their description in the

5 For example, the dispersion surface for any type of spin wave propagat-

ing in a ferrite slab.
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Figure 2. Space domains SS, VS, and VV, which define the character of

wave distribution in ferrite slab section. Boundaries of domains SS, VS,

and VV are formed by composite surface a � 0 and plane f � f?. Curves
1 ± 3, 4 ± 6, and 7, 8 describe sections of surface a � 0 by planes ky � 0,

kz � 0, and f � 7000MHz, respectively, straight lines 9 and 10 correspond

to sections of plane f � f? by planes ky � 0 and kz � 0, respectively,

dashed curves 11, 12, 13, 14, and 15 correspond to section of the surface

Z � 0 by planes ky � 0, kz � 0, and f � 7000 MHz, respectively.

6 However, it cannot be ruled out that an SV-wave can occur in layers of

other anisotropic media, which are special cases of the bi-gyrotropic layer.
7 As is well known, the dispersion and isofrequency dependences are the

sections of the dispersion surface, so everything discussed here regarding

the intersection of this surface with boundary surfaces also applies to these

dependences.
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magnetostatic approximation [26] in which each dispersion
surface of spin waves is characterized by a certain distribution
type (surface or volume).

It is also obvious that the one-to-one correspondence we
found between the region in space fky; kz; f g and the type of
wave distribution in the ferrite layer does not depend on the
boundary conditions to be further used and is valid for all
structures based on the ferrite slab, be it a ferrite slab proper
surrounded by vacuum half-spaces, a ferrite slab metallized
on one side, a structure metal±dielectric±ferrite±dielectric±
metal, or another.

Furthermore, based on equations (14)±(25), a general
conclusion can be drawn: The wave distribution in the bi-
gyrotropic layer (including a layer of ferrite, antiferromagnetic,
plasma, or uniaxial optical crystal) and in structures based on
such a layer is always described in terms of two 8 wavenumbers
kx21 and kx22. Depending on the type of anisotropic medium,
its parameters, and the values of kx21 and kx22, this distribu-
tion is given by one of the expressions (26)±(29).

In the following, we will derive the dispersion relation and
the expressions for the microwave components of an SS-wave
propagating along a bi-gyrotropic layer.

5. Expressions for components
of an electromagnetic field
in a bi-gyrotropic layer

To write down expressions for all the microwave components
of an electromagnetic wave inside a bi-gyrotropic layer, we
must first obtain expressions for their amplitudes ex2, ey2, hx2,
hy2, and hz2.

Substituting (26) into the first equation of system (8), we
obtain the expression for the amplitude hz2:

hz2 � ib1
ÿ
A exp �kx21x� � B exp �ÿkx21x�

�
� ib2�C exp �kx22x� �D exp �ÿkx22x�

�
; �30�

where

b1 �
1

mzzFng

�
Fn ÿ k 2

x21

k 2
0

�
; �31�

b2 �
1

mzzFng

�
Fn ÿ k 2

x22

k 2
0

�
: �32�

Inserting expressions (6) and (7) into (5) and then (5) into
system of equations (4), we find

kyez2 ÿ kzey2 ÿ k0mhx2 ÿ ik0nhy2 � 0 ; �33�

ÿ ikzex2 ÿ qez2
qx
� k0nhx2 � ik0mhy2 � 0 ; �34�

qey2
qx
� ikyex2 � ik0mzzhz2 � 0 ; �35�

m
�
qhx2
qx
ÿ ikyhy2

�
� in

�
qhy2
qx
� ikyhx2

�
ÿ imzzkzhz2 � 0 ; �36�

kyhz2 ÿ kzhy2 � k0eex2 � ik0gey2 � 0 ; �37�

ikzhx2 � qhz2
qx
� k0gex2 � ik0eey2 � 0 ; �38�

qhy2
qx
� ikyhx2 ÿ ik0ezzez2 � 0 ; �39�

e
�
qex2
qx
ÿ ikyey2

�
� ig

�
qey2
qx
� ikyex2

�
ÿ ikzezzez2 � 0 : �40�

From equations (33) and (37), one can obtain the equations

hx2 � ky

mk0
ez2 ÿ kz

mk0
ey2 ÿ i

n
m
hy2 ; �41�

ex2 � ÿ ky

ek0
hz2 � kz

ek0
hy2 ÿ i

g

e
ey2 : �42�

Inserting expressions (41), (42) into equations (34) and (38),
we find the following relations:

i
kykz

ek 2
0

hz2 ÿ iFn2hy2 ÿ Fngey2 � nky
mk0

ez2 ÿ 1

k0

qez2
qx
� 0 ; �43�

ÿ i
kykz

mk 2
0

ez2 � iFg2ey2 ÿ Fnghy2 � gky

ek0
hz2 ÿ 1

k0

qhz2
qx
� 0 ; �44�

where the dimensionless functions Fn2 and Fg2 take the form

Fn2 � k 2
z

ek 2
0

ÿ m? ; �45�

Fg2 � k 2
z

mk 2
0

ÿ e? : �46�

Multiplying (43) by iFng and (44) by Fn2 and summing the
results, we find the expression for the amplitude ey2:

ey2 � 1

F2

�
a0ez2 ÿ ia2hz2 � Fng

k0

qez2
qx
ÿ i

Fn2

k0

qhz2
qx

�
; �47�

and multiplying (43) by iFg2 and (44) by Fng and summing the
results, we find the expression for the amplitude hy2:

hy2 � 1

F2

�
ib0ez2 � b2hz2 � Fng

k0

qhz2
qx
� i

Fg2

k0

qez2
qx

�
: �48�

The following notations are used in expressions (47) and (48):

