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Abstract. Significant progress in understanding the stopping
and scattering of atomic particles with energies less than
100 keV in matter is discussed. Stemming from a comparison
of experimental data with the results of computer modeling, it
refers to the selection of the potential employed to describe the
scattering of particles and refinement of the concepts of nuclear
and electronic stopping power. Considered is the dominant role
in the formation of electronic losses of the mechanism related to
the excitation of autoionization states during the rearrange-
ment of molecular shells in collisions. The contribution of fast
electron emission to the electronic loss cross section is found to
be significant. The influence of collision parameters on scatter-
ing, sputtering, and channeling is analyzed.
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1. Introduction

Collisions of atomic particles (atoms, ions) occur in various
laboratory systems and natural phenomena, which necessi-
tates their comprehensive study. Significant advances in
modern physics are associated with the study of the interac-
tion of charged-particle beams with solids. It is the charged-
particle beams that have proven to be a convenient tool for
studying the atomic structure, like Rutherford’s experiment,
in which a thin metal foil was bombarded with a-particles,
which led to the discovery of a heavy nucleus in the center of
the atom.

Elementary processes occurring during the collision of
atomic particles determine the operating conditions of gas
lasers and gas-discharge radiation sources. Collision pro-
cesses play an important role in the operation of various
laboratory installations containing gas or plasma, such as
magnetohydrodynamic generators, thermionic converters,
plasmatrons and plasma-chemical reactors, and shock tubes.

Elementary processes in collisions of atomic particles also
underlie numerous natural phenomena: they determine the
properties of the photosphere and the solar corona, various
astrophysical phenomena, and the properties of Earth’s
atmosphere (different elementary processes being significant
for different altitudes of the atmosphere). Many natural
phenomena, such as magnetic storms and polar lights, are
associated with the solar wind, a stream of ionized particles
flowing from the solar corona into the surrounding space.
Currently, reliable information on the cross sections of various
atomic collisions is required in such areas of research as
astrophysics, solar physics, and upper atmospheric physics [1].
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We list below the main areas of science and technology in
which understanding the nature of atomic collisions is of
importance.

Ion implantation [2] is used to introduce impurities into
semiconductor crystals to manufacture electronic devices. If
the introduction dose is large, the surface layer can be
transformed into another chemical compound. For a num-
ber of metals, ion bombardment can be used to electrochemi-
cally passivate a surface. Ion implantation can also be applied
to increase the critical temperature of a superconductor,
enhance the hardness of metals, manufacture light guides,
and conduct research in radiation physics. It is the option of
using ion implantation to modify semiconductor materials
and metals that has aroused great interest among researchers
in this area, which has led to the development of various
concepts about the interaction of particles with a solid.

Sputtering of materials during ion bombardment [3-6] is
used to clean and etch surfaces, manufacture thin films, and
analyze surfaces, and in the operation of sputtering ion
sources. An instrumental role in the development of concepts
of the interaction of particles with matter was played by the
sputtering theory proposed by Sigmund [7]. This work and its
modifications enabled development of a reliable theoretical
basis for describing practically important sputtering pro-
cesses.

Studies of the scattering of incident particles by solid
targets are of great importance for theory and applications
[8-10]. At particle energies ranging from 100 keV to 2 MeV,
they are widely used for the analysis of the 500-nm-deep
surface layer by Rutherford ion scattering spectroscopy
(RBS). At particle energies of ~ 1 keV, slow ion scattering
spectroscopy (LEIS) allows studying the composition of the
surface monolayer with high sensitivity. Hydrogen scattering
plays an important role in hydrogen recycling in thermo-
nuclear facilities.

Atomic and molecular physical processes play a signifi-
cant role in heating, cooling, losses, diagnostics, and model-
ing of high-temperature plasma [11, 12]. Sputtering, back-
scattering, and implantation strongly affect the walls of
thermonuclear and plasma installations. An important
problem is the damage to structural materials of nuclear
reactors due to the action of atomic particles [13, 14]. In a
thermonuclear reactor, the first, vacuum wall of the chamber
will be exposed to large flows of various types of radiation.
The interaction of radiation with wall materials leads to a
change in the physical and mechanical properties of the latter
and contamination of the plasma with wall materials.

The phenomena that occur during the interaction of
particles with solid matter and plasma are widely used in
corpuscular diagnostics of laboratory and space plasma. The
elemental base of space devices (microcircuits) is exposed to
irradiation with heavy charged particles and high-energy
protons. Electronics should be developed that will operate
sustainably under intense radiation exposure. In medicine,
proton therapy uses high-energy proton beams to irradiate
diseased tissue, most often in the treatment of cancer [15].

A detailed description of modern concepts of the interac-
tion of atomic particle beams with matter, particle ranges,
and the formation of radiation defects can be found in
monographs [16-18]. However, this area of research con-
tinues to develop intensively, which is due to a lack of
understanding of the physics of a number of phenomena
and corresponding models, disagreement between the predic-
tions of existing theories and experimental data, and the

importance of understanding the physics of phenomena for
numerous applications. The achievements of numerous
research groups reported at ICACS, ISI, IBA, etc. interna-
tional conferences contribute to the development of this area
of science. In this review, we focus on discussing only that part
of these studies that are directly related to the exploration of
the stopping and scattering of keV atoms in matter.

The objective of this review is to compare computer
simulation data with experiment to verify and refine current
concepts of the interaction of atomic particles with energies
less than 100 keV with matter. This energy range is selected,
since, at high energies, there is good agreement between
theory and experiment, and reliable theoretical models are
available. At energies below 100 keV, theoretical models of
ionization and excitation of particles require the application
of strong coupling methods for many states to account for the
dynamics of collisions. At the same time, this energy range is
of importance for studying collisions in the near-wall region
of tokamak reactors and developing low-energy ion implan-
tation methods for miniaturizing electronic devices.

The main factors determining the accuracy of computer
modeling are the use of adequate interaction potentials for
describing multiple particle scattering and nuclear stopping
losses and application of state-of-the-art concepts of electron-
ic stopping losses. It is important to take into account such
factors as target structure, thermal vibrations of target atoms,
and the presence of a surface potential barrier.

2. Computer modeling methods

Computer modeling methods are described in detail in
monograph [18]. The atoms moving in matter lose energy
through scattering on the nuclei of target atoms (elastic
losses — nuclear stopping power (NSP)) and through excita-
tion and ionization of the electron subsystem (inelastic
losses — electronic stopping power (ESP)). Figure 1 presents
data on NSP and ESP from the SRIM (Stopping and Range
of Ions in Matter) database[19]. As a first approximation, it is
assumed that both types of losses are independent of each
other and act simultaneously [20]. We discuss this issue in
Section 4.

The proposal by Oen and Robinson [21] to use the
approximation of successive pair collisions, which enabled
modeling the formation of defects in solids under ion
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Figure 1. Electronic and nuclear stopping powers for H-Be, H-Au, and
Ne—Au systems.
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bombardment, made a significant contribution to computer
simulation methods. In this approximation, the scattering of
atomic particles in a solid is considered a sequence of pair
collisions with atoms of the solid. The particle trajectory is
replaced by the trajectory asymptotes. At collision energies
below 50 eV, the approximation is no longer applicable. The
pair collision approximation makes it possible to significantly
speed up calculations.

One of the first results of the application of computer
methods was the prediction of the channeling effect in
crystals, which was later confirmed experimentally.

An important step in the development of the computer
modeling method was the work of Ziegler, Biersack, and
Littmark on the analysis of ion ranges in solids, which led to
the creation of the widely used SRIM code [19]. The
application of ‘magic’ formulas in this code to describe
particle scattering yields incorrect results when it is of
importance to take into account the scattering of particles at
large angles, for example, in describing the spectra of
backscattered particles or sputtering of materials by light
ions. The specialized codes SDTrimSP (Static and Dynamical
TRansport of Ions in Matter for SPuttering) [22] for
sputtering and T-RBS (Trim-Rutherford BackScattering)
[23] for backscattering have proved their efficiency.

Modern calculations widely use the molecular dynamics
method, in which the motion of all interacting atoms is
calculated as a function of time. The trajectories of atoms
and molecules are determined by numerically solving New-
ton’s equations of motion, where the forces between particles
are often calculated using interatomic multiparticle poten-
tials. Calculations based on this model are very computer
intensive.

A program code was used in [24, 25] that allowed easily
changing the interaction potential, the model of electronic
stopping losses, and the target structure; it also enabled
taking into account the presence of thermal oscillations, the
surface potential barrier, and straggling. In the code’s
applicability region, the pair collision approximation was
used. In computing sputtering, the trajectories of sputtered
particles were calculated using multiparticle potentials. In
examining channeling, the trajectories of particles were
calculated.

3. Interatomic interaction potentials

The results of modeling particle scattering are very sensitive
to the choice of the potential model. This problem has been
discussed in many publications [7, 8, 18, 26-32]. The first
information on the interaction potentials of particles at close
approach, when the inner shells of the colliding atomic
particles are involved in the interaction, was obtained in the
experiments by Everhart et al. [31] using the procedure for
processing scattering cross sections [33]. The potential
proposed by Firsov [34], based on the statistical theory of
the atom, was shown to decrease too slowly with increasing
internuclear distance, and screened Coulomb potentials were
proposed in its stead.

Study [32] examined the effect of multichannel scattering
on the obtained potentials to conclude that the single-channel
or ‘average’ potential model is highly applicable for describ-
ing the scattering of particles with energies of 12-300 keV.

