
Abstract. The model of the Kerr±Newman (KN) electron gen-
erated by the superrotating gravitational field of a black hole is
modified to a radiating black±white hole that both absorbs and
emits electromagnetic waves. Following quantum electrody-
namics (QED), we consider the KN solution to be either a bare
electron model or a dressed electron model, where the bare
electron forms a classical massless relativistic string responsi-
ble for the wave properties of the electron as a quantum particle,
while the dressed electron forms a heavy electron±positron
vacuum core dressed by the KN gravitational field due to the
formation of electron and positron Wilson loops. Within the
framework of the Kerr±Schild formalism, a class of radiating
KN solutions is considered, whereby the electromagnetic field is
absorbed by the black hole and at the same time radiated away
by its white side.

Keywords: semiclassical gravity, electron as a black hole,
Wilson loops, radiating Kerr solution, QED, supersymme-
try, Kerr±Newman electrons, classical relativistic strings,
bare electron, dressed electron

1. Introduction

Uniting gravity and quantum theory is probably the main
unsolved problem of modern theoretical physics.

A revolutionary step towards unifying quantum theory
with gravity wasmade in superstring theory, which considered
particles as extended strings. A counterapproachÐ to con-
sider black holes as elementary particlesÐhas been repeat-
edly proposed since 1980, and since the 1990s it has also
attracted attention in superstring theory. However, as John

Schwartz, one of the founders of superstring theory, wrote,
``...since 1974, superstring theory has ceased to be considered
particle physics...'' and ``...a complete and realistic model of
elementary particles still appears to be a distant dream...'' [1].

Interest in the connections among black holes, strings,
and elementary particles arose soon after the discovery of the
Kerr and Kerr±Newman (KN) solutions [2±5].

An alternative to superstring theory is loop quantum
gravity.

These two approaches to the problem of the interaction of
gravity and quantum theory are well known and have been
widely discussed, although they are criticized, because they
are not confirmed experimentally and do not yield new
results.

Meanwhile, a third area of research related to the KN
solution has also been discussed for more than 50 years [6±8]
and has recently attracted attention as a development of a
model of an elementary quantum particle (electron) in the
form of an over-rotating Kerr±Newman black hole [3, 9±19,
21, 22].

Following the arguments of Roger Penrose [23], this third
line of research, in contrast to the traditional directions of
`quantization of gravity,' could be called `gravitization of
quantum mechanics,' and recently a series of studies have
appeared in which different versions of such gravitization are
proposed [24, 25]. The closest approach to the KN black-hole
modification in question is discussed in [26] and related
papers [27, 28].

One of themost important issues in the new interpretation
of a quantum particle as an over-rotating KN black hole is
again the string model, but this is a classical relativistic string
that arises in four dimensions as a classical solution of the
Einstein±Maxwell equations rather than superstring theory
of multidimensional quantum gravity.

The formation of black holes is associated with the
gravitational effect of space dragging [29], which has never
been considered before in particle physics. This effect turns
out to be truly nontrivial and very important for under-
standing the governing physics behind the interaction of
gravity and quantum theory, because it endows an electron
with additional magnetic mass-energy generated by Wilson
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loops related to the gravitational dragging of space in a
rotating KN black hole.

Electromagnetic excitations of a ring string are a source of
an electron wave function, while a gravitational field
interacting with a wave solves one of the main controversial
problems of quantum theoryÐwave function reduction at
the end point of its linear evolution [23].

The contradiction between quantum theory and gravity is
most acute in the theory of the electron. Dirac's quantum
theory presents an electron as a point mathematical object, a
hybrid of a wave and a particle, while gravity requires an
extended distribution of matter in space and time.

The assumption that particles are black holes was first
independently expressed by some famous physicists (Nobel
laureates): Abdus Salam, Frank Wilczek, and Gerard't
Hooft. These early ideas concerned only the Schwarzschild
solution, whose properties are very far from those of the
rotating Kerr solution, and had almost nothing to do with the
model of a rotating KN black hole.

The consideration of a Kerr black hole as a model of an
electron begins with the work of Carter [3] (1968), who found
that the Kerr±Newman solution (charged Kerr metric) has
the same gyromagnetic ratio (g � 2) as that of the Dirac
electron.

In contrast to the gravitational radius of the Schwarzs-
child solution, lS � gm=c 2, the effective zone of gravitational
interaction in the KN solution is determined by the radius of
the Kerr singular ring,

a � L

mc
; �1�

which is inversely proportional to the mass m and directly
proportional to the angular momentum L. For the para-
meters of an electron with mass m and spin L � �h=2, the
rotation parameter �a � �h=2mc� is equal to half the Compton
wavelength, and the usual arguments about the exclusive role
of the Planck length (see, for example, [30]) turn out to be
invalid.

The `nonpointness' of the electron as amodel of the Kerr±
Newman black hole is an important surprise that connects the
KN electron with relativistic string models. In the Kerr±
Schild coordinates x m � �t; x; y; z�, m � �0; i�, and i � �1; 2; 3�
[10], related to the auxiliary asymptotically flat Minkowski
space

Zmn � diag �ÿ1; 1; 1; 1� ; �2�

the KN solution describes the classical gravitational field of a
ring string of half the Compton radius a (Figs 1 and 2), which
rotates relativistically, dragging light cones in the principal
null (light) direction of a twisted Kerr congruence.

The Compton size of the electron was also noted by Israel
[12], and later by L�opez [13] and others, and this is not at all a
harmless fact, since the Compton scale of 10ÿ11 cm, being a
natural scale for particle physics, is 22 orders of magnitude
greater than the traditional Planck scale of 10ÿ33 cm, on
which both quantum loop gravity and superstring theory are
based.

Following Carter, the KN electron model was considered
in detail in the fundamental work ofDebney,Kerr, and Schild
(DKS) [10] and then in important studies by Israel [12] and
L�opez [13], as well as in themodels [14, 15] based onWheeler's
idea of `mass withoutmass' and the analogy of a singularKerr
ring with a classical Nielsen±Olesen string [31].

Results of these studies were taken into account in a
series of papers [17±19], where the electron model was
considered a superconducting `bag' (by analogy with MIT-
and SLAC-bag models), having the shape of a very thin
superconducting Kerr disk with a thickness of� a=137 and a
radius a equal to half the Compton wavelength of the
electron (Figs 3 and 4).