F2 � Fn2Fg2 ÿ F 2
ng ; �49�

a0 � kykz

mk 2
0

Fn2 ÿ nky
mk0

Fng ; �50�

a2 � kykz

ek 2
0

Fng ÿ gky

ek0
Fn2 ; �51�

b0 � kykz

mk 2
0

Fng ÿ nky
mk0

Fg2 ; �52�

b2 � kykz

ek 2
0

Fg2 ÿ gky

ek0
Fng : �53�

As we can see, the amplitudes ey2 and hy2 in (47) and (48)
are expressed only through the amplitudes ez2 and hz2 and
their derivatives over the coordinate x. Inserting (47) and (48)
into (41) and (42), we write analogous expressions for the
amplitudes ex2 and hx2. To shorten the expressions for all
amplitudes on the coordinate x, we introduce the dimension-
less functions S0, S1, S2, and S3 of the coordinate x that
satisfy the relations

ez2 � S0�x� ; qez2
qx
� k0S1�x� ;

�54�
hz2 � iS2�x� ; qhz2

qx
� ik0S3�x� :8 In Section 10, we will clarify in which special cases the wave distribution

in a bi-gyrotropic layer is described by a single wavenumber.
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Substituting formulas (26) and (30) into relations (54), we
obtain the following expressions for the functions S0, S1, S2,
and S3:

S0�x� � A exp �kx21x� � B exp �ÿkx21x�
� C exp �kx22x� �D exp �ÿkx22x� ; �55�

S1�x� � kx21
k0

ÿ
A exp �kx21x� ÿ B exp �ÿkx21x�

�
� kx22

k0

ÿ
C exp �kx22x� ÿD exp �ÿkx22x�

�
; �56�

S2�x� � b1
ÿ
A exp �kx21x� � B exp �ÿkx21x�

�
� b2

ÿ
C exp �kx22x� �D exp �ÿkx22x�

�
; �57�

S3�x� � kx21
k0

b1
ÿ
A exp �kx21x� ÿ B exp �ÿkx21x�

�
� kx22

k0
b2
ÿ
C exp �kx22x� ÿD exp �ÿkx22x�

�
: �58�

To clarify our notation, we note that the numerical index
in the functions S0 ÿ S3 corresponds to the maximum power
of the wavenumbers kx21 and kx22 in the pre-exponent factors
in expressions (55)±(58) (taking into account their power in
expressions (31) and (32) for the quantities b1 and b2).

Taking into account expressions (54)±(58) in the expres-
sions for the amplitudes (26), (30), (41), (42), (47), and (48)
and inserting these six expressions into formulas (6) and (7),
we find expressions for all the electromagnetic field compo-
nents in the bi-gyrotropic layer:

Ex2 � i

eF2

�
kz
k0
�b0S0 � Fg2S1 � b2S2 � FngS3� ÿ ky

k0
F2S2

ÿ g�a0S0 � FngS1 � a2S2 � Fn2S3�
�
exp �ÿikyyÿ ikzz� ;

�59�

Hx2 � 1

mF2

�
ky

k0
F2S0 ÿ kz

k0
�a0S0 � FngS1 � a2S2 � Fn2S3�

� n�b0S0 � Fg2S1 � b2S2 � FngS3�
�
exp �ÿikyyÿ ikzz� ;

�60�

Ey2 � 1

F2

�
a0S0 � FngS1 � a2S2 � Fn2S3

�
exp �ÿikyyÿ ikzz� ;

�61�

Hy2 � i

F2

�
b0S0 � Fg2S1 � b2S2 � FngS3

�
exp �ÿikyyÿ ikzz� ;

�62�

Ez2 � S0�x� exp �ÿikyyÿ ikzz� ; �63�

Hz2 � iS2�x� exp �ÿikyyÿ ikzz� : �64�

6. Expressions for electric field components
outside bi-gyrotropic layer

Now consider the microwave fields outside the bi-gyrotropic
layer in media 1 and 3 characterized by scalar dielectric
permittivities and magnetic permeabilities e1, m1 and e3, m3.
Substituting solutions in the form of (6) and (7) into
Maxwell's equations (4), we obtain two independent differ-
ential equations on the amplitudes ez1;3 and hz1;3 instead of

system (8):

q2ez1;3
qx 2

ÿ �k 2
z � k 2

y ÿ k 2
0 e1;3m1;3�ez1;3 � 0 ; �65�

q2hz1;3
qx 2

ÿ �k 2
z � k 2

y ÿ k 2
0 e1;3m1;3�hz1;3 � 0 : �66�

Solutions of equations (65) and (66) are defined by the
characteristic equation

k 2
x1;3 � k 2

z � k 2
y ÿ k 2

0 e1;3m1;3 : �67�

Since microwave fields should decay exponentially with
distance from the layer, solutions of equations (65) and (66)
in medium 1 are sought in the form

ez1 � N exp �ÿkx1x� ; �68�
hz1 � iG exp �ÿkx1x� ; �69�

and in medium 3, in the form

ez3 � K exp �kx3x� ; �70�
hz3 � iL exp �kx3x� ; �71�

where N, G, L, and K are independent coefficients.
Transforming the system of Maxwell's equations (4), we

express the quantities ey1;3, ex1;3, hy1;3, and hx1;3 in terms of the
quantities ez1;3 and hz1;3, which are described by expressions
(68)±(71), and then, inserting the expressions obtained into
relationships (6), (7), we obtain the expressions for the
microwave field components in half-spaces 1 and 3:

Ex1 � i

q 2
1

�Gkyk0m1ÿNkzkx1� exp �ÿkx1xÿ ikyyÿ ikzz� ; �72�

Hx1 � 1

q 2
1

�Gkzkx1ÿNkyk0e1� exp �ÿkx1xÿ ikyyÿ ikzz� ; �73�

Ey1 � 1

q 2
1

�Nkykzÿ Gkx1k0m1� exp �ÿkx1xÿ ikyyÿ ikzz� ; �74�

Hy1 � i

q 2
1

�GkykzÿNkx1k0e1� exp �ÿkx1xÿ ikyyÿ ikzz� ; �75�

Ez1 � N exp �ÿkx1xÿ ikyyÿ ikzz� ; �76�
Hz1 � iG exp �ÿkx1xÿ ikyyÿ ikzz� ; �77�

Ex3 � i

q 2
3

�Lkyk0m3 � Kkzkx3� exp �kx3xÿ ikyyÿ ikzz� ; �78�

Hx3 � ÿ 1

q 2
3

�Lkzkx3 � Kkyk0e3� exp �kx3xÿ ikyyÿ ikzz� ; �79�

Ey3 � 1

q 2
3

�Kkykz � Lkx3k0m3� exp �kx3xÿ ikyyÿ ikzz� ; �80�

Hy3 � i

q 2
3

�Lkykz � Kkx3k0e3� exp �kx3xÿ ikyyÿ ikzz� ; �81�

Ez3 � K exp �kx3xÿ ikyyÿ ikzz� ; �82�
Hz3 � iL exp �kx3xÿ ikyyÿ ikzz� ; �83�

where the quantities q1 and q3 are described by the following
expression:

q 2
1;3 � k 2

z ÿ k 2
0 e1;3m1;3 : �84�
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7. Dispersion relation for electromagnetic waves
in a bi-gyrotropic layer

We now turn to the derivation of the dispersion equation
describing the propagation of electromagnetic waves in a bi-
gyrotropic layer. Satisfying the boundary condition of
continuity of the tangential components Ey, Ez, Hy, and Hz

at x � 0 and x � s, we obtain the following system of eight
equations on the constant coefficients A, B, C, D, G, N, K, L:

N exp �ÿkx1s� � S0�s� ;

F2
Nkykz ÿ Gm1kx1k0

q 2
1 exp �kx1s�

� a0S0�s� � FngS1�s�

� a2S2�s� � Fn2S3�s� ;
G exp �ÿkx1s� � S2�s� ;

F2
Gkykz ÿNe1kx1k0

q 2
1 exp �kx1s�

� b0S0�s� � Fg2S1�s�

� b2S2�s� � FngS3�s� ; �85�
K � S0�0� ;

F2
Kkykz � Lm3kx3k0

q 2
3

� a0S0�0� � FngS1�0�

� a2S2�0� � Fn2S3�0� ;
L � S2�0� ;

F2
Lkykz � Ke3kx3k0

q 2
3

� b0S0�0� � Fg2S1�0�

� b2S2�0� � FngS3�0� :
Inserting the constants N, G, K, and L from the first, third,
fifth, and seventh equations into the second, fourth, sixth, and
eighth equations of system (85), we reduce it to a system of
four equations for the coefficients A, B, C, and D:�

a0 ÿ kykz

q 2
1

F2

�
S0�s� � FngS1�s�

�
�
a2 � m1kx1k0

q 2
1

F2

�
S2�s� � Fn2S3�s� � 0 ;�

b0 � e1kx1k0
q 2
1

F2

�
S0�s� � Fg2S1�s�

�
�
b2 ÿ kykz

q 2
1

F2

�
S2�s� � FngS3�s� � 0 ;

�86��
a0 ÿ kykz

q 2
3

F2

�
S0�0� � FngS1�0�

�
�
a2 ÿ m3kx3k0

q 2
3

F2

�
S2�0� � Fn2S3�0� � 0 ;

�
b0 ÿ e3kx3k0

q 2
3

F2

�
S0�0� � Fg2S1�0�

�
�
b2 ÿ kykz

q 2
3

F2

�
S2�0� � FngS3�0� � 0 :

Inserting into system (86) expressions (55)±(58), describ-
ing the quantities S0, S1, S2, and S3, and collecting the terms
by the coefficients A, B, C, and D, we obtain the system of

equations

d11A� d12B� d13C� d14D � 0 ;
d21A� d22B� d23C� d24D � 0 ;
d31A� d32B� d33C� d34D � 0 ;
d41A� d42B� d43C� d44D � 0 :

8><>: �87�

The entries d11 ÿ d44 of the matrix defined by (87) are given in
the Appendix.

Thus, the dispersion equation for electromagnetic SS-
waves propagating along a bi-gyrotropic layer is the fourth-
order determinant of the system of homogeneous equations
(87).

The dispersion relations and expressions for the micro-
wave field components of VV-, VS-, and SV-waves, which can
appear in various special cases of a bi-gyrotropic layer, can be
obtained similarly.

8. Proof of continuity of normal components
of electric and magnetic induction
at boundaries of bi-gyrotropic layer

In the previous Section 7, we derived the dispersion equation
for electromagnetic waves in a bi-gyrotropic layer. To derive
this equation, we used the boundary conditions that the
tangential components Ey, Ez, Hy, and Hz are continuous at
the layer surfaces (at x � 0 and x � s).

