
Abstract. Progress in observation of solitons in photonic topo-
logical insulators is discussed. Results are presented of experi-
ments with nonlinear topological states in Su±Schrieffer±
Heeger arraysÐ fabricated using the femtosecond writing
techniqueÐ that are static, i.e., invariable in the direction of
light propagation, and dynamically modulated (primarily peri-
odically) in the direction of light propagation. Such objects are
one of the simplest models of a topologically nontrivial struc-
ture. Solitons in topological insulators bifurcate with increasing
laser beam power from linear edge states in the topological
bandgap, inheriting their topological protection. The spatial
localization of the soliton and the position of its propagation
constant in the topological bandgap depend in a nonlinear
medium on peak power and can be effectively controlled. Ex-
perimental observation of the switching of the edge topological
modes in the bandgap between two closely spaced dimerized
Su±Schrieffer±Heeger arrays is presented. The switching,
whose rate depends on radiation intensity, can be completely

arrested in a strongly nonlinear regime. In trimer waveguide
arrays, whose spectrum in the topological phase features two
simultaneously emerging topological bandgaps with edge states
of different symmetries, two coexisting types of topological
solitons exhibiting different degrees of stability were observed.
We also discuss experimental observations of p-solitonsÐnon-
linear topological Floquet states periodically reproducing their
profiles in 1D- and 2D-dimensional Su±Schrieffer±Heeger ar-
rays modulated in the direction of propagation of radiation.

Keywords: Su±Schrieffer±Heeger arrays, topological solitons,
switching, topological photonics

1. Introduction

Topological insulators, which play an important role in
physics, have been experimentally observed in a wide variety
of physical systems. Interest in them is mainly due to the
unusual propagation scenarios of excitations observed in
such structures and the exceptional stability of unique
topological edge states that arise at the interface between
two materials described by Hamiltonians with different
topological properties characterized by different integer
topological invariants. In topological insulators, edge excita-
tions that arise in the topological band gap in the spectrum are
protected by the topology of the system itself and can
propagate along the boundary of the structure, following all
its bends and local deformations and overcoming localized
defects without scattering, while behaving in the bulk like in a
conventional insulator due to the presence of an energy band
gap. Thus, perturbations with an amplitude that is not
sufficient to close the topological band gap in the energy
spectrum cannot lead to the destruction of edge states.
Topological insulators were first predicted in solid-state
physics, where it was discovered that the band structures of
dielectric materials allow classification based on the topology
of the space characterizing the electron states in the Brillouin
zone. It was also found that the topological properties of the
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bands can be described using an integer topological index
(invariant) that does not change when perturbations are
introduced into the Hamiltonian of the system, provided
that such perturbations do not lead to the closure of the
band gap in the energy spectrum (i.e., to the crossing of energy
levels). Since a change in the topological indices of the bands
is only possible when energy levels cross, intermediate edge
states localized in the direction perpendicular to the boundary
should arise at the interface between two materials with
different band structure topologies, which can `connect'
bands with different values of the topological invariant in
the spectrum of the system. The classification of band
structures and the type of topological invariant describing
the system are usually determined by the symmetry types of
the corresponding Hamiltonian in k-space. An immense
contribution to the study of such structures was made by
Soviet researchers (see, for example, pioneering study [1],
where topological surface states in 3D topological insulators
were predicted and recent reviews published in Russian [2±4]
and foreign [5, 6] journals). Over the past ten years, the
concept of topological insulators has expanded significantly,
and similar structures have been observed in experiments
involving mechanical systems [7, 8], acoustics [9±11], atomic
systems in optical lattices [12±16], exciton-polariton conden-
sates in structured microresonators [17±24], and optical [25±
31] and many other systems. Recent advances in topological
photonics, where topological insulators, in addition to the
interest in their purely fundamental physics, can also find
many practical applications, are described in reviews [32±35].

In solid-state physics, nontrivial topological properties of
a material are determined by the band structure of its
spectrum, i.e., by the structure of the material itself, as has
been shown in such materials or heterostructures as
PbTe=SnTe and HgTe=CdTe [1±6]. In optics, the band
structure topology can be controlled by modulating the
refractive index of the medium. Optical topological insula-
tors, like their analogs in solid-state physics, feature a
complete band gap in the spectrum, i.e., excitations with
certain frequencies cannot propagate in the bulk of such
materials, but, at the same time, they support propagating
edge states at frequencies belonging to the band gap at their
interface with a material with a different topology. Topologi-
cal insulators, experimentally demonstrated at optical fre-
quencies, can be conditionally divided into several large
groups.

The first one among them includes insulators with broken
`time'-reversal symmetry (in optics, the role similar to time
can be played by the coordinate of optical radiation
propagation). One of the simplest ways to break this
symmetry is to use gyromagnetic materials in external
magnetic fields [25], but, since the band gap (and, conse-
quently, the degree of protection of edge states) that can be
achieved in such materials at optical frequencies is small,
experiments with such structures have been carried out
primarily in the microwave range. The above-mentioned
symmetry can be violated using helical waveguides [28],
which made it possible to observe unidirectional edge states
in honeycomb arrays of waveguides. Square lattices of
periodically approaching waveguides also enabled observa-
tion of anomalous topological phases [29, 30], when edge
states arise due to longitudinal modulation of the refractive
index. In fact, the above-mentioned systems also belong to the
class of Floquet insulators [36±38], in the sense that the usual
band structure of the spectrum is replaced in them by a

Floquet spectrum for quasi-energies, which is periodic not
only with respect to the Bloch momentum but also along the
quasi-energy axis.

Another broad class of optical topological insulators
consists of structures based on the valley Hall effect: they
are waveguide systems or photonic crystals in which two
lattices consisting of sublattices with different detunings/
deformations that violate the inversion symmetry of the
system form a domain wall, where topological edge modes
appear [39±43]. These insulators, however, are characterized
by the coexistence of edge states on one domain wall,
propagating in two different directions, and sufficiently
narrow defects on the domain wall can lead to the binding
of such states. Therefore, it is generally accepted that optical
structures based on the valley Hall effect are characterized by
weaker topological protection of edge states.

Finally, it is worth separately distinguishing a wide class
of higher-order insulators [44±47]. Having a dimension of D,
they feature (D ± 1)-dimensional boundaries that do not
support unidirectional states, but are themselves topological
insulators. A D-dimensional topological insulator of the Nth
order is characterized by the presence of edge states localized
on its (D ±N )-dimensional boundary. For such structures,
the correspondence principle, which relates the number of
edge states arising at the boundary to the standard topologi-
cal invariants of the band structure of a periodic material, is
not applicable in its usual form.

Until recently, topological insulators had been studied
exclusively in the linear regime. However, an unquestionable
advantage of optical topological structures is that the
materials from which they are created often feature a fairly
strong nonlinear response. It turns out that in the nonlinear
regime the propagation dynamics and the conditions for the
emergence of edge states can alter qualitatively [48±50], and
nonlinearity allows a controlled rearrangement of the
energies of edge states in the band gap, thereby changing
their spatial localization [51]. Nonlinearity can be used to
implement effective parametric interactions of edge states and
generate new harmonics, which themselves can be localized
near the boundary of the structure [52±54]. It is worth noting
that the nonlinearity of the medium can even lead to the
emergence of self-induced topological phases, when a system
that is topologically trivial at low radiation intensity becomes
nontrivial and begins supporting edge states at a quite high
intensity [55±58]. Moreover, nonlinearity can lead to coupling
of topological modes of different effective dimensions, such as
corner and edge modes in higher-order insulators [59].
Nonlinearity can also initiate the development of modulation
instability of edge states [16, 60, 61], leading to their splitting
into a sequence of localized wave packets propagating along
the topological structure boundary.

This phenomenon is a direct indication of the possible
existence of solitons of a topological nature in topological
insulators, recently predicted both in the bulk [62, 63] and at
the boundary [64±75] of these structures. Such unique hybrid
states, on the one hand, inherit the topological protection of
the linear edge states from which they bifurcate, and, on the
other hand, remain localized due to self-action in a nonlinear
medium, including when propagating along the boundary of
the insulator and interacting with its defects. Due to these
features, they are of great interest for practical applications.

