
Abstract. The dependence of the energy spectrum of a quantum
particle in an infinite V-shaped potential well on its asymmetry
parameter is analyzed. The relationship between the occurrence
of this dependence and different depths of quantum particle
penetration into classically forbidden regions under the well
walls is shown. In particular, an estimate of the energy spec-
trum using the Bohr±Sommerfeld quantization rule, which does
not take into account the particle penetration into subbarrier
regions, shows that there is no dependence on the well asymme-
try parameter. An exception is the transition to the case of a
vertical wall, when the semiclassical approach is characterized
by a special boundary condition. The obtained results are illu-
strated by the dependence of the tunnel current of a Brownian
motor (ratchet) with an applied fluctuating force on the asym-
metry of the sawtooth potential. With a certain selection of
ratchet parameters, considering zero-point oscillations de-
scribes the occurrence of a particle flow in the direction oppo-
site to that obtained without such consideration.

Keywords: energy spectrum, asymmetric systems, Airy func-
tions, Brownian motors, ratchets

1. Introduction

The most fruitful method of controlling the energy spectrum
of designed electronic devices is the use of an external electric

field. The energy spectrum of such systems is calculated by
solving the time-independent Schr�odinger equation, which
describes the state of a particle in a given potential (reflecting
the structure of the designed device) and aDC electric field [1].
As is known, the contribution of this field to the potential
relief is linear. On the other hand, the piecewise linear form of
the potential profile allows an analytical solution of the
Schr�odinger equation in the form of a superposition of Airy
functions [2]. A simple version of a piecewise linear function is
a V-shaped dependence. The energy spectrum of an infinite
triangular well is in demand in various applications and, in
addition, it has a number of features that distinguish this
spectrum from the energy spectra of particles in smooth
potential profiles. A smooth potential well near its minimum
is approximated well by a quadratic function, and its lower
energy levels are close to the equidistant structure of the
energy spectrum of a harmonic oscillator [3]. A fundamen-
tally different spectrum arises for a particle in a triangular
potential well, since its minimum has a cusp and cannot be
approximated by a quadratic function.

According to literature data, the analysis of the energy
spectrum of quantum particles was carried out only for two
extreme special case of the symmetry of triangular potential
wells: a well with one vertical wall and a symmetric well
described by a function proportional to jxj [2]. In this article,
these known results are extended to the case of a triangular
potential well of arbitrary symmetry, characterized by an
asymmetry coefficient � equal to zero for the symmetric well
and equal to one for the extremely asymmetric well with one
vertical wall. Representation of the energy spectrum as a
function of the parameter � allows identifying a number of
interesting features associated with different depths of
penetration of a quantum particle into classically forbidden
regions under the walls of the well. Since a quantum particle
cannot penetrate behind a vertical infinite wall, the depen-
dence of the energy level on � is characterized by the singular
behavior of the first derivative near the extremely asymmetric
well with �! 1.

The applications of the problem considered in this paper
are diverse. We will cite some of them. For example, the
tunneling of electrons from a perfectly conducting flat surface
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induced by an electric field occurs through an energy barrier
close to a triangular one and is described by the Fowler±
Nordheim theory [4, 5]. The Schr�odinger equation with
potential energy in the form of a triangular barrier and its
inverse triangular well have exact solutions in terms of Airy
functions. Knowledge of the bound states of the potential
indicates a way to find quasinormal sub-barrier modes, which
are eigenmodes of dissipative systems. These modes are the
poles of the scattering matrix (Green's function) of waves of a
different nature on the scattering center [6]. Their character-
istics are related to the problem of the passage of quantum
particles through a potential barrier and their reflection from
it, if we assume that the incident particle flux is absent. This
corresponds to decaying waves moving away on both sides of
the barrier. Quasinormal modes arise naturally as a perturba-
tion of the classical gravitational background involving black
holes or as excitation of nanoresonators [6±8]. Quasinormal
modes of the barrier correspond in a certain way to the bound
states of the potential inverse to a given barrier [9]. By
replacing variables and parameters, the eigenfunctions of
the potential are transformed into quasinormal modes with
a complex wave vector. This method was used to obtain
quasinormal modes of a symmetric triangular potential
barrier [10].

In the theory of Brownian motors, a sawtooth potential
is widely used as a model periodic potential profile
characterized by a minimal set of parameters (energy
barrier and asymmetry) [11±16]. In addition, the sawtooth
shape of the potential can be easily realized experimentally
[14]. Particularly, in numerous experiments on the directed
motion of colloidal particles in ratchet systems, sawtooth
potential shapes are created using electrodes deposited on
glass by photolithographic methods (see, e.g., [15, Ch. 7]).
In experiments on the manipulation of charged components
inside lipid bilayers on a substrate [16], such a potential is
created by a patterned bilayer, one side of which has a
sawtooth shape and the other a flat surface. The ratchet
effect of quantum Brownian motors is determined by the
energy spectrum of quantum particles in sawtooth poten-
tials, the unit cell of which is a triangular well of finite
height [11, 17±23]. Since this effect is inherent only in
symmetric systems, the study of the influence of the
triangular well asymmetry on the energy spectrum is a
fundamentally important task in the physics of quantum
ratchet systems.