It is quite possible that researchers describing the SW in
the magnetostatic approximation would doubt the applica-
bility of our solution for describing an SW, since, in the
magnetostatic approximation, no microwave electric field is
associated with this wave (it is assumed to be small and thus
can be neglected), and, instead of the condition that the
tangential components of the electric field be continuous
across the boundaries, it is required that the normal
component of the magnetic induction be continuous [26].

In the following, we will prove that our solution is unique
and thus can be used to describe all electromagnetic waves
(including the SW) in anisotropic media described by the
Hermitian second-rank tensors e2

$
and m2

$
given by expressions

(1) and (2).
As is well known, according to the theorem on the

uniqueness of solutions to Maxwell's equations, if the condi-
tion that the tangential components of the electric andmagnetic
fields E and H be continuous at the interface between some
media is satisfied, this simultaneously ensures the continuity of
the normal components of the electric and magnetic induction
D and B at the same interface (see æ 9.2 in Ref. [48]). However,
this theorem was proved only for electromagnetic waves in
isotropic media: electromagnetic waves in gyrotropic media
were excluded from consideration [48].

Since in the derivation of the dispersion relation we used
the condition that the tangential components Ey, Ez,Hy, and
Hz be continuous across boundaries, we must additionally
prove the continuity of the normal components of theD andB
vectors across these boundaries.

Comparing expressions (59)±(64), and also from expres-
sions (41) and (42), it can be seen that, inside the bi-gyrotropic
layer, the field components Ex2 and Hx2 can be written as
follows:

Ex2 � ÿ ky

ek0
Hz2 � kz

ek0
Hy2 ÿ i

g

e
Ey2 ; �88�

Hx2 � ky

mk0
Ez2 ÿ kz

mk0
Ey2 ÿ i

n
m
Hy2 : �89�
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Departing from expressions (5) and using expressions (88)
and (89), the normal components of electric and magnetic
induction Dx2 and Bx2 can be written as follows:

Dx2 � eEx2 � igEy2 � ÿ ky

k0
Hz2 � kz

k0
Hy2 ; �90�

Bx2 � mHx2 � inHy2 � ky

k0
Ez2 ÿ kz

k0
Ey2 : �91�

In isotropic half-spaces 1 and 3, the normal components
of electric and magnetic induction Dx1, Bx1, and Dx3, Bx3,
equal to e1Ex1, m1Hx1, and e3Ex3, m3Hx3, respectively, can be
written analogously as 9

Dx1 � ÿ ky

k0
Hz1 � kz

k0
Hy1 ; �92�

Bx1 � ky

k0
Ez1 ÿ kz

k0
Ey1 ; �93�

Dx3 � ÿ ky

k0
Hz3 � kz

k0
Hy3 ; �94�

Bx3 � ky

k0
Ez3 ÿ kz

k0
Ey3 : �95�

As can be seen from expressions (90)±(95), in a bi-
gyrotropic layer, as well as in isotropic half-spaces, the
normal component of the electric induction Dx is defined by
the sum of the tangential components of the magnetic field, and
the normal component of the magnetic induction Bx is defined
by the sum of the tangential components of the electric field,
and related terms appear with equal coefficients.

It should be recalled now that the following boundary
conditions on the tangential components Ey, Ez, Hy, and Hz

were used in the derivation of (85):

Ez1�x � s� � Ez2�x � s� ;
Ey1�x � s� � Ey2�x � s� ;
Hz1�x � s� � Hz2�x � s� ;
Hy1�x � s� � Hy2�x � s� ; �96�
Ez3�x � 0� � Ez2�x � 0� ;
Ey3�x � 0� � Ey2�x � 0� ;
Hz3�x � 0� � Hz2�x � 0� ;
Hy3�x � 0� � Hy2�x � 0� :

From equations (90)±(95), it follows that the fulfillment of
the continuity conditions for the components Ey, Ez,Hy, and
Hz at the boundaries between the media also ensures the
fulfillment of other conditions: the equality (and thus
continuity) of the normal components of the vectors D and
B at these boundaries,

Dx1�x � s� � Dx2�x � s� ;
Bx1�x � s� � Bx2�x � s� ; �97�
Dx3�x � 0� � Dx2�x � 0� ;
Bx3�x � 0� � Bx2�x � 0� :

Thus, whatever boundary conditions are used in the
derivation of the dispersion relation, we arrive at one and
the same unique dispersion relation, describing the propaga-
tion of electromagnetic waves in a bi-gyrotropic layer.

9. Calculations of spin wave characteristics
in a ferrite slab

As an example of using the dispersion equation (87), we
calculate some characteristics of the SW in a ferrite slab
surrounded by vacuum half-spaces.

As already mentioned, the fundamental difference in the
description of SWs here from the previous ones obtained in
the magnetostatic approximation [26] and without it [29, 37]
lies in the fact that the wave distribution inside the ferrite slab is
described by two wavenumbers 10 Ð kx21 and kx22. We will
show how this is reflected in the characteristics of SWs with
the spectrum located above the frequency f?. As is well
known, such a wave is called a surface magnetostatic wave
[26], since, in the magnetostatic approximation, its distribu-
tion in the slab is of a purely surface type and is characterized
by a single wavenumber kx2ms.

Isofrequency dependences for this SW at different
frequencies are shown in Fig. 3, where curves 1 ± 4 are
calculated using the description of SWs given above, while
curves 1 0ÿ4 0 are calculated in the magnetostatic approxima-
tion according to Ref. [26] (for brevity, they will be further
referred to as `magnetostatic' dependences). The calculations
were performed for the following parameters: H0 � 300 Oe,
4pM0 � 1750 G, s � 40 mm, e2 � 15.