The Kerr disk produced a vacuum core of an electron
bordered by a Wilson loop, which is formed by gravitational
dragging of the electromagnetic potential (frame-dragging)
near the singular ring. (See also Figs 5 and 6 illustrating the
dragging of space by the tilt of light cones in the direction of
disk rotation [32].) By its nature, the KN electron model is
consistent with classical gravity as an exact solution to the
Einstein±Maxwell system of equations for interacting grav-
itational and electromagnetic fields:

Rmn � ÿ8pTmn ; �3�

Tmn � 1

4p

�
Fml F

l
n ÿ

1

4
gmn FlK F
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�
; �4�
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Figure 1. Singular ring of KN solution as a string and as a focusing line of

light congruence with a twist, which analytically passes from a positive

sheet r > 0 to a negative sheet r < 0 of KN solution.
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gravitational dragging of space near singular Kerr ring.
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and the exact solution of this system of equations in the form
of a ring relativistic KN string inKerr±Schild coordinates [10]
(hereinafter referred to as DKS) resolves the seemingly
insurmountable contradiction between gravity and quantum
theory:

(1) a point-like structureless electron of quantum theory is
incompatible with gravity;

(2) an extended gravitating electron is incompatible with
quantum theory.

However, a massless ring relativistic string represented in
the Kerr±Schild world coordinates �x; y; z; t� as a state vector
in the Heisenberg picture removes this contradiction. During
relativistic rotation of the Kerr disk, the string is compressed
into a quantum dot under the action of Lorentz transforma-
tions, generating a wave function attached to a point electron
in the Schr�odinger picture, in accordance with the interpreta-
tion of quantum theory in Bohm±de Broglie's pilot wave
model [33].

The gravitational KN field turns out to be the field of a
relativistically rotating disk [12, 34], which has long attracted
attention as a field ``...arising during the transition to a
uniformly rotating reference system...'' [35, æ 89] and as a
field ``...in which dynamical properties of a `particle' with
space-time coordinates depends on a proper-time para-
meter...'' [36]. The process of experimental determination of
the coordinates and size of a relativistically rotating disk,

carried out by light scattering (photons), will not correspond
to the theoretical description of the disk boundary in world
coordinates �x; y; z; t�, since it is strongly distorted by the
influence of proper time t � ds=c.

The regularized L�opez electron forms a vacuum disk
(bubble) of thickness 2re and radius a, equal to half the
Compton wavelength (1) (see Figs. 3 and 4). The flat core of
the L�opez electron preserves the external gravitational and
electromagnetic field of the KN solution, acquiring an
internal metric of Minkowski space at r < re � e 2=2m. The
boundary of a regularized Kerr disk is the line of the
Ginzburg±Landau phase transition [37], interpolating
between the outer classical region of the gravitational and
electromagnetic fields and the superconducting electron core.

The L�opez regularization actually defines the boundary
between the zone of action of classical and quantum physics
as a line of the phase transition of theHiggsmechanism [40] to
the supersymmetric vacuum state inside the electron core. The
vector potential, which forms the ring string and the Wilson
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loop discovered in [38, 39], dragged by the gravitational KN
field, is also concentrated at the L�opez boundary.

In our paper [19], we first noted that the supersymmetric
phase transition that forms the superconducting vacuum state
is associated with two boundary surfaces of the Kerr disk r�e
rather than with one, which can be interpreted as electron and
positron boundaries (Figs 7 and 8). This clearly indicated a
connection between the KN electron and quantum electro-
dynamics and was confirmed by the supersymmetric form of
the Higgs mechanism [40], which necessarily arises during the
formation of the vacuum core of the electron.

As was shown later in [7, 8], regularization of the
supersymmetric KN solution forms two boundaries of the
vacuum coreÐelectron and positron boundary, while two
correspondingWilson loops produce a monopole±antimono-
pole pair, generating a strong magnetic coupling between the
electron and positron sides of the Kerr disk.

On the other hand, the connection of the KN solution
with quantum electrodynamics (QED), which is suggested by
the effectiveness of the supersymmetry mechanism in the
structure of the KN solution, assumes that QED-like
separation of the electron mass formation mechanism into a
bare electron mass and a dressed electron mass may prove
fruitful in the structure of the KN solution as well. Indeed, we
find that the mass generated by the classical relativistic string
can be identified as the bare electron mass, while the mass
generated by supersymmetry and Higgs fields requires
renormalization according to QED. Thus, we find that the
boundary between bare and dressed electrons is closely
related to the one between the classical and quantum
theories.

The bare electron is produced by classical Kerr±Schild
gravity as a singular massless ring string in the Heisenberg
representation. The string acquires mass under relativistic
rotation by a unitary factor, and is compressed into a point
electron corresponding to the wave function in the Schr�odin-
ger representation.

The dressed electron is produced by supersymmetric Higgs
fields, which generate a phase transition consistent with QED
[40] from the classical external field to the supersymmetric
vacuum state of the KN electron core [19], which also
implements the Ginzburg±Landau phase transition [37] to
the superconducting state inside the electron core.

The mass-energy of the dressed electron is produced by
the infinite gravitational and electromagnetic energy of a
singular Kerr ring, in which the L�opez regularization gives
rise to electron and positron boundaries r�e , and two Wilson
loops formed on these boundaries transform the singular
excess of gravitational and electromagnetic energy into the
energy of the boundmonopole and antimonopole by forming
a strong magnetic interaction of the electron and positron
vacuum.

2. Kerr±Newman metric as a black-white hole

The singular Kerr ring is a line of branching space into two
sheets, and the KN solution with electron parameters is not
really a black hole, because, for typical parameters of
elementary particles, the superextremality condition
a 2 4 e 2 �m 2 is satisfied, under which the horizons of the
black hole disappear and the singular ring of the Kerr±
Newman black hole turns out to be naked, not closed by a
horizon.

Even before Carter's first paper on the KN solution as a
model of an electron [3], the two-sheet topology of the KN
solution was criticized by Newman and Janis [11], and in the
subsequent paper by Israel [12], the second sheet of the KN
solution was cut off and replaced by a special distribution of
matter chosen in accordance with Einstein's equations (3).
The KN solution free of the second sheet was then considered
by L�opez [13] and later by Hamity [34] and many other
researchers.