The purpose of thesemethodological notes is to clarify the
dependence of the energy spectrum of a quantum particle in
an infinite V-shaped potential well on the asymmetry
parameter of the latter. Since it turns out that this depen-
dence is quite nontrivial and arises only with a rigorous
quantum-mechanical description, for methodological pur-
poses, it is reasonable to begin the discussion with clear
semiclassical relations that use the classical approach to
determine the oscillation frequency independent of the
asymmetry of the triangular well (Section 2), and only then
proceed to a rigorous quantum-mechanical consideration
that reveals such a dependence (Section 3). The dependence
on the asymmetry parameter is due to its effect on the depth of
particle penetration into classically forbidden regions under
the walls of the potential well (Section 3).

On the other hand, as shown in Section 4, the tunneling of
a particle through a triangular barrier does not depend on its
asymmetry, since the barrier height and the tunneling path are
invariant with respect to the asymmetry coefficient. However,

the tunneling current of a ratchet with a sawtooth potential
(containing triangular barriers and wells) and an applied
fluctuating force (the so-called rocking ratchet) depends on
the asymmetry coefficient, since this force distorts the shape
of the barriers and changes the energy of zero-point
oscillations. The results of the performed consideration of
the influence of the symmetry of V-shaped potentials on the
energy spectrum of particles and the ratchet effect are
summarized in Section 5.

2. Quasiclassical approximation

The quasiclassical approximation is valid when the de Broglie
wavelength of a particle is small compared to the distance at
which its potential energy changes significantly. This approx-
imation allows us to trace the connection between classical
and quantummechanics. For a finite motion, this connection
manifests itself in the correspondence principle, according to
which, for large quantum numbers n, the separation between
adjacent energy levels En is determined by the classical
frequency of the motion o0 � 2p=T (T is the oscillation
period), namely dEn=dn � �ho0, where �h is Planck's constant
[3, 24, 25].

An interesting and important feature of the semiclassical
approximation is that it provides reasonable results even in
cases where the condition of applicability of such an
approximation is seemingly not satisfied. It is usually
believed that states related to the discrete energy spectrum
are well described by this approximation only for large
values of the ordinal number of the state n, coinciding with
the number of nodes of the corresponding wave function,
since the distance between neighboring nodes is precisely
estimated by the de Broglie wavelength. Nevertheless, given
that the accuracy of the energy spectrum obtained within the
framework of the quasiclassical approximation is not
determined by the value of nÿ1, but by �pn�ÿ2, which is
small enough already for n � 1, this approximation
describes the energy of the ground and first excited states
quite well [25], which is associated with the effective use of
this approximation in solving many problems [26±28].

Thus, it is advisable to start themethodological notes with
visual semiclassical relations, which will allow us to outline
the properties that permit a classical description and, against
their background, to vividly present phenomena that in
principle cannot be understood within the framework of the
classical approach. Such phenomena include the penetration
of a quantum particle into classically forbidden regions
behind the walls of a potential well. In this section, the
efficiency of the semiclassical approximation will be demon-
strated by applying the Bohr±Sommerfeld quantization rule
to three example problems: a particle in a rectangular box
with infinitely highwalls and in theMorse potential, as well as
an estimate of the energy spectrum of a quantum particle in a
V-shapedwell of arbitrary asymmetry. The first two problems
exactly reproduce the energy spectra that follow from
analytical solutions of the Schr�odinger equation. The third
is considered in detail in the present methodological notes;
however, as we shall see, the calculation of the classical
frequency of motion will show its invariance with respect to
the asymmetry of the V-shaped well and, consequently, the
invariance of the energy spectrum in the semiclassical
approximation. This circumstance will serve as a convincing
argument in favor of the necessity of a rigorous quantum-
mechanical consideration, carried out in Section 3.
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The Bohr±Sommerfeld quantization rule is formulated
for the adiabatic invariant [29]

I�E � � 1

2p

�
p�x� dx � 1

p

� b

a

p�x� dx : �1�

In definition (1), p�x� � ������������������������������
2m �Eÿ V �x��p

is themomentum of
a particle with total energy E and potential energy V�x�, and
integration is carried out over the entire region of coordinate
variation during the period of the particle motion T �E �,
which is related to the adiabatic invariant as

T �E � � 2p
qI�E �
qE

�
����
m

2

r �
dx�������������������

Eÿ V�x�p ; �2�

so that the derivative qI�E �=qE is the inverse cyclic frequency
o0. If we introduce the concept of a classically admissible
region as one bounded by stopping points a and b, where
V�x� � E (Fig. 1), then the integrals in Eqns (1) and (2) over
the entire region of coordinate variation over the period are
equal to double the integrals over the region a < x < b.

Let us write the Bohr±Sommerfeld quantization rule in
the general form [25],

I�E � � �h �n� Ca � Cb� ; �3�

in which the values of the constantsCa andCb are determined
by the slope of the potential curves at stopping points a and b:
if the derivative dV�x�=dx at a stopping point is finite (a
sloping curve), then the corresponding constant is equal to
1=4, but if it is infinite (the vertical tangent at a stopping point),
then it is equal to 1=2. For n4 1, we can assume that n is a
continuous variable, whichmakes differentiation of the left and
right parts of Eqn (3) with respect to n viable, and this is
precisely what gives the correspondence principle
dI�En�=dn � �qI�En�=qEn� dEn=dn � oÿ10 dEn=dn � �h.

