
Abstract. The applications of RLStratonovich's formula [1] for
the exact transition from dynamic measurements to probabil-
istic or thermodynamic measurements are considered. The con-
nection of this formula with known expressions for operations
on probability density functions of random variables is given.
The application of the formula to the problem of determining
the observed physical parametersÐ fields, potentials, mo-
mentsÐproduced by (stochastically moving) charged parti-
cles of different multipolar types is demonstrated.

Keywords: delta-function, probability density, microfield distribu-
tion

1. Introduction

R L Stratonovich's original formula describes the transition
from measurements of the stochastic dynamics of many
particles (with the total number N) in the phase space of
coordinates and momenta fZg � �r1; . . . ; rN; p1; . . . ; pN� to
distributions of some thermodynamic (observable) variables
A [1]. It is written as a definition of the transformation from
the probability density of the distribution rfZg to the

probability density of the distributionW�A�,

W�A� �
�
d
ÿ
Aÿ BfZg�rfZg dZ ; �1�

where BfZg is some function defining a physical variable.1

All BfZg and rfZg that we are interested in should be known
to make formula (1) useful. Formula (1) is the generalization
of the identity

WA�A� �
�
d�zÿ A�WA�z� dz ; �1a�

or, in the generally accepted formalism with angle brackets
used to denote the direct averaging for the random variableA,
which depends on the coordinate x,

WA�A; x� �


d
�
A�x� ÿ A

��
A
: �1b�

Formula (1b) allows generalizations to K-point distribu-
tion functions

WA�A1;A2; . . . ;AK; x1; x2; . . . ; xK� �
�YK

i�1
d
�
AK�xK� ÿ A

��
A

and, respectively, the distribution functions of different
random variables

WA�A1;A2; . . . ;AK� �
�YK

i�1
d�AK ÿ A�

�
A

:

This formalism extends that of R L Stratonovich's and
has been used, e.g., in Ref. [2] to establish connections
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1 This variable can be, for example, the magnetic dipole moment MH,

MH � �1=2c�
PN

i�1�ei=mi� �ripi� for a system of stochastically moving

charged particles with coordinates �r1; . . . ; rN�, momenta �p1; . . . ; pN�,
and charges �e1; . . . ; eN�.
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between the Lagrangian and Eulerian statistical descriptions
of hydrodynamic random fields, allowing one to find
analytical expressions for probability densities, velocity
spectra, etc. in the Eulerian representation.

It is obvious that (1) connects the probability densities of
random variables. To see this, it is sufficient to integrate (1)
over A in order to obtain the coinciding normalizations for
the probability densities rfZg and W�A�. Furthermore,
formula (1) defines the transition from the instantaneous
probability density rfZg in the phase space to the instanta-
neous probability density for (thermodynamic quantities)
W�A�. The study of the dynamics of rfZg and W�A� [1] is
beyond the scope of this methodological note.

The first part of this note (Sections 2 and 3) will
demonstrate how to work with (1) in practice. It will be
shown how the known formulas for the probability density of
the distributions of sum, difference, product, and quotient of
independent random variables can be reduced to R L Strato-
novich's formula. For a practically important case of sums
and products of functions of an arbitrary number of random
variables, the performance of formula (1) will be illustrated as
applied to finding probability densities of random variables
that are the above-mentioned sums and products of these
functions. The results obtained in this way will be exact, in
contrast to the asymptotic approximation of the AAMarkov
method [3, 4].

In the second part (Sections 4 and 5), devoted to
applications of (1) for finding observable physical quanti-
tiesÐ fields, potentials, moments created by stochastically
moving charged particlesÐwe will deal with instantaneous
probability density functions and moments of distributions,
i.e., instantaneous observations will be described.

We also note that (1) can be considered a theoremÐone
must prove that W�A� is a sought-after probability density
function for the random variable BfZg. The proof is
elementaryÐwe multiply both sides of (1) by Ak, where k is
an arbitrary natural number, and integrate both sides over
dA. By definition, the left side contains the kth moment of A.
On the right side, by virtue of Dirac's d-function, we obtain
the kth moment of BfZg. Since k is arbitrary, it follows that
all moments of the probability density of the distribution of
BfZg coincide with the corresponding moments of W�A�,
which is one of the definitions of the equivalence of
probability densities [5], i.e., it is proved that (1) defines the
probability density of the distribution BfZg.

2. Description of arithmetic operations
on random variables which are reducible
to R L Stratonovich's formula

In addition to the change from phase variables to thermo-
dynamic variables, it turns out that formula (1) allows
convenient calculation of probability densities for random
variables (there is a strong motivation to consider them to be
thermodynamic) which are the sum, difference, product, and
quotient of an (arbitrary) number of independent random
variables. This need not be restricted to the random variables
in the phase space (i.e., random coordinates and momenta of
some particles) and can be of an arbitrary nature. It is
sufficient that they be independent.

Furthermore, one can conveniently, in many cases
analytically, calculate the probability density of random
quantities that are functions of other random variables. This
is especially productive in physically important situations

where the observable is a sum of similar functions of other
random variables (see the example in the footnote in the
Introduction).