This slowed down the development of the KN electron
model, and only in our papers of 2022±2023 [7, 8, 41] did we
come to the conclusion that the second sheet of theKNsolution
is a positron sheet, forming an electron±positron vacuum in
accordance with theQED structure. ThemodifiedKNsolution
should not be considered a black hole, but rather a combination
of a WHITE and a BLACK hole in the form of an `Einstein±
Rosen bridge' [42], i.e., a solution, whereby the incoming
electromagnetic (EM) field is not only absorbed by a BLACK
hole (see Fig. 7), but also radiated away by itsWHITE side (see
Fig. 8). The KN solution must become radiating and not only
absorb the incoming EM field, but also resonate with it,
generating the Schr�odinger equation wave function, and then
radiate it away as the outgoing EM field of the WHITE hole.
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The `negative' sheet of the KN solution, cut off by Israel
and L�opez, is not superfluous, and in the Cartesian coordi-
nates of the auxiliary Minkowski space x m � �t; x; y; z� (with
the signature ÿ���), the Kerr±Schild metric [10] takes a
modified form: *

g�mn � Zmn � 2Hk�m k
�
n ; �5�

in which the scalar function H of the KN solution has the
form

HKN � mrÿ e 2=2

r 2 � a 2 cos2 y
: �6�

The Kerr congruence km described by the null (light-like)
vector field km�x� (kmk m � 0) splits into two directions k�m ,
allowing both the `past' (minus sign) and the `future' (plus
sign) space-time to be described as functions of the direction
of the Kerr congruence: k�m for the BLACK sheet of the
metric (see Fig. 7), absorbing the incoming radiation, and the
outgoing Kerr congruence for the WHITE radiating sheet of
the modified KN solution (see Fig. 8).

The vector potential of the regularized KN solution
depends on the direction of the Kerr congruence k�m �x m�:

A�m �
�er

r 2 � a 2 cos 2 y
k�m ; �7�

as well as on the position of the core boundary r�e � e 2=2m
(or rÿe � ÿe 2=2m) and the sign of the charge e.

The angular Kerr coordinates �r; y;fK� related to the
Cartesian coordinates of the auxiliary Minkowski space
�t; x; y; z� by expressions corresponding to an oblate spher-
oidal coordinate system [10] are also split into relations for the
incoming and outgoing solution:

x� iy � �r� ia� exp fif�Kg sin y;
z � r cos y; r� � �rÿ t ; �8�

where the coordinate r� � rÿ t is the `retarded' time
coordinate, and the coordinate rÿ � ÿrÿ t is the
`advanced' time coordinate.

A topologically nontrivial two-sheet KN solution is
formed by the analytical transition of the Kerr congruence
from the negative sheet of the KNmetric through the singular
Kerr ring r � 0 to the positive sheet (see Fig. 1), r� ! rÿ

through the throat r � 0, and we associate the positive sheet
r � r� and the negative sheet r � rÿ with the electron field
and the positron field, respectively.

The vector potential A�m of the regularized KN solution
takes a maximum value Amax�

m in the equatorial plane
cos y � 0 and is dragged by the gravitational field in the
direction of the outgoing congruence k�, forming a WHITE
(electron) Wilson loop fK 2 �0; 2p�, while the potential Aÿm ,
oppositely charged and dragged by the incoming congruence

kÿ in the opposite direction, forms a BLACK (positron)
Wilson loop with the opposite magnetic effect (see Figs 7 and
8). In [43, 44], the black and white boundaries located in the
equatorial plane of the Kerr disk are considered to be two
half-strings of a single ring string system.

As will be shown in Section 4, black and white Wilson
loops produce a gravitationally dressed vacuum state of the
KN electron, which forms a strongly coupledmagnetic pair of
a monopole and an antimonopole.

The electrostatic energy of the Wilson loops is partially
reduced, and the uncompensated remainder in the form of the
electrostatic component of the retarded potential A�t �r�
forms the mass-energy of the electron in accordance with the
well-known relation [35, 45]

m � U � e

2

�1
re

At �r� dr : �9�

The exact KN solution was obtained by Debney, Kerr,
and Schild [10], who described the Kerr congruence by the
differential form

km dx
m � du� �Y dz� Y d�zÿ Y �Y du �10�

in the null Cartesian coordinates of Minkowski space:

2 1=2 z � x� iy ; 21=2 �z � xÿ iy ;

21=2 u � z� t ; 21=2 v � zÿ t : �11�

The function Y �x��x 2M4) plays a central role in [10] and is
determined by the Kerr theorem (see Section 5). 1

The two solutionsY �x�� determined by theKerr theorem
yield two Kerr congruences: outgoing k�, associated with
emission by the white (electron) side in the KN solution, and
incoming kÿ, associated with absorption of emission by the
black (positron) side in the KN solution.

The one-forms k� for the angular Kerr coordinates take
the form

k�m dx m � �drÿ dt� a sin2 y df�K ; �12�

in which k� and kÿ are related by spatial reflection a! ÿa
with a change in the angular direction fK ! ÿfK, and the
corresponding potentials of the electron and positron fields
A� and Aÿ are related by an additional change of the sign of
the charge e! ÿe.

The relativistic ring string, which is the main feature of the
KN solution, is formed by a simple algebraic transformation
(`trick,' as described in [48]) of the classical spherically
symmetric harmonic solution, in particular for the coupled
system of gravitational and electromagnetic fields. This `trick'
transforms the point harmonic solution, represented in the
Cartesian coordinate system f�t; x; y; z� by a complex
coordinate shift f�t; x; y; z� ! f�t; x; y; z� ia�, to a new
solution in the form of a relativistic ring string. It was
discovered by P Appell and described in a very short note
[49] back in 1887, long before the discovery of the KN
solution (see also [41]). The Appell complex shift forms a
complex radial coordinate ~r � r� ia cos y, which defines the
relationship between the spheroidal Kerr±Schild coordinates
rK, yK, fK and the Cartesian coordinates (t, x, y, z), and also

1Although the function Y �x� runs through the entire text of Ref. [10],

there is no mention of the Kerr theorem. It is formulated as ``the Kerr

Theorem'' by Penrose [46] (see also [41]).

* TheKerr solution was first obtained byRoyKerr in 1963 in a dramatical

process of the investigation the twisted and shear-free metrics of type D of

the Petrov-Pirani classification (see R.P. Kerr, 2008, Discovering the Kerr

and Kerr±Schild metrics, arXiv:0706.1109v2 [gr-qc]). The obtained by

Newman et al. charged version of this solution, interpreted as field of a

rotating and charged mass, was criticized because of its two-sheeted

structure, see end note in [11]. Carter noted in [3] that the type D metrics

contains the incoming and outgoing congruences, allowing us to consider

the `past' and `future' metrics separately. (Author's note to English proof.)
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defines a complex conjugate structure by the transformation
f�t; x; y; z� ! f�t; x; y; zÿ ia�, describing both the incoming
and outgoing fields of the black and white sides in the KN
solution.