For a rectangular potential well with infinitely high walls
Ca � Cb � 1=2, and I�E � � pÿ1L

����������
2mE
p

. Therefore, the
energy spectrum is determined by the formula En �
p2�h 2�n� 1�2=�2mL2�, which coincides with the solution of
the Schr�odinger equation [3, 25]. 1

A harmonic oscillator is usually considered another
canonical example of the coincidence between a semiclassical
solution and an exact one. Let us consider an example that
more convincingly demonstrates the effectiveness of the
semiclassical approximationÐthe calculation of the energy
spectrum of a particle in the Morse potential (see Fig. 1),

V�x� � V0

ÿ
1ÿ exp �ÿax��2 ; �4�

which, unlike the parabolic one, is more realistic and
describes a potential well of finite depth. For small x, this
potential is reduced to that of a harmonic oscillator,
characterized by a cyclic frequency o0�

�������������������
V 00�0�=mp �

a
��������������
2V0=m

p
, which is a much more convenient parameter

(compared to a) for representing the results obtained.
For potential (4), calculating the integral in Eqn (1) yields

I�E � � �2V0=o0��1ÿ
��������������������
1ÿ E=V0

p �. 2 Since the potential
curve at the stopping points is inclined, Ca � Cb � 1=4 and
the quantization rule (3) leads to the result

En � �ho0

�
n� 1

2

��
1ÿ �ho0

4V0

�
n� 1

2

��
;

n� 1

2
<

4V0

�ho0
; �5�

coinciding with the analytical solution of the Schr�odinger
equation (see problem 4 after æ 23 of [3]). As far as we know,
the coincidence between the result of the semiclassical
approximation and the exact one for the Morse potential is
noted here for the first time.

The inequality in (5) means the finiteness of the number of
levels in the discrete spectrum. If this inequality becomes
strong, that is,

�ho0

4V0

�
n� 1

2

�
5 1 ; �6�

then Eqn (5) gives the energy spectrum of the harmonic
oscillator

En � �ho0

�
n� 1

2

�
: �7�

It is clear that since relation (5) is obtained both by means of
the semiclassical approximation and by an exact considera-
tion of the spectrum in the Morse potential, its special case,
relation (7) for the harmonic oscillator, also serves as an
example of the coincidence of the results of the two
approaches.

Note that the strong inequality (6) allows two interpreta-
tions. First, V0 !1 (with a � o0

������������������
m=�2V0�

p ! 0) corre-
sponds to the passage from the Morse potential to the limit
of a harmonic oscillator potential, characterized by the
equidistant spectrum (7) for any n. Second, for limited values
ofV0 but for �ho0=4V0 5 1, 3 strong inequality (6) is valid only

x

V �x�

a

Ca Cb

0 b

E

V0

Figure 1. Particle with energy E in Morse potential V �x� with potential

well depth V0. Classically admissible region is bounded by points a and b,

at which the values of constants Ca and Cb, included in Eqn (3), are

determined by the course of potential curves.

1 The resulting formula also implies the principle of correspondence

dEn=dn��ho0 if we take into account that dEn=dn�p2�h 2�n� 1�=�mL 2�,
but, on the other hand, o0 � 2p

������������������������
En=�2mL 2�p � p2�h �n� 1�=�mL 2�.

2 According to relation (2), the period of classical oscillation in the Morse

potential is T �E � � 2poÿ10 �1ÿ E=V0�ÿ1=2, which coincides with the

period of oscillation of the harmonic oscillator at E! 0 and tends to

infinity as E! V0.
3 This inequality can be rewritten as a quasi-classicality condition

ldB � 2p�h=�2mV0�1=2 5 aÿ1 (the de Broglie wavelength of a particle ldB
expressed through the momentum of the particle �2mV0�1=2 at the

maximum depth of the potential well is much smaller than its character-

istic width aÿ1). Thus, the quasi-classicality condition allows approximat-

ing the low-energy levels of a particle in a potential well of finite depth by

the spectrum of the corresponding infinite well.
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for the lower levels, i.e., for the region of the approximately
equidistant spectrum, for which the curve describing the
Morse potential near its minimum can be approximated by
a parabola. Since a parabolic approximation is admissible
near the local minimum of any smooth potential profile and
not only the Morse potential, Eqn (7) with n � 0 can be used
to estimate the energy of zero-point oscillations in an
arbitrary smooth profile. In this regard, we note a certain
universality of the zero-point oscillation energy in the form
E0 � �ho0=2. It can also be considered to result from the
Heisenberg uncertainty relation, themost precise formulation
of which is

hDpi2 hDxi2 5 �h 2

4
: �8�

Indeed, the state with the minimum uncertainty (the equality
sign in Eqn (8)) and the zero mean values of coordinates and
momentum corresponds to the Gaussian wave function

c0�x� �
ÿ
2p hDx 2i�ÿ1=4 exp�ÿ x 2

4hDx 2i
�
; �9�

which is precisely the wave function of a harmonic oscillator
with hDx 2i � �h=�2mo0� (see problems 2 and 3 after æ 23 in
Ref. [3]).

The V-shaped potential profile, which is the main object
of consideration in these methodological notes, does not
belong to smooth functions. Therefore, it is unacceptable to
use the relation E0 � �ho0=2 for it, and it is necessary to
perform a strict quantum-mechanical description, which we
will turn to in Section 3. Here, to continue the discussion of
the semiclassical approximation, it seems important and
interesting to show what its use for such a profile will lead to.

So, let us consider a V-shaped (infinite triangular)
potential well, the sides of which have arbitrary slopes Fl

and Fr (Fig. 2). The expression of the coordinate dependence
of the potential energy has the form

V�x� � Fr x ; x > 0 ;
Fl x ; x < 0 .