Edge solitons have been observed experimentally in
various topological optical systems, including Floquet insu-
lators [71, 72] and higher-order insulators [76, 77]. The theory
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of envelope solitons, based on topological edge states that
hardly radiate during propagation, has been developed for
both discrete [64±66] and continuous [68±70] models describ-
ing systems with helical waveguides. Edge solitons have also
been found in optical systems based on the valley Hall effect
[73±75]; they have been observed not only in as-fabricated
structures but also in tunable optical lattices induced in hot
atomic vapors [67]. The theory of topological solitons in
aperiodic structures such as arrays with disclinations is
currently being actively developed [78, 79].

One of the most challenging problems in the theory of
nonlinear topological optical insulators is the topological
description of nonlinear systems and the issue of the
applicability of topological invariants for predicting the
occurrence of edge states in a system when a nonlinear
addition to the refractive index significantly alters the
distribution of its refractive index. A preliminary analysis
[76] of higher-order insulators showed that, even in this
case, when taking into account the nonlinear deformation
of the refractive index profile, a topological invariant can
be introduced equivalent to conventional bulk polariza-
tion, which correctly predicts the formation of corner
modes in the system. Further potential progress in this
area may be associated with the introduction of invariants
based on the Green's function of the system, developed in
the theory of interacting topological systems in solid-state
physics [80±82].

An example of the simplest topological structure in which
topological solitons can form is the Su±Schrieffer±Heeger
lattice [83], where a transition to the topological phase is
realized due to shifts of individual sites in the dimers of which
the structure consists. In this phase, edge states arise at the
lattice boundary, from which, in the presence of nonlinearity,
edge solitons bifurcate, which have been found theoretically
[84±89] and, in a weakly nonlinear regime, observed experi-
mentally in waveguide structures [90±92], optical fibers [93],
and structured polariton microresonators [94, 95]. Most of
the experiments with weakly nonlinear edge states and edge
solitons were performed in Su±Schrieffer±Heeger lattices with
one topological band gap, allowing the formation of edge
solitons of only one type. The coexistence of several edge
solitons with different internal structures requires the intro-
duction of more complex topological structures consisting of
trimers or quadrimers of waveguides, as predicted in [96±100]
and only recently confirmed experimentally in our study
[101]. Su±Schrieffer±Heeger linear arrays can also be used to
construct fairly complex 2D structures, for example, a star-
shaped configuration, in which defect and several types of
topological solitons can simultaneously coexist [102].

Interestingly, when constructing one-dimensional Su±
Schrieffer±Heeger topological lattices, the same approach is
used as for constructing higher-order insulators, when a shift
of sites (in our case, waveguides) in a unit cell containing two
sites a and b changes the coupling strength (which determines
the tunneling rate of the light field energy) between sites inside
the cell and between sites in neighboring cells. Thus, in the
approximation of strongly localized modes (i.e., in the one-
dimensional discrete model), which takes into account only
the coupling between neighboring lattice sites, the lattice
Hamiltonian takes the form H � ÿPn�t1jn; bihn; aj �
t2jn� 1; aihn; bj� � h:c:, where n is the number of the current
cell, t1 is the constant of coupling between sites within the unit
cell, and t2 is the constant of coupling between adjacent sites
fromdifferent cells.When switching to the quasi-momentum

k-space, we represent the state vectors in the form jn; xi �
Nÿ1=2

P
k exp �ikn�jk; xi, where k 2 �ÿp; p� is the Bloch

momentum, N is the total number of cells in the structure,
and x � a; b denotes the type of lattice site. Then, the
lattice Hamiltonian can be represented as H �P

kHkjkihkj, where

Hk � 0 ÿt1 ÿ t2 exp �ÿik�
ÿt1 ÿ t2 exp ��ik� 0

� �
:

A topologically nontrivial phase, in which edge states arise
at the boundary of a truncated lattice, is realized when
t1 < t2, i.e., when the constant of coupling between sites in
neighboring cells exceeds that between sites in a cell. It
should be emphasized that in such a discrete description
the system is characterized by symmetry with respect to
time reversal THkT ÿ1 � Hÿk, chiral szHksz � ÿHk, and
inversion sxHksx � Hÿk symmetries, and particle-hole sym-
metry CHkCÿ1 � ÿHÿk, where C � szT , sx, sz are the Pauli
matrices. The presence of these symmetries enables us to
classify this structure as a class of topological systems
described by the Z invariant (`the winding number' (see
Section 3)).

Due to the topological protection of edge states, they are
ideal candidates for implementing various disorder-tolerant
switching and routing schemes and data or energy transmis-
sion [103±105]. The study of such systems and switching
mechanisms involving edge states is of especial importance
in optics, where these switches can be ultrafast. Various
mechanisms for coupling between topological edge states
have already been proposed. They include, in particular,
topological pumping, in which energy is transferred from
one insulator boundary to another as a result of an adiabatic
change in the structure parameters [106, 107], the creation of
an optical potential gradient along the insulator boundary,
leading to periodic switching of excitations between opposite
boundaries due to anomalous Bloch oscillations [108, 109],
small longitudinal modulations of the optical potential,
leading to Rabi oscillations between edge states [110, 111],
the use of resonant pumping in microresonator systems,
which allows selective excitation of modes at various
structure boundaries [112, 113], and switching between
closely spaced Floquet arrays with helical waveguides [114]
or in small-sized Su±Schrieffer±Heeger chains [115, 116]. It is
only recently that we have experimentally presented the use of
nonlinearity of optical material to control the dynamics of
such switching between edge states in Su±Schrieffer±Heeger
arrays [117].

Optical systems, in which topologically nontrivial phases
arise due to periodicmodulations of the refractive index of the
structure in the direction of radiation propagation, provide
new options for controlling the propagation dynamics [118].
The topological classification of such systems requires
introducing specially defined invariants, as shown in [119±
121]. Modulated Su±Schrieffer±Heeger arrays are one of the
simplest examples of such structures supporting anomalous
p-modes, the existence of which is associated with the
topological p-invariant for Floquet systems [122±127]. These
modes arise even in structures that spend half of the long-
itudinal period in the topologically trivial phase and are
topologically nontrivial only in the other half of the period.
In the Floquet system spectrum, these modes usually appear
between Floquet replicas of the same allowed band, arising
due to the longitudinal modulation of the refractive index.
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Previously, p-modes were observed only in the linear regime
in 1D modulated Su±Schrieffer±Heeger lattices in the micro-
wave range [128] and at optical frequencies in non-Hermitian
or plasmonic lattices [129±131] with a high refractive index
contrast, where, however, significant losses limit the propaga-
tion range of edge states to hundreds of micrometers.
p-modes were also observed in acoustics [132, 133]. In the
presence of nonlinearity, p-modes in the Floquet systemmake
it possible to obtain a family of p-solitons bifurcating from
them: unique nonlinear topological states that exactly
reproduce their profile after each longitudinal modulation
period [134, 135]. Such 1D and 2D nonlinear states have been
experimentally observed only recently in oscillating wave-
guide arrays [136].