Ziegler, Biersack, and Littmark [29] proposed a potential
(we refer to it below as ‘ZBL potential’) obtained by
averaging the potential calculations in the statistical model

of the atom for a large number of systems. In [30],
experimental data on potentials obtained primarily at low
collision energies were compared with various theoretical
models, and a conclusion was made about the relatively
good applicability of the ZBL potential. Nevertheless, even
after the appearance of the ZBL potential, the Moliere [35]
and Lenz—Jensen [36] potentials and the potential known as
Kr-C, proposed in [37], were used with greater or lesser
success in many studies.

The behavior of potentials at small internuclear distances
was analyzed in [38, 39], where it was shown that, in
describing collisions by a screened Coulomb potential
U(R) = Z1Z,exp (—aR)/R, the screening constant o can be
calculated using the formula

_ (Ha(Zi + 25,0) = Ha(Z1,00) = Ha(Z5,0))

VAVA) '
(3.1)

where Z| and Z, are the charges of the nuclei of the colliding
atomic particles, R is the internuclear distance,
H.(Z, + Z,,0) is the energy of the electron subsystem of the
united atom, and H(Z, 00) and H,(Z,, 00) are the energies
of the electron subsystems of the separated atoms. Using the
calculations of [40], the energy of the electron subsystem can
be represented as

Hy(Z) = 0.4652*%2 [at. units] . (3.2)

This formula is valid with an accuracy of 1.6% for
Z =2 —92. The resulting dependence somewhat differs
from that predicted by the Thomas—Fermi model of the
atom, in which Hg(Z) ~ Z"/3. Taking into account
Eqn (3.1), the following formula is obtained for the screening
constant:

[(Zl + 22)2-432 _ 212.432 _ 222.432]

=-0.4 :
o 0.465 77 (3.3)
This formula can be approximately represented as
o =2815[140.022(Z + Z,)] . (3.4)

The formula remains valid to within 3% for systems of atoms
with Z; » = 5 — 92. Since the electron energy of a subsystem
decreases in absolute value in the case of excitation or
ionization of colliding particles, Eqns (3.3) and (3.4) provide
an upper limit on the screening constant. Formula (3.4) is
suitable for a rough estimate.

Equations (3.3) and (3.4) for estimating the screening
constant, derived from first principles, can be used to adjust
the scattering cross section when implementing the Ruther-
ford backscattering method and to estimate corrections
associated with electron screening during tunneling in the
nuclear fusion cross sections when making measurements on
targets containing electrons.

A new attempt to compare theory and experiment was
made in [41]. It was shown that the data on the scattering
cross sections for various collision energies fits well onto a
single wuniversal curve in the reduced coordinates
p=0ds/dQsin® and 1= EnO (Eqn and O are the
collision energy and the scattering angle in the center-of-
mass system). This implies that the scattering is quasi-elastic
in nature, and the procedure proposed by Firsov [33] can be
used to extract the potential parameters from experiment.
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Figure 2. Ar—Ar potential: comparison of calculation and experiment.
(Figure taken from [43].)

Figure 3. Comparison of calculated DFT potentials with popular theoret-
ical models [43].

The interaction potentials were obtained for 13 systems [41].
The error in the potential value, which is associated with the
integration of the dependence of the cross section on the
scattering angle, usually does not exceed 3%. The error in the
calibration of the R values is associated with the inaccuracy in
measuring the absolute values of the cross sections and is
estimated by the authors of the study at 4%. For the potential
that best describes the experiment, a functional form — the
Zinoviev potential —was proposed [41]:

o lezaf 1.575x
B X

- 3.5
l+0.719x0>570.010x)7 (3:5)

U(R)

where x = R/a; and a; = 0.8853/(212/3 + 222/3)1/2 is the
Firsov screening length [34], expressed in atomic units. It
was shown that the universal notation of the potential is only
applicable for the region x < 7. Equation (3.5) can be used to
make a express assessment of the interaction potential.

To obtain more accurate values of the potential for
specific pairs, it was proposed in [42] to use the DMol
software package with an extended set of wave functions in
the density functional approximation (referred to below as
Density Functional Theory (DFT)). In [43], the interaction
potentials for 19 systems were calculated in the model, and a
detailed comparison with the experiment was carried out
(Fig. 2). Good agreement with the experiment was achieved.

Figure 3 shows a comparison of the potential calculations
for various systems with theoretical models. It can be seen
that, to increase the accuracy of the calculations, it is
advisable to use an individual potential for a specific system
calculated in the density functional approximation. In cases
where the potential contains an attractive potential well, it
was the proposed in [44] to refine the parameters of the
potential well using spectroscopic measurement data [45].

The values of the DFT potentials for various systems can
be found in [43, 75], and data on the parameters of the
potential well, in monograph [45].

At low collision energies (less than 100 eV), multiparticle
potentials should be used and molecular dynamics methods
applied.

Examples of multiparticle-potential calculations for Be
and W targets are presented in [47-51]. For carbon-contain-
ing systems, the Tersoff potential is often used [52]. Studies of
multiparticle potentials are reviewed in [52].

4. Universal Lindhard function
for describing scattering of atomic particles

Lindhard, Nielsen, and Scharff [54] showed that, for screened
Coulomb potentials,

22122e2 45(5) ’
R a

where @(R/a) is the screening function, and the scattering
cross section of atomic particles, which depends on two
variables, the scattering angle 0 and the collision energy E,
can be described with good accuracy by a function of only one
variable n = ¢sin (6/2), with

U(R)

(4.1)

M2 a

- E
¢ M, + M, Z,Zre? ’

(4.2)

where My, M,, Z,, Z, are the masses and charges of the
colliding particles, e is the electron charge, and « is the
screening length in the potential. In the original work, the
variable /2 = 5 was used.

The scattering cross section in the center-of-mass system
do/dQ is related to the function f'(n), proposed in [54], by the
formula

()
dQ  8esin’(0/2) (43)

For large values of 5, when scattering is described by the
Rutherford formula, f = 1/(27).

The function f(5) can be used to calculate the cross
section of nuclear stopping losses, S(E ):

S(E) = 4na ZIZ292$ s(e), (4.4)
where
1 &
@) = | onan (43)

In publications, s(¢) and ¢ are called Lindhard coordinates.
These coordinates are convenient to compare NSP data for
various systems.
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The function f'(i7) can be analytically described [55]:

f(VI) _ /1111_2”1 [1 + (ZAnZ(l—m))q}*l/q ) (46)
The parameters A, m, ¢ for the Firsov, Bohr, Moliere, and
Lenz—Jensen potentials are taken from [18]; for KrC, from
[56]; and for the last two cases, calculated by us.

In [57], the fulfillment of the Lindhard approximation for
various analytical potentials was verified. For low collision
energies, a 10% discrepancy appears at angles of 15-20°. As
the energy increases, the curves begin to approach a universal
curve and intersect it, and a drop in the cross section sharper
than that predicted by the universal curve is observed. With a
further increase in the collision energy, the case of a weakly
screened Coulomb potential is implemented, and the differ-
ence decreases. The Lindhard curve coordinates are chosen in
such a way that, in the case of the Coulomb potential, a single
curve yields an exact result, in accordance with the Ruther-
ford formula.

In the experiment, the effective scattering cross section is
measured, which may include the contribution of inelastic
channels. In collisions of keV-range particles, the contribu-
tion of inelastic channels leads to the appearance of singular-
ities in the quasielastic scattering cross sections. Figure 4
presents calculations of the Lindhard function for various
potentials and a comparison with the experimental data [58—
62]. The best agreement with the experiment is provided by
the potential proposed by Zinoviev [41]. The curves obtained
for the Thomas—Fermi—Firsov and Bohr potentials differ
significantly from the experimental data. The spread of the
experimental data in the region of the maximum (¢ = 0.2)
does not exceed +10%. At high energies, the universal curve
describes the experiment fairly well. At ¢ = 0.01, the scatter of
experimental data is £15%, which is comparable to that of
data predicted by various potential models. With a further
decrease in the collision energy, the scatter increases signifi-
cantly.

The scatter of experimental data for various systems is
fairly large, which hinders choosing a potential that describes
all the studied collision cases. If we fix the case under study,
the presence of singularities in the differential scattering cross
sections leads to a deviation of up to 15-25%, although the
general behavior of the curve can be described quite
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Figure 4. Comparison of universal Lindhard curve for various potentials
and measured scattering cross sections. Lindhard screening length was
used in processing experimental data.

Table. Parameters used to describe function /(1) for various potentials.

Potential A m q
Firsov 1.309 0.333 0.667
Bohr 2.37 0.103 0.570

Moliere 3.07 0.216 0.530

Lenz-Jensen 2.92 0.191 0.512
KrC 3.35 0.233 0.445
ZBL 2.219 0.228 0.577

Zinoviev 2.682 0.213 0.551

accurately. As shown in [32], the appearance of singularities is
associated with multichannel inelastic scattering. If inner
shells are excited, the Q/U(Ry) ratio may be used as a
characteristic parameter to estimate the magnitude of the
cross section deviation from a smooth curve, where Q is the
inelastic energy loss, and U(Ry) is the value of the potential at
the trajectory turning point for the angle when a singularity
appears in the cross section. Typically, this ratio is 15-20%.
This implies that the approximation assuming that NSP and
ESP can be considered independently is fulfilled with the same
accuracy.