Let us consider the well-known formula describing the
probability density F�x� of a random variable z, which is the
sum of two independent random variables [5, 6] x� w with
probability density functions f �x� and g�x�, respectively,

h�x� �
�
f �xÿ y� g�y� dy ; �2�

with the integration over the entire definition domain of the
functions f �x� and g�x�. In the following, we will assume for
simplicity that all our distribution functions are defined for
variables 2 varying from ÿ1 to �1, leaving more compli-
cated cases to the reader. Furthermore, we will avoid
introducing new notations for values, variables, and func-
tions that differ from those already in use, assuming that for
each new mathematical operation these quantities can be
quite different and have different meanings.

The elementary transformation

f �xÿ y� �
�1
ÿ1

d
ÿ
zÿ �xÿ y�� f �z� dz ;

where d�x� is Dirac's delta, converts (2) into the expression
(we rely on the delta function being an even function)

h�x� �
��1
ÿ1

d�xÿ zÿ y� f �z� g�y� dy dz ; �3�

i.e., into form (1). Here, the role of the `thermodynamic'
variable is played by x, and y and z are phase variables,
although it is obvious that they can be arbitrary random
variables.

For the sum of three random variables z � x� w� cwith
probability densities f �x�, g�x�, and l�x�, respectively, the
probability density h�x� of the random variable z will be

h�z� �
�1
ÿ1

F�zÿ t�l�t� dt

�
�1
ÿ1

l�t� dt
�1
ÿ1

f �zÿ tÿ y� g�y� dy

�
��1
ÿ1

l�t�g�y�
�1
ÿ1

d�zÿ tÿ yÿ x� f �x� dx dy dt

�
���1

ÿ1
f �x�g�y�l�t�d�zÿ xÿ yÿ t� dx dy dt : �4�

Here, F�x� is the probability density of the distribution of the
sum of two random variables x� w. Thus, by induction, we
arrive at the expression for the probability density f �x� for
the random variable z, which is an arbitrary sum of
independent random variables x1 � x2 � . . .� xN with prob-
ability densities f1�x1�; f2�x2�; . . . ; fN�xN�:

f �x� �
�1
ÿ1

. . .

�1
ÿ1

d
�
xÿ

XN
i�1

xi

�

�
�YN
i�1

fi�xi�
�
dx1 dx2 . . . dxN : �5�

2 For the phase space variables, this usually holds for momenta, while the

spatial coordinates are usually restricted to a finite volume. This does not

affect the derivations further.
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The probability density function h�x� for the distribution
of the difference of two random variables x and w with
probability densities f �x� and g�x� is essentially the same,
the only difference being the sign,

h�x� �
�
f �x� y�g�y� dy :

Correspondingly, formula (1) for the difference in random
variables will be

h�x� �
��1
ÿ1

d�xÿ z� y� f �z�g�y� dy dz :

The generalization of (5) to the case when some number of
random variables enter the random variable zwith a plus sign
while all others enter with a minus sign is clear: they will
appear in the argument of the delta function with opposite
signs.

The result given by (5) is quite obvious so far. If we take
the Fourier transform of both sides of (5), the characteristic
function of the random variable, which is the sum of
independent random variables, appears on the left. On the
right, taking into account

d�xÿ A� � 1

2p

�1
ÿ1

exp
ÿ
iK�xÿ A�� dK

and having computed each integral of the form� 1
ÿ1 fi�xi� exp �ÿiKxi� dxi, which is the characteristic func-
tion of the random variable xi, we obtain that the character-
istic function of the sum is simply the product of the
characteristic functions of these random variablesÐa classi-
cal result [5±8]. R L Stratonovich's formula enables opera-
tions not only with the sums of independent random variables
but also with functions of them, as well as with quantities
which are the result of other mathematical operations.

For the product z of independent random variables x and
w, the probability density h�x� of the former is expressed via
the probability densities f �x� and g�x� of the latter as [5]

h�x� �
�1
ÿ1

1

jyj f
�
x

y

�
g�y� dy : �6�

The form of (6) causes great inconvenience in calculating the
probability density for a random variable that is a product of
a large number of random variables. The same formula (1)
makes this task an easy one. With a methodological aim, we
will carry out the proof in a `reciprocal way,' i.e., by
transforming an expression like (1) into the form (6). Indeed,

h�x� �
��1
ÿ1

d�xÿ yz� f �z�g�y� dz dy

�
�1
ÿ1

g�y� dy
�1
ÿ1

1

jyj d�xÿ yz� f
�
yz

y

�
d�yz�

�
�1
ÿ1

1

jyj f
�
x

y

�
g�y� dy : �7�

For the probability density h�x� of the random variable z,
which is the product of three random variables xwc with
probability densities f �x�, g�x�, and l�x�, respectively, we
write

h�x� �
���1

ÿ1
d�xÿ yzt� f �y�g�z�l�t� dy dz dt : �8�

If we denote s � zt, then the probability density h2�x� of the
product of two independent random variables w and c is
expressed by the first line of expression (7),

h2�s� �
��1
ÿ1

d�sÿ zt�g�z�l�t� dz dt ;

and the probability density of the independent random
variables x and wc is

h�x� �
��1
ÿ1

d�xÿ ys� f �y�h2�s� dy ds :

Inserting h2�s� from the previous expression, we find

h�x� �
��1
ÿ1

d�xÿ ys� f �y�h2�s� dy ds

�
��1
ÿ1

d�sÿ zt�g�z�l�t� dz dt :

Exchanging the order of integration and performing one
integration over ds, by the relation

d�xÿ yzt� �
�1
ÿ1

d�xÿ ys� d�sÿ zt� ds

we obtain formula (8). Using induction, we write the general
form (similar to the form of (5)) for the probability density
f �x� for the random variable z, which is now the product of
any number of independent random variables x1x2 . . . xN with
the probability densities f1�x1�; f2�x2�; . . . ; fN�xN�:

f �x� �
�1
ÿ1

. . .