�
�10�

To analyze the asymmetry of the potential well (10), we
introduce auxiliary parameters: an arbitrary energy para-
meterV0 and the widths of the sections l to the right andLÿ l

to the left of the origin of coordinates, cut off from the
potential energyV�x� by the energy levelV0 (see Fig. 2). Then,
the forces Fr and Fl are related to the auxiliary parameters by
the expressions

Fr � V0

l
> 0 ; Fl � V0

lÿ L
< 0 ; �11�

so that the asymmetry of the well can be characterized by the
parameter

� � 2l

L
ÿ 1 � jFlj ÿ Fr

jFlj � Fr
: �12�

According to the physical meaning of the asymmetry
parameter, it is equal to zero for the symmetric well (when
l � L=2) and to one for the extremely asymmetric well, in
which the left wall is vertical (when l � L). The dimensionless
parameter �, together with the new dimensional parameter,
the effective force

F� � V0

L
� jFljFr

jFlj � Fr
; �13�

unambiguously characterizes the original pair of parameters
Fr and Fl. The physical meaning of the quantity F� follows
from definition (13) for jFlj ! 1: F� � Fr, i.e., the effective
force F� of a triangular well of arbitrary asymmetry is
determined by the value of the gentle slope of the potential
relief corresponding to the extremely asymmetric well. In
turn, Fr and Fl are related to F� and � as Fr � �2F��=��� 1�,
Fl � �2F��=��ÿ 1�.

Calculating the integral in Eqn (1) leads to the result

I�E � � 2
�������
2m
p

3pF�
E 3=2 ; �14�

which does not depend on the asymmetry parameter �. 4 In
order to apply the Bohr±Sommerfeld quantization rule (3), it
should be taken into account that, for the chosen parameter-
ization, the right wall of the well cannot be vertical, so that
Cb � 1=4, and the value of the constant Ca depends on the
value of �, namely Ca � 1=2 for � � 1 and Ca � 1=4 for
� < 1. 5 Thus, substituting (14) into (3) and then solving the
resulting equation with respect to En yields

En �
�
3p
2

�
n� Ca � 1

4

��2=3
E� ; �15�

where the parameter E�, having the dimension of energy, is
defined by the relation

E� �
�

�h 2F 2
�

2m

�1=3

: �16�

V�x�

V0

F
l x

F r
x

lÿ L l x0

Figure 2. Infinite triangular potential well of arbitrary asymmetry,

characterized by asymmetry parameter � � 2l=Lÿ 1 (at � � 0, well is

symmetric; at � � 1, left wall is vertical).

4 According to relation (2), the period of classical oscillation of a particle in

a triangular potential well is T �E � � �2=F��
����������
2mE
p

and tends to zero as

E! 0. This differs the behavior of a classical particle in a triangular well

from its behavior in a parabolic well, for which the period does not depend

on energy.
5 The semiclassical approximation for the energy spectrum of a particle in

a triangular well with � � 1 was considered in problem 119 from [30],

whereCa � 1=4 wasmistakenly used, just as it was for � < 1. This resulted

in an incorrect formula (119.5), which should have had n� 3=4 instead of

n� 1=2 (which the editor pointed out in their footnote on p. 323). Only

after such a correction can the incident of the formula (119.7) with the

asymptotic expression (40.14) (problem 40) from [30] be achieved.
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Actually, the zero-point energy of the system under
consideration depends on the asymmetry parameter for
� < 1. This will become clear from the results of the exact
solution to the problem, carried out in the next section. Here
in the Table, we present a comparison of the results of the
semiclassical description with the results of solving the
Schr�odinger equation for the special cases of � � 0 and
� � 1 available in the literature [2, 30]. For example, for the
ground state, expression (15) with n�0 and Ca�1=4 yields
E0=E� � 1:771, while the exact value for � � 0 is 1.617. For
� � 1, we haveCa � 1=2, and Eqn (15) yields E0=E� � 2:320,
while the exact value is 2.338. For � < 1, with increasing
quantum number n, the results of the semiclassical treatment
quickly approach the exact result corresponding to � � 0.
This means that En does not depend on � for large quantum
numbers, when the correspondence principle is valid and the
distances between neighboring levels are determined by the
classical frequency of motion, independent of the asymmetry
parameter (see Eqns (2), (14)). The Table demonstrates
excellent agreement of the results both for � < 0 and � � 1.
However, the differences between the results for � < 1 and
� � 1 remain for large n. In the semiclassical treatment, this is
due to the different boundary condition and the value of the
constant Ca. The exact treatment carried out in Section 3 for
arbitrary values of � will reveal the nonanalyticity of the
behavior for �! 1 (see Eqn (26) below).

3. Quantum mechanical consideration

Let us write the Schr�odinger equation for a particle with mass
m and energy E in potential (10) for the left and right half-
spaces (negative and positive values of x):

d 2cj�x�
dx 2

� 2m

�h 2
�Eÿ Fj x�cj�x� � 0 ; j � l; r : �17�

The general solutions of differential equations (17) in
each half-space contain two arbitrary constants, which,
like the energy parameter E, can be uniquely determined
from the normalization condition and four boundary
conditions:� 0

ÿ1
dx
��cl�x�

��2 � �1
0

dx
��cr�x�

��2 � 1 ; cl�ÿ1� � 0 ;

�18�
cr�1� � 0 ; cl�ÿ0� � cr��0� ; c 0l �ÿ0� � c 0r��0� :