The above results indicate that even the simplest topolo-
gical systems based on Su±Schrieffer±Heeger lattices allow
observing some unique physical phenomena and topological
states arising due to the interaction of the nontrivial topology
of the system and self-action effects. In this review, we present
a brief description of the experiments and results obtained at
the Institute of Spectroscopy of the Russian Academy of
Sciences on static and dynamicallymodulated 1D and 2D Su±
Schrieffer±Heeger lattices in essentially nonlinear propaga-
tion regimes, when a nonlinear addition to the refractive
index becomes comparable to the modulation depth of the
refractive index in the topological structure itself. In parti-
cular, in Section 2, we discuss the observation of nonlinearity-
controlled switching between the edge states of two closely
located dimerized Su±Schrieffer±Heeger topological arrays.
When two such arrays approach each other, the overlap of the
wave fields of the topological states results in their periodic
switching between the arrays, the switching rate being
dependent on the input beam intensity and the distance
between the arrays [117]. It is of importance to note that,
unlike conventional splitters [137, 138], in our system switch-
ing occurs between states from the topological band gap, the
localization of which directly depends on the band gap width.
An increase in nonlinearity first leads to suppression of
switching and then can cause a sharp increase in radiation
into the bulk of the arrays. In Section 3, we present the
observation of topological solitons in a trimer array whose
spectrum contains two topological band gaps, where edge
states with different internal structures and symmetries exist
[101]. Edge solitons bifurcating from such edge states also
feature different symmetries, one of the states being signifi-
cantly more stable. Our experiments show that, unlike
conventional surface solitons in nontopological lattices,
topological solitons of both types can be excited even at low
power. Finally, in Section 4, we consider the features of the
spectrum of modulated Su±Schrieffer±Heeger lattices, which,
due to the periodic variation in the coupling constant within
and between the dimers of which the structure consists, spend
half of the z-period in the `instantaneous' topological phase,
while in the other half of the period they are `instantaneously'
nontopological. Nevertheless, localized p-modes can arise at
the boundaries of such arrays with p-solitons bifurcating
from them in the nonlinear regime, which we observed in
both 1D and 2D geometries [136].

2. Nonlinearity-controlled switching
between topological states

One of the simplest and best-known models of a topological
insulator is the Su±Schrieffer±Heeger model [83], which

describes an array whose unit cell contains two sites (for
example, two waveguides). Arrays of shallow (refractive
index contrast dn � 10ÿ4) waveguides fabricated using the
femtosecond laser writing technique provide a unique plat-
form for implementing the Su±Schrieffer±Heeger model. In
particular, to implement edge state switching between
topologically nontrivial structures, we consider two closely
spaced Su±Schrieffer±Heeger arrays [117]. The propagation
of radiation in such a system in the paraxial approximation is
described by the dimensionless Schr�odinger equation for the
light field amplitude c:

i
qc
qz
� ÿ 1

2

�
q 2c
qx 2
� q 2c

qy 2

�
ÿR�x; y�cÿ jcj2c : �1�

It should be noted that Eqn (1) can be represented as
iqc=qz�Hcÿjcj2c, whereH�ÿ�1=2��q 2=qx 2�q 2=qy 2�ÿR
is the Hamiltonian of the linear system. Here, the
function R�x; y� � Rl�x; y� � Rr�x; y�, where Rl;r�x; y� �
p
P

m�1;2NQ�xÿ xlm; rm; y� describes the refractive index
distribution in two `linear' arrays written sufficiently close to
each other, p is the normalized modulation depth of the
refractive index in each of the arrays, and xlm, xrm are the
coordinates of the waveguide centers in the left (subscript l)
and right (subscript r) arrays. Each array consists of N pairs
of waveguides with identical Gaussian profiles Q�x; y� �
exp �ÿ�x 2 � y 2�=a 2� of width a. In dimensionless equation
(1), the coordinates x; y are normalized to the characteristic
transverse scale r0 � 10 mm, the propagation coordinate z is
normalized to the diffraction length kr 20 , and the normalized
modulation depth of refractive index p � k 2r 20 dn=n is propor-
tional to the actual modulation depth of refractive index dn.
Here, k � 2pn=l is the wave number in the medium, n � 1:45
is the unperturbed refractive index of the medium, (fused
silica), and l � 800 nm is the operating wavelength. The
dimensionless intensity of the light field jcj2 corresponds to
the actual dimensional intensity I � njcj2=k 2r 20 n2, where the
nonlinear refractive index for fused silica is n2 �
2:7� 10ÿ20 m2 Wÿ1. The typical width of the waveguides in
such an array is a � 0:5 (about 5 mm). It should be noted that
here and below we use the continuous model (1) to describe
the propagation of radiation in Su±Schrieffer±Heeger lat-
tices, which takes into account the actual refractive index
profile in the medium and, as a consequence, the coupling
between all waveguides in the structure, thereby providing a
more complete description of the propagation dynamics
compared to the simplified discrete model mentioned in the
introduction. The continuous system (1) may lack some
symmetries specific to the discrete model, although both
models yield qualitatively similar linear spectra and band
structure properties (although the discrete model, unlike the
continuous one, describes only the two upper bands of the
system). These differences are manifested in the linear
spectrum, which, for example, in the continuous model is
not completely symmetric with respect to the propagation
constant of the edge state. System (1) is symmetric with
respect to time reversal (propagation coordinate z), and
also features inversion symmetry in the case of a single
lattice.

Micrographs of a single Su±Schrieffer±Heeger array and a
pair of such closely spaced structures are displayed in Fig. 1a.
The arrays for these experiments are fabricated at the
Quantum Technologies Center of Moscow State University
by femtosecond laser writing in 10-cm fused silica slabs using
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focused (via an aspherical lens with NA � 0:3) femtosecond
laser pulses (at a wavelength of 515 nm, pulse duration of
280 fs, pulse energy of 360 nJ, and repetition rate of 1 MHz).
In the process of writing, the sample is translated relative to
the beam focus at a constant velocity of 1 mm sÿ1 using a
high-precision positioning system (Aerotech), which allows
fabrication of arrays of parallel waveguides with a controlled
distance between them. A typical modulation depth of the
refractive index in such arrays is dn � 5:5� 10ÿ4 (which
corresponds to p � 4ÿ5), i.e., these waveguides are single-
mode ones with typical mode field diameters of
� 15:4� 24:0 mm. Waveguides written in this way feature
low losses, not exceeding 0:07 cmÿ1 at an operating wave-
length of 800 nm.

In Su±Schrieffer±Heeger arrays, the topological phase is
realized by means of an opposite shift of two waveguides in
each unit cell (for zero shift, the array is a periodic structure
with the same distance between all waveguides). A variation
in the distance d between the waveguides in a cell (dimer)
results in a change in the distance s between the waveguides in

adjacent cells, which is reflected in the coupling (arising from
the overlap of the wave fields of the modes of two closely
located waveguides) within each dimer and between dimers
(see the notations in the micrograph of a single array
presented in the upper row of Fig. 1a). When the coupling
between dimers exceeds the bond inside the dimer, the
structure passes into a topologically nontrivial phase, in
which its truncation is accompanied by the appearance of
edge states at its boundaries. The linear modes of the array
can be found in the form c�x; y; z� � w�x; y� exp �ibz� (here,
b is the mode propagation constant and w�x; y� is a real
function describing its profile). In the linear spectrum of a
single array consisting ofN � 7 dimers (shown in Fig. 1b), the
propagation constants of the edge topological states in the
topological band gap are indicated by red dots, while the
black dots correspond to the delocalized bulk modes. The
localization of the edge states increases with decreasing
distance s between the dimers at a fixed d � 33 mm. The
width of the topological band gap, where the edge states
appear, also increases with decreasing distance s. At s > d, the
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Figure 1. (a) Photomicrograph of a single Su±Schriffer±Heeger array fabricated by femtosecond laser writing in topological regime, where distance

between waveguides in adjacent dimers s � 15 mm is smaller than distance d � 33 mm between waveguides inside dimers (top). Images of interface

between two topological arrays with sl � sr � 15 mm and dl � dr � 33 mm (middle) and interface of a topological and a nontopological array with

sl � dr � 15 mmand sr � dl � 33 mm (bottom). The two arrays are separated by distance h. (b) Linear spectrum of an array with 7 dimers as a function of

distance s at a fixed d � 33 mm. Vertical dotted line denotes transition from nontopological phase to topological one at s � d. Eigenvalues of the modes

supported by topological±topological (sl � sr � 15 mm, dl � dr � 33 mm) (c) and topological±nontopological (sl � dr�15 mm, sr � dl � 33 mm)

(d) arrays as a function of distance h between the two arrays. (e) Form factor of most localized linear mode in a single Su±Schrieffer±Heeger array as a

function of distances s and d. Dotted line marks transition from nontopological phase (green region), in which edge states do not arise, to topological

phase (red region), in which localized edge states appear at the array boundary. (f) Form factor of most localized linear mode at topological±topological

array interface as a function of distance between arrays h and distance sl � sr at a fixed dl � dr � 33 mm. Dotted horizontal line corresponds to

sl; r � 33 mm. (g) Form factor of most localized mode at boundary of topological±nontopological array as a function of h and sl � dr for a fixed

sr � dl � 33 mm. (h) Examples of profiles of w�x; y� of strongly localized modes corresponding to points in panels (c) and (d). (i) Examples of profiles of

w�x; y� of weakly localized modes for the case of sl � sr � 26 mm, dl � dr � 33 mm (TT structure) and sl � dr � 26 mm, sr � dl � 33 mm (TN structure).