It is of importance to take into account the presence of a
singularity in the scattering cross section in analyzing the
surface layer of a substance, when the main contribution is
made by single scattering. The cross section singularities
usually arise due to the overlap of the molecular shells of the
interacting atoms by 10-15%, so the appearance of singular-
ities upon reaching such internuclear distances can be
predicted.

Computer calculations often use the Lindhard approx-
imation, in which nuclear and electronic stopping losses can
be taken into account in an additive way. A comparison with
the experiment presented in this section shows that the
accuracy of this approximation is 15-20%, depending on
the range of energies considered. With the specified accuracy,
the universal Lindhard curve for a specific potential can be
used to calculate the elastic scattering cross section using the
parameters displayed in the Table.

5. Screening of particle interactions in metal

The issue of the difference between the potential for particle
collisions in a solid and that for collisions in the gas phase is a
subject of ongoing discussions.

In modeling the energy spectra of scattered particles in
[63], it was noted that, for better agreement with the
experiment, the screening constant in the potential should be
adjusted. In [25], an analysis of data on rainbow scattering of
atoms on the surface of metal crystals yielded interaction
potentials that differ greatly from those used to describe
scattering in the gas phase. This difference was explained by
the influence of the charge induced in the metal by the
incident atom [25]. A similar phenomenon was also observed
in [64] when describing the scattering of N** ions on a copper
crystal. Unlike the gas phase, it is difficult to determine the
potential from the experiment for collisions in a solid due to
the influence of multiple scattering and stopping of particles
and due to the change in the charge of the particle when
passing through the solid.
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In [65], the energy and angular spectra of backscattered
particles were modeled for proton bombardment of a gold
target. Experimental data from [66] were used. The ion—solid
interaction potential was shown to differ significantly from
the potential describing collisions in the gas phase. The
screening constant increased by 10-15%.

This phenomenon was confirmed in modeling the angular
distribution of particles when protons pass through a thin
gold film [67]. Experimental data from [68, 69] were used. In
this case, to describe the experiment, an increase of 15-20% in
the screening constant in the potential was needed.

A theoretical description of this phenomenon was
reported in [70]. When an ion moves in a solid, the ion
potential is screened. The case of collisions with velocities
v < 1 at. unit, i.e., static screening, was considered.

The interaction potential in the density functional
approximation is calculated as the difference in the energy
of the system of atoms at a distance of R and R = cc.
Discarding the perturbation of the electron density of the
system, the potential can be represented as

L I

2 .
p r-drsinfdfde,
0 JoJo IR —r|

(5.1)

where the first term describes the Coulomb interaction
between nuclei, and the second term describes the interaction
energy between the charge Z; and the electrons of the second
particle; N is the number of electrons of the lattice ion. We
present p(r) in the form proposed in [71]:

N2 3 B r
p(r) = dnd®r ; A;B; exp *Bz; ;

where 4; and B; are the expansion coefficients in the Moliere
potential [35].

According to [72], the screening constant for an ion with
charge Z, and number of electrons N, can be represented as

(5.2)

a=0.8853agZ, PN | ag =0.529 A. (5.3)

Substituting p(r) in the form (5.2), writing R —r| =
VR2 4+ r2 —2Rrcos0, and integrating over 0 and ¢, we
arrive at

_ 27 2N 5

R 2Ra? &

y derexp ( - B,é) (Rer—R—r).  (54)

U(R)

0

Separating the integral into two parts, r < R and r > R,
we obtain

Z1(Zy — Ny)  ZiNy & R
U(R): 1( 2 2)_|_ l}QZZAI- eXp(—B[2>. (55)
i=1

R

Asaresult, a formula was derived similar to that proposed
in [72], which describes the interaction between an ion with a
charge Z; and an ion (N, < Z>) or a lattice atom (N, = Z>).

In the case of interaction of an ion in a solid, the Coulomb
charge of the ion is screened by conduction electrons, and the
ion potential can be represented as

(5.6)

where Rp is the Debye screening length [73]. For gold,
Rp = 1.358 at. units. Replacing the Coulomb potential in
Eqn (5.1) with the potential of the screened Coulomb charge
and performing a similar integration, we obtain the potential
of interaction of the ion with the metal lattice screened by
conduction electrons:

Z1(Z, — N,) R ZINy &
UR) =202 20 - A;
()= A e () A S

(5.7)

(see the blue curve in Fig. 5a.)

In the case of a hydrogen atom, the charge of the proton
nucleus is screened by a bound electron. For the potential of
the hydrogen atom, the formula obtained in [74] is

(1 )on(2).

(5.8)

Gas a
DFT
Backscattering

O 5keV

® 8keV

Passing

* 9keV

Equation
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Figure 5. (a) Interatomic interaction potential as a function of distance
for case of H-Au. DFT potential for gas phase is displayed. Dots show
data from study [65-67], in which potential values were obtained by
processing experimental data on particle scattering on the surface or
passing through thin films. Lines with dots are calculated using Eqns (5.5),
(5.7), and (5.10). (b) Angular distribution of particles that passed
through a thin gold film. Dots represent experimental data [68];
measurement errors are ~ 3%. Lines are calculated [70] for potentials
(5.5), (5.7), and (5.10). Thick line is calculation for composite beam with
neutral atom content of 87.5%.
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where the Bohr radius ag = 1 in atomic units. The same result
can be obtained if the electron density for the hydrogen atom
is represented in Eqn (5.1) as

1 r
pr)=—3 CXP<—2%>

and the corresponding integration over the electron coordi-
nates is carried out.

Replacing the term Z;/R in the second summand of
Eqn (5.5) with U,(R) and taking into account that Z, = Ny,
we obtain a formula for the interaction potential of a neutral
atom with the lattice of a solid:

e (- oo (<5 (1)
A;ex — Bi— |ex - — I+— ).
R I:Z] ieXp )P ag ap

(5.10)

(5.9)

U(R) =

Figure 5a displays the dependence of the interatomic
interaction potential on the distance between atoms for the
H-Au system. The dots show the potential values obtained
from an analysis of experimental data on particle back-
scattering [65] and from experiments on passing through
thin films [67]. The solid line is the calculation for the gas
phase using the DFT method. Figure 5a shows that the
potentials for the gas phase and the solid differ greatly. The
red line with circles shows the result of calculations using
Eqn (5.5), which virtually coincides with the DFT potential
for the gas phase. As can be seen from Fig. 5a, the potentials
that take into account the screening describe fairly well the
experimental data on the potential for the hydrogen particle
in metal.

Figure 5b presents the angular distribution of particles
that passed through a thin gold film. The angular distribu-
tions obtained for potentials (Eqns (5.5), (5.7), and (5.10))
are also displayed. Potential (5.10) provides good agreement
with the experiment. For the case under consideration,
87.5% of the beam are neutral atoms. The calculation for
the composite beam completely coincides with the experi-
ment.

The presented formulas (Eqns (5.5), (5.7), and (5.10)) for
the potentials can also be used to calculate nuclear stopping
losses [70] when protons and hydrogen atoms pass through
metals.

Thus, when analyzing the passage of particles in
conducting materials, an increase in the screening para-
meter in the interaction potential should be taken into
account.

6. Nuclear stopping losses

As shown below, NSP is completely determined by the
interaction potential. In classical mechanics, the scattering
cross section is calculated in terms of the dependence of the
scattering angle on the impact parameter using a specific
interaction potential. The nuclear stopping cross section is
expressed by the formula

_ MM, EJOO sin2 {M]bdb
2 9

S, =8n 5
(M1+M2) 0

(6.1)

where M| and M, are the masses of the colliding particles,
0(b) is the scattering angle in the center-of-mass system

(CMS) at the impact parameter b, and E is the energy of the
incident particle.

The nuclear stopping cross section S, is expressed through
the transport cross section Qy, as follows:

2M\ M,

—(M1 n M2)2 (6.2)

Sh = Qtr

The quasi-classical approximation does not contain the
concept of a trajectory. To calculate the transport cross
section in the quasi-classical approximation, the following
formula [75] is usually employed:

4 & .
Oy = 2 Z(H— 1) sm2(51 —0141) s (6.3)
=0

where k = p/Ii is the wave vector, p is the momentum in the
CMS, /is the orbital quantum number, and J; is the scattering
phase.

The phase J; in the quasi-classical approximation is
determined by the expression [74]

o] 2
5I:J \/2.“ [Ecms_ U(r)} - M —k

2
where r is the internuclear distance, u is the reduced mass
(L= M My/{M;| + M,}), Eps is the CMS energy, and U is
the interatomic interaction potential.

Here, ry is the root of the equation:

2
Ulr)] — M =

T 1
dr+§ (I+E>—k1‘0,

(6.4)

201[Eoms — 0. (6.5)

The applicability of the quasi-classical approach to the
problem is reduced to the fulfillment of the condition

dA
dx

1

2n

<1, (6.6)

where A(x) = 2n/i/p(x) is the de Broglie wavelength of the
particle, and x is the coordinate of the particle. Thus, the
particle wavelength should change insignificantly over
distances on the order of those characteristic of the
variation of the potential. In our case, this distance
coincides with the size of the potential well a ~ 1 A. The
criterion A/2n < 0.1a is satisfied for the hydrogen atom up
to energies E > 0.3 eV.