The positron sheet of themetric gÿmn carries a large negative
energy of the positron vacuum, including the Dirac sea of
states with E < 0, interacting with the gravitational KN field.
This energy, identified with the quantum Casimir effect, is
compensated for by the vacuum energy of the electron (states
with E > 0). Thus, the formation of the vacuum state of the
KN solution is not a purely classical gravitational effect, but
rather a consequence of semiclassical gravity, in which
Einstein's equations (3) are classical, but the energy-momen-
tum tensor (4) includes the quantum radiation of the Casimir
effect [26].

Vacuum excitations are compensated for in the KN
solution as a strong magnetic coupling of the electron sheet
with the positron one, resulting from the formation of a
monopole±antimonopole pair byWilson loops (see Section 4,
as well as paper [47], in which the vacuum polarization and
the production of virtual pairs are interpreted from the point
of view of dark matter).

The KN solution for a black hole corresponds to the
direction of the congruence into the black hole, while, in the
new electron model, both congruences, incoming kÿ and
outgoing k�, play an important role. In accordance with the
doubling of the Appell complex structure in two conjugate
directions of the complex shift, x m ! xm � iaz, two metrics
appear: incoming and outgoing.

3. Bare electron as a relativistic string
and a quantum particle

Israel's electron model is a classical stationary solution of the
Einstein±Maxwell equations in the form of a singular ring of
half the Compton radius, written in the Kerr±Schild coordi-
nate system at a fixed time t � t0 � const.

Hamity [34] demonstrated that the core of the Israel
electron rotates relativistically with an angular velocity 1=a,
and the edge of the Kerr disk moves with the speed of light,
realizing the well-known Landau±Lifshitz model [35, æ 89] of
the generation of a gravitational field on a uniformly rotating
disk. Therefore, the singular ring string forming the Kerr disk
must be amassless relativistic string, which, during relativistic
rotation, must contract and turn into a point under the action
of the Lorentz contraction [35].

In fact, Appell's algebraic `trick' is a realization of the
physical model of the classical KN solution and the geometry
of the relativistically rotating Landau±Lifshitz disk, which
connects the extended classical relativistic string with the
quantum point particle of the Schr�odinger equation. We
assume that the classical relativistic string has no mechanical
mass �mstr � 0�, and the mass-energy of the KN electron is
produced by the time component of the retarded potential (9),
while the spatial components of the potential Ai �i � 1; 2; 3�
are dragged by the gravitational field, forming aWilson loop,
which contracts to a point in the `proper-time' system, in
accordance with [35].

Thus, the extended string structure of the Israel electron
does not contradict the point electron of quantum theory,
eliminating the main obstacle in the problem of their
unification (see points 1 and 2 in the Introduction).

While the massless Kerr ring string satisfies the Nambu±
Goto equations as usual, it differs markedly from the strings

used in the well-known superstring theory in that it generates
mass by rotation, i.e., by longitudinal modes that are not
allowed in superstring theory. Such strings were considered in
[50, 51] as noncritical models of the classical Nambu±Goto
string.

The electron state vector jbrai is formed as an axial vector
in the Heisenberg representation with a fixed axis nz,
orthogonal to the equatorial plane of the KN solution,
parameterized by the Kerr angular coordinate fK 2 �0; 2p�.

The momentum operator p � p �tr� � p �s� is decomposed
into a translational part p �tr�, associated with the translation
of the electron as a whole, and an angular momentum
operator p �s� � nz q=qfK, associated with the rotation of the
ring string in the angular direction fK.

The state vectors in the Heisenberg and Schr�odinger
pictures are related by a unitary transformation [52]

jCS�x; t�i � exp �ÿiHt�jCH�f; t0�i ; �13�

which shows that the wave function of the Schr�odinger
equation is generated by the unitary rotation operator
U � exp �ÿiHt� acting on the static state of the ring string
jCH�f; t0�i, which, in the Heisenberg representation, corre-
sponds to a fixed time t � t0.

Assuming the translational part of the moment to be zero,
p �tr� � 0, and leaving only the longitudinal component p �s�

associated with the rotation of the string, H � E � p �s�, we
find that the unitary factor U � exp �ÿiHt� � exp �ÿip �s�t�
acting on the static state of the ringKerr string corresponds to
the kinetic energy of its rotation, and the wavesÐexcitations
of the ring Kerr stringÐturn out to be tied to the point state
of the Schr�odinger electron, realizing Bohm±de Broglie's pilot
wave model [33] for interpreting quantum theory.

Dirac equation. Following the standard derivation of
the Dirac equation, 2 we linearize the Hamiltonian H �
��p�2 �m 2

str�1=2 for a massless string, mstr � 0. In the basis of
g matrices gm � �g 0; g i�, i � 1; 2; 3, associated with the
auxiliary Minkowski space (2), the Hamiltonian splits into
positive- and negative-frequency parts,

H � �pi g i : �14�

Interaction with the electromagnetic field is introduced by the
gauge-invariant replacement p m ! p m ÿ eAm, under which
the expression for the Hamiltonian takes the form

H � ��pi � eA�i � g i ÿmstr g 0 : �15�

The mass term mstr is replaced by the electrostatic field of the
ring string located at the edge of the white (radiating) side in
the KN solution, corresponding to the field of the retarded
potential A� (9).

Since the negative sign in (14) is related to negative
frequencies of the wave function, it must correspond to the
covector of the state of the conjugate positron:

hCH�f; t0�j exp �iHt� � hCS �x; t�j : �16�

The Dirac equation takes the operator form

i�h
q
qt

c�fK; t� � �g xnx � g yny� q
qfK

c �fK; t� ; �17�

2We assume that c � 1.
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in which the matrices gm � �1; g i � are given in Cartesian
coordinates x m � �t; x; y; z� of the auxiliary Minkowski
space.

The spinor cp satisfies the Dirac equation�
gm
�

q
qxm
ÿ eAm

�
�mDir

�
cp � 0 : �18�

In the Weyl basis, the Dirac matrices have the form

gm � 0 sm

�sm 0

� �
; �19�

where the Dirac spinor contains two Weyl spinors:

cD�fK; t� �
wa
�c _a

� �
:

The two-component matrices gm in the Weyl representation
[40] allow one to split the Dirac equation and express the
solution in terms of two Weyl spinors wa�f�K � and �c _a�fÿK �,
which are parameterized by the Kerr angular coordinate fK

and form left jlefti and right hrightj half-strings of opposite
helicity in the Heisenberg representation.