Switching dynamics in TT structure for same set of parameters as in figure (h) for h � 30 mm (j) and h � 40 mm (k), and for the parameters from panel (i)

for h � 30 mm (l). In all cases, normalized modulation depth of refractive index in the array is p � 4:88.
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array passes into a trivial phase and, despite the presence of a
band gap in its spectrum, the edge states no longer appear in it
in this regime. This is also clearly seen from the dependence of
the form factor w � �Uÿ2 � � jcj4 dx dy�1=2, where U �� � jcj2 dx dy is the power calculated for the most localized
linear mode in the Su±Schrieffer±Heeger array, on the
distances s and d, displayed in Fig. 1e. It is noteworthy that
the form factor of a mode is inversely proportional to its
width, i.e., a more localized mode has a larger form factor,
while weakly localized modes correspond to small values of w.
It is evident from this dependence that localized states at the
boundary appear precisely at s < d, in the red region, while, in
the green region, this array does not have localizedmodes (the
form factor in the green region, where only delocalized bulk
modes exist, decreases with increasing number of cells in the
system, i.e., w! 0 at N!1). With an increasing number of
dimers in the array, the density of delocalized states in the
allowed band increases, but the propagation constants of the
edge modes remain virtually unchanged. Generally speaking,
the finite size of the system only manifests itself at s! d,
when the width of the edge modes becomes comparable to
that of the array. In this case, the coupling of modes at
opposite boundaries leads to the removal of the degeneracy of
the propagation constants of the in-phase and out-of-phase
combinations of edge states arising at opposite ends of the
array (which is visible in a small region at s > 30 mm in
Fig. 1b).

To observe the edge state switching, we created two
closely spaced Su±Schrieffer±Heeger arrays, each consisting
ofN � 5 dimers. Micrographs of the two different configura-
tions discussed below are shown in the middle and bottom
rows of Fig. 1a, where the different arrays are highlighted by
horizontal red brackets. In the first topological-topological
(TT) configuration displayed in the middle row, both the left
and right arrays are in the topological phase, since the spacing
between dimers sl � sr � 15 mm (here, the subscript denotes
the right or left array) in both arrays is smaller than the
spacing between the waveguides inside dimers dl �
dr � 33 mm. The bottom row of Fig. 1a displays the second,
topological-nontopological (TN) configuration, in which
the left array is in the topological phase, while the right one
is in the trivial phase, which is achieved, for example, at
sl � dr � 15 mm and sr � dl � 33 mm. The arrays are sepa-
rated by a distance h, which varied in the experiments in a
range from 15 to 46 mm.

To explain the mechanism of switching the edge states, we
calculated the linear spectrum of the TT configuration as a
function of the distance h between the two arrays (Fig. 1c).
The spectrum clearly shows the topological band gap between
the two bands, in which only bulk modes exist. The states
corresponding to the red and blue lines in the band gap are the
in-phase and out-of-phase modes formed at the interface of
the two arrays (modes 1 and 2 in Fig. 1h). Their propagation
constants vary depending on h. Two other modes, corre-
sponding to black dots inside the band gap, whose propaga-
tion constants do not depend on h, are located at the outer
edges of the arrays and not excited in the experiment. Figure 1f
shows the dependence of the form factor of the most localized
mode in the TT configuration on the distance h between the
arrays and on the distance sl � sr between the waveguides in
adjacent dimers at a fixed distance between waveguides
dl � dr � 33 mm inside the dimers. Here, at sufficiently large
distances h, localized topological modes at the interface of
two arrays also arise at sl; r < dl; r � 33 mm (lower red region).

It should be noted that defect localizedmodes can also arise in
this system: such nontopological modes are associated with
the upper red region in Fig. 1f. These modes are also visible in
Fig. 1cÐ their propagation constants leave the topological
band gap to the semi-infinite one when h changes.

Focusing the radiation into the waveguide at the interface
between two arrays in the TT configuration is equivalent to
the simultaneous excitation of the in-phase mode 1 and the
out-of-phase mode 2 with nearly equal weights. The
subsequent switching can be interpreted as periodic beats
between these edge states, with the beat length inversely
proportional to the difference in their propagation constants
L � p=�b1 ÿ b2�. Apparently, L increases with increasing
distance h due to the decrease in the difference b1 ÿ b2.
Examples of the switching dynamics of topological edge
states for various distances h between the arrays are shown
in Figs 1j and 1k. Here, we consider arrays with sufficiently
small distances sl; r, which provides strong localization of the
edge states and their efficient excitation in the experiment.
However, it should be emphasized that switching is also
possible for weakly localized edge states, even when
sl; r ! dl; r. Examples of such edge states in the TT structure,
which deeply penetrate into each of the arrays for the
specified parameters, are presented in Fig. 1i. The switching
dynamics for such weakly localized states is shown in Fig. 1l.
In these states, particularly noticeable are the oscillating tails,
where the field changes sign in neighboring dimers, typical of
modes from the topological band gap.

When the topological and nontopological arrays
approach each other (TN configuration), in the linear
spectrum in the band gap, in addition to the modes at the
outer boundaries, only onemode 3 appears, which is localized
near the interface of two arrays (see the magenta dots in
Fig. 1d), in the rightmost waveguide of the topological
structure (see the profile in the last row of Fig. 1h, i),
although it penetrates into the nontopological array. The
form factor of the most localized mode as a function of the
distance h between the arrays and the distance sl � dr at fixed
sr � dl � 33 mm for the TN structure is shown in Fig. 1g
(note: to make one array topological and the other non-
topological, here, we set the distance between dimers in one
array equal to the distance between waveguides inside dimers
in the other array). In such a configuration, one of the arrays
is always in the topological state, except for the case sl � sr
�dl � dr�, when all modes become delocalized. In the TN
structure, focusing the beam into the topological (in our case,
the left) part of the structure excites the localized mode 3,
while focusing it into the right array should only lead to
diffraction, since this part of the structure does not have
localized states. In both cases, switching of edge states in the
TN structure will not be observed.

For experimental observation of the switching of edge
states, a set of TT and TN structures was fabricated for
various distances h between the two arrays in the range from
15 to 46 mm. In the experiment, the light from a 1-kHz
femtosecond Spitfire HP Ti:sapphire laser system (Spectra
Physics), generating 40-fs pulses at a central wavelength of
800 nm, first passes through a system of active beam position
stabilization (Avesta) and an attenuator, and then through a
two-pass single-lattice compressor with a variable slit, which
allows selecting a specific spectral region for optimizing the
output pulse duration. The maximum nonlinear localization
in our lattices is observed at a spectral width of� 5 nm and a
pulse duration of t � 300 fs (FWHM). Such pulses were
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focused into a waveguide at the interface of the two arrays, as
schematically shown by the blue arrow in the upper row of
Figs 2±4. The temporal dynamics of the pulses over a sample
length of 10 cm can be disregarded, while the spatial dynamics
is accurately described by Eqn (1). Since the two arrays are
equivalent in the TT structure, the outmost waveguide in the
left array was excited. The output intensity distributions were
recorded using Kiralux, a 12.3-megapixel scientific CMOS
camera (Thorlabs). Taking into account losses on matching
with the waveguide mode, the input peak power in the
waveguide, which can be defined as the ratio of the pulse
energy E to its duration t, is estimated to be 2.5 kW per
nanojoule.