9 These relations can be easily obtained from equations (33) and (37) by

expressing the x-components of the field by the y- and z-components,

taking n � 0 and g � 0 there, and changing indices 2 to 1 and 3.

10 Which confirms the earlier results for the reciprocal SW propagating

along the direction of the vector H0 tangent to a magnetized ferrite slab

[38].
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Figure 3. Isofrequency dependences for spin waves in a tangentially

magnetized ferrite slab for frequencies 2198 (1 and 1 0), 2216.3 (2 and 2 0),
2250 (3 and 3 0), and 2300 MHz (4 and 4 0) (half-plane ky > 0 is shown).

Curves 1 ± 4 are calculated without magnetostatic approximation, curves

1 0ÿ4 0 are calculated in this approximation. Also shown are curves 1 00 and
4 00 which are intersection of surface a � 0 and, respectively, surfaces

f � 2198 and f � 2300 MHz (curve 1 00 separates on curve 1 regions that

correspond to SS-wave and region that corresponds to VS-wave).
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As one would expect from the plots in Fig. 3, in the exact
description of this SW, its isofrequency dependences may
contain intervals describing VS-waves in addition to the
intervals describing SS-waves. For example, SWs with
frequencies f < 2015 MHz have regions corresponding to a
VS-wave (for example, the boundary curve 1 00 bounds such a
region on isofrequency curve 1 in Fig. 3), whereas SWs with
frequencies f > 2015MHz are always SS-waves (for example,
boundary curve 4 00 does not intersect isofrequency curve 4 in
Fig. 3).

Although the exact and magnetostatic isofrequency
dependences in Fig. 3 do not differ substantially, the change
in the quantities kx21 and kx22 (which characterize the SW
distribution inside the slab) along the isofrequency depen-
dences differs significantly from the analogous change in the
related magnetostatic quantity kx2ms (Fig. 4).

As can be seen from Fig. 4, at j � 0, the magnetostatic
dependences kx2ms�j� pass near the curves kx21�j�, and as jjj
increases the dependences kx2ms�j� gradually approach the
curves kx22�j�, and the difference between the values
kx22�j � 0� and kx21�j � 0� essentially depends on the
frequency, changing from 255 cmÿ1 for f � 2198 MHz to
2 cmÿ1 for f � 2500 MHz.

10. Comparison of spin wave propagation along
y-axis with earlier results

In testing any new theory, it is important to compare the
results obtained on the basis of that theory with the available
data for various limit and special cases.

One such case is the exact description of the SW
propagating tangentially to a magnetized ferrite slab and
perpendicular to the vector H0, which was obtained earlier
[30, 31]. Figure 5 shows the dispersion dependences of SW
f �ky� for this case for the parameters mentioned above: the
magnetostatic dependence is described by curve 1 0, and the
exact dependence, calculated on the basis of the theory

presented above and on the basis of Ref. [31], is described by
one and the same curve 1, since the results of these
calculations are identical.

Figure 5 also shows boundary curves 2 and 3, which
separate the intervals with SS-, VV-, or VS-waves on curve 1,
which are characterized by the distributions of the SW in the
ferrite slab given by expressions (26)±(28).

Figure 6 shows the variation in the wavenumbers kx21,
kx22, kx1, and kx2ms along the respective dispersion depen-
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dences shown in Fig. 5. The dependences kx21� f � and kx22� f �
are calculated by (20) and (21), the dependence kx1� f � relies
on expression (67), and the dependence kx2ms� f � uses the
theory [26].

Before starting a discussion of the results shown in Figs 5
and 6, it should be noted that, in the earlier description of an
SW (without the magnetostatic approximation) propagating
perpendicular to the vectorH0 [30, 31], the distribution of the
SV in the ferrite slab is characterized by a single wavenumber
instead of two (as follows from the theory presented here).
Thus, at first glance there is an apparent contradiction
between the proposed description and the previous one. In
reality, this contradiction is only apparent, as will be shown
below.

Obviously, the case where the SW propagates perpendi-
cular to the vectorH0 can be obtained from the descriptionwe
are considering if we set kz � 0 (or j � 0). For kz � 0, the
system of Maxwell's equations (4) is decomposed into two
independent subsystems, one containing only the field
components Ez2, Hx2, and Hy2, and the other one containing
Hz2,Ex2, andEy2. Since for kz � 0we get Fng � 0 according to
(11), the resulting system (8) for the amplitudes ez2 and hz2
reduces to two independent equations: one for the amplitude
ez2 and the other one for the amplitude hz2. The first equation
describes the well-known surface SW (an H-wave with the
components Ez2, Hx2, and Hy2), for which, using Fng � 0 in
expression (21), we find

kx22 � k0
�����
Fn

p
�

������������������������
k 2
y ÿ k 2

0 em?
q

; �98�

while the second equation describes a surface electromagnetic
wave (an E-wave with the components Hz2, Ex2, and Ey2,
which is common for a layer of usual dielectric), for which,
inserting Fng � 0 into expression (20), we find

kx21 � k0
�����
Fg

p �
������������������������
k 2
y ÿ k 2

0 emzz
q

: �99�

These values of kx22 and kx21 correspond to the results
obtained earlier (see, e.g., [1, 11, 30]).