The conventional criterion for the applicability of the
classical description of scattering, 6/ > 1, in the case of
calculating the transport cross section or NSP is reduced to
a simpler condition / > 1, since the main contribution to the
NSP cross section is made by angles 6 ~ 1.

The formulas presented show that, in calculating both
classical trajectories and phases, the choice of potential for an
adequate description of the system of interacting particles is
of crucial importance.

In [46], NSP calculations were performed for 48 systems
using the potential obtained in the DFT approximation with
the potential-well parameters adjusted based on the results of
spectroscopic measurements.

Figure 6a shows the potentials for the H-C system: the
DFT potential and the ZBL potential, which is often used
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Figure 6. (a) Dependence of interaction potential on interatomic distance
for the H-C pair. Dashed line is ZBL potential. Solid line is DFT
potential. Well depth in potential is denoted by Uj. (b) Dependence of
nuclear stopping cross section on incident particle energy for the
H-C pair. Dashed line is ‘classical approximation’ and ZBL poten-
tial; solid line is ‘classical approximation’ and DFT potential; dots
are ‘quasi-classical approximation” and DFT potential. (Figures taken
from [46].)

in computer modeling programs. It is apparent from the
figure that ZBL is a purely repulsive potential. The DFT
potential exhibits a potential well with a depth of
U() =3.5¢eV.

Figure 6b shows that, if the nuclear stopping losses are
calculated using the ZBL potential, we obtain a dome-shaped
curve (dashed line). If a potential with a well is used in the
calculation, an additional peak arises due to the strong
scattering of atoms by the potential well. This implies that, if
we are interested in the values of nuclear losses for low
energies of colliding particles, the universal ZBL potential
without a well cannot be used.

The calculation yields the same values of energy losses in
both the classical and quasi-classical cases, provided the
condition / > 1 is fulfilled.

The presence of an additional peak in the NSP cross
sections must be taken into account for collision energies of
less than 100 eV; this is especially important when calculat-
ing the trajectories of recoil particles in the process of
sputtering.

7. Mechanism of inelastic losses associated
with promotion of molecular orbitals during
particle collisions and formation

of autoionization states

Stopping at high collision energies, which was first considered
by Bethe [76], is described by the formula

4T52122284 2
= In ,
mv? 1

s, 2mv

(7.1)

where v is the velocity, Z is the atomic number of the incident
particle, Z, is the atomic number of the target substance, and
I is a value on the order of the ionization energy (m is the
electron mass). In this region, the stopping cross section
decreases with increasing energy of the incident particle.
Bloch [77] introduced relativistic corrections into this for-
mula, which are insignificant at collision energies of less than
1 MeV.

In the low-energy region, Fermi and Teller [78] investi-
gated electronic stopping in metals, considering the electrons
of the metal to be a free degenerate Fermi gas. The Fermi—
Teller formula can be represented as

2
Vg = 4n a_z or
aO Vo

e‘a .
S, = yFU—OO v, z;, (7.2)

where vy = e?/h and ay = /i/(muvy) are the Bohr velocity and
radius, vg is the Fermi velocity, Z5 is the number of
conduction electrons per atom of the target substance, and
a’~ (e2/mv1%)2. Equation (7.2) describes the contribution of
metal conduction electrons to the stopping; it is applicable
provided v <€ vE.

Later, Lindhard and Scharff [20] derived the following
formula for the inelastic stopping cross section:

z!°z
Sc:8ne2ao 3 L 2 Y

3 2/3\3/2 g
(2 + 230w

Cuv. (7.3)

The derivation of this formula uses an expression for the
permittivity with parameters fitted to the ex?erimental data.
Equation (7.3) is valid for velocities v < le/ vg. To take into
account Z, oscillations in the inelastic stopping cross
sections, an adjustable parameter ¢k ranging from 0.67 to
2.4 is often introduced [79-81].

Firsov [82] proposed a model according to which the
electron clouds of colliding atoms overlap. By studying the
momentum transfer during a collision, it is possible to
determine the electronic energy loss. Using the Thomas—
Fermi approximation in combination with the momentum
approximation of nuclear motion, Firsov derived the follow-
ing formula for the inelastic energy loss £ [eV]:

. (Z] + 22)5/34.3 x 1078y
[143.1(Z1 + Z2) P 107 Ry (p)]

(7.4)

where v is the velocity of the incident particle expressed in
cm s~!, the closest approach distance R, is measured in
centimeters, and p is the impact parameter. For the stopping
cross section S,, we obtain the formula

Pmax

Se = 2TCJ pE (p,v)dp, (7.5)

0

where pmay 18 the average distance between target atoms.
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Both Lindhard’s and Firsov’s models predict that the
stopping cross section is proportional to the velocity. Since
the Thomas—Fermi approximation is used to describe electron-
ic shells, it is advisable to use the Firsov model for collisions of
heavy atoms. Oen and Robinson [83] proposed a modification
of the Firsov model for collisions involving light ions. Review
[84] considers other modifications of the Lindhard and Firsov
models and frequently used empirical formulas.

It should be noted that Lindhard’s and Firsov’s models do
not take into account the shell structure of atoms, and most
other proposed models do not consider the rearrangement of
the electronic shells of atoms during collisions.

The current state of research on the theory of particle
stopping is reviewed in [85, 86]. Typically, the theory
satisfactorily describes losses at high particle energies and
near the maximum of the stopping cross section.

In the SRIM code, it is usually assumed at low energies
that the ESP is proportional to the collision velocity with
normalization to the experimental results in the region of the
maximum. Data on the low energies of ion collisions with a
solid are less reliable and in many cases are lacking. They are
especially necessary in solving the problem of damage to the
first wall and divertor of a tokamak reactor and in developing
ion implantation methods for ion energies below 10 keV,
aimed at miniaturizing the manufactured nanostructures.

It was hypothesized in [87, 88] that the formation of
autoionization states during collisions of atoms is the main
mechanism of ionization and inelastic energy losses at a
collision energy of less than 100 keV. An attempt to take
into account the excitation of autoionization states was also
made in [89].

We now consider the basic formulas of the proposed model.
The contribution of the formation of autoionization states to
the electronic stopping power dE£/dx can be described as

dE 2n 2n
& T JQ[RO(b)]bdb ~ VO;JQ”” Wij(Ro)b db

2TE aver
o > oo J Wi(Ro)bdb .

nlj

(7.6)

Q[Ro(b)] is the total value of inelastic energy losses depending
on the distance of closest approach R,. Here, Q,;; are the
energies of autoionization states, W,;;(Ro) are the probabil-
ities of excitation of autoionization states depending on Ry,
and V) is the volume of a single atom in a solid target; the
summation is carried out over all promoted states with
quantum numbers 7, [, and j, and b is the impact parameter.
Removing the parameter Q,;; from under the integral does
not compromise the generality of the formula if Q7% is
understood as the value averaged over the range of para-
meters b.

It should be noted that the partial cross section for the
formation of an autoionization state is

= 21’5J ,ﬂ,(Ro)b db. (77)

The decay of an autoionization state leads to ionization
with the removal of N electrons; therefore, instead of the cross
section for the formation of an autoionization state, Ng o

nlj
can be used, where a;‘,’/“ is the ionization cross section,

e Z o (73)
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Figure 7. Number of emitted electrons ¢ (a) and inelastic energy losses (b)
for Ar™ —Ar system as functions of closest approach distance. Arrows
indicate thresholds for the promotion of various orbitals. (a) Curves with
dots represent data from [90]. Asterisks are coincidence measurements
[91]. (b) Data from Bierman [92], Morgan [93], and Kessel [91, 94]. Thick
solid line is the model under discussion. (Figure taken from [95].)

The electronic stopping power can be estimated using the
ionization cross section and the values of inelastic energy
losses for the channels under consideration.

As an example, we consider the case of an Ar—Ar collision.

Figure 7 shows that Art —Ar collisions feature a correla-
tion between the observed number of emitted electrons and
inelastic losses. A sharp increase in both quantities is seen
upon reaching those internuclear distances at which the
corresponding MO is promoted, and electronic shells are
rearranged. At large internuclear distances, Ry~ 1.4 at. units,
excitation of the M shells occurs. At Ry ~ 0.22 at. units, due
to the promotion of the 4fs orbital in the L, 3 shell of Ar, two
vacancies emerge; when the promotion of the 3de orbital
occurs, two more L vacancies appear.

We now give an example of calculating the stopping cross
section for this case. Data on the ionization cross sections of
the M shell of Ar can be taken from [96-98]. Data on the
excitation cross section of the L shell were obtained in [99].
Using experimental data on inelastic energy losses [92] and
the energies of vacancy formation in the L,3 shell of Ar,
dE/dx can be calculated using Eqn (7.8) (Fig. 8). Figure 8a
shows that excitation of the L shell doubles the value of
dE/dx. The proposed model yields values significantly
exceeding the SRIM data and predicts a threshold depend-
ence of dE/dx on the collision energy.