The observation of the nonlinearity-controlled switching
between the two topological arrays for h � 30 mm is pre-
sented in Fig. 2. The waveguide into which the laser light in
the left array was focused is indicated by the blue arrow. For
the chosen distance h, the sample length approximately
corresponds to two beat lengths 2L, i.e., in the linear regime,
the light is first switched to the right array and then returned
to the left one. To take into account the effect of nonlinearity,
Fig. 2a shows the theoretically calculated fraction of the
power concentrated at the output of a 10-cm sample in the
left and right arrays

S out
l � Uÿ1

� 0

ÿ1
dx

�1
ÿ1

dy jcj2 ;
�2�

S out
r � Uÿ1

�1
0

dx

�1
ÿ1

dy jcj2

as a function of the input power

U �
�1
ÿ1

dx

�1
ÿ1

dy jcj2 :

The nonlinearity slows down the switching, leading first to a
concentration of light in the right array, and then completely
suppresses it, so that at high powers the light always remains
in the left array. Indeed, the nonlinearity changes the
difference in the propagation constants of the in-phase and
out-of-phase modes (since it affects them differently due to
their different internal structure), which is manifested in a
change in the interference pattern at the output of the sample
with increasing power. The switching curves are fairly sharp;
they are characterized by a rapid change in S out

l; r around
U � 0:3. The right column of Fig. 2 shows the 1D experi-
mental output intensity sections at y � 0 and the correspond-
ing full 2D distributions for various pulse energies E. In the
linear regime,E � 15 nJ, the light switches from the left array
to the right one, and then returns to the left array. Increasing
the pulse energy results in a gradual concentration of light in
the right array, which ismaximum atE � 300 nJ. It should be
noted that, due to the pulsed nature of excitation for a given
distance, some fraction of the radiation still remains at the
left-array output. The reason is that, although the high-
intensity parts of the pulse are switched to the right array,
the low-intensity tails of the pulses are still switched linearly,
contributing to the output power in the left array. With a
further increase in the pulse energy to E � 440 nJ, the light is
concentrated in the left array and remains there in a fairly
wide energy range. Since in our system the switching occurs
for edge states from the finite band gap, at a sufficiently high
power the propagation constants of such states can shift to
the allowed band (Fig. 1c), which leads to coupling with bulk
modes and emission into the depth of the topological
structure, clearly visible in Fig. 2f for E � 850 nJ. For
comparison with the experimental data, the left column of
Fig. 2 displays the theoretical intensity distributions obtained
from Eqn (1) for single-channel excitation. It can be
concluded that the main features of switching are reproduced
well in theory. It should be emphasized that the observed
switching is a stable phenomenon: fluctuations in the output
power in the two arrays remain small at all input powers, and
they are associated only with small fluctuations in the power
in the input laser beam.

We also investigated the switching in a similar TT
configuration, but with the distance between the two
topological arrays increased to h � 36 mm (Fig. 3). In this
case, the sample length corresponds to approximately one
beat length L between the symmetric and antisymmetric edge
modes 1 and 2. As a result, the light focused into the left array
(see the blue arrow in the upper row) is completely switched to
the right array at the output. The switching curves presented
as dependences of the power fractions in the left and right
arrays Sout

l; r on the input power U now predict a smoother
increase in the power in the left array with increasing U. The
experimental output intensity distributions are shown in the
right column of Fig. 3, and the theoretical results are
presented in the left column. With increasing pulse energy E,
a monotonic increase in the energy fraction in the left array,
equalization of energies in the two arrays at E � 175 nJ, and
almost complete concentration of light in the left array at
E � 370 nJ are observed. Finally, coupling with bulk states
and radiation into the depth are observed at approximately
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Figure 2. (a) Schematic representation of interface between two topologi-

cal arrays with excited waveguide in left array indicated and calculated

distribution of output power between left, S out
l , and right, S out

r , arrays as a

function of input powerU. (b±f) Comparison of calculated (blue lines) and

experimentally measured (red lines) output intensity cross sections at

y � 0 and 2D intensity distributions (insets) for increasing input pulse

energies E. Vertical dashed lines in insets separate the two arrays. Here,

sl � sr � 15 mm, dl � dr � 33 mm, h � 30 mm, and p � 4:88.
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the same energy levels as for a smaller distance h.We observed
stable switching in TT structures down to minimal distances
h � 21 mm, at which light switches between arrays up to
3 times along the sample length, and in some energy ranges
even small controlled changes in E cause rapid variations in
the fractions of energy S out

l; r concentrated in two arrays.
Moreover, it was demonstrated that, due to the topological
protection of edge modes, the switching dynamics change
only slightly with controlled introduction of disorder into this
structure.

TN structures in which a topological array borders a
nontopological one were also studied. The linear spectrum of
modes of such a structure, shown in Fig. 1d, indicates that the
dynamics of radiation propagation in it differ significantly for
excitations in topological and nontopological arrays. Figure 4
shows the experimental and theoretical results obtained by
focusing light into the rightmost waveguide of the topological
array for a sufficiently large distance h � 31 mm between the
two arrays. This type of excitation features a large overlap
with only the localized edgemode 3 (Fig. 1h) existing in such a
structure, while other modes remain virtually unexcited. As a
result, with an increase in the input power, a stationary
topological edge soliton branching from mode 3 is actually
excited, while switching between the arrays does not occur
due to the absence of interference with other modes (see the
dependences Sout

l; r in Fig. 4a). It is only when the pulse energy
reaches sufficiently high values that a coupling with the bulk
modes is observed, in both the topological and nontopologi-
cal arrays, which leads to some decrease in Sout

l and an
increase in the energy fraction in the right array. In turn,
focusing light into the right, nontopological array does not
lead to switching between the two parts of the structure either.
Due to the absence of localized states in this part of the
structure, only strong diffraction in the nontopological array
is observed in the linear regime at E � 15 nJ, while, at
sufficiently high energies, E � 400 nJ, the beam periodically

oscillates between two close waveguides from the nontopolo-
gical part.

These results confirm the fundamental possibility of
switching between topological edge states, which can be
implemented in more complex geometries, including 2D
structures supporting unidirectional edge modes or corner
topological states. The nonlinearity of the optical medium
significantly affects the switching dynamics, slowing them
down and qualitatively changing the output intensity dis-
tributions, which can be especially important for designing
topological switches and routers controlled by the radiation
intensity.

3. Topological solitons
in arrays of waveguide trimers

Su±Schrieffer±Heeger lattices with two waveguides in a unit
cell, the nonlinear effects in which were considered in
Section 2, represent one of the simplest implementations of
a topological insulator. Increasing the number of waveguides
in a unit cell in suchlike structures can significantly enrich the
linear spectrum of the system, in which several topological
band gaps with edge states of different symmetries can
simultaneously appear [96±100]. This section is devoted to
the observation of solitons bifurcating from such topological
states in an array of waveguide trimers [101].