�1
ÿ1

d
�
xÿ

YN
i�1

xi

�

�
�YN
i�1

fi�xi�
�
dx1 dx2 . . . dxN : �9�

For the quotient z of independent random variables x and
w, the probability density h�x� of the former is expressed in
terms of the respective probability densities f �x� and g�x� as
[5, 6]

h�x� �
�1
ÿ1
jyj f �xy� g�y� dy : �10�

On the other hand,

h�x� �
��1
ÿ1

d
�
xÿ y

z

�
f �y�g�z� dy dz

�
�1
ÿ1

g�z� dz
�1
ÿ1

d
�
xÿ y

z

�
f

�
z
y

z

�
jzj d

�
y

z

�
�
�1
ÿ1
jzj f �xz�g�z� dz ;

which coincides with (10). The form of the general expression
for the probability density of a random variable that is a
combination of products and quotients of a set of independ-
ent random variables is obvious.

Thus, the calculation of probability densities for random
variables that arise as a result of arithmetic operations on a set
of other independent random variables is much more
convenient using R L Stratonovich's formula than using the

1058 M Yu Romanovsky Physics ±Uspekhi 67 (10)



expressions in classical textbooks [5±8]. We will see further
that the utility of this formula is not limited to the calculation
of distributions of random variables obtained as a result of
arithmetic operations on independent random variables.

3. Operations on functions of random variables
using R L Stratonovich's formula

The transition from calculations of probability densities of
random variables that are the result of arithmetic operations
on independent random variables to those of functions of
random variables is based on the relation for the probability
density of a function of random variable [5]. Writing (1) in the
form

W�A� �
�1
ÿ1

d
ÿ
Aÿ B�z�� f �z� dz ;

we derive it directly from the definition of the d-function. The
f �z� is now a `usual' probability density function of the
distribution of the random variable x; B�z� is the `usual'
function of the argument z, whose values are those of the
random variable x, i.e.,B is also a random variable. Assuming
for simplicity that B is a strictly monotone function3 of z, we
introduce the function b�B� � z, the inverse of B�z�. Then,
dz � �dz=dB� dB � b 0�B� dB [6]. The probability density
F�B� of the random variable B is connected to f �z� as
F�B� � f �z�B��b 0�B�. Expressing f �z� and dz by F�B� and
dB, we get

W�A� �
�1
ÿ1

d�Aÿ B�F�B� dB �
�1
ÿ1

d
ÿ
Aÿ B�z�� f �z� dz ;

which is the original R L Stratonovich's formula with
r�z� � f �z�.

It is obvious that (1) cannot be computed in a general case,
so we move on to practically important special cases. The use
of (1) becomes especially convenient when BfZg is the sum of
functions

PN
i�1 gi�xi� � G�x� of independent random vari-

ables xi with probability densities fi�x�. We start from
relationship (5) assuming that gi is a random variable with
the domain (to be denoted by Q), which need not to be from
ÿ1 to �1,

W�G� �
�
Q

. . .

�
Q

d
�
Gÿ

XN
i�1

gi

�

�
�YN
i�1

fi�gi�
�
dg1 dg2 . . . dgN

�
�
Q

. . .

�
Q

d
�
Gÿ

XN
i�1

gi�xi�
�

�
�YN
i�1

fi
ÿ
gi�xi�

� dxi
dgi

�
dg1 dg2 . . . dgNj

�
�1
ÿ1

. . .

�1
ÿ1

d
�
Gÿ

XN
i�1

gi�xi�
�

�
�YN
i�1

fi�xi�
�
dx1 dx2 . . . dxN : �11�

Here, it is convenient to turn to the Fourier transform of the
d-function. As a result, we get

W�G� � 1

2p

�1
ÿ1

exp

�
iK

�
Gÿ

XN
i�1

gi�xi�
��

�
�1
ÿ1

. . .

�1
ÿ1

�YN
i�1

fi�xi�
�
dK dx1 dx2 . . . dxN

� 1

2p

�1
ÿ1

exp �iKG� dK

�
YN
i�1

��1
ÿ1

exp
ÿÿiKgi�xi�� fi�xi� dxi� ; �12�

which is another proof of the theorem that the characteristic
function of the sum of independent random variables is equal
to the product of the characteristic functions of these random
variables. When all fi�xi� and gi�xi� are equal, only the
integral

� 1
ÿ1 exp �ÿiKgi�xi�� fi�xi� dxi needs to be calculated.