Nevertheless, the reader may still remark that it is clear
from Fig. 4 that, in the theory presented here, an SW is not
characterized by a single wavenumber at j � 0, but by two
wavenumbers kx21 and kx22.

To answer this remark, we calculate below the change in
the coefficients A, B, and C, normalized with the coefficient
D, as a function of the wavenumber kz (Fig. 7). Recall that the
coefficients A, B, C, and D define the amplitudes of the
exponential functions in expression (26), and now, as can be
seen from Fig. 7, the coefficients A and B, appearing with the
exponents exp �kx21x� and exp �ÿkx21x�, become zero at
j � 0 (or kz � 0), while the coefficients C and D appearing
with the exponents exp �kx22x� and exp �ÿkx22x� remain
finite! Obviously, for j � 0, the distribution of an SW inside
the ferrite slab is described by a single wavenumberÐ kx22,
which has already been found in Refs [30, 31].

As follows from Fig. 7, in practice, the wavenumber kx21
does not affect the distribution of the microwave field of the
SW inside the ferrite slab for a narrow angular range jjj9 2�,
where the coefficients A and B are close to zero for all
frequencies, and the main contribution in this distribution, in
accordance with formulas (55)±(64), is introduced by the
coefficients C and D and the corresponding wavenumber
kx22. Therefore, the dependences shown in Figs 5 and 6 and
the change in the distribution of SWs for j � 0 described

below will also be practically preserved for small angles
jjj9 2�.

As can be seen from Fig. 6, as f! f?, we have kx22 !1,
while for the analogous magnetostatic dependence we find
kx2ms ! 0! It is obvious that such a large difference in the
values of kx22 and kx2ms will lead to significant differences in
the description of the SW distribution in the magnetostatic
approximation and without it: in fact, the wavenumbers kx22
and kx2ms define the penetration depth of the microwave field
of the SW into the ferrite slab, and, as can be seen from Fig. 6,
the dependence kx2ms� f � is a monotonic one, while the
dependence kx22� f � has a minimum about 100 MHz from
the frequency f?. As a consequence, the distribution of the
microwave electric field of the SW (which is defined by the
dependence Ez�x� [39]) varies in the following way.

At frequencies close to f? (where ky � k0, kx22 are large
and kx1 is very small), practically all the energy of the SW
turns out to be localized in one of the half-spaces (see curve 1
in Fig. 8), and the energy of an SW traveling in the positive
direction of the y-axis turns out to be localized in half-space 1
(as in Fig. 8), and the energy of an SW traveling in the
negative direction of the y-axis becomes localized in half-
space 3. Thus, despite the large wavelength l of the SW at
frequencies which are close to f?, the ferrite slab is in practice
an insurmountable obstacle: almost all the SW energy is
confined to one of the half-spaces, and this energy extends
over tens of centimeters 11 from the slab surface!

With increasing frequency f , the electric field of SW Ez

penetrates more strongly through the ferrite slab into half-
space 3, and this penetration reaches its maximum at the
frequency f � 2300 MHz (see curve 2 in Fig. 8), at which
kx22� f � has a minimum (see curve 2 in Fig. 6). A further
increase in the frequency reduces the penetration of the SW
energy into half-space 3, and, at frequencies close to the upper
spectral limit, the energy of the SW turns out to be localized
near the surface x � s � 40 mm.
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11 This phenomenon allows us to explain the efficient transformation of

the SW energy into an electromagnetic wave emitted into the surrounding

space, which was previously experimentally demonstrated in Ref. [35].
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The picture is very different if the SW is described in the
magnetostatic approximation, when, as is well known [26],
for kz � 0 it is valid that kx2ms � kx1ms � kx3ms � jkymsj, and
the distribution of magnetic potential C inside and outside
the ferrite slab is described as

C2 � A exp �kx2msx� � B exp �ÿkx2msx� ;
C1 � C exp �ÿkx1msx� and C3 � D exp �ÿkx3msx� :

In this case, at frequencies that are close to f? (when
kx2ms � kx1ms � kx3ms � 0, as is seen in Fig. 6), the normal-
ized distribution12 C�x� will resemble a straight line C � 1
(or C � ÿ1). As the frequency f is further increased, the
quantities kx2ms, kx1ms, kx3ms increase monotonically, defining
the growth in the exponential decay of the distribution C�x�
with the distance to the slab surface where the SW is localized
(see, e.g., curve 2 in Fig. 5 in [39]).

We see that the magnetostatic description of SWs leads to
an incorrect representation of SW properties in the initial
spectral domain when f � f?. The reason for this is hidden in
the magnetostatic approximation itself, the use of which
assumes that, in all equations and formulas, starting from
Maxwell's equations, one can consider that k4 k0. A broad
use of this assumption sometimes leads to errors. For
example, in the magnetostatic approximation, from the
exact formula (98), neglecting the combination k 2

0 em? as
compared to k 2

y , a formula kx2ms � jkymsj can be obtained.
However, it is clear that the inequality k 2

y 4 k 2
0 is valid for one

interval of ky values, and the inequality k 2
y 4 k 2

0 em? is valid
for a quite different interval of ky, since the product k

2
0 em? can

be several orders of magnitude larger than k 2
0 at frequencies

where m? is large.
Note that we are not suggesting that all SW researchers

should completely abandon the use of the magnetostatic

approximation to describe SWs, as many useful and helpful
results have been obtained on its basis (e.g., the formulas for
SW cutoff angles obtained in the magnetostatic approxima-
tion for k!1 are certainly also valid in the exact description
of SWs). We only want to draw attention to the fact that the
magnetostatic approximation provides a simplified and
sometimes even incorrect description of SW properties.