Equations (17) in the new variables

yr �
�
2mFr

�h 2

�1=3�
xÿ E

Fr

�
;

yl � ÿ
�
2mjFlj

�h 2

�1=3�
x� E

jFlj
� �19�

are reduced to the equations

d2~cj�yj�
dy 2

j

ÿ yj~cj�yj� � 0 ; j � l; r �20�

for the new wave functions ~cj�yj� � cj�x� (x < 0 when j � l
and x > 0 when j � r). The general solutions of Eqns (20) are
expressed through the Airy functions of the first and second
kind [2, 31],

~cj�yj� � Cj Ai �yj� �Dj Bi �yj� ; j � l; r ; �21�

where Cj and Dj are arbitrary constants. Since yj !1 at
x! �1 and Bi �1� ! 1, the boundary conditions
~cj�1� � 0 (see (18)) are satisfied at Dj � 0 due to the
equality Ai �1� � 0. The constants Cj are found from the
normalization conditions and the continuity of the solution at
the point x � 0, while the quantization of the energy variable
E follows from the continuity condition for the first
derivatives of the wave functions at the same point, which,
taking into account Eqns (18), (19), and (21), can bewritten as

ÿjFlj1=3 Ai 0�yl�
Ai �yl�

�����
yl�ÿ E

jFl j
ÿ
2m jFl j

�h 2

�1=3 � F 1=3
r

Ai 0�yr�
Ai �yr�

�����
yr�ÿ E

Fr

ÿ
2mFr

�h 2

�1=3 ;
�22�

where Ai 0�y� is the derivative of the function Ai �y�.
We introduce the dimensionless variable

g � yl
yr
�
�

Fr

jFlj
�2=3

�
�
1ÿ �
1� �

�2=3

; �23�

which is equal to the ratio of the values of the variable y
substituted into Eqn (22) and is determined by the asymmetry
coefficient �. If we denote yr by y, then Eqn (22) takes the
form

Ai 0�~y�
Ai �~y�

����
~y � gy

� ���
g
p Ai 0�y�

Ai �y� � 0 : �24�

This equation has an infinite number of solutions. We assign
the index n � 0 to the smallest absolute negative value of y,
and number the remaining solutions with the integer index
n � 1; 2; . . . as jyj increases. Then, the desired energy spec-
trum En will be determined by the relation

En � ÿE�
�

2

1� �
�2=3

yn ; n � 0; 1; 2; . . . ; �25�

where the dimensional energy parameter E� is given by
Eqns (13), (16).

Note that, when the sign of the asymmetry coefficient is
reversed, �! ÿ�, the parameter g defined by Eqn (23)
becomes equal to its reciprocal value, g! gÿ1. In this case,
it follows from the structure of Eqn (24) that, since yn is a

Table. Energy spectrum En��� �in units E� � ��h 2F 2
� =2m�1=3� of a particle

in an infinite triangular potential well, calculated for different values of
asymmetry parameter (� � 0Ðsymmetric well, � � 1Ðextremely asym-
metric well) in semiclassical approximation and by solving the Schr�odinger
equation.

n

En���=E�
Semiclassical approximation

(Eqn (15))
Exact values [2, 30]

� < 1 � � 1 � � 0 � � 1

0 1.771 2.320 1.617 2.338

1 3.683 4.082 3.712 4.088

2 5.178 5.517 5.156 5.521

3 6.479 6.784 6.489 6.787
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function of the parameter g, and hence the asymmetry
parameter �, yn � yn���, we have yn�ÿ�� � gyn���. There-
fore, when replacing �! ÿ�, the transformation En�ÿ�� �
En��� takes place, as should follow from the symmetry
condition.

Let us proceed to the analysis of the solution of Eqn (24).
When � � 0, it follows from relation (23) that g � 1, so that yn
are the roots of the equation Ai 0�y� � 0. Using the tabular
values of these roots and multiplying them by 22=3, according
to Eqn (25), we arrive at the values presented for En�0�=E� in
the penultimate column of the Table, corresponding to the
exact values at � � 0. At � � 1, we have g � 0. Since the ratio
Ai 0�0�=Ai �0� �ÿ0:7290 is not equal to zero, the roots of
Eqn (24) can only be the roots of the equation Ai �y� � 0
Denoting these roots by zn, we find that, according to (25),
En�1�=E� � ÿyn�ÿzn. The numerical values at ��1 are
presented in the last column of the Table. To clarify the
asymptotic behavior of the function En��� at �! 1, we
expand the function Ai �y� in a series in yÿ zn and use the
approximate equality Ai �y� � Ai 0�zn��yÿ zn�. Substituting
it into Eqn (24), we obtain yn � zn ÿ �Ai �0�=Ai 0�0�� ���gp ,
whence, taking into account (25), we obtain

En���
E�

�
�!1

En�1�
E�

ÿ 2ÿ1=3
Ai�0�
Ai 0�0� �1ÿ ��

1=3

� ÿzn � 1:089 �1ÿ ��1=3 : �26�

It follows from this expression that the energy spectrumEn���
is characterized by an infinite derivative E 0n��) at �! 1.