If measurements of ionization cross sections are unavail-
able, we recommend using the scaling for the excitation of the
L and M shells proposed in [88, 103]. The probability of the
formation of an L vacancy upon reaching the internuclear
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Figure 8. (a) Electronic stopping power in Ar collisions with solid Ar.
Thick black line is estimate obtained using ionization cross section [96, 98].
Contribution of L-shell ionization is shown by circles [99]. Thick solid red
line is the sum of contributions of L- and M-shell excitation. Dashed blue
line is the SRIM calculation. (b) Dependence of electronic stopping cross
section for the Ne-Si case on collision energy. Points represent experi-
mental data [101]; dashed line is SRIM data [19]. Contributions from
promotion of 3do- and 4do-orbitals are shown by thin solid lines;
dashed-dotted line shows estimated contribution from stopping on
conduction electrons, and thick solid line is the summary curve.
(Figures taken from [102].)

distance R, can be described by the formula

1

W (ko) = B+ exp [y(Ro/Ry — 1)]

(7.9)

where § = 1.02, y = 22.8, and the parameter R}, which is
determined from the condition W (Ry) = 0.5, is equal to the
internuclear distance R, at which the 4 fo orbital intersects the
unfilled upper levels. The dependence of R, on the charges of
the interacting particles was obtained in [103] by processing
data on the thresholds of excitation of the L,3 shell in
collisions of atomic particles in both the gas and solid
phases. The ionization cross section associated with the
excitation of the L,3 shell is calculated by integrating
W [Ry(b)] over all impact parameters:
o0

W [Ro(b)]bdb,

a(Ey) = 2nNJ (7.10)

0

where N is the number of vacancies formed at small Ry.

Figure 8b presents an example of Ne—Si collisions. In this
case, the ionization cross sections of the L and M shells were
obtained using scaling. It is necessary to take into account the
contribution to the stopping losses from the interaction of the
incident particle with conduction electrons (‘Friction’ curve
in Fig. 8b). This contribution was estimated using the
formulas presented in [100]. As can be seen from Fig. 8b, the
obtained data are in good agreement with the experiment
[101]. The contribution to the stopping losses from the
interaction with conduction electrons is ~ 13%.

When K-vacancies are excited, two fundamentally differ-
ent cases occur:

(1) In the presence of a vacancy in the 2pn orbital before
the collision, a K-vacancy is formed as a result of rotational
transitions within the limits of the combined atom from the
2po to the 2pm orbital.

Based on the studies by Briggs and Macek [104], a scaling
(Fig. 9a) can be proposed for the cross section of K-vacancy
formation [105]:

E
Obak (Ecms) :fnRzzp F( s

(Zl—f—Zz—(S)z)’

where FE.ns is the collision energy in the center-of-mass
system, Rj, is the radius of the 2p shell of the combined
atom, Ry, ~ (Z1+ Z, — 5)7', Z, and Z, are the charges of
the nuclei of the colliding atoms, and 6 = 4 is the correction
for the screening of the 2p shell by the electrons of the Is and
2s shells of the combined atom. The cross section is
proportional to the factor f, reflecting the probability of the
availability of a vacancy in the 2pr orbital, which is formed
from the 2p shell of the collision partner with a larger Z. In
comparison with previously proposed scaling factors, a
dynamic correction for the probability of vacancy formation
in the 2pm orbital during a collision is taken into account. The
logarithm of the function F is given by the formula Ig F =
—15.767 — 4.493 exp (—x/0.069) — 1.128 exp (—x/1.564) —

8.522exp (—x/0.026), where x = Eens/(Z1+2Z> — 6)* [103].
The proposed scaling makes it possible to estimate the
ionization cross sections of the K shells for unexplored cases.

It should also be kept in mind that a K-vacancy formed in a
light collision partner can pass to the K-shell of a heavier
partner due to the dynamic coupling of 2po and 1so states, the
so-called vacancy sharing mechanism. The probability of this
process can be estimated using the formulas proposed in [106].

(2) In collisions of atoms and ions with Z > 10, the 2pn
orbital is filled, and no transitions from the 2po to the 2p=n
orbital are possible. Numerous attempts have been made to
propose empirical scaling for the formation of K-vacancies
for this case [107-109]. However, the authors themselves
pointed out that a theoretical explanation for this phenom-
enon is missing.

The behavior of quasi-molecule terms in the complex plane
of internuclear distances was studied in [110]. The existence of
branching points linking different terms was discovered. The
probability of an electron transition to the continuum is
calculated in this theory as an integral encircling the branch-
ing points. A formula for the cross section of the emission of an
electron with energy E was obtained in this theory in [111]:

(7.11)

_ 4n|R(E)] Im R(E) o _HE)
T ) o (-*7).
a(E):2J Im R(¢) de, (7.12)
Ey
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Figure 9. (a) Scaling for cross sections for formation of K vacancies in
collisions of light atoms with Z < 10 in the presence of a vacancy in the
2pr orbital. Dots show experimental data from Meskhi [99], Stolterfocht
[113], and Avakyan [14]. Thick line is universal curve proposed in [105].
(b) Scaling for cross sections for formation of K vacancies in collisions of
atoms with Z > 10 when 2p shell is completely filled and a vacancy is
formed due to ionization of 2ps as a result of collision dynamics.
Experimental data are presented for various combinations of colliding
atoms from Lennard [107] and for p—H collisions from [14]. Due to
difference in the initial population of the 2pg level, ionization cross section
in the p—H case is multiplied by 4. Thin solid line shows curve for the case
2(0) = 0.67. Thick solid line represents the case «(0) = 0.75, which best
describes the experiment. Inset to the figure shows contribution of
mechanisms under consideration to formation of K vacancies in
Net —Ne collisions. As can be seen, overall curve agrees well with the
experiment [113]. (Figure taken from [105].)

where R(E) is the inverse function of the dependence of the
term E (R) under consideration on the internuclear distance
R, v is the collision velocity, and Im R(E) is the imaginary
part of the dependence R(E).

We integrate this expression over the energies of the
emitted electron to find the ionization cross section g; of the

term under consideration:
. (_ «(E) > dE.
v

Taking into account that 2Im R(E) dE = da, we can change
the integration variable:

o = Jx 2n’R[E(a)].2§ exp ( f%)dcx.

o(0)

0; = JOOO“(S) de = JOO4n|R(E)|ZImR(E) ox

0 0 u(E)

The integral is approximately calculated by the saddle-point
method:

ai:2nRgﬁexp(—@).

We introduce the dependence of the term on the internuclear
distance R:

i-ufpo (2]

We obtain then «(0) ~ 2(m/(m + 1))Up Im Ry. Let us con-
sider the ionization of the 2pe term in p—H collisions; in this
case, m = 2 and Uy = 0.5 at. units is the energy of the term
in the limit of a united atom. The position of the point of
quasi-intersection of the 2po term with the continuum was
calculated in [112], with Im Ro(p—H) = 1.01. Thus, for the
p—H system, «(0) ~ 0.67. It should also be taken into
account that, in the case of p—H, the 2po orbital is filled
with a probability of 50%.

In collisions of complex atoms, the 2po orbital contains
two electrons (P = 2). In the limit of a united atom, the level
energy Uy = 0.5Z2,/n?, where Z is the effective charge for
the level under consideration, n = 2 is the principal quantum
number, and Ry = n/Zey; thus, Zeg = (8Up)"”, RZ =0.5/Uj.
The position of the quasi-intersection point scales with
variation in Zeg:

(7.13)

2
Im R(](Zeff‘) =1Im Ry (p—H) 7o
eff
Consequently,
m 0.5
Zor) =—— Im Ry (p—H Uy =~ a(0) (2U,
U Zar) = = Im Ro (p )Zeff o~ a(0) (2Uo)™,

(7.14)

or

w355

For the cross section of 2pe ionization, we obtain the formula
(in atomic units)

g; = TP (7.15)

where P is the number of electrons at the 2pa level.
For comparison with the experiment, it is convenient to
introduce the variable x:
me E
XxX=——
M U
where m. /M is the ratio of the electron mass to the mass of the

incident particle and E is the collision energy.
It can be seen that

O((Zeff) _ O((O)
v Vo

and the formula for the cross section can be represented as

oilem?] Uy [keV] = K VX exp ( _ @) 7

20 . (7.16)

where the constant K = 1.196 x 1078 cm? keV.
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Figure 9b displays the dependence of the reduced cross
section on the reduced energy for various experimentally
studied combinations of colliding particles. It can be seen
that in these coordinates the experimental points for most
cases lie on a common curve. This dependence is well
described by Eqn (7.16). The best agreement with the
experiment is achieved at ¢(0) = 0.75 and m = 3. The same
figure shows the ionization cross section for p—H collisions
multiplied by 4. It can be seen that this dependence also agrees
very well with the first group of experimental data and
Eqn (7.16). The applicability of the proposed formula is
limited to the x < I range.

It is interesting to compare two possible mechanisms of
K-vacancy formation. As can be seen from the inset in Fig. 9b,
the calculation of the K-vacancy formation cross section in
the Net—Ne system carried out in [104] at energies above
200 keV gives cross section values lower than the experiment
[113]. Accounting for the correction for ionization of the 2pa
orbital due to transitions to the continuum using Eqn (7.16)
yields almost complete agreement with the experiment.

At low collision energies, the mechanism associated with
transitions between orbitals leads to significantly larger cross
sections for the formation of K-vacancies than those for the
formation of vacancies due to dynamic ionization, and, at
high energies, both mechanisms must be taken into account.
A distinction must be made between collisions of atoms in the
gas and solid phases. In collisions in the solid phase, a cascade
of collisions occurs, and additional vacancies can be formed
in the outer shells, which can survive until the next collision
and lead to larger cross sections for the formation of
K-vacancies due to the allowed 2po—2pm transitions.

It can be expected that the scaling proposed for the cross
sections for the formation of K-vacancies in the shells of
colliding atoms will be used in calculating the electronic
stopping losses during ion irradiation of solids.