Examples of the use of this formula are given below.
Among other arithmetic operations on functions of

random variables, one can choose only to calculate the
probability density of a function of random variables that is
a product of independent random variables xi with prob-
ability density functions fi�x�. In this case,

W�G� �
�1
ÿ1

. . .

�1
ÿ1

d
�
Gÿ

YN
i�1

gi�xi�
�

�
�YN
i�1

fi�xi�
�
dx1 dx2 . . . dxN :

One cannot proceed further with the Fourier transform of the
d-function, since the integrand cannot be factorized as in
expression (12). However, another approach can be used.

If z is a product of independent random quantities
x1x2 . . . xN, we have ln z � ln x1 � ln x2 � . . .� ln xN. Then,

W�lnG� �
�1
ÿ1

. . .

�1
ÿ1

d
�
lnGÿ

XN
i�1

ln gi�xi�
�

�
�YN
i�1

fi�xi�
�
dx1 dx2 . . . dxN ;

where the probability density functions fi�xi� are related to
the random variables xi (11). In this case, the probability
density W�G� is easily determined from [6],

W�G� �W�lnG�
G

� 1

2pG

�1
ÿ1

exp �iK lnG� dK

�
YN
i�1

��1
ÿ1

exp
ÿÿiK ln gi�xi�

�
fi�xi� dxi

�
: �13�

For mixed operations with functions of probability
density of a random variable resulting from combinations
with arithmetic operations on independent random variables
(subtraction or division), such simple formulas cannot be
obtained, but in most cases they are not needed.

4. Application of R L Stratonovich's formula
to calculations of random fields and potentials

Historically, the first work on calculations of (electric)
microfields of various multipole multiplicity was that by

3 Once again, we leave the case of simple, but tedious, manipulations for

nonmonotonic B�z� to the reader. In this case, one should use the `point'

properties of the d-function.
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JHoltsmark [9]. At the time it waswritten, onlyAAMarkov's
method [3] for calculating random walks in the description of
Brownian motion (see also [4]) was known from the
apparatus of probability theory, and the characteristic
function had not yet been introduced by P L�evy. As a result,
calculations of the probability density for the electric field
distribution were accompanied by significant difficultiesÐ it
was later found to hold formicrofields of an ideal plasma [10].
Calculations of the probability density distribution for a
(gravitational) microfield [4] in practice already used an
analog of (1). The simplest method of applying (1) was done
in [11], and we describe it here. Briefly, the steps of computing
the final probability density of a concrete physical quantity
are as follows: the general formofRLStratonovich's formula
is written, then, in the integrand, one moves to the Fourier
representation of the d-function. The subsequent change in
the integration order leads to the resultant form of the
probability density as the Fourier transform of the character-
istic function, where, in an overwhelming number of cases,
one can exploit the equality of the characteristic function for
the sum of independent random variables and the product of
individual characteristic functions of random variables. We
first compute the electric microfield in an ideal plasma: in this
case, the kinetic energy of charged particle motion is much
larger than that of Coulomb interaction between the particles.

The charges in an ideal plasma are located independently
from each other, their total number beingN. We will measure
the electric field at the coordinate center, E �PN

i�1 eiri=r
3
i . In

turn, the probability density of finding any of the charges ei is
simply 1=V, whereV is the volume of the (ideal) plasma. From
(11), the probability density of the distribution of a (random)
variable E is

W�E� � 1

VN

�
V

. . .

�
V

d
�
Eÿ

XN
i�1

eiri

r 3i

�YN
i�1

dri

� 1

8p3VN

���1
ÿ1

dK exp �iKE�

�
�YN
i�1

��
V

exp

�
ÿiKri ei

r 3i

�
dri

��
: �14�

For example, we determine the electron microfield in an ideal
plasma where all the charges are the same and equal to e. To
compute the only integral�

V

exp

�
ÿiKr e

r 3

�
dr ;

we use the following approach. Since
�
V dr � V, we add this

integral and subtract it in the integral in the product to obtain

W�E� � 1

8p3

���1
ÿ1

dK exp �iKE�

�
�
1ÿ 1

V

�
V

�
1ÿ exp

�
ÿiKr e

r 3

��
dr

�N

or, moving to the limit N!1,

W�E�� 1

8p3

���1
ÿ1

dK exp

�
iKEÿ n

�
V

�
1ÿ exp

�
ÿiKr e

r 3

��
dr

�
:

We assume here that both the volume V and the number of
particles N can go to infinity, but their ratio n, the density, is

finite. In the integral over volume, one changes to polar
coordinates with the axis directed along the vector K. After
the standard procedure of angular integration, the integration
over the radius from 0 to infinity is performed twice by parts
[4, 11], meaning the old condition V!1. As a result, we get

W�E� � 1

8p3

���1
ÿ1

dK exp
ÿ
iKEÿ K 3=2E

3=2
0

�
;

where E0 � 2p�4=15�2=3en 2=3. For the density of the distribu-
tion of the absolute value of the random field at zero, using
the obvious field isotropy and the relation W�E� �
4pE 2W�E�, and also assuming E=E0 � b, we get the Holts-
mark distribution

W�b� � 2b
p

�1
0

x sin �bx� exp �ÿx 3=2� dx : �15�

This elementary derivation (15) can be compared to the
volumetric calculations in [9].4

A very similar result follows for the distribution of the
magnetic microfield in an ideal isotropic plasma, in this case
b � H=H0, H0 � p5=3qvTn 2=3=24=3c [15, 16]. In addition to
the electric field, an obvious relativistic factor� vT=c appears
here (vT is the mean thermal velocity of charged particles and
c is the speed of light in a vacuum), because in probability
density calculations the phase coordinates are now not only
space coordinates but also momenta (velocities) of particles.