The propagation of radiation in an array consisting of
waveguide trimers is described by the nonlinear Schr�odin-
ger equation (1), in which the function R�x; y� �
p
P

m�1;3NQ�xÿ xm; y� now specifies the profile of an array
composed of Gaussian waveguides Q�x; y� � exp �ÿ�x 2�
y 2�=a 2� of width a � 0:5 (corresponding to 5 mm) and depth
p � 4:3 (corresponding to dn � 4:7� 10ÿ4). We consider
arrays consisting of N � 5 trimers. Micrographs of such
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Figure 3. Same as Fig. 2, but for a larger distance h � 36 mm between the

two topological arrays.
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Figure 4. (a) Schematic representation of interface of topological and

nontopological arrays indicating excited right waveguide in the topologi-

cal array and fractions of output power concentrated in left, S out
l , and

right, S out
r , arrays as a function of input power U. (b±e) Comparison of

theoretical (blue lines) and experimental (red lines) cross sections of output

intensity at y � 0 and 2D intensity distributions (insets) for various pulse

energies E. Here, sl � dr � 15 mm, sr � dl � 33 mm, h � 31 mm, and

p � 4:25.
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arrays, fabricated by the femtosecond laser writing method in
fused silica, are displayed in Fig. 5a. The distance between the
waveguides inside each trimer was the same, d � 33 mm,while
the distance s between the trimers varied in a range from 18 to
44 mm, which enables implementation of either a trivial or a
topological phase in this structure. The transformation of the
linear spectrum of the considered array (its modes have the
form c�x; y; z� � w�x; y� exp �ibz�, where b is the propagation
constant, and w is a real function describing the mode profile)
with varying distance s between the trimers is illustrated in
Fig. 5b for N � 5. At s5 d (the structures in the middle and
bottom rows in Fig. 5a), the system is topologically trivial,
since the coupling between the waveguides in neighboring
trimers is weaker than that inside the trimers, and all modes
are delocalized (see examples in Fig. 5e, f). In contrast, at
s < d (Fig. 5a, top row), the coupling between the trimers
becomes stronger than that inside the trimers, which is
accompanied by the appearance in the spectrum of the
obtained array of two pairs of edge states, marked with red
dots in Fig. 5b, in each of the two topological band gaps.
Thus, the spectrum of this system is richer than that of the
conventional Su±Schrieffer±Heeger structure. For a suffi-
ciently small distance s, the pair of modes (symmetric and
antisymmetric) in each band gap is virtually degenerate (cf.
modes 1 and 2 or modes 3 and 4 in Fig. 5d). The topological
edge states in the upper band are characterized by the
presence of in-phase peaks in the two outmost waveguides
(modes 1 and 2), while in the states from the lower band gap
these peaks are out of phase (modes 3 and 4). The
localization of topological states increases with decreasing
distance s.

The appearance of edge states is consistent with the
topological invariant for this structure, directly related to
the Zak phase [32, 33],

W � i

2p

�
BZ



wk�x; y�jqkjwk�x; y�

�
dk �3�

(it is calculated for an x-periodic array, where wk�x; y� is
the x-periodic Bloch mode corresponding to the Bloch
momentum k, and integration is carried out over the first

Brillouin zone), acquiring nonzero values 1, 2, and 1 for the
upper, middle, and lower bands in the topological regime for
s < d and remaining equal to 0 for all bands in the trivial
regime for s5 d. The same invariant is used to describe the
topological properties of conventional Su±Schrieffer±Heeger
lattices. The spectrum of a larger array with N � 9 trimers
(Fig. 5c) is virtually the same: with an increase in the number
of trimers, only the density of states in the allowed bands
increases. The stability of such topological states was tested
by adding a small disorder to the depths and positions of the
waveguides in the array, which did not lead to noticeable
shifts in the propagation constants of the edge states.

Edge topological solitons bifurcate in the presence of
nonlinearity from linear edge states for s < d. They can also
be found in the form c�x; y; z� � w�x; y� exp �ibz� from
nonlinear equation (1), where, unlike the linear problem, the
propagation constant is now an independent variable
determining the soliton power U � � jcj2 dx dy. The edge-
soliton profile is determined by the symmetry of the linear
edge state from which such a soliton bifurcates. Figure 6a
shows a family of out-of-phase solitons arising from out-of-
phase edge states in the lower topological band gap (see the
first row of Fig. 6c, where typical solutions of this type are
presented). Unlike ordinary surface solitons, edge solitons are
formed even at low values of power U, i.e., they are objects
with no threshold. When their propagation constant enters
the allowed band, shown in gray in Fig. 6a, as a result of
coupling with bulk modes, the soliton acquires a long tail in
the depth of the array (state 2 in Fig. 6c). Interaction with
bulk modes leads to the appearance of several branches of
solutions, Fig. 6a only displaying the simplest of them. The
branches of solutions shown in black in this figure correspond
to stable solitons, and the magenta branches, to unstable
ones. The stability of solitonswas analyzed by adding random
small noise r (up to 5% in amplitude) to the initial field
distribution and propagating such a state cjz�0 �
w�x; y��1� r�x; y�� to distances z � 104, two orders of
magnitude greater than the sample length, which allows
detecting even the weakest instabilities. It is worth noting
that, even when passing to the upper band gap, the out-of-
phase soliton with the lowest power U (state 3 in Fig. 6a)
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Figure 5. (a) Micrographs of waveguide trimer arrays written by laser pulses in topological and nontopological regimes. Transformation of spectrum of
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remains stable and well localized until its propagation
constant reaches the boundary of the upper allowed band.

The second type of topological edge soliton with two in-
phase peaks in the two outmost waveguides bifurcates from
the linear edge state directly in the upper topological band gap
(Fig. 6b and state 4 in Fig. 6c). The in-phase family divides
into two branches with increasing b. One of them, with a
lower power U, is stable and corresponds to a strongly
asymmetric state, in which almost all the power is concen-
trated in one edge waveguide (state 5 in Fig. 6c). The other
branch is characterized by virtually equal in-phase peaks in
the two edge waveguides (state 6 in Fig. 6c) and is highly
unstable. In the nontopological regime, at s5 d, nonlinear
states localized at the edge of the array can exist only in a
semi-infinite band gap and only above a significant threshold
in power U.

One of the most characteristic features of this system is
that out-of-phase and in-phase edge solitons can coexist in
different topological band gaps or in the same one. They
feature qualitatively different phase structures and intensity
distributions, which allows their selective excitation by
correctly selected initial distributions. For experiments with
out-of-phase solitons, we used two out-of-phase beams
focused into the outermost waveguides of the structure and
providing the greatest overlap with the wave field of the target
state (Fig. 6c, states 1 and 3). To generate two independent
beams, we used radiation from a Spitfire HP Ti:sapphire laser
system (Spectra Physics) passing through a Michelson
interferometer with the possibility of smooth phase tuning
between the beams. To control the excitation efficiency of
solitons of this type, we measured the fraction S2 � U2=U of
the total power remaining in the two outermost excited
waveguides at the output of the sample (this value can be
obtained by digitizing the output intensity distributions
recorded with a scientific CMOS camera). Typical output
intensity distributions for a nontopological array with
s � 44 mm (Fig. 7a) reflect fairly slow diffraction at low
energies, with most of it being distributed among all three
channels of the outermost trimer even at the largest values of
E, implying that no soliton is formed. The fraction of energy
S2 concentrated in the two outermost channels does not
exceed 0.5±0.6. In a homogeneous array with s � 33 mm
(Fig. 7b), strong diffraction into the array depth in the linear
mode and gradual compression to two outermost waveguides
with increasing pulse energy are observed, i.e., a soliton is
formed if energy exceeds a certain threshold. It should be
emphasized that, due to the pulsed nature of excitation, the
tails of the spatial distributions, where the contribution from
the pulse wings in the linear mode can be the strongest, are

somewhat more pronounced in the experiment than in the
theoretical modeling. In a homogeneous array, S2 increases
monotonically from zero to � 0:7, indicating the existence of
an energy threshold for soliton formation. The picture alters
qualitatively in the topological mode at s � 18 mm (Fig. 7c),
when the soliton is excited even at low energies, and most of
the energy remains in the two outermost waveguides. The
high excitation efficiency is confirmed by large values of
S2 � 0:8 for almost all energies (however, due to the
narrowness of the allowed band between two topological
band gaps, radiation into the array depth upon crossing the
gap was not actually observed).

To excite in-phase edge solitons, we used the fact that,
even at moderate power levels, such solitons (from the stable
branch) become strongly asymmetric, and most of their
power is concentrated in one outermost waveguide (Fig. 6c,
state 5). In this case, single-channel excitation was used. To
illustrate its efficiency for s � 18 mm, Fig. 8 displays the
dependences of the fractions of the output power concen-
trated in one S1 and two S2 outermost waveguides. At low
pulse energies, E � 15 nJ, almost all the power is concen-
trated in the outermost waveguide, while at E � 235 nJ, a
significant part of it is switched to the second waveguide. This
observation is consistent with the scenario of excitation of a
state dynamically oscillating between two channels, since this
pulse energy is still insufficient to form a stable asymmetric
edge soliton. Its formation is observed for single-channel
excitation at E > 300 nJ, and the profile of such a soliton
remains virtually unaltered over a wide energy range. Note
also that, with suchlike excitation and for such distances,
virtually all the light remains at the output in the two outer
waveguides of the array.