Thus, the formation of autoionization states due to the
rearrangement of the shells of colliding particles makes a
dominant contribution to the ESP at collision energies of less
than 100 keV.

8. Contribution of elementary processes
and fast electron emission
to electronic stopping powers

Studies [114, 115] compared the contribution of elementary
processes of ionization, excitation, and charge exchange in
p—He and p—Ar collisions to the cross sections of electronic
stopping losses. These cases were chosen as the most studied
experimentally. In monograph [14], measurement errors were
analyzed in detail and recommended values were indicated. A
large amount of data is also available in the ALADDIN
database [116]. Data on electron energy losses are collected in
the NDS database [117]. The cross sections of elementary
processes and electronic stopping cross sections were meas-
ured by independent authors. As already mentioned, one of
the objectives of this review is to compare them and clarify the
contribution of various processes to the electronic stopping
cross section. To the best of the authors’ knowledge, such a
comparison based on experimental data has not been carried
out before.

Cross sections of electronic stopping loss were calculated in
numerous theoretical studies. For the systems we have chosen,
reference should be made to [118-120]. Detailed information
on studies of electronic stopping losses can be found in reviews

[85, 86]. Ionization and spectra of electrons in particle
collisions for simple systems are still being studied [121-128].

Theoretical considerations show that the particle ioniza-
tion process is expected to dominate at high collision energies.
An interesting issue is the role of the kinetic energy carried
away by the ejected electrons and the description of this
process.

We now consider the contribution of the elementary
processes of ionization, excitation, and charge exchange to
the electronic stopping cross sections in collisions of atomic
particles.

The relationship between the electronic stopping cross
section S, and the cross sections of the elementary processes
can be set as

-l

n

Z In’ + nWe):| + O-exlex

n'=1273,..

. (AECX—F%E), (8.1)
m

p
where ¢/" is the cross section of n-fold ionization, 7, is the
corresponding ionization potential, and W, is the average
energy carried away by an electron. The second term contains
the total excitation cross section gex and the transition energy
Ix. The third term represents the contribution of charge
exchange processes (o is the charge exchange cross section,
AE is the energy difference between the levels during the
transition of an electron in charge exchange). According to
[129], if the contribution of charge exchange to electronic
stopping is taken into account, the term (1. /my,) E should be
added to the energy difference between the levels of the initial
and final states (here, m. and m,, are the masses of the electron
and proton, E is the collision energy), which is related to the
transfer of momentum by the electron during the transition
from the coordinate system of the target atom to that linked
to the fast particle.

Figures 10a and 10b illustrate a comparison of the
contributions of various elementary processes to the cross
section of electronic stopping losses.

Figure 10 shows that at low energies the main contribu-
tion to the cross section of electronic stopping is made by ‘Hy-
ionization,” while, with increasing energy, ionization by
protons dominates. The dashed line in Fig. 10 presents the
total cross section of elementary processes without taking
into account the contribution of the kinetic energy of emitted
electrons W,. The solid line represents the sum of the cross
sections of elementary processes taking into account W,. In
this case, good agreement is achieved between the sum of the
contributions of elementary processes and the measurements
of electronic stopping losses.

Figure 11 displays the average energy of emitted electrons as
a function of the collision velocity. As can be seen from Fig. 11,
the average energy first increases and then varies insignificantly.
The data obtained from measurements of electronic spectra
[130, 131] for the cases under consideration and the values of
W, obtained using Eqn (8.1) are in good agreement.

In the framework of the theory of dynamic ionization, in
[111], expression (7.12) was proposed for the cross section of
electron emission with energy E.

We use this formula and estimate the average kinetic
energy of ejected electrons:

[y Ee(E)dE

et aE

(8.2)
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tion of energies of fast electrons (Sum B) [115].

Having estimated the integrals using the saddle-point
method, we obtain a simple formula for W, [115]:

v

Wem s (8.3)

The resulting formula (8.3) predicts that the average
energy of the ejected electron is proportional to the collision
velocity, which is confirmed experimentally (see Fig. 2) at
collision energies v < 2 at. units.

At high collision energies (in the Born approximation),
the parameter W, can be estimated using the formula

Se — Oex Lex

W, =2e " Zexle
ai

(8.4)

The quantities used are described in Eqn (8.1).

The Born approximation predicts the independence of W,
from the collision velocity at high energies. As shown in
Fig. 11, the obtained velocity dependence of the average
electron energy is well described in various velocity ranges
by the models under consideration.

Thus, quantitative agreement between the cross section of
the stopping losses and the sum of the contributions of
ionization, excitation, and charge exchange can be achieved
if we take into account the significant energy losses due to fast
knocked-out electrons. At high collision energies, up to 70%

v, at. units

Figure 11. Comparison of experimental dependence of average electron
energy with various theoretical models. Predictions of dynamic ionization
theory (DI) and Born approximation are also displayed. (Figure taken
from [115].)

of the total stopping losses are associated with electron kinetic
energy. To estimate the electron energy at v < 2 at. units in
the dynamic ionization approximation, a formula has been
proposed that describes the experimental data well; at high
energies, it is recommended to use the Born approximation.

9. Effect of multiple collisions
on electronic stopping powers

To describe the physical processes occurring in a solid
bombarded with atomic particles, it is necessary to know the
value of electronic stopping powers for a large set of cases. A
database of electronic stopping powers NDS is available,
which includes a set of experimental data and the results of
computer modeling of electronic (inelastic) energy losses of
atomic particles in matter [117].

For the experimental determination of electronic stopping
losses, two types of geometry are used: the reflection of a
particle beam from the surface of a massive target and the
passage of a beam through thin films.

In the reflection configuration, the energy spectrum of
scattered particles is measured, and the shape of the spectrum
is modeled by a computer code in which the fitting parameter
is the value of the electronic stopping losses.
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As was shown by Moro [132], at energies above 10 keV,
the data obtained by both methods agree within the
experimental errors. However, at lower energies, for many
combinations under bombardment with Si, Ni, Cu, Zn, Ag,
and Au protons [133—149], the absolute values of the losses
differ by a factor of 2 to 3.

The reasons for the disagreement among the results
obtained by different methods have been widely discussed at
specialized international conferences and in a number of
publications [150-152]. In particular, Paul [150] analyzed in
detail possible errors in measurements and the effect of
differences in angular distributions for backscattered parti-
cles and particles that have passed through thin films, but no
explanation of the differences in the obtained values of
electronic stopping loss has been suggested. Sigmund [151]
attributed this difference to the dependence of the inelastic
loss on the impact parameter. Of course, such a dependence
can exist, but as numerous experiments carried out in the gas
phase show, the inelastic energy loss increases with a decrease
in the impact parameter, whereas, in the method of detecting
backscattered particles, the measured value is usually smaller
than that measured by the method of passing through thin
films.

The nature of the observed difference was explained in
[153]. We now analyze the average trajectory length L of an
atomic particle that has passed through a film. Figure 12
shows the ratio of the average particle trajectory length L
calculated in [153] to the target thickness d as a function of the
bombarding proton energy. Data are presented for copper,
silver, and gold targets. It is seen that, for energies on the
order of 1 keV, the L/dratio is approximately 2.5, and it tends
to unity with increasing energy.

Thus, to determine the electronic stopping losses by the
method of passing through, it is necessary to divide the energy
loss value not by the film thickness but by the average
trajectory length in the film.

Figure 13a shows the electronic stopping losses as a
function of the incident particle energy for the H-Ag
system. The dots are the experimental data, and the dashed
line is the SRIM calculation data. It is evident from the figure
that the data obtained by passing through differ significantly
from those obtained by the reflection method. If the
experimental data yielded by the analysis of thin films are
adjusted for the L/d ratio, they coincide with the reflection
data (Fig. 136).

Figure 13 also shows that in the low energy region the
SRIM code yields incorrect values of the electronic stopping
losses. The SRIM program wuses the dependence
dE/dx ~ E% (dashed curve in Fig. 13). Describing the
adjusted data by a power law, we obtain dE/dx=2.08E?8
for copper, dE/dx = 1.56E%8! for silver, and dE/dx =
1.36 E®36 for gold (here, dE/dx is measured in eV A units,
and FE in keV). Thus, at energies of less than 10 keV in the
cases considered, the dependence of the electronic stopping
losses differs from that predicted by generally accepted
models. For the H-Au case, a theoretical calculation was
made [154] which agrees with the adjusted data for dE/dx.
According to the authors of [154], this difference is due to the

1.5 - n\
D§E ‘\A\‘
. e ——
0 5 10 15 20
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Figure 12. Ratio of average length of particle trajectory L to target
thickness d as a function of bombarding proton energy. Data are
presented for copper, silver, and gold targets.
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Figure 13. Electronic stopping losses as a function of incident particle
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database. Dashed line is SRIM calculation. (a) Data for passing config-
uration are not adjusted for L/d ratio. (b) Data for passing configuration
are adjusted for L/d ratio.

simultaneous excitation of several electronic shells of the
target atoms.

Thus, the differences among measurement data provided
by different methods are associated with the interpretation of
the results obtained. In computer modeling the passage of
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particles through a substance, we recommend taking into
account the correction for multiple scattering and using the
parameter energy loss per unit trajectory length. It is also
necessary to take into account the deviation in the dE/dx
dependence on the proportionality of the velocity of the
incident particle.