Formula (1) allows calculations not only for equilibrium
ideal plasma but also for nonequilibrium plasma [16]. Instead
of coordinates of particles in plasma, one can also deal with
elementary microcurrents in corresponding media (e.g., in
plasma screens or microchips) [17]. In many such media, the
microcurrents can be considered to be noninteracting. For the
probability densities, the result depends on the geometry of
the system generating the magnetic fieldÐ in three dimen-
sional geometry, one gets the distribution

W�B� �
�
V

. . .

�
V

���1
ÿ1

. . .

���1
ÿ1

1

� ���pp v 3TV�N

� d
�
Bÿ

XN
i�1

mm0ei�viri�
cr 3i

�YN
i�1

dri dvi

� 1

8p3�1�N=2�v 3NT VN

���1
ÿ1

dK exp �iKB�

�
�YN

i�1

� �
V

���1
ÿ1

exp

�
ÿiK�viri� mm0ei

cr 3i

�
dri dvi

��

where b � B=B0, the measured quantity is now the magnetic
field B, B0 � 25=3p4=3�G�7=4��2=3mm0hl 3=2i2=3=152=3c, G is the
Euler gamma function, m is the medium magnetic perme-
ability, m0 is the vacuum magnetic permeability, and hl 3=2i is
the mean of the half cube of the current element. In the two-
dimensional geometry of a microchip layer, the result is
different (see [17]).

R L Stratonovich's method allows one to calculate the
microfields not only of charged particles and microcurrents
but also, for example, of two stochastically and independently

4Note that these calculations for the probability density of the electric field

are valid if there are no charges at the origin of the coordinates (see

discussions in Refs [12±14]). The same is also true for the calculations of

magnetic fields below and for potentials.
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located parallel point dipoles [18, 19].5 The component of the
field of random dipoles along one of the coordinate axes (e.g.,
z) e has the probability distribution

f �e� � 1

2p

�1
ÿ1

exp �ike�

�
����1

ÿ1
exp

�
ÿik

�
d

r 3
ÿ 3

d�ezr�2
r 5

��
d3r

V

�N

dk :

Here, N is the total number of dipoles, V is the volume where
they are located, as before N!1, V!1, but the density
n � N=V is finite, ez is the unit vector along the z-axis, and d is
the magnitude of the dipole moment of one point particle.
The calculations follow the method that is analogous to the
calculations of the microfield (14), (15) and give

f �e� � 1

p
G

�eÿ Gc�2 � G 2
; �16�

where G � 4
���
2
p

pnd=9
���
3
p

,

Gc � 4

�
3�

���
3
p ln

���
3
p ÿ 1

ln
���
3
p � 1

�
nd

27
:

Thus, using R L Stratonovich's formula, we obtain the
Lorentz-shifted distribution (see also the result (17) for
D=a � 1).

Another `application point' of (1) in the form of (12) is the
computation of the fluctuations of the potential generated by
particles at a neutral point in space. Here, one can turn to the
idea of Holtsmark [9] to compute fluctuations of (a field) of
different multipolar types. Applied to the potential, the
problem is posed in the simplest case as follows [20]: suppose
there are N point particles which generate potentials of the
form q=r ai , which are independently located in the domain
with volume V. We assume, as before, that N!1, V!1,
but the density of the particles n � N=V remains finite.

The problem can be generalized to a space of arbitrary
dimension [20]. Particles (without loss of generality, they can
be taken to be the same) generate at the coordinate origin the
potential

j�0� �
XN
i�1

q

rai
� const :

Calculation of the potential distribution density by formula
(12) (we assume const � 0) gives

W�b� � 2

p

�1
0

cos �bx� exp �ÿxD=a� dx : �17�

Here, b � j=j0,

j0 � q

�
pd

2D sin �pD=2a�G�D=a�
�a=D

;

D is the dimension of the space, and d is the total solid angle in
the space of the respective dimension (d � 1, 2p, 4p, 4p2 for
one-, two-, three- or four-dimensional space and so on).

Distribution (17) is the standard L�evy function [21] and
exists only for 0 < D=a4 2. This means, for example, that in
three-dimensional space it is impossible to calculate the

probability density distribution of Coulomb (and gravita-
tional) potential of randomly placed noninteracting particles.
If interactions between particles are taken into account, this
turns out to be possible in a certain approximation of the
collective potential [22]. In this case, the L�evy distribution is
transformed into a truncated L�evy distribution (see, e.g., [23,
24]).