The Dirac equation is divided into the positive-frequency
electron equation

p̂ms
m
a _a w

_a � ÿmDir ca �20�

and the negative-frequency positron equation

p̂msm _aa ca � ÿmDir w _a ; �21�
in which the mass term mDir is zero, because the mass-energy
of the KN electron is generated by a massless relativistic
string, additionally loaded with gravity, and the `mechanical'
contribution to the mass is absent.

Thus, the ring KN string is formed as the sum of the left
(electron) state vector jCH�fK; t0�i and the right (positron)
covector hCH�fK; t0�j, which together give two full turns of
the Kerr angular coordinate: the left turnf�K 2 �0; 2p� and the
oppositely oriented right turnfÿK 2 �ÿ2p; 0� of the closed ring
string. The left and right half-strings are synchronized by the
orientifold structure [43, 54] (Fig. 9), forming together a single
electron±positron vacuum state.

Formation of an orientifold. The closed four-dimensional
string Xm�t; s� � X m

L�t� s� � X m
R�tÿ s�, defined on the

segment S � �0; 2p�, is added and represented as the sum of
two open half-strings, in which the left modes X m

L are defined
on the segment s 2 �0; p�, and the right modes X m

R are defined
on the oppositely oriented segment s 2 �p; 2p�, with the
identification

X m
R �s� p� � X m

L �s� ; X m
L �s� p� � X m

R �s� : �22�

In this case, the projection s! afK=2 maps the left interval
sL 2 �0; p� onto the � boundary of the white Kerr disk
sL ! fK 2 �0; 2p�, corresponding to the electron half-string,
and maps the right interval sR 2 �p; 2p� onto the oppositely
oriented boundary of the blackKerr disk sR!fK 2 �ÿ2p; 0�,
which forms the positron half-string of the electron-positron
vacuum core of the electron.

Thus, the Dirac equation is mapped onto right and left
ring half-strings, parameterized by the Kerr angular coordi-
nates f�K and fÿK , as was assumed in [44].

4. Wilson loops and generation
of strong magnetic coupling

In the regularized KN solution, the flat superconducting core
of the KN electron is formed by two surfaces B� (white and
black), which are fixed by the L�opez cutoff parameter r � re
and separate the vacuum core zone from the external
gravitational and electromagnetic fields. At the same time,
at the edge of the Kerr disk, the potential of the electro-
magnetic field (7) near the regularized singular ring increases
dramatically and is simultaneously dragged by a strong
gravitational field, forming two loops C� (electron and
positron) dragged along the disk boundary and which are
located in the equatorial plane cos y � 0 at a small distance
r � r� from the regularized singular ring.

The potential dragged by the light direction k�m at the
boundary r � r� takes the value

A�m � ÿ
er

r 2 � a 2 cos 2 y
k�m ; �23�

and its angular component increases, taking the form of a
closed loop,

C� :ffK 2 �0; 2p�g ; �24�

in the form of a d function extended along the loop:

Amax
m dxm � ÿ 2m

e
�ÿdtÿ dfK� : �25�

When integrating over the contour C�, the Wilson loop
W�C�� � exp fe �C� A�max

m dx mg yields a phase shift

df � e

�
C�

A�max
fK

dfK � 4pma ; �26�

which, in accordance with the main relation for the para-
meters of the Kerr solution,

J � ma � �h

2
; �27�

yields a phase shift of 2p�h.
We see that the phase shift along the Wilson loops is

quantized like the phase of the wave function, making a
quantum contribution to the classical action through the
`minimal' coupling pm ! pm ÿ eAm.

2p

2p

p

p

0

0

Figure 9. Formation of an orientifold: a straight line segment is projected

onto edge of the Kerr disk, covering it twice.
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To uniquely determine W �C��, we need to set df � 2p,
and we find that the Wilson loop yields the angular
momentum quantization condition J � 1=2 [53, 55], and
also has additional quantum solutions, df � n2p, with
n � 2; 3 . . . .

According to Stokes's theorem, the Wilson loop C� must
generate a magnetic flux

F �
�
C�

A�max
fK

dfK � 4pma � 4p�h

2
� h

e
; �28�

equal to half a quantum of the magnetic fieldF0 � h=2e, and,
therefore, the loop C� gives rise to a Dirac monopole.

The monopole carries infinite energy and cannot be
produced alone; therefore, the second Wilson loop with the
contour Cÿ must generate an antimonopole.

Indeed, the potential Aÿmax
m dxm associated with the

incoming Kerr congruence kÿm , concentrating on the `mirror'
boundary r � rÿ � ÿe 2=2m, takes the value

Aÿmax
m dx m � 2m

e
�ÿdt� dfK� ; �29�

forming a ring string along the loop Cÿ (the potential takes
into account the change of the sign of the charge during the
transition r! ÿr).

Integrating the loop W �Cÿ� � exp fÿe �C Aÿmax
m dx mg

with the opposite orientation of the contour Cÿ, we obtain
the opposite phase shift

ÿdf � ÿe
�
Cÿ

Aÿmax
fK

dfK � ÿ4pma � ÿ4pJ ; �30�

and the energy contribution of the Wilson loop at the
boundary Cÿ almost completely cancels the contribution of
the loop atC�, with the exception of an important asymmetry,
which makes a finite contribution. Integration over the
boundary C� is associated with a retarded vector potential,
i.e., with the outgoing `base' congruence that generates the
gravitational KN field, while the boundary Cÿ is associated
with the incoming vector potential Aÿmax

m dx m, which does
not contain an electrostatic component:

At � ÿer
r 2 � a 2 cos 2 y

dt : �31�

This component is usually related to the electron mass [45],
appearing as the mass term m in Dirac equation (18) and in
expression (6) for the total gravitational mass in the KN
solution.

Therefore, strong total interaction between the gravita-
tional KN field and the two Wilson loops C� does not
manifest itself directly in the value of m for the total mass,
but acts nonlinearly, increasing the particle mass with
decreasing radius a in the main Kerr relation (1).

Thus, two Wilson loops located at the white and black
boundaries of the Kerr disk, C� and Cÿ, generate a
magnetically coupled pair consisting of a Dirac monopole
and an antimonopole, giving rise to a vacuum state in the
superconducting core of the electron and the Dirac current as
a superconducting surface current.