Thus, the diversity of topological solitons increases
significantly when using arrays whose unit cells contain
three or more waveguides. This feature may be especially
important for the potential observation of yet undetected
vortex topological solitons and for studying nonlinear
interactions of topological states with various types of
symmetry.

4. One- and two-dimensional
topological p-solitons
in dynamic Su±Schrieffer±Heeger lattices

In the previous sections, it was shown that, in static Su±
Schrieffer±Heeger systems and similar structures, topological
phases arise at a certain direction of shift of waveguides in
unit cells. In addition to such `static' systems, there is also a
whole class of `dynamic' topological systems or Floquet
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systems, where such phases appear only due to periodic
modulations of the structure along the evolutionary coordi-
nate, for example, time in atomic systems or the propagation
coordinate in waveguide structures. In such dynamical
systems, the evolution is characterized by quasi-propagation
constants (or quasi-energies) which replace the usual propa-
gation constants in static arrays and are now also periodic
quantities with a period of 2p=Z due to the longitudinal Z
periodicity of the system. Edge states in the spectrum of such
systems can appear at the points where the allowed band
overlaps with its own Floquet replicas arising due to the
periodicity of the quasi-propagation constant. Therefore,
they are usually called p-modes, since in discrete models
their quasi-propagation constants turn out to be b � �p=Z,
while edge states in static, discrete lattices having the Su±
Schrieffer±Heeger form appear at b � 0. In this section,
we describe p-solitons bifurcating from such p-modes in
dynamic Su±Schrieffer±Heeger lattices in the presence of
nonlinearity in the medium [136].

To describe the features of the formation of such states,
we consider a shallow array of waveguides in which the
centers of the waveguides periodically oscillate along certain
trajectories in the direction of radiation propagation. The
dynamics of radiation propagation in this structure are
described by the following equation for the amplitude of the
light field c:

i
qc
qz
� ÿ 1

2

�
q 2

qx 2
� q 2

qy 2

�
cÿR�x; y; z�cÿ jcj2c ; �4�

where, in contrast to Eqn (1), the optical potential R also
depends on the propagation coordinate z. In the 1D case, we
consider a Su±Schrieffer±Heeger array with N � 7 dimers,
the refractive index of which is described by the functionR �
p
P

m�1;N�exp �ÿx 2
1m=a

2
x ÿ y 2=a 2

y � � exp �ÿx 2
2m=a

2
xÿy 2=a 2

y ��,
where x1m � xm � d=2� r cos �oz� and x2m � xm ÿ d=2ÿ
r cos �oz� are the coordinates of the waveguide centers in
each unit cell containing two waveguides; o � 2p=Z is the
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oscillation frequency of the waveguide centers; Z is the
longitudinal period; xm�xÿ2md; r is the waveguide ampli-
tude, which usually varies in experiments from 1 to 11 mm;
d � 3 corresponds to a distance between the waveguides of
30 mm at r � 0 (the width of the unit cell is 2d ); ax � 0:25
(2.5 mm), and ay � 0:75 (7.5 mm) are the widths of the
waveguides, elliptical due to the technology of their writing;
and p � 4:5 is the normalized modulation depth of the
refractive index in the array. Such an array is schematically
displayed in Fig. 9a. The distance between the waveguides in
each unit cell of such a structure dÿ 2r cos �oz� varies
periodically with the distance z, transforming this system
from the instantaneous topological phase (in which the
coupling between the waveguides in adjacent dimers is
stronger than the coupling in dimers) to the instantaneous
nontopological phase (where the coupling between the dimers
is weaker than the coupling in dimers), with the average
distance between the waveguides being d. Micrographs of
such 1D arrays, fabricated by the femtosecond laser writing
method in fused silica, are shown in Fig. 9b at various
distances z. The array period Z � 33 mm was chosen in
such a way that exactly three periods of this Floquet
structure fit into the sample length.

Nontrivial topological properties in this system arise from
longitudinal variations in the structure (waveguide oscilla-
tions). Its linear eigenmodes are the Floquet modes
c � w�x; y; z� exp �ibz�, where b is the propagation quasi-
constant (in the first Brillouin zone b2�ÿo=2;�o=2)), and
w�x; y; z� � w�x; y; z� Z� is a periodic complex function
satisfying the equation

bw � 1

2

�
q 2

qx 2
� q 2

qy 2

�
w�Rw� i

qw
qz
� jwj2 w �5�

(for the sake of illustration, we retain in it the nonlinear term,
which is omittedwhen calculating the linear spectrum, since the
same equation is used to calculate the profiles of p-solitons).
The transformation of the linear spectrum with increasing

amplitude of the waveguide oscillations r is shown in Fig. 9c.
In the Floquet system, the propagation quasi-constant is
defined by mod�o�, and in Fig. 9c we show the spectrum
within three longitudinal Brillouin zones. The gray lines
correspond to delocalized bulk modes, and the red ones, to
edge topological modes. They arise from the overlap points of
Floquet replicas of the same band, since the longitudinal
modulation of the refractive index leads to hybridization of
states at the band edges, removing their degeneracy and
leading to the opening of the band gap. Since the array
considered here is symmetric, localized states appear simulta-
neously at both of its boundaries. The quasi-propagation
constants of such p-modes fall into the band gap, which
guarantees the absence of coupling with the bulk modes.
Their localization is enhanced with increasing band gapwidth
(cf. Figs 9d and 9e), which, however, is a nonmonotonic
function of the oscillation amplitude r. The p-modes oscillate
in the period Z, but exactly reproduce their profile after each
period of the structure. It is noteworthy that the main
intensity maximum in such states is not always concentrated
in the outermost waveguide: for example, in Fig. 9e, it is seen
that, at z � Z=2, when the lattice is in the nontopological
phase, the intensity maximum switches to the second
waveguide. Less localized p-modes at smaller r values
undergo even more significant profile transformations over
one Z-period (Fig. 9d). The topological properties of this
system are characterized by the so-called p-invariant wp for
the band gap. Details of its calculation are reported in [124,
128]. In the topological phase at r 6� 0, this invariant takes an
integer valuewp � 1, indicating the appearance of edge states.

When nonlinearity is taken into account, edge p-solitons
can be formed in the oscillating array. Their profiles can be
obtained using an iterative procedure enabling calculation of
the field distribution w�x; y; z� over one Z-period, the quasi-
propagation constant b, and the averaged soliton amplitude
A � Zÿ1

� z�Z
z max jcj dz, which are determined by the

soliton power U � � � jcj2 dx dy (Fig. 10). p-solitons bifur-
cate from the linear p-mode; their amplitude increases with
increasing power (Fig. 10b), and the quasi-propagation
constant gradually shifts toward the band gap boundary
(Fig. 10a). This is accompanied by a change in the degree of
spatial localization of the soliton, similar to what occurs for
edge solitons in static waveguide systems. Periodic oscilla-
tions of the p-soliton profile are shown in Fig. 10c. Such states
are quite stable, which is confirmed by analyzing their
propagation with noise, and they do not really lose power
due to radiation up to the waveguide oscillation amplitudes
r � 9 mm. Due to this, they can be observed even after
hundreds of Z-periods of the structure. Stability analysis
showed that, at r > 5 mm, 1D p-solitons are stable as long as
their quasi-propagation constant remains in the band gap,
but they lose stability in the band as a result of coupling with
bulk modes.