Thus, R L Stratonovich's formula is a powerful tool in the
calculation of random microfields and micropotentials of
stochastically and independently located (and moving) parti-
cles of various multipole types. In a number of cases it is
possible to perform such calculations not only for independent
but also for interacting particles. The most interesting result
here is a principal difference in the derived probability density
distributions for microfields and micropotentials from the
Gaussian distribution, despite the fact that the number of
formally considered particles forming the random field
(potential) tends to infinity. All these distributions of micro-
fields and micropotentials are related to a wider class of
infinitely divisible distributions [5, 21].

5. Application of R L Stratonovich's formula
to calculations of random moments
of bounded bodies

Consider a body filled with a moving substanceÐbe it
continuous or discreteÐheld inside the body in one way or
another [25]. It is also assumed that the motion of this
substance is stochastic. We further assume that point charges
can be present inside this body. It is obvious that the
calculation of the mean value of any projection of the
angular momentumM in the absence of macroscopic motion
will yield exactly zero. According to the relationship for the
probability density function for the absolute value of the
random angular momentum W�M� � 4pM 2W�M�, the
expectation of this absolute value differs from zero. Simi-
larly, if there are point charges inside the body, they are
entrained by the substance inside it in a stochastic motion and
ensure the existence of a random magnetic moment.6

Formula (1) allows us to calculate these distributions and
their expectations.

We divide the volume of the body into physically small
parts (particles). In principle, it is not necessary that the parts
be identical, but we can further assume that their masses are
equal. Let there beN such parts with massesmi, with the total
mass of the body mN, mN �

PN
i�1 mi. If we further find that

themodel of a body composed of smaller parts is preferable to
the model of a continuous medium, N will have the sense of
the number of these smaller particles, but, in any case, the
number will be (physically) large. It can also be shown that a
small deviation of the body shape from the spherical one
(within 10±15% in radial size) [26]) does not change the results
qualitatively. The random angular momentum of such a body
is M �PN

i�1 mi�rivi�. It is distributed with the probability
density

W�M� �
�
V

. . .

�
V

���1
ÿ1

. . .

���1
ÿ1

d
�
Mÿ

XN
i�1

mi�rivi�
�

� PN�r1; . . . ; rN; v1; . . . ; vN�
YN
i�1

dri dvi : �18�

5 Note that these papers use the formalism of averaging with the help of

angular brackets. This is followed by lengthy calculations of the arising

integrals.

6 To simplify the calculations, we assume that the velocities of the masses

(but not of the point charges) inside the body are nonrelativistic.
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Here, PN�r1; . . . ; rN; v1; . . . ; vN� is the probability density of
finding the first mass part (particle) at the point with radius
vector r1 moving with velocity v1, the second one at the point
r2 with the velocity v2, and so on. It is obvious that the
distribution over velocities should be the equilibrium Max-
wellian one, which is further expressed through the total
energy U of (thermal) stochastic particle motion. To proceed
with the calculations of W�M�, a Fourier transform is
performed on the d function in formula (18).

The integrals over the velocities are easy to calculate
[25]. We concretize the form of PN�r1; . . . ; rN� by account-
ing for the incompressibility of the substance inside the
body. This does not impose any restrictions on the
substance to be considered laterÐbe it continuous or
`molecular,' similar to a fluid, i.e., consisting of the small
particles mentioned above (see above). In classical statis-
tical mechanics, the latter is associated with the model of
`hard spheres' in the simplest case. In the model considered
here, this means that positions occupied by some part of
body substance (or `hard sphere') cannot be occupied by
other parts of the body (or remaining `hard spheres').
Hence, PN�r1; . . . ; rN� �

QN
i�1 d�ri ÿ r 0i �, where the prime

indicates the above condition that all the parts of the
substance (or small particlesÐ `hard spheres') occupy
different positions within the body. Integrating over the
Fourier vector components and taking into account the
expression for the moment of the inertia of (solid body) I,
we obtain the probability density of the distribution of the
absolute value of the random angular momentum of the
body containing stochastically moving parts (particles)
inside in the form [25]

W�b� � 4b 2���
p
p exp �ÿb 2� ; �19�

i.e., the Maxwell distribution, b �M=M0, M0 �
��������
2UI
p

. The
first two moments of this distribution are

hMi � 2���
p
p M0 � 2

���������
2UI

p

r
;

�20�
hM 2i � 3M 2

0

2
� 3UI :

We will also need the expression for the mean velocity of
thermal motion of particles inside the body vT � �2U=mN�1=2.
We now turn to the magnetic moments.

In our model, the magnetic moment of the body is also a
random quantity. Physically, this moment is due to stochastic
displacements of charges. The charge carriers are considered
to be point ones. The relativistic motion of one or more such
particles is a physical interest.

The magnetic moment of a system of N point charges ei
moving with velocities vi in the relativistic case [27] is

MH � 1

2c

XN
i�1

ei
mi
�ripi� :

Here, ri is the radius vector of the point where the ith charge is
located, and mi are the masses of the particles carrying the
charges (they are assumed to be small compared to the body,
becoming point-like in the limit case). The probability density
function of the magnetic dipole moment generated by such a
system of moving point charges can be written in a form

analogous to (18),

W�MH��
�
V

. . .

�
V

���1
ÿ1

. . .