5. Radiating Kerr±Newman solution
and Kerr theorem

It is known that, for both the Schwarzschild solution and the
Reissner±Nordstr�om solution, their radiative generaliza-
tions, such as the Vaidya solution for a luminous star and

the Kinnersley solution, known as the photon rocket
solution, 3 were subsequently obtained. Similar attempts to
find corresponding generalizations for the Kerr and KN
solutions have failed, and the main obstacle in this regard is
the rotation-related twist of the Kerr metric, which makes the
solution chiral, losing the symmetry of complex conjugation.

However, this problem can be solved for the dual over-
rotating KN solution, containing both radiation and absorp-
tion of mass-energy, i.e., both black and white sides, and this
has a direct bearing on the coupled electron-positron vacuum
state in the KN solution.

An analysis of the most detailed derivation of the KN
solution by DKS in their fundamental paper [10] showed that
the solution is not complete and contains only a chiral,
radiationless part, since the system of DKS equations was
integrated to its final form only under the additional
condition4

g � 0 ; �32�

which preserves strong magnetic coupling between the
incoming and outgoing electromagnetic fields of the elec-
tron-positron vacuum state and eliminates the electromag-
netic radiation that connects them, forming states jbrai and
hketj as a single string system.

The approach to radiative generalizations of KN solu-
tions was considered in our papers published in 2002±2004
[56±58], in which the DKS equations were re-integrated, and,
in paper [57], we obtained the matching conditions for
incoming and outgoing EM excitations.

The central role in Ref. [10] is played by theKerr theorem,
which defines the complex functions Y �x m�, xm � �t; x; y; z�,
allowing us to fix chiral outgoing (or antichiral incoming)
Kerr congruences k� in the null Cartesian coordinates
�u; v; z;�z� of Minkowski space.

The Kerr theorem defines Y �x� as a holomorphic solution
of the algebraic equation F � 0, where the generating
function F �Y; l1; l2� can be an arbitrary holomorphic
function of three projective twistor coordinates:

�Y; l1 � zÿ Yv; l2 � u� Y�z � : �33�

While congruences (12) are determined by two complex
conjugate functions Y and �Y, the theory is chiral, since Y and
�Y are considered to be independent variables 5 during the
integration process.

For the KN solution, the function F is quadratic inY, and
the equation F � 0 has two roots Y�, which are related to
each other by an antipodal correspondence 6 (see [61]):

Y� � ÿ 1
�Yÿ

: �34�

Thus, the second root of the Kerr theorem Yÿ � ÿ1= �Y�

transforms the chiral solution into an antichiral one, replac-
ing the incoming EM field with the outgoing EM radiation.

Two solutions Y� yield two Kerr congruences: electron
(white) k��x� and positron (black) kÿ�x�.

3 Vaidya P C Phys. Rev. 83 10 (1951); Kinnersley W Phys. Rev. 186 1335

(1955).
4 See equation (5.51) in [10].
5 See note to equation (5.79) in [10].
6 Both solutions Y� and Yÿ should have the same Killing symmetry.
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In terms of the Penrose twistor theory [46, 62], they yield
two projective spinor fields,

Y� � x
_1

x
_0
; Yÿ � Z1

Z0
; �35�

which are antipodally conjugate,

Yÿ � ÿ 1
�Y�
� ÿ

�x 1

�x 0
; �36�

and correspond to two Weyl spinors x _a and Za, parameteriz-
ing two Kerr congruences (incoming and outgoing):

k m� � �xasm
a _a x

_a; k mÿ � �Z _a�sm _aa Za ; �37�

tangent to the white and black sides of the singular ring in the
KN solution.

As was shown in Section 3, the Dirac equation is split and
parameterized by twoWeyl spinorsÐ x _a�fK� and Za�fK�Ð
depending on the Kerr angular coordinatefK, and is mapped
by a spinor string located in the form of two half-strings
(incoming and outgoing) on the edge of the Kerr disk (see
Figs 4 and 5).

The differential of the function F determines Appell's
complex radial distance [49]

dF

dY
� P

Z
� r� ia cos y : �38�

The chiral electromagnetic field radiated along k� was
represented by DKS in terms of the components of the null
tetrad F 12 � A�Z 2 and F 31 � g�Zÿ �A�Z�1, where the
plus sign denotes the components of the field emitted along
the k� direction.

The tetrad components of the incoming field along the kÿ

direction can be obtained by transmutations of the tetrad
indices 12! 21 and 31! 42 in combination with the
complex conjugation Y! �Y. The corresponding relations
are F 21 � Aÿ �Z 2 and F 42 � gÿ �Zÿ �Aÿ �Z�2.

The presence of black, incoming, radiation was not
considered at all by DKS, and the electromagnetic field of
the electron was studied using the example of a single solution
A � c�Y �Pÿ2, and the analysis of the electron field was
carried out using an even simpler solution c � ÿe � const.

In this case, the solution A� � c�Y �Pÿ2 with the
analytical dependence c � c�Y � was discussed by DKS as a
general solution that is consistent with the required Killing
symmetry, 7 and the complex conjugate solution
Aÿ � �c� �Y �Pÿ2 is also consistent with this Killing symmetry.

In our papers [56, 58], we showed that radiating KN
solutions exist but require additional consistency conditions.
First, the solution must be doubled and have both a radiative
part A� and a radiation-receiving partAÿ, and second, these
solutions must be complex conjugate and depend on complex
conjugate time-retarded parameters t and �t:

A� � c �Y; t�Pÿ2; Aÿ � �c� �Y;�t�Pÿ2 : �39�

These conditions are met in the KN solutions initiated by
the construction of retarded Lind±Newman potentials [63],
and their consistency is determined by the compatibility of the
parameters t and �t, which must satisfy the orientifold

symmetry discussed in Section 3 [43], formulated for two
open half-strings (electron and positron) defined on intervals
sL 2 �0; p� and sL 2 �p; 2p�.

The fields Aÿ, �c, and gÿ represent radiation received by
the positron (black) half-string from the kÿ direction, and the
fields A�, c, and g� form the radiation produced by the `left'
electron (white) half-string from the k� direction. Their
compatibility means the formation of a single resonant
system relating the incoming and outgoing radiation.