Unfortunately, the framework of a single paper does not
allow us to discuss all the advantages that the exact
description of electromagnetic waves in a bi-gyrotropic layer
offers, even for the special case of the SW, in the samemanner
that the publication of [26] was followed by many publica-
tions exploring the properties of SWs. However, we would
like to mention here some of the advantages. First of all, the
theory developed here would allow the description of SWs in
the framework of classical electrodynamics, thus removing an
essential limitation of the SW description imposed by the
magnetostatic approximation. In particular, with the help of
this theory, in addition to the exact distribution of SWs, one
can calculate the Poynting vector, the direction and density of
the energy flux, as well as the polarization and vector lines of
SWs, and in the future even more complex problems can be
solved on the basis of modern methods of electrodynamics,
which will undoubtedly promote the successful development
of magnonics and the perfection of devices using SWs.

11. Conclusions

This paper discusses problems and errors caused by the
description of spin waves in the magnetostatic approxima-
tion widely used by specialists for more than 60 years. In
particular, when describing a spin wave based on the
magnetostatic approximation and calling it a magnetostatic
wave, researchers associate neither the microwave electric
field (which is considered to be negligibly small) nor the
Poynting vector (which cannot be found without the electric
field) with it.

To alleviate these problems, we present for the first time a
correct analytical treatment of the propagation of electro-
magnetic waves in an arbitrary direction along a tangentially
magnetized bi-gyrotropic layer with dielectric permittivity
and magnetic permeability described by Hermitian second-
rank tensors. The propagation of spin waves in a ferrite slab is
a special case of this general treatment.

It is shown that by representing a solution of Maxwell's
equations as a wave of the form exp �ÿikyyÿ ikzz� propagat-
ing in the plane of the layer, with the dependence on the
coordinate x normal to the layer left unspecified, it is possible
to reduce Maxwell's equations to a system of two differential
equations of second order containing only the x-dependent
amplitudes of the microwave electric and magnetic fields
parallel to the vector of the constant uniform magnetic field
H0. This system is further reduced to a fourth-order
differential equation, which defines a bi-quadratic character-
istic equation specifying wavenumbers of the electromagnetic
wave distribution in the cross section of the bi-gyrotropic
layer. It is shown that this equation has four simple (not
multiple) roots, kx21, kx22, kx23 � ÿkx21, and kx24 � ÿkx22,
which cannot be complex-valued and can take either real or
imaginary values.

We have considered the propagation of electromagnetic
waves with real kx21 and kx22 in an arbitrary direction along a
bi-gyrotropic layer surrounded by dielectric half-spaces. For
these waves, a dispersion equation has been derived, which is
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12 The distribution C�x� is often associated with the SW energy distribu-

tion, which is not correct, as mentioned in Ref. [39]. We analyze here the

distribution C�x�, since an SW lacks a dependence analogous to Ez�x� in
the magnetostatic approximation.
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a fourth-order determinant of the system of linear homo-
geneous equations, and it is also shown that these waves have
six components of the microwave electromagnetic fieldÐ
three electric and three magnetic. It is proved that this
dispersion equation is obtained both when the boundary
conditions are the continuity of the tangential components
of the electric and magnetic fields E andH and when they are
the continuity of the normal component of the vectors of
electric and magnetic induction D and B.

It is shown that the distribution of the amplitudes of
microwave fields inside the bi-gyrotropic layer (and its special
casesÐ the layers of ferrite, antiferromagnetic, plasma, or
uniaxial optical crystal) and in structures based on such a
layer, in the general case, is always described by two
wavenumbers Ð kx21 and kx22. Depending on the anisotropic
medium, its parameters, and the values of kx21 and kx22,
propagating waves are characterized by one of four possible
distributions, described by trigonometric and exponential
functions (see expressions (26)±(29)) and are one of the
following wave types: SS-waves, or surface±surface waves
(kx21 and kx22 are real numbers); VS-waves, or volume±
surface waves (kx21 is imaginary and kx22 is real); VV-waves,
or volume±volume waves (kx21 and kx22 are both imaginary);
and SV-waves, or surface±volume waves (kx21 is real and kx22
is imaginary).

On the basis of the developed theory, we have studied the
characteristics of SWs in a ferrite slab, which is a special case
of a bi-gyrotropic layer. In the coordinate space fky; kz; f g,
boundary surfaces were constructed which separate regions
with different wave distributions on the dispersion surfaces
f �ky; kz� for different SW types. It is shown that, on the
dispersion surfaces of SWs (and also in their sectionsÐ
dispersion and isofrequency dependences), there can be
regions describing SS-, VS-, and VV-waves. It is found that
the boundary surfaces are described by an equation which is
identical to the dispersion equation for electromagnetic waves
in an unbounded ferrite (bi-gyrotropic) medium (when this
equation is reduced to a two-dimensional case).

We have studied the characteristics of SWs at frequencies
above the ferromagnetic resonance frequency f? for the
ferrite slab. In particular, the dependences of the SW
transverse wavenumbers kx21 and kx22 on the wave vector
orientation j were calculated for different values of the
frequency f. It is found that the dependences kx21�j� and
kx22�j� differ substantially from each other aswell as from the
analogous magnetostatic dependences kx2ms�j�. The differ-
ence in the values of kx22�j � 0� and kx21�j � 0� depends
essentially on the frequency, changing from � 255 cmÿ1 for
f � f? to 2 cmÿ1 for f � f? � 300MHz. For the anglesj � 0,
the dependences kx2ms�j� pass near the curves kx21�j�, and
for the angles j near the wave vector cutoff angles, they pass
near the curves kx22�j�.