For numerical calculation of the dependence of the energy
spectrum on the asymmetry parameter of the potential well, it
is necessary to determine the boundaries of possible values of
the roots of Eqn (24) for different values of � from the interval
�0; 1�. It is clear that these roots yn are negative and are
bounded by the values of zn and zn=g, at which the Airy
functions Ai �y� and Ai �gy� vanish. For example, the value of
y0 is bounded by the interval �zn; 0� at any �, and y1 falls into
the interval �z0=g; z0� at � < 0:3961 and into the interval
�z1; z0� at �>0:3961. As the quantum number n increases,
the number of intervals bounded by different values of zn and
zn=g increases. The calculations performed showed that the
functions En��� change slowly with changing �, except for a
narrow region near the value � � 1. Since the values of En���
change significantly with changes in the quantum number n
compared to the changes following changes in � (see Table), it
is reasonable to represent the dependences En��� as measured
from En�0� (Fig. 3). The dependence of the energy of the
ground state E0 on the asymmetry parameter � is mono-
tonically increasing, whereas the dependences En��� for
n�1; 2; 3 are described by nonmonotonic functions. In this
case, the curve corresponding to n � 1 has two nonmonotonic
regions, to n � 2, three regions, and to n � 3, four regions. In
accordance with formula (26), near the point � � 1, the
functions En��� have a first derivative tending to infinity.

Expressions for the wave functions cn�x� in each half-
space follow from relations (18)±(21), (23)±(25):

cn�x��
Cn Ai

��
2

1� �
�1=3�

x

x�

�
�yn

�
; x > 0 ,

Cn
Ai �yn�
Ai �gyn� Ai

�
ÿ
�

2

1ÿ �
�1=3�

x

x�

�
�yn

�
; x < 0 :

8>>>><>>>>:
�27�

Here,

x� � E�
F�
�
�

�h 2

2mF�

�1=3

; �28�

and the constant Cn is easily found from the normalization
conditions in (18):

Cn � xÿ1=2�

�
1� �
2

�1=3�
Ai 0 2 �yn� ÿ yn Ai2 �yn�

�ÿ1=2
; �29�

which takes into account the identity�1
y

dxAi2 �x� � Ai 0 2 �y� ÿ yAi2 �y� ; �30�

following from the differential equation (20).
The energy levels En and the probability densities of

finding a particle at point x in states with n � 0; 1; 2; 3 at
� � 0:8 are shown in Fig. 4. The probabilities of finding a
particle in the left and right sub-barrier regions depend on
the slopes of the sides of the triangular well. This explains
the occurrence of dependences of En on the asymmetry
parameter �. For a mathematical justification of this
statement, we calculate, for example, the dependence of
the probabilities of finding a particle in the left and right
sub-barrier regions on the asymmetry parameter � at

0.8

0.6

0.4

0.2

ÿ0.2

�E
n
��
�ÿ

E
n
�0
��=

E
�

0

0 0.2 0.4 0.6 0.8 1.0
�

n � 0

n � 2

n � 3

n � 1

Figure 3. Relative changes in spectrum En��� as functions of asymmetry

parameter �.

E
n
=
E
�

ÿ1 0 1 2 x=x�

n � 3

n � 2

n � 1

n � 0

3 4 5 6

8

6

4

2

0

Figure 4. Energy levels En and corresponding probability densities of

detecting a particle at point x in states with n � 0; 1; 2; 3 at � � 0:8.
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n � 0:

Pr �
�1
xr

dx jc0�x�j2 �
1� �
2

Ai 0 2 �0�
Ai 0 2 �y0� ÿ y0 Ai 2 �y0�

;

Pl

Pr
� ���

g
p Ai2 �y0�

Ai2 �gy0�
: �31�

The dependences of Pr and Pl on � are plotted in Fig. 5. It
follows that the probability of penetrating the barrier
becomes greater as the slope of the linear function describing
this barrier becomes smaller. The probabilities of penetrating
the left and right barriers are the same for the symmetric case
� � 0 and differ most in the extremely asymmetric case � � 1,
when the particle cannot pass through the vertical barrier
(Pl � 0).

Let us return to the analysis of Fig. 3. For excited levels
n � 1; 2; 3, a new factor appears that influences the degree of
particle penetration into the sub-barrier regionÐ the proxi-
mity to it of one of the wave function zeros, whose position
depends on the asymmetry parameter �. Since the number of
zeros of the wave function coincides with the level number n,
the probabilities of particle penetration under the barriers
become dependent on n. Therefore, in the dependence of the
energy spectrum on �, one can expect the emergence of
nonmonotonic regions, the number of which is equal to the
level number n. This is observed in Fig. 3. In addition, with
increasing n, the dependence of the energy levels on � becomes
less pronounced, which agrees with the correspondence
principle, according to which the separations between
neighboring levels, determined by the classical frequency of
motion, do not depend on �.

4. Application of the obtained results
to ratchet systems

The most popular model potential used to describe ratchet
systems is the periodic sawtooth potential (let the widths of its
sections be l andLÿ l,L being the period) [11±16, 20]. It is for
such a potential that the asymmetry (by the parameter
� � 2l=Lÿ 1), which is the main parameter of ratchet
systems, is most easily specified. Each period of the sawtooth
potential contains a triangular well and a triangular barrier.
For clarity, let us imagine that Fig. 2 depicts such a well of
depth V0, which simultaneously determines the barrier
height. In Section 2, using the Morse potential as an
example, it was shown that, when the energy quantum �ho0

is small compared to the potential well depth, the positions of

the lower energy levels are determined by the shape of the
potential curve near its minimum. For a smooth curve, such a
shape is a parabola with sufficient accuracy, and the lower
energy levels at �ho0=4V0 5 1 are described by expression (7)
for the spectrum of a harmonic oscillator. It is clear that, for a
V-shaped well of depthV0, the lower levels at E�5V0 (where
E� is defined by the relations (13), (16)) 6 should be described
by the energy spectrum of an infinite V-shaped well (25).