Alternatively, solutions for the vector potential (39) were
also obtained by DKS as the sum of an analytic `left' one-
form

aL � ÿ 1

2

�
c
P 2

Z

P
k� ÿ w d�Y

�
�40�

and a complex conjugate `right' one-form

aR � 1

2

� �c
P 2

�Z

P
kÿ ÿ �w dY

�
:

Using (38), the left form is expressed as

aL � ÿ 1

2
A��r� � ia cos y�ÿ1 k� ÿ 1

2
w d�Y ; �41�

where w has an important feature: integration

w �
�
j �Yj�const

Pÿ2 c dY �42�

along the chiral loop forms a hook that hooks the antichiral
direction �Y. The retarded-time construction combines the
solutions A� and Aÿ into a single correlated excitation of a
coupled electron±positron string provided by the orientifold
structure [57, 59] described in Section 3.

The mapping s! afK=2 projects the imaginary white
interval of retarded time sL 2 �0; p� onto the entire region of
the Kerr disk boundary sL ! fK 2 �0; 2p�, forming an
electron (white) half-string, and the positron (black) interval
of retarded time is projected onto the oppositely oriented
boundary of the Kerr disk sR ! fK 2 �p; 2p�, forming a
positron (black) half-string of the polarized electron±posi-
tron vacuum core of the electron.

The compatibility of the `left±right' structures makes the
KN solution radiating and leads to the emergence of an
additional axial singular string located orthogonally to the
left and right ring strings, as shown in Figs 10 and 11. This

Zÿ

ÿa SL
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Z�

3

3
2

1

0

0 1 2 3
Z

2
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0
ÿ1

ÿ1
ÿ2

ÿ2
ÿ3

ÿ3
ÿ3 ÿ2 ÿ1

Figure 10. Correspondence between complex retarded time and real Kerr

geometry.
7 See equation (5.59) in [10].
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axial system synchronizes the left and right excitations,
turning them into a single common resonant system. An
important example of a solution of this type was given in [14,
18] as the sum of the constant charge in the KN solution and
wave excitations:

c �Y; t� � ÿe
�
1� 1

Y
exp �iot�

�
;

�c � �Y; �t � � ÿe
�
1� 1

�Y
exp �ÿiot�

�
:

In particular, the basic radiationless KN solution
c �Y; t� � ÿe forms a loop of the vector potential along the
disk boundary in the k� direction and, acquiring here an
additional singular contribution �1= �Y � � exp �ÿiot�, forms
an additional imaginary shift from the disk boundary to the
singular field at the disk center.

6. Conclusions

We come to the conclusion that the Kerr±Newman electron
modelÐ initiated by Carter [3] and then developed in the
work of Debney, Kerr, and Schild [10]; Israel [12]; Namity
[34]; and L�opez [13]Ð represents an important step in the
formation of a nonperturbative model of an electron
interacting with gravity by forming an extended model of an
electron in the form of a classical ring string contracting into a
quantum dot under relativistic rotation. The new radiative
KN solution, answering such questions as ``What is an
electron?'' and ``How to unite gravity with particle physics?''
gives an answer on new positions, which, following the ideas
of Penrose [23], can be interpreted as ``gravitization of
quantum theory,'' contrary to the widespread approach of
``quantization of gravity.''

The main feature of the KN electron model is the
representation of the KN solution in the Kerr±Schild world
coordinates �x; y; z; t�, in which the geometry of the electron is
described by the well-known model of a relativistically
rotating disk (Landau±Lifshitz [35]), where a nonperturba-
tive electron forms a classical relativistic ring string, associated
with the quantum Heisenberg state vector at a fixed moment
ofworld time t. At the same time, the string is parameterized by
its proper time s in the Schr�odinger representation, where it
contracts to a point under the action of the Lorentz
contraction.

The static description of an electron in the world
coordinates �x; y; z; t� as a singular Kerr ring is distorted by
the Lorentz contraction, and for an observer who determines

the shape and size of the string by reflected light (photons),
the electron will appear as a point, in accordance with the
quantum Schr�odinger picture. This fact, which follows
trivially from the geometry of a relativistic rotating disk,
reveals the main reason for the fundamental mystery of
quantum mechanicsÐ the problem of wave±particle duality.

The wave function of the Schr�odinger equation is
generated by the unitary string rotation operator U �
exp �ÿiHt�, which acts on the static description of the ring
string in the Heisenberg picture jCH�f; t0�i as a relativistic
rotation operator, transforming the string into a quantumdot
of the Schr�odinger picture, with an associated wave function
jCS�x; t�i � exp �ÿiHt�jCH�f; t0�i.

The black KN hole is formed by an EM and gravitational
field vortex, which is dragged by the tilt of the light cones
(frame-dragging [29]) in the direction of the black hole
rotation and forms a singular ring string in the equatorial
plane of the KN solution in the form of a classical solution to
the Einstein±Maxwell equations, with consistent directions of
propagation of the EM and gravitational fields along the
principal null Kerr congruence km.

For the superextremal KN solution with electron para-
meters (massm, charge e, angular momentum L � am � �h=2,
and magnetic moment m � ae), the relation e 2 � a 2 4m 2 is
satisfied, at which the horizons disappear and the singular
Kerr ring turns out to be bare. As a result, the bare singular
ring forms a branching line of space and forms an Einstein±
Rosen bridge, which contains, along with the incoming
vortex, another gravitational and EM field vortex leaving
the KN solution in the form of `white' EM and gravitational
radiation.

In this case, in the KN electron model regularized by
L�opez [13], a vacuum core of the electron is formed with two
boundaries r�e and rÿe (electron and positron), and at the
sharp edges of the boundaries the vector potential is
concentrated in the form of two Wilson loops C� and Cÿ,
which form a gravitationally dressed `heavy' electron with
strong magnetic coupling of the electron and positron loop
due to the formation of a monopole±antimonopole pair.

This model is consistent withQEDand requires a separate
consideration of bare and dressed electrons, where a bare
electron is purely classical and is based on the model of the
classical relativistic Nambu±Goto string.

Unlike the known strings of superstring theory, a classical
Kerr string does not put the quantization problem at the
forefront, and the main role in the new model is played by
longitudinal modes of string excitation, which turn out to be
admissible, as was shown in [50, 51]; most importantly, they
solve the main problem of quantum theory, naturally linking
the Heisenberg and Schr�odinger representations.

The Kerr±Newman solution is two-sheeted and actually
describes an electron and a positron as a single particle of the
electron±positron solution.

The radiation model of the KN electron not only absorbs
energy like a black hole, but also resonates with the received
radiation and radiates the EM field away, acting as a
radiating white hole.

A two-sheeted singular Kerr ring formed by two interact-
ing half-stringsÐelectron and positronÐ is ideal for form-
ing an elementary adaptive system that moves according to
the principle of least action, correcting motion by comparing
received and reflected signals.