Furthermore, it is established that, if j � 0 (or kz � 0),
the wave distribution in the ferrite slab is described by one
wavenumber kx22, because the coefficients A and B determin-
ing the contribution of the second wavenumber kx21 and
acting as factors with the exponents exp �kx21x� and
exp �ÿkx21x� are equal to zero.

It is shown that the microwave electric field of SWs plays
an important role in the wave description, governing the
energy distribution inside and near the ferrite slab. In
particular, calculations of the distribution of the microwave
electric wave field Ez�x� for a set of frequencies f showed
that, at frequencies close to f?, the ferrite slab is almost an

impenetrable obstacle for the wave despite its large wave-
length: practically all the wave energy is concentrated in one
half-space where it penetrates over tens of centimeters from
the slab surface (whereas analogous calculations in the
magnetostatic approximation give erroneous results accord-
ing to which the energy is practically equally distributed
between the half-spaces)! It is also found that the penetration
of the SW energy through the ferrite slab reaches a maximum
at a frequency at which the dependence kx22� f � has a
minimum.

We assume that the solution found here for the propaga-
tion of electromagnetic waves in a tangentially magnetized bi-
gyrotropic layer will facilitate accurate calculations of
electromagnetic waves not only in layers of ferrite, antiferro-
magnetic, plasma, and uniaxial crystals, but also in layers of
various metamaterials.

This study was carried out in the framework of state
assignment to the Kotelnikov Institute of Radio Engineering
and Electronics RAS.

12. Appendix

The elements of matrix (87) are given by the following
expressions:

d11 �
�
a0 ÿ kykz

q 2
1

F2 � kx21
k0

Fng

� b1

�
a2 � m1kx1k0

q 2
1

F2 � kx21
k0

Fn2

��
exp �kx21s� ; �A:1�

d12 �
�
a0 ÿ kykz

q 2
1

F2 ÿ kx21
k0

Fng

� b1

�
a2 � m1kx1k0

q 2
1

F2 ÿ kx21
k0

Fn2

��
exp �ÿkx21s� ; �A:2�

d13 �
�
a0 ÿ kykz

q 2
1

F2 � kx22
k0

Fng

� b2

�
a2 � m1kx1k0

q 2
1

F2 � kx22
k0

Fn2

��
exp �kx22s� ; �A:3�

d14 �
�
a0 ÿ kykz

q 2
1

F2 ÿ kx22
k0

Fng

� b2

�
a2 � m1kx1k0

q 2
1

F2 ÿ kx22
k0

Fn2

��
exp �ÿkx22s� ; �A:4�

d21 �
�
b0 � e1kx1k0

q 2
1

F2 � kx21
k0

Fg2

� b1

�
b2 ÿ kykz

q 2
1

F2 � kx21
k0

Fng

��
exp �kx21s� ; �A:5�

d22 �
�
b0 � e1kx1k0

q 2
1

F2 ÿ kx21
k0

Fg2

� b1

�
b2 ÿ kykz

q 2
1

F2 ÿ kx21
k0

Fng

��
exp �ÿkx21s� ; �A:6�

d23 �
�
b0 � e1kx1k0

q 2
1

F2 � kx22
k0

Fg2

� b2

�
b2 ÿ kykz

q 2
1

F2 � kx22
k0

Fng

��
exp �kx22s� ; �A:7�
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d24 �
�
b0 � e1kx1k0

q 2
1

F2 ÿ kx22
k0

Fg2

� b2

�
b2 ÿ kykz

q 2
1

F2 ÿ kx22
k0

Fng

��
exp �ÿkx22s� ; �A:8�

d31 � a0 ÿ kykz

q 2
3

F2 � kx21
k0

Fng

� b1

�
a2 ÿ m3kx3k0

q 2
3

F2 � kx21
k0

Fn2

�
; �A:9�

d32 � a0 ÿ kykz

q 2
3

F2 ÿ kx21
k0

Fng

� b1

�
a2 ÿ m3kx3k0

q 2
3

F2 ÿ kx21
k0

Fn2

�
; �A:10�

d33 � a0 ÿ kykz

q 2
3

F2 � kx22
k0

Fng

� b2

�
a2 ÿ m3kx3k0

q 2
3

F2 � kx22
k0

Fn2

�
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d34 � a0 ÿ kykz

q 2
3

F2 ÿ kx22
k0

Fng

� b2

�
a2 ÿ m3kx3k0

q 2
3

F2 ÿ kx22
k0

Fn2

�
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d41 � b0 ÿ e3kx3k0
q 2
3

F2 � kx21
k0

Fg2

� b1

�
b2 ÿ kykz

q 2
3

F2 � kx21
k0

Fng

�
; �A:13�

d42 � b0 ÿ e3kx3k0
q 2
3

F2 ÿ kx21
k0

Fg2

� b1

�
b2 ÿ kykz

q 2
3

F2 ÿ kx21
k0

Fng

�
; �A:14�

d43 � b0 ÿ e3kx3k0
q 2
3

F2 � kx22
k0

Fg2

� b2

�
b2 ÿ kykz

q 2
3

F2 � kx22
k0

Fng

�
; �A:15�

d44 � b0 ÿ e3kx3k0
q 2
3

F2 ÿ kx22
k0

Fg2

� b2

�
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q 2
3
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