For the experimental observation of 1D p-solitons in a
fused silica sample, a set of arrays with a waveguide
oscillation amplitude gradually increasing from r � 1 to
11 mm was made (see the micrographs in Fig. 9b). In
addition, to written the dynamics at the internal points of
the period, in addition to the structures containing three full
periods, arrays of fractional length, 2:25Z, 2:50Z, and 2:75Z,
were written. The leftmost waveguide of the array was excited
in the experiments. Figure 11 shows the cross sections at y � 0
and the complete 2D intensity distributions at two different
distances z � 2:50Z and z � 3:00Z at different pulse energies
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generated by a Ti:sapphire laser system. The localization at
the boundary of the oscillating array is enhanced rapidly with
increasing r, and, already at r5 7 mm, the edge states are
efficiently excited even when light is fed into one waveguide.
At r � 9 mm, the light at certain distances z is localized
virtually in one channel (Fig. 11), and it is clear that, for
example, at z � 2:50Z, the light is switched to the waveguide
adjacent to the outermost waveguide, and at z � 2:25Z, the
power is divided virtually equally between the two outermost
waveguides. At r � 9 mm, well-localized periodically oscillat-
ing states are observed for pulse energies up to E � 900 nJ
(rows 1±3 in Fig. 11), and only at E � 1000 nJ radiation into
the array depth become noticeable due to the coupling with
bulk modes (row 4). For smaller values of the oscillation
amplitude r, the energy range in which stably oscillating
nonlinear states are formed is reduced, since the band gap

width decreases with decreasing r. It should be noted that, at
the same pulse energies, excitation of the waveguide in the
bulk of the array does not lead to the formation of localized
states.

To observe 2D p-solitons, we used a version of the Su±
Schrieffer±Heeger lattice, each unit cell (quadrimer) of which
contains four waveguides. Their centers periodically oscillate
along the unit cell diagonals. The refractive index in such a 2D
Floquet structure is described by the function
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where x1m; 2m � xm � d=2� r cos �oz�, y1n; 2n � yn � d=2�
r cos �oz� are coordinates of the centers of the four wave-
guides in the unit cell, xm � xÿ 2md and yn � yÿ 2nd, m; n
are integers, and the parameter r, as before, describes the
oscillation amplitude. The oscillation period in the 2D
structure was Z � 49:5 mm, i.e., two full periods fit into the
sample length. To achieve a virtually isotropic coupling
between the waveguides, their long axes were oriented along
one of the diagonals of the array, and the distance between the
waveguides was increased to d � 32 mm (see the schematic
representation of the array in Fig. 12a and themicrographs of
the recorded structures with 5� 5 elementary cells in
Fig. 12b). In fact, such an array is a higher-order Floquet
insulator, periodically switching between `instantaneous'
topological and nontopological phases.

The linear spectrum of the 2D array, presented in Fig. 12c,
shows that corner p-modes (red lines) can be formed;
however, compared to the 1D array, these modes appear in
a fairly narrow range of waveguide oscillation amplitudes.
This is a consequence of the significantly more complex
structure of the spectrum of static 2D Su±Schrieffer±Heeger
structures, which are characterized by the presence of four
allowed bands in the topological phase (in contrast to the two
allowed bands observed in the spectrum of 1D topological
Su±Schrieffer±Heeger lattices). In the Z-periodic Floquet
array, such bands can `fold' and overlap due to the long-
itudinal modulation of the refractive index (due to the finite
width of the longitudinal Brillouin zone, equal to 2p=Z),
which yields a very complex Floquet spectrum. In the 2D
case, quasi-propagation constants of corner modes can
overlap with the allowed band, as in static topological
insulators of higher order. An example of a linear corner
mode periodically reproducing its profile in a dynamically
modulated 2D array is shown in Fig. 12d. In the nonlinear
regime, corner p-solitons bifurcate from such modes; for the
selected oscillation amplitude r � 7 mm, they exist virtually in
the entire band gap, since the quasi-propagation constant of
the linear mode for these parameters is located at the lower
edge of the band gap and increases with increasing soliton

power U. The properties of such solitons are qualitatively
similar to those of the 1D solitons displayed in Fig. 10.
Despite the significant oscillations that 2D solitons undergo
during one longitudinal period Z, they nevertheless turn out
to be dynamically stable in a cubic nonlinear medium, due to
which they can be observed experimentally.

To do so, arrays with various oscillation amplitudes of
waveguides ranging from r � 1 to 9 mm were made using the
femtosecond laser writing method (see micrographs of typical
arrays in Fig. 12b). The solitons were excited using a beam
focused into a corner waveguide of the array (for example, in
the right corner).

Figure 13 shows a comparison of the experimentally
recorded and theoretically calculated output intensity dis-
tributions for single-channel excitation in the right corner for
various amplitudes of waveguide oscillation in the struc-
ture. At small oscillation amplitudes r � 3 mm, when linear
p-modes are absent in the Floquet spectrum, strong diffrac-
tion into the array depth is observed at all pulse energies, i.e.,
in this case, the nonlinearity is insufficient for forming a
corner soliton at the available energy levels (Fig. 13a). A
tendency towards gradual contraction of the output intensity
distribution to the corner channel with increasing E is
noticeable. Efficient excitation of corner p-modes occurs at
oscillation amplitudes r5 5 mm, in which case, with increas-
ing pulse energy E, the formation of p-solitons is observed,
the range of their existence in energy E increasing with
increasing waveguide oscillation amplitude r. With a further
increase in the pulse energy outside this range, the corner
states are delocalized due to the penetration of their quasi-
propagation constant into the allowed band, leading to a
coupling with bulk modes. For example, at r � 5 mm, well-
localized corner p-solitons are formed at pulse energies
E < 300 nJ, while already at E � 400 nJ (Fig. 13b) a
migration of radiation into the array depth is observed. At
r � 7 mm, soliton formation is observed even at pulse energies
E � 600 nJ with a tendency to an insignificant increase in
secondary intensity maxima in the soliton (Fig. 13c). Excita-
tion in other corners of the lattice (for example, in the upper
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Figure 12. (a) Schematic representation of a 2D array of oscillating waveguides (for illustrative purposes, a structure with 3� 3 cells is shown).

(b)Micrographs of an array with 5� 5 cells, fabricated by femtosecond laser-writing method, at various distances z. (c) Linear spectrum of a 2D Floquet

array depending on amplitude of waveguide oscillations r (three longitudinal Brillouin zones are shown). (d) Intensity distributions in a linear 2D corner

p-mode at various distances z at r � 6 mm. Longitudinal period of the structure Z � 49:5 mm.
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one) yields similar results, confirming the formation of p-
solitons, while excitation in the array depth is diffracted in the
specified range of pulse energies.

The above results clearly indicate that Floquet states exist
in dynamicallymodulatedwaveguide systems and exhibit rich
dynamics even in nonlinear propagation regimes. The
nontrivial interaction of nonlinearity and topology in these
structures can be used to realize soliton states with new types
of symmetry that do not exist in static arrays and to observe
nonlinear effects in anomalous topological Floquet systems.

5. Conclusions

The results presented demonstrate that even the simplest
topological systems based on Su±Schrieffer±Heeger lattices
allow observing unique interactions between nonlinear and
topological effects. Stable edge solitons arising in such
structures are one of the manifestations of the above-
mentioned interactions. In topological systems, such phe-
nomena as the generation of new harmonics, switching
between localized states, and controlled mode transforma-

tions often acquire new, completely unexpected features.
Their efficiency can be significantly enhanced due to the
nontrivial topology of the system, leading to strong localiza-
tion of topological states. The study of the above phenomena
in topological structures of new types and with various types
of nonlinearity is one of the tasks of modern, rapidly
developing, nonlinear topological photonics. At present,
nonlinear dissipative topological systems are of particular
interest in this area. For example, topological lasers of
various types (with unidirectional edge states or higher
order) can be constructed based on such systems; their
generation is significantly more efficient than that of conven-
tional laser systems and, moreover, insensitive to the presence
of disorder in the structure. Nonlinear effects in a completely
new class of topological insulators on aperiodic lattices with
new types of symmetry incompatible with crystal symmetries
remain virtually unexplored. Studies in this area will poten-
tially enable development of new types of optically controlled
topological devices for protected data and information
transmission.
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