10. Effect of surface potential barrier
on particle sputtering coefficients

Sputtering is used to etch the surface of solids, to clean surfaces
of unwanted impurities, to obtain thin films, to determine
surface composition, and in sputtering ion sources. A detailed
review of solid sputtering studies is presented in [2-4, 6, 17].

In modeling sputtering, it is necessary to take into account
the presence of a surface potential barrier. In calculations, the
sublimation heat (energy) Ej is taken as the surface binding
energy. The shape of the potential barrier at the solid—vacuum
interface affects the calculation results. In most calculations
made by Eckstein’s group [5], a planar potential barrier is used.
The planar potential barrier model is favored by the fact that
the experimental energy spectra of sputtered particles exhibit a
maximum [4]. If the solid—vacuum interface were an isotropic
potential barrier, the maximum would be observed at zero
energy, in disagreement with the experimental data. However,
under conditions of strong wall sputtering in a tokamak
reactor, the nature of the surface changes. As a limiting case,
we considered a surface consisting of atomic-sized tips. In this
case, a spherical potential barrier is applicable.

An important problem in operating thermonuclear
installations is the durability of structural materials. It is
affected by sputtering by neutral atoms emitted from the
plasma. Beryllium and tungsten are proposed as the materi-
als. Hydrogen isotopes will be the bombarding atoms.

Figure 14 shows data for a beryllium [155] and tungsten
[156] target. It is seen that the experimental data for Be feature
a large scatter, significantly exceeding the experimental errors
(10-20%). In our opinion, this is due to the presence of
contamination on the surface, oxides, and different surface
roughness. In the case of W, the scatter of data is significantly
smaller, and the experimental data are closer to the calcula-
tion for a planar barrier describing a smooth surface. The
calculations of Eckstein’s group [5, 157] lie between those for
a smooth (planar barrier) and those for a rough (spherical
barrier) surface.

In this case, sputtering of the surface layers by a flux of
backscattered particles dominates. The Sigmund theory was
modified for this case in [158, 159]. As can be seen from
Fig. 14, the calculation using the Falcone formula [158, 159]
agrees fairly well with the results of computer modeling for a
planar potential barrier. For the H-Be system, the formula
predicts the sputtering threshold quite well, while for the
T—Be system the agreement is worse. The authors of [158] note
that the Falcone formula yields good results for M| < M.

A comment is relevant regarding the sputtering threshold
energy. The sputtering threshold energy Eyy, is the minimum
energy of the incident ions at which sputtering is possible. The
sputtering threshold energy cannot be obtained directly from
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Figure 14. Dependence of sputtering coefficient of (a) beryllium and (b) tungsten on collision energy at normal incidence of a beam on a target for various
isotopes. Calculations from studies [155, 156] for a spherical barrier—solid bold line; for a planar barrier — dashed bold line. Solid thin line shows
calculation of Eckstein’s group made using SDTrimSP program [5, 157]. Dashed thin line represents calculation based on Falcone formula [158, 159].

Dots show experimental data of various authors from monograph [5].
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experiment. Usually, extrapolation of experimental or calcu-
lated data is applied. Eckstein and Preuss proposed the
formula [160]

(E/En —1)"

Y(E) = anKrC(S) (/l/a)(?)) T (E/Eth — 1)/4

(10.1)

with nuclear stopping losses for the KrC potential:

~0.5In(1+1.2288¢)
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The reduced energy ¢ is represented as

M, av
e=E- 2 9
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Lindhard’s screening length is given by the formula

on2 1/3 B
aL:<%> ap (227 + 22377 ap = 0529177 A,

where ag is the Bohr radius, and Z;, Z, and M, M, are the
atomic numbers and atomic masses of the projectile and
target atoms, respectively. The threshold energy Ey, and the
values of ¢, 4, and p are fitting parameters.

In [155], in studying threshold dependences, it was noted
that near the threshold it is of importance to take into account
the contribution of multiple scattering of bombarding
particles.

As the presented results clearly show, the calculation
methods provide fairly reliable values of the sputtering
coefficients; however, a strong dependence on the surface
condition is observed. In our opinion, the calculation results
obtained should be linked to quantitative parameters char-
acterizing the surface roughness, which could be determined
experimentally. For a complex surface, for example, consist-
ing of conical tips, it is of importance to develop the process of
over-sputtering of the material, which can also affect the
obtained results.

11. Effect of electronic stopping losses,
surface potential barrier, and target structure
on coefficient of particle reflection from surface

Reflection of ions by solid surfaces is a vast topic for
experimental and theoretical research. The results of many
years of studying the scattering of atomic particles by solid
surfaces are presented in monographs [7-9, 161].

Scattering of ions by solid surfaces is successfully used to
analyze the elemental composition of surfaces and films, and
analytical methods of structural analysis are being developed.
The most popular techniques of elemental analysis of the
surface composition are Rutherford backscattering (RBS)
and slow ion scattering spectroscopy (LEIS).

Knowledge of particle reflection coefficients is necessary
to describe ion implantation processes. In the international
thermonuclear reactor ITER, beryllium Be is chosen as the
material of the first wall, and tungsten W is the material of the
divertor. To predict the tokamak operation, it is necessary to
know the coefficients of reflection Ry of hydrogen isotopes,
helium, and various impurities from beryllium and tungsten.

Figure 15a displays the dependence of the reflection
coefficient Ry on the bombarding particle energy [162] for a

0.51n (1 4 1.2288¢)

beryllium target and a number of projectiles. Figure 15a
shows that, with an increase in the mass of the incident
particle, the reflection coefficient drops sharply. As can be
seen from Fig. 15, if the mass of the incident particle
M, > M,, where M, is the mass of the target atom, the
reflection coefficient drops sharply, which is due to the
absence of a contribution of single scattering to scattering at
large angles.

Figure 15b presents the reflection coefficients [162] for
a tungsten target and various projectiles. It is seen that the
behavior of the reflection coefficient for the ‘symmetric’
W-W pair differs significantly from all other cases. The
coefficient Ry is much smaller and drops sharply at energies
on the order of 100 eV, which is also due to the absence of a
contribution from single scattering.

Figure 16 separately presents the calculation of the
reflection coefficient for the W—W system. The modeling
was carried out for spherical and planar surface barriers. It
is seen that, in the case of the planar barrier, the threshold
energy for the dependence of the reflection coefficient on the
collision energy is larger. The calculation for a smooth surface
[162] agrees well with the modeling carried out by Eckstein’s
team [163].

Figure 16 displays the calculation of the sputtering
coefficient Y for two models of the surface barrier. The
reflection coefficients Ry are approximately 100 times smal-
ler than the sputtering coefficients Y. If we normalize the
curves, the thresholds for these processes virtually coincide.

For computer modeling of particle reflection from the
surface of a solid, the model of electronic stopping losses
underlying the calculation is essential. An analysis of the
experimental data from the NDS database [117] shows that
the electronic stopping losses do not coincide with the
calculations of the widely used SRIM code [19] and require
adjustment. Figure 17 shows the reflection coefficient as a
function of the bombarding-particle energy for the H-W case.
Calculation [162] for spherical and planar potential barriers is
presented. For a smooth surface, the reflection coefficient
drops sharply in the low-energy region. The simulation was
carried out for the electronic stopping losses adjusted for the
effect of multiple collisions for low energies (see Section 9). It
is seen that the calculation for the adjusted stopping losses lies
higher than that for the losses yielded by the SRIM code
(Meluzova et al. [165]). For comparison, the calculation of
Eckstein’s team [164] is also displayed.

Figure 18 shows the reflection coefficients Ry depending
on the energy of the incident particles for a crystalline and
amorphous target for the He—W system. It is seen in Fig. 18
that the reflection coefficients for crystalline and amorphous
targets differ. Due to the channeling effect in the crystalline
target, the incident particles penetrate deeper into the target,
and it is more difficult for them to escape; therefore, with
increasing energy of the bombarding particles, the reflection
coefficient sharply decreases. Good agreement with the
experimental data [166] for the crystalline target is observed.
Different codes give a similar dependence of Ry on E.

Unfortunately, reliable experimental data for the reflec-
tion coefficients of atomic particles are quite scant. Many
data on ion scattering are available, and in most cases it is
necessary to have data for all charge states, which can be
obtained using the time-of-flight technique.

Computer modeling demonstrates the serious influence
of electronic stopping losses, the surface potential barrier,
and target structure on the coefficient of particle reflection



1016

P Yu Babenko, A N Zinoviev, A P Shergin

Physics— Uspekhi 67 (10)

—s—H-Be
= —eo—D-Be
F —a—T-Be
107 —e—He-Be
E —o—Be-Be
10—2 ; —ea—C-Be
- 3 —+—N-Be
é 10—3 ;_ —v—0O-Be
£ E Ne-Be
204k
& F
10-3
106 |
1077 L vvnwl v vl vl vl vl
10° 10! 102 103 104 103
E, eV
—s—H-W
—e—D-W
—a—T-W
—4—HeW
1 —e— Be-W
107 ——CW
- —*— N-W
- —v—Ar-W
g 1072 W-W
E o
= 1075
z =
& Z
1074§|
107
it rorrrrl rorrrl O rorrrrl
10! 10? 103 104 10°

E, eV
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W-W system are presented for a planar potential barrier. (Figures taken
from [162].)
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calculations made using ACOCT program (ACAT version for crystalline
targets) [169] for W(100) orientation. (Figure taken from [162].)

from the surface. For further development of theoretical
concepts, a significant extension of experimental studies is
required with a mandatory analysis of the charge state of
scattered particles.