���1
ÿ1

d
�
MHÿ 1

2c

XN
i�1

ei
mi
�ri pi�

�

� PN�r1; . . . ; rN; p1; . . . ; pN�
YN
i�1

dri dpi :
�21�

Here, the function PN has the same meaning as the function
encountered in angular momentum calculations: the quantity
PN�r1; . . . ; rN; p1; . . . ; pN� is the probability of finding the first
particle in the vicinity of point r1 with momentum p1, the
second particle in the vicinity of r2 and with momentum p2,
and so on. Note that this function PN for the magnetic
moment is different from the one introduced in (18) for
the angular momentum. Using the Fourier transform of
the d-function, the distribution function can be written as

W�MH� � 1

�2p�3
���1

ÿ1
dK exp �iKMH�

�
�
V

. . .

�
V

���1
ÿ1

. . .

���1
ÿ1

YN
i�1

exp

�
ÿ i

2c

ei
mi

K�ri pi�
�

� PN�r1; . . . ; rN; p1; . . . ; pN�
YN
i�1

dri dpi : �22�

We calculate this function assuming that the body contains
only one charged particle with the rest massm1 and the charge
e1.

Assume that the probability density of the distribution of
this particle is uniform over the volume. The distribution over
velocities of this charge should be Gaussian for an equili-
brium system. A good approximation for the function PN in
this case is therefore the function P1 which, as mentioned
above, is written from the very beginning for relativistic
motion

P1�r1; p1� �
c

4pm1T 2VK2�m1c 2=T � exp
�
ÿ c

T

����������������������
p 2 �m 2

1 c
2

q �
:

�23�

Here, T is the proper relativistic temperature of the
stochastic motion of the charge carrier, and K2 is the
Bessel function of the second kind [28]. Again, without
loss of generality, we assume that the Fourier vector k is
directed along the z-axis. The dependence on angles
disappears due to isotropy, leaving only the dependence
on the absolute value k, and the probability density
function for the distribution of the absolute value of the
magnetic moment MH1 of the body containing a single
stochastically moving point charge after all possible
integrations can be conveniently written as

W1�MH1� � M 2
H1m1c

2

2VTK2�m1c 2=T �

�
�
V

dr1

exp

 
ÿ 2m1c

2

Te1r1 sin y

��������������������������������������
M 2

H1 �
e 21 r

2
1 sin

2 y1
4

s !
�e1r1 sin y1=2�3

: �24�

Here, e1 is the charge of the single particle and y1 is the polar
angle of the vector r1. It is easy to see that this distribution is
normalized to 1,

� 1
0 W1�MH1� dMH1 � 1.
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The expectation of this distribution

hMH1i �
�1
0

MH1W1�MH1� dMH1

is, provided the body is spherical with the radius R,

hMH1i � 3pe1RT exp �ÿm1c
2=T �

8m1c 2K2�m1c 2=T �
�
1� 3T

m1c 2
� 3T 2

m 4
1 c

4

�
: �25�

Let us consider now the stochastic magnetic moment of a
(spherical) body with two opposite charges of equal absolute
value e1. Introducing the coordinates and the velocity of the
center of mass for the system positive±negative charges, the
magnetic moment of such a system is written as

MH2 � e

2c
�rcmvrel� � e

2c
�rrelvcm� : �26�

Here, rrel is the vector connecting two charges, vcm is the
velocity of the center of mass of charged particles, rcm is the
coordinate of the center of mass, and vrel is the velocity of
relative motion. Since the particles inside the spherical body
are electrically connected and their velocities are actually less
than the speed of light, it is easy to see that the second term on
the right-hand side of (26) is much smaller than the first one,
as jvcmj5 jvrelj. Since in the first approximation the random
particle velocities v1 and v2 are independent (they are
governed by interactions with the material filling the
spherical body rather than by mutual interaction), the
distribution of the velocity difference v1ÿv2 is the same as
the distribution of individual velocities, i.e., it is Gaussian.
Thus, the magnetic moment of the system is defined by an
effective particle. Using the properties of the Gaussian
distribution, it is easy to show that the effective temperature
of such a particle is 2T. Comparing expression (26) with the
formula for the angular momentum of a system of two
particles of equal mass (as in the case considered), it can be
seen that the mass of the effective particle is 2m1. This means
that the distribution over energy of the effective particle is
exactly the same as for a single charged particle inside the
spherical body. Along with this, the distribution of the
random variable rcm even if the probability densities for the
positions of each of the charged particles inside the body are
uniform, will not be uniform.

After some volumetric calculations it can be shown that
the probability density for the distribution of the projection
x � �x1 � x2�=2 of the vector rcm � �r1 � r2�=2 is

fp�x� � 6

5R 5

�
R 5 � x 5 ÿ 5R 2�R 3 � x 3� � 5R 3�R 2 ÿ x 2�� ;

using the upper sign for x > 0 and the lower sign for x < 0.
Calculating the probability densities for the distributions of
the modules jrj, r 2, and also jr 3j, we find that the probability
density for the distribution of the vector rcm can only be the
polynomial Ar 3 � Br� c. It is easy to see that the probability
density normalized over the volume

�
V fp�r� dr � V (omitting

the index in rcm) is

fp�r� � 4

�
r 3

R 3
ÿ 3

r

R
� 2

�
:

Now, we can write the probability density for the distribution
of the relativistic magnetic moment of a spherical body

containing two charges of opposite sign:

W2�MH2� � 2M 2
H2m1c

2

VTK2�m1c 2=T �

�
�
V

dr

�
r 3

R 3
ÿ 3

r

R
� 2

� exp

 
ÿ 2m1c

2

Te1r sin y

�������������������������������������
M 2

H2 �
e 21 r

2 sin2 y
4

s !
�e1r sin y=2�3

�27�
(y is the polar angle of the vector rcm), which differs from (24)
only by the presence of the additional multiplier fp�r� in the
integrand.