Analyzing the exact solution in [10], we find that it is not
complete. The authors begin to calculate the emitted EM

8
6
4
2

ÿ2
ÿ4
ÿ6
ÿ8

0

10

ÿ5
ÿ10

5
0

10

ÿ5ÿ10

5
0

Figure 11. Emergence of a singular axis concentrating incoming and

outgoing radiation in radiative KN solutions.
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field, but bring the calculations to the final result only under
the assumption g � 0, which describes the formation of two
strongly coupled EM fields (electron and positron), but does
not consider the transfer of wave excitation between them. As
a result, white and black half-strings of the KN solution do
not form a single string system.

The wave properties of the KN electron, described in [10],
require additional refinement of its string structure. We
analyze the class of corresponding solutions for radiating
black holes. The condition for their compatibility is the
formation of a single string system consistent with the
orientifold symmetry.

One of the main general problems of quantum gravity is
the supposed weakness of gravitational interaction. In fact,
this problem is not related to the KN solution. The ring KN
string depends on an additional regularization parameter,
and the proximity of the cutoff parameter to the singular Kerr
ring allows regulating the energy and strength of the
gravitational interaction in unlimited limits. The excess
energy is then damped by the mutual cancellation of the
mass-energy contributions coming from the strong magnetic
coupling of the electron and positron Wilson loops, and the
final part turns out to be consistent with the standard relation
(1) for the parameters of the Kerr solution.

The hidden vacuum energy±mass generated by the strong
magnetic coupling of amonopole with an antimonopole leads
to a revision of the traditional point of view on the weakness
of the gravitational interaction. The gravitational effect of
space dragging, realized in the form of Wilson loops, leads to
a shift in the scale of gravitational interaction from the Planck
scale (� 10ÿ33 cm) to the Compton scale (� 10ÿ11 cm).

Finally, let us dwell on recent work on a topic closely
related to that discussed in this paper. The authors of Refs.
[26±28, 60] analyze the semi-classical interaction of gravity
with the quantum theory of black holes, in which the
gravitational field is classical, and the material fields are
considered quantum and are determined by the mathema-
tical expectation of the energy-momentum tensor:

hc jT jci � b
2
C 2 ÿ a

2
G ; �43�

where C 2 � CmnrsC
mnrs and G is the Gauss±Bonnet scalar.

As is known, this semi-classical approach leads to the
emergence of a gravitational anomalyÐ the energy-momen-
tum tensor acquires a nonzero trace hcjT jci � gmnhTmni,
which can have a macroscopic effect, in particular, the
appearance of `white' radiation of the EM field emerging
from the black KN hole [26]. The presence of a vacuum (zero)
EM field in our space is confirmed by all existing radio
engineering systems, as well as the well-known semi-classical
Casimir effect.

Thus, an electron as a radiating black KN hole absorbs
and emits a vacuum EM field and moves according to the
principle of least action [59], being an elementary adaptive
system that receives information from a reflected signal
probing the surrounding space, allowing one to explain the
well-known quantum experiment with two slits.

7. Appendix. Supersymmetry, superconductivity,
and Higgs field

FrankWilczek writes in his Nobel lecture that the space±time
of the standard model ``...is permeated by one or more
(quantum) fields that spoil the full symmetry of the primary

equations,'' and further continues that ``...supersymmetry,
for example, requires at least five `Higgs particles'...'' [66].

The Higgs field displaces the electromagnetic and gravita-
tional field from the superconducting core, generating the
Dirac current as the surface current of the superconducting
disk.

The Wilson loop is formed at a fixed moment of world
time t � t0 � const by the electromagnetic field, Am�t0�,
dragged by a strong gravitational field, in the form of a loop
on the boundary of the Kerr disk, where the Higgs field
F�x� � jFj exp �iw� displaces the electromagnetic field from
the superconductor.

The supersymmetry formalism contains two superfields
F� and Fÿ, the bosonic part of which is interpreted as two
Higgs fields H� � jH�j exp �iw�� containing two mutually
correlating phases w� � 2m�t� af�, in which the angular
parameter �af corresponds to two boundaries of the Kerr
disk �afK, associated with the parametrization of two
Wilson loops. The correct phase transition to the description
of QED requires two charges e�, two currents J�, and
supersymmetry with five chiral fields on two boundaries.

Two surface currents are given by two equations for the
vanishing fields and currents inside the superconducting Kerr
disk J�m � 0, implying w�m � eA�m � 0. These equations
describe the surface currents [17, 19]

w�f � eA�f � 0 ; w�t � eA�t � 0 : �44�

They are easily integrated and determine the phase depend-
ences of two Higgs fields, H� � jH�j exp �iw�� and
Hÿ � jHÿj exp �iwÿ�, on time and angular coordinates of
the Kerr disk �t;fK�.

In 1950, Ginzburg and Landau in their paper ``Towards a
Theory of Superconductivity'' [37] were the first to establish a
connection between superconductivity and the quantum
wave function of the Schr�odinger equation for the simplest
case of a flat boundary between a superconductor and an
electromagnetic field. This work was a harbinger of the fact
that superconductivity would play a central role in the
structure of elementary particles and, in particular, in the
structure of the electron. The idea turned out to be extremely
fruitful and was later developed in the form of the super-
symmetric theory of the Ginzburg±Landau phase transition
in more complex models.

According to the Wess±Zumino model [40], the super-
symmetric version of quantum electrodynamics is described
by two Higgs fields, F� and Fÿ, and equation (44) makes it
possible to relate the phases of the corresponding Higgs fields
w� and wÿ to the potentialsAÿm andA�m at the two boundaries
of the disk: r � r� and r � rÿ.

For r�r�, we have the potential eA0�2m, eAfK
� 2ma,

and for r�rÿ, we have the potential eA0�ÿ2m,
eAfK

�ÿ2ma.
Applying this to the outgoing vector field A�m �r�e �, which

forms a closed Wilson loop along the contour C� : t � const,
r � r�e , we find that a change in the potential A�m along this
loop is controlled by the phase shift of the Higgs field:

w�jr� � 2m �t� � af�K � : �45�

Similarly, the potential Aÿm acting on the boundary rÿ

yields

wÿjrÿ � 2m �tÿ ÿ afÿK � : �46�
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Note that the presence of an antiboundary was first noticed in
[19], where, along with the superbag domain wall (DW
boundary), an anti-DW boundary also arose, which made
exactly the same contribution to the total mass of the
solution, but with the opposite sign (see also breather-type
solutions in [44, 64]).
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