Since the parameter V0 is the height of the sawtooth
potential barrier, the condition E�5V0 simultaneously
ensures the possibility of using Gamow's formula [32±35] to
describe the tunneling current arising in a ratchet system with
such a potential at zero temperature (a rigorous proof of this
formula and corrections to it are given in Ref. [36]). It turns
out that the result of calculating the tunneling current does
not depend on the parameter l and, therefore, on the barrier
asymmetry. Only the barrier heightV0 and the tunneling path
L determine the tunneling current:

J � A exp

�
ÿ 4L

������������
2mV0

p
3�h

�
: �32�

The pre-exponential factor A can be omitted if only the
exponential behavior of fluxes is of interest. 7 The absence of
a dependence on the barrier asymmetry in Eqn (32) once
again points to the determining role of the length of particle
penetration into the sub-barrier region as a factor that
characterizes the ratchets under discussion.

In [22, 23], the tunnel flux of particles arising in a sawtooth
periodic potential under the action of adiabatic dichotomous
fluctuations of a homogeneous external force was calculated
based on formula (32). As mentioned above, systems with a
mechanism for the occurrence of directed motion due to
fluctuations of the applied force with a zero mean value are
classified as so-called `rocking ratchets.' A modern classifica-
tion of ratchets can be found in review [20]. The functioning of
ratchets of this type is ensured by the asymmetry of the
steady-state periodic potential profile V�x�, modified by
dichotomous fluctuations of the external force �F. Then,
for F > 0, in a state of duration t� in the inclined potential
profile U��x� � V�x� ÿ Fx, a positive particle flux J�F �
arises. In a state of duration tÿ in the potential profile
Uÿ�x� � V�x� � Fx with the opposite slope, the negative
particle flux J�ÿF � arises. For a symmetric dichotomous
process with equal state durations (t� � tÿ), the time average
value of the applied force is zero, but the average flux
J � �J�F � � J�ÿF ��=2 may be nonzero. This situation arises
if the function V�x� does not belong to the class of spatially
symmetric periodic functions, the strict definition and the
properties of which are presented in [37]. Tunneling currents
of different signs can also arise at low temperatures in ratchets
of another type, functioning due to fluctuations of the
periodic potential profiles themselves, not belonging to the
class of spatially symmetric ones [38].

0.14
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P
l

Pr

Pl

0.12

0.10

0.08
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0.04

0.02

0 0.2 0.4 0.6 0.8 1.0
�

Figure 5. Probabilities of finding a particle in left and right subbarrier

regions as functions of asymmetry parameter � at n � 0.

6 This inequality can also be rewritten as a quasi-classicality condition (see

footnote 3) ldB � 2p�h=�2mV0�1=2 5 x�, where x� is the characteristic

width of the triangular well at the zero-point energy level, determined by

relation (28).
7 It is known that the pre-exponential factor changes its value when the

potential energy curve becomes vertical, but the exponent in (32) does not

depend on this. Therefore, the transmission coefficient through a trian-

gular potential barrier with a vertical wall (see problem 1 after æ 50 in [3])

has the same form, although expression (32) is obtained for a triangular

barrier of arbitrary symmetry.
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Since in this paper we discuss piecewise linear forms of
potential profiles, we will continue the analysis of sawtooth
potentials V�x�. While the tunneling current through any
barrier of an unperturbed sawtooth potential V�x� does not
depend on its asymmetry, fluxes through barriers of poten-
tials U��x� perturbed by applied forces �F become depend-
ent on it, for two reasons. The first is the change in the slopes
of the rectilinear sections of the sawtooth potential and the
values of its minima by the applied forces. Indeed, the values
of the minima of the initial function V�x� are the same,
whereas the minima of the functions U��x� closest to any
maximum become different: one of them is higher and the
other is lower than the initial one (see the insets in Fig. 6).
Therefore, the application of forces lowers one of the barriers
surrounding the potential well, and it is through this barrier
that the tunnel current flows. Since due to the asymmetry of
the initial profile V�x� the values of the barriers and tunnel
paths in the potentials U��x� and Uÿ�x� are different, the
tunnel fluxes in them will be different in absolute value and
opposite in direction. Therefore, when averaging, there is no
compensation of fluxes; a nonzero average flux arises, which
indicates the presence of the ratchet effect (rectification of
nonequilibrium fluctuations due to the asymmetry of the
system).

Thus, the first reason for the dependence of tunnel
currents on the asymmetry coefficient is the different
distortion of the shape of the initial periodic potential profile
V�x�with symmetric fluctuations of the acting force due to its
spatial asymmetry. Assuming for simplicity that tunneling
occurs from the minima of the potential profiles U��x�, it is
easy to calculate the average tunneling current using formula
(32). In this case, the barrier and tunneling path will differ
from the parameters V0 and L, by taking into account the
distortions introduced by the applied forces �F. Since such
distortions are different for different barrier asymmetries

characterized by the parameter l, the average tunneling
current will also depend on l. The results of the described
calculation are presented in [22] to show that the reversal of
the direction of the tunneling current arising at low tempera-
tures relative to the thermally activated flux at high
temperatures, theoretically predicted in [39] and experimen-
tally confirmed in [40, 41], can occur only at relatively small
values of the fluctuating force F. In Figure 6, the lower curve
displays the dependence of the flux J0 on the asymmetry
parameter � � 2l=Lÿ 1 �here, L is the period of the sawtooth
potential V�x�� for the boundary value of the force
FL=V0 � �

���
5
p ÿ 1�=2 � 0:618, at which J0 < 0 for all �

except for the limiting values � � 0 and � � 1. An increase
in F relative to this boundary value leads to an alternating
dependence of J0 on � in the range 0:618 < FL=V0 < 2=3 �
0:667, and at FL=V0 > 0:667 to positive J0 for any �, as in the
case of thermally activated overcoming the barriers.