The expectation of the magnetic moment of a spherical
body with two charges is calculated in the same way as in the
case of one charge, first by integration over MH2, and then
over dr. We obtain

hMH2i � 24

35
hMH1i � 0:6857hMH1i : �28�

Thus, the difference in the mean magnetic moment of a
spherical body with two charges of opposite signs moving
stochastically differs from the magnetic moment of the same
spherical body with one charge by 0:6857 � 24=35 �
�4�6�=�5�7� times.7 Let us recall that, in the model
considered here, magnetic moments in both cases are
random quantities, with direction distributed isotropically in
space and absolute values distributed according to formulas
(24) and (27). In experiments, the mean distributions of the
absolute values (25) and (28) are measured. The quantum
fluctuations of the magnetic moments [29] coincide with the
classical ones, calculated in the framework of the givenmodel.
The difference between (28) and (25) is physically determined
only by the fact that the effective particle, which generates the
magnetic moment in a body with two charges, is distributed
inhomogeneously in space inside the body. This distribution
is maximal at the center and equals zero at the periphery,
resulting in a smaller `mean radius' and a smaller magnetic
moment than in a body with one charge.

Note that an attempt to calculate in a similar way the
distribution of the electric dipole moment of a spherical body
with one or two charges in the framework of the present
model does not lead to success Ð the resulting probability
density function turns out to be of changing sign,8 i.e., a
definite electric dipole moment is missing. We see that
R L Stratonovich's formula also gives a correct negative
result for the existence of certain parameters in physical
systems.

7 If we consider bodies with stochastically moving matter and one or two

charges inside as a very rough model of the proton and neutron, this

number describes well the ratio of the experimentally measured magnetic

moment of the neutron, which is smaller by a factor of 0.68 than the

magnetic moment of the proton. In this case, the condition that the mean

of the angular momentum (20) is equal to half of the Planck constant �h=2
and the mean of the magnetic moment (28) is equal to the experimental

value for the magnetic moment of the proton 2:793e�h=2mpc (mp is the

proton mass) is fulfilled for the unique condition T � 60:5 keV. For

classical calculations (20), (24), and (28) to be applicable `inside the

nucleon' [25], it is enough to assume that the matter of the nucleon has a

dielectric permittivity of � 10ÿ4ÿ10ÿ5.
8 It is known, for example, that nucleons do not have a definite electric

dipole moment. If the nucleons are described by the above rough model,

this means that the distribution function of the electric dipole moment has

no meaning because of the mentioned changing sign, and there is no

definite electric dipole moment.
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The problem of finding the electromagnetic moments of
bodies containing a large number of stochastically moving
particles is solved in an asymptotic approximation by
A A Markov's method [3, 4], and in this case the electric
dipole moment can be found [26].

6. Conclusions

Formula (1) turns out to be a powerful tool for calculating
probability densities of distributions and moments of thermo-
dynamic quantities as proposed by R L Stratonovich [1] (see
Sections 4 and 5), as well as for operations on distributions of
independent random variables, regardless of their dynamical
or physical character (Section 3). This point turns out to be
particularly important for finding distributions of random
variables that are the sum or product of a large number of
independent random variables, which is difficult to do with
classicalmethods [5±8]. A significant result is that the obtained
probability densities are fundamentally different from the
Gaussian ones, and the fact that they belong to a larger class
of unlimitedly divisible distributions [5, 21].

Formula (1) also allows one to easily compute the
probability densities of random variables that are functions
of other randomvariables. This is done in the simplest way for
the sums of the same functions (Section 4), which is already
widely used in calculations of plasma microfields and
microfields of other objects [11±19]. Formula (1) also defines
the probability density of thermodynamic quantities in a
general form, but its calculations are possible only in
concrete cases [1].

Ruslan Leont'evich Stratonovich himself used his for-
mula exclusively as a working tool, e.g., in calculations of
conditional entropy or in the analysis of Markov processes
from the point of view of microscopic dynamics [1].

Note that the first analogs of formula (1) appeared
already in R L Stratonovich's earlier work [30, 31] 9 in the
analysis of the distribution of random variables in the
representation space [30] (see also the introduction of virtual
spaces in Refs [21, 23]) and in the statistical treatment of the
quantum theory [31].

Formula (1) was mentioned for the first time as a formula
named after Stratonovich apparently in Ref. [12]. At the
beginning of the 21st century, formula (1) found wide use in
statistical physics, plasma physics, and other branches of
physics, chemistry, or related sciences, thus writing the name
of its authorÐRuslan Leont'evich StratonovichÐ forever
into the history of modern science and technology.10
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