12. Channeling of deuterium atoms in tungsten

One of the very interesting orientational effects in the study of
ion scattering by crystals is the channeling effect: when the
beam is oriented along open crystallographic directions, the
particle ranges increase sharply. This effect was discovered by
Robinson, Holmes, and Oen in 1963 [170] using computer
simulation. Two years later, Lindhard developed the channel-
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ing theory [171]. Tulinov made a significant contribution to
the study of channeling and some other orientational effects
[172]. Channeling studies and the areas of application of this
effect are reviewed in [173].

We now consider the ranges of light ions in a heavy target
using the D-W (100) system as an example. Figure 19 shows
the depth distribution of the ranges, obtained using computer
simulation [174], for incident atom energies ranging from 0.1
to 100 keV and normal incidence. It is seen that, starting from
an energy of approximately 1 keV, the distribution splits into
two components. A broad peak of particles scattered in the
near-surface layers and a narrow peak at greater depths of
particles captured in the channel are observed.

As the beam deviates from perpendicular incidence, the
distribution is transformed, which corresponds to a decrease
in the fraction of particles captured by the channel. At an
inclination angle of 3°, the intensity of the channeling fraction
decreases by a factor of more than 20. Formulas for the
critical angle of axial channeling, i.e., the angle of capture of
beam particles in the channel, were derived in [171]:

3zlzze2a§>1/4 5o 22122 12.1)

d&’E ag

YL(E) ~ (
where Z; and Z, are the charge of the atomic nuclei of
the particle and the target, respectively, ap~
0.885ap(Z"5 4+ Z95)™ is the screening radius of the
interatomic interaction, and ag is the Bohr radius. The
critical channeling angle for the D-W case at an initial
energy of 100 keV is 3.3°.

Figure 20 displays the spatial distribution of particles
captured in the channel for various depths of penetration into
the target. To determine the spatial distribution of the
channeling particles, only one channel was irradiated,
marked in Fig. 20 by a square (depth L = 1000 A). The
beam incidence points were uniformly distributed over the
square-shaped area. White spots show the positions of the
target atoms. It is evident that a stable spatial structure is
formed in the channel, which persists down to a depth of
9000 A. With increasing depth, the atoms ‘flow’ into the
neighboring channels.

In these figures, the colors indicate the ‘concentration’
values, i.e., the number of particles detected at each point in
space, scaled by the largest number of detected particles
(which corresponds to the value in the center of the channel
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Figure 19. Distribution of ranges by depth for D-W(100); normal
incidence. (Figure taken from [174].)

cross section). Also, for each case, thereis a 3D representation
of the concentration, which provides an additional visual
description of the spatial distribution of ions inside the
channel.

We now compare the resulting structure with that of the
potential. According to Lindhard’s theory, the behavior of
particles in the channel is described by a continuous potential,
which is the average value of the pair potential along the
trajectory axis. To obtain the continuous potential, the
Moliere potential was used, and, by varying the constants
(c1, ¢, ¢3, di, db, d3), agreement with the pair potential
obtained by the DFT method was achieved. For the Moliere
potential, the formula for the continuous potential can be
represented as [175]

27,Z5e? R R
U(R) I% |:61K0 <d1a> + K0<dza)

R
+ 3Ky (a&—)} ,
arr

where Kj is the zero-order Bessel function of the second
kind.

Figure 20 displays equipotential lines for the values of the
continuous potential of 10, 20, and 50 eV for the depth
L = 3000 A. The circles in Fig. 20 label the regions where
the channeled particles do not penetrate. On the boundaries
of these regions, the value of the potential at the channel edge,
U(R,,), can be estimated yielding 10 eV. Note that

(12.2)

URy) = E, = Esin*y, (12.3)
where E| is the perpendicular component of the channeled-
particle energy, and  is the maximum value of the trajectory
deviation angle. The obtained values of U(R,,) can be used to
find the value y = 0.57° for the D-W case, which is
significantly less than the critical channeling angle. This
implies that the beam of channeled particles is focused when
moving through the crystal.

The observed pyramidal spatial structure is formed at the
early stages of the ion path and remains qualitatively the same
up to approximately 90% of the ion range in the crystal.

The formation of a stable spatial structure as a result of
focusing in channeling can be used to experimentally
determine the potential by studying the angular distribution
of ions that have passed 30-60% of the range through the
crystal under channeling conditions [176] and to analyze the
topography of the surface layers of the film. Analysis of the
energy spectrum allows us to determine the cross section of
electronic stopping of channeled particles.

13. Conclusions

The use of computer modeling methods in combination with
the analysis of experimental data makes it possible to
significantly refine our understanding of the interaction of
atomic particle beams with matter and to propose new
experiments.

Equations (3.3) and (3.4) are presented for estimating the
screening constant, obtained from first principles, which can
be used for adjusting the scattering cross section when
applying the Rutherford backscattering method and for
estimating adjustments to the nuclear fusion cross section
when carrying out measurements on targets containing
electrons.
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D-W, L = 9000 A

Figure 20. Spatial distribution of D atoms with an energy of 100 keV at various
depths L in W(100). Distance (in A) is shown on coordinate axes. Color scale
shows the number of particles detected at each point in space divided by the
largest number of particles detected for each figure. In first figure of the set, the
region irradiated by D beam is indicated as a red square. Positions of lattice
atoms correspond to centers of empty areas. Equipotential lines for continuous
potential of 10 eV, 20 eV, and 50 eV are shown at a depth of L = 3000 A.
(Figure taken from [174].)

A formula for the Zinoviev potential (3.5) is given in [41],
which makes it possible to rapidly assess the interaction
potential. In choosing the interaction potential to describe
particle trajectories, it is recommended to employ the calcula-
tion of the potential for specific systems using the density
functional approximation [43, 46] and taking into account
spectroscopic data on the potential well parameters [45].

In computer calculations, the Lindhard approximation is
often used, in which nuclear and electronic stopping losses are
considered in an additive way. A comparison with the
experiment carried out in Section 4 shows that the accuracy
of this approximation is 15-20%, depending on the range of
energies considered. With the specified accuracy, the Lind-
hard curve for a specific potential, obtained using Eqn (4.6)
and the parameters presented in the Table, can be used to
calculate the elastic scattering cross section.

It was found that an adjustment should be introduced into
the interaction potential for particle collisions with metals,
taking into account the interaction with conduction electrons.
Specific Eqns (5.5), (5.7), and (5.10) are presented, which take
into account the screening of protons and hydrogen atoms
when passing through metals. An example of using these
formulas to estimate the passage of particles through thin
films is given; they are recommended for use in calculating
nuclear stopping losses [70].

NSP were calculated for 48 systems using the potential
obtained in the DFT approximation with adjustment of the
potential well parameters based on the results of spectro-
scopic measurements [46]. The calculation yields the same
values of energy losses in both the classical and quasi-classical
cases, provided condition / > 1 is satisfied.

An additional maximum in the NSP cross sections at low
energies, associated with particle scattering on a potential
well, should be taken into account. The presence of an
additional peak in the NSP cross sections should be taken
into account at collision energies of less than 100 eV; this is
especially important when calculating the trajectories of
recoil particles during sputtering.

A new mechanism for calculating electronic stopping
losses is being considered, which makes a dominant contribu-
tion in collisions of particles of medium masses at keV
energies. It is associated with the promotion of molecular
orbitals during particle collisions and the formation of
autoionization states.

Scaling is proposed to estimate ionization cross sections if
K, L, M shells are excited. Examples of calculating stopping
powers using measured cross sections for the Ar—Ar case and
using scaling to calculate stopping losses for the Ne—Si case
are given.

It is shown that quantitative agreement between the cross
section of stopping losses and the sum of the contributions of
ionization, excitation, and charge exchange can be achieved if
significant losses of energy due to fast knocked-out electrons
are taken into account. At high collision energies, up to 70%
of the total stopping losses consists of the kinetic energy of
emitted electrons. To estimate the electron energy at
v < 2 at. units in the dynamic ionization approximation,
Eqn (8.4) is proposed, which describes the experimental data
well; at high energies, it is recommended to use the Born
approximation (8.5).

When describing the passage of particles through matter,
we recommend taking into account the correction due to
multiple scattering and using the energy loss per unit
trajectory length as the parameter. We also recommend
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using experimental data obtained from the analysis of the
spectrum of backscattered particles. The differences among
measurement data provided by different methods is asso-
ciated with the interpretation of the results obtained.

It is shown that the surface potential barrier, surface
roughness, and target structure significantly affect sputtering
and particle reflection from the surface; it is also important to
correctly take ESP into account. An evaluation formula
(10.1) for the sputtering coefficient is presented.

Application of the computer modeling demonstrates the
significant influence of electronic stopping losses, the surface
potential barrier, and target structure on the coefficient of
particle reflection from the surface. It is concluded that, for
the further development of theoretical concepts, a significant
extension of experimental studies with mandatory analysis of
the charge state of scattered particles is necessary.

In analyzing the channeling of deuterium atoms in crystal-
line tungsten W(100), channeling of atoms is shown to occur at
relatively low energies of ~ 2 keV. At high energies, the beam
is focused, and an experiment is proposed that allows testing
the continuous potential model and the features of particle
stopping when moving along the channel axis.
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