The second reason for the dependence of tunnel fluxes on
the asymmetry coefficient is the dependence of the particle
energy spectrum on it. Within the same approximation
E�5V0, the lower energy levels of a particle in the sawtooth
potential approximately coincide with the levels in an infinite
triangular well of the same asymmetry. Therefore, to describe
tunneling from the lower levels of zero-point oscillations of
the potential U��x�, we can use the results of the previous
section, in particular, Eqn (25) with n � 0. The tunnel paths in
these potentials are shown by arrows in the insets to Fig. 6. In
Ref. [23], the contribution of zero-point oscillations to the
boundary values of the fluctuating force was analyzed. Here,
the dependence of J on � is presented, corresponding to the
above-mentioned boundary value of the fluctuating force
(FL=V0 � 0:618) but considering the contribution of the
energy of zero-point oscillations (the upper curve in Fig. 6).

Let us compare the upper and lower curves in Fig. 6. First
of all, we note that taking into account zero-point oscillations
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Figure 6. Dependences of tunneling current of a ratchet with fluctuating force on asymmetry parameter � � 2l=Lÿ 1 of sawtooth potential, calculated

without (lower curve J0) and with (upper curve J ) zero-point oscillations at FL=V0 � 0:618 and E�=V0 � 0:1. Insets show changes in the shape of

asymmetric sawtooth potential caused by applied forces and leading to changes in energy barriers and tunneling paths (shown by arrows). Due to zero-

point oscillations with energy levels E0, heights of barriers that particle overcomes during tunneling are smaller than initial barriers measured relative to

bottom of potential wells.
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during tunneling significantly increases the values of the
tunneling current. This result is well known and is explained
by the fact that the energy barrier measured from the levels of
zero-point oscillations is smaller than the one measured from
the bottom of the potential well. Although such a change is
small compared to the barrier height, the exponential
dependence of the tunneling current on the barrier value can
make the contribution of this change to the tunneling current
value quite large [42]. An additional increase in the current
values is due to the fact that the ratchet effect, as a
consequence of compensation of differently directed particle
fluxes in two states of the dichotomous process, is very
sensitive even to small changes in the system parameters [20].

The most impressive difference between the curves under
discussion is that they correspond to dependences of the
opposite sign, so taking into account zero-point oscillations
not only significantly increases the ratchet effect but can also
reverse the direction of tunneling. In this case, the contribu-
tion to the flux due to the dependence of the energy spectrum
on the asymmetry of the potential profile dominates the
contribution due to the simple distortion of the barrier
shape by the applied field. Indeed, the nonmonotonic
function J0��� with a minimum at � � 0:7 has no singula-
rities, whereas the dependence J ��� is characterized by an
infinite derivative at �! 1, which is a consequence of the
particle not penetrating through the vertical potential barrier.

5. Conclusion

In these methodical notes, the problem of the energy
spectrum of a quantum particle in an infinite triangular
(V-shaped) potential well with an arbitrary asymmetry
coefficient � varying from zero (for the symmetric well) to
unity (for the extremely asymmetric well) is exactly solved.
The relationship between the obtained dependence of the
energy spectrum on the asymmetry coefficient and the depth
of penetration of a quantumparticle into classically forbidden
regions is shown. The evaluation of the energy spectrum from
the Bohr±Sommerfeld quantization rule using the classical
approach for determining the oscillation frequency does not
take into account the penetration of particles into subbarrier
regions. Therefore, the dependence on the well asymmetry
parameter is absent for any geometry, except the special case
of the vertical wall, � � 1, for which the semiclassical
approach is characterized by a special boundary condition.

The results obtained for the energy spectrumof a particle in
an infinite triangular well within the semiclassical approxima-
tion are also valid for awell of finite depth ifwe are interested in
the spectrum only near well's bottom. This circumstance, as
well as the use of theGamow formula, allowsus to calculate the
tunneling current of ratchet systems of the `rocking' type,
operating in a sawtooth potential (containing both triangular
potential wells and triangular barriers) under the action of a
fluctuating homogeneous force. The dependence of the ratchet
tunneling current on the potential asymmetry coefficient is due
to two mechanisms: the distortion of the shape of the original
asymmetric triangular barrier by symmetric fluctuations of the
force and the dependence of the energy spectrumof a particle in
triangular wells of the sawtooth potential profile on this
coefficient, with the second mechanism dominating the first.
It is shown that, with a certain selection of parameters of the
Brownian ratchet, considering the second mechanism can not
only significantly increase the ratchet effect, but also reverse the
direction of motion of tunneling particles.

Especially noted should be the role of the regions of
subbarrier penetration of a particle in the formation of the
dependence of its energy spectrum on the asymmetry of the
V-shaped potential well. Considering such a dependence is
extremely important in studying the characteristics of
quantum Brownian motors, the properties of which are
determined by the asymmetry of the potential profile.

The study was partially carried out within the framework
of the State Scientific Research Program of the Republic of
Belarus, Photonics and Electronics for Innovations (Project
1.17.1. Modeling and Creation of Photonic and Optoelec-
tronicNanostructures Based onGraphene-LikeMaterials for
Controlling Optical Radiation), as well as within the frame-
work of the task of the Ministry of Science and Higher
Education of the Russian Federation (registration number
122040500071-0).
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