
Abstract. The 1934 paper by A N Kolmogorov [1], ``Ran-
dom Motions,'' hereinafter ANK34, uses a Fokker±Planck-
type equation for a 6-dimensional vector with a total rather
than a partial derivative with respect to time, and with a Lapla-
cian in the space of velocities. The diffusion coefficient in this
case is e, the rate of energy generation/dissipation. The equa-
tion is obtained by specifying the accelerations of the particles
of the ensemble by Markov processes, i.e., random processes
d-correlated in time and with each other. The fundamental
solution of this equation was already indicated in [1] and was
used by AMObukhov [2] in 1958 to describe a turbulent flow in
the inertial interval [3]. It was only recently [4, 5] noticed that
the Fokker±Planck-type equation written by Kolmogorov in [1]
contains a description of the statistics of other random natural
processes, earthquakes, sea waves, and others [5]. This equa-
tion, by a change of variables with scales for velocities and for
coordinates, is reduced to a self-similar form that does not
explicitly contain the diffusion coefficient [6]. Numerical calcu-
lations confirm the presence of such scales in systems with the
number N of events, in ensembles starting from N � 10. For
N � 100, these scales almost exactly coincide with the ANK34
theory. This theory, in principle, containing the results of 1941,
paved the way for more complex random systems with enough
parameters to form an external similarity parameter. This leads
to a change in the characteristics of a random process, for
example, to a change in the slope of the time spectrum, as in
the case of earthquakes and in a number of other processes (sea

waves, cosmic ray energy spectrum, inundation zones during
floods, etc.). A review of specific random processes studied
experimentally provides a methodology for how to proceed
when comparing experimental data with the ANK34 theory.
Thus, empirical data illustrate the validity of the fundamental
laws of probability theory. The article is an abridged version of
the author's monograph [5], where for the first time the ideas of
ANK34 were used to explain in a probabilistic sense many
experimental patterns that have been considered by pure em-
piricism for decades.
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90th anniversary of the publication
of A N Kolmogorov's paper, ``Random motions'' [1]

1. General information

In 1934, Andrey Nikolaevich Kolmogorov published a two-
page article entitled ``Zuf�allige Bewegungen'' (``Random
motions''), which provided a background for the physical
andmathematical explanation of the statistical laws of nature
[1] (ANK34). An equation from ANK34 has the form

qp�ui; xi; t�
qt

� uk
qp�ui; xi; t�

qxk
� D

q2p�ui; xi; t�
qu 2

k

�1�

and differs from the conventional Fokker±Planck (FP)
equation by the full (substantial) time derivative on the
left-hand side of the probability density function of the
six-dimensional random vector A � �ui; xi� instead of
qp�t; xi�=qt �i; k � 1; 2; 3�, with summation assumed over the
repeating indices. The diffusion coefficient in the velocity
space has the dimension of the velocity squared over time, i.e.,
�D� � L2T ÿ3. A M Obukhov [2] was the first to use this
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equation, notably for the description of turbulence. He also
showed that the diffusion coefficient D for the inertial range
of turbulence is equal to the rate of generation/dissipation of
kinetic energy. He foresaw that this equation could also be
applied to other processes of a statistical nature. The
conventional FP equation describes random walk, and (1)
describes random motions.

AMObukhov showed in [2, 3] that the probability density
p�t; ui; xi� has three second moments in the inertial range of
turbulent flows which grow with time. With angular brackets
denoting statistical averaging,


u 2
i �t�

� � et ; �2�

x 2
i �t�

� � et 3 � r 2 ; �3�
huixii � et 2 � K : �4�

Expressing time from (3),

t �
�
r 2

e

�1=3

�5�

and inserting it into (2) and (4), we obtain the Kolmogorov
law for the velocity structure function for zero (or small)
initial value,

u 2�r� � et � �er�2=3 ; �6�
huixii � K � e 1=3r 4=3 ; �7�

where K is the kinematic mixing coefficient.
In the last two formulas, we have purposely not men-

tioned the universal dimensionless constants which should be
determined by making a comparison with experiments. Such
experiments are carried out under different conditions (for
example, under different boundary conditions). For refer-
ence, one such constant in formula (6) is C6 � 1:6, and one
gets C7 � 0:18 in formula (7) [3]. Formula (7) is the
Richardson±Obukhov law of turbulent diffusion.

Let us consider the secondmoments (2)±(4) in some detail.
Equation (1) can be reduced to a fully self-similar form by the
variable transformation ui�t� � �et�1=2vi, xi � �et 3�1=2yi, in
which case the dimensionless variables vi, yi will eliminate
the diffusion coefficient D from (1).

The fundamental solution of equation (1) can be written
as

p�t; ui; xi� �
� ���

3
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2pDt

�3
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�
ÿ
�
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i

Dt
ÿ 3uixi

Dt 2
� 3x 2

i

Dt 3

��
: �8�

This expression was first presented in [3], where it is formula
(24.56). It shows in an obvious way that our nondimensiona-
lization maximizes the probability in (8) in a certain sense.

When A M Obukhov presented these results at the
International Symposium on Pollution of the Atmosphere in
1958, G Batchelor asked him what new element is given by
such an approach as compared with the use of the similarity
theory and dimensional considerations. The equation from
ANK34 gives a description of random processes as they
evolve with time, but formula (5) connects the temporal and
spatial characteristics of the processes under consideration,
and therefore this formula can be considered a dispersion
relation for o � 2p=t and k � 2p=r,

o � �2pe�1=3k 2=3 ; �9�

whose nonlinearity introduces major analytical complica-
tions. The consideration of dimension and similarity, which
has become an exact science in its own right [7], is another
method of process analysis; it complements ANK34 and
extends its scope. When considering the full set of parameters
of a phenomenon, one can form dimensionless similarity
parameters that can be included in the dimensionless
coefficients that appear when the ANK formulas are
compared with experimental data. An essential new concept
for such studies is the concept of `intermediate asymptotic
forms' [8, 9], introduced by G I Barenblatt and
Ya B Zel'dovich. The applicability limits of this asymptotic
form are established by comparison with experiments based
on the analysis of the similarity numbers of the phenomena
under study.

Analytical formulas of the probability theory are derived
under the assumption that there is an infinite ensemble of
events to be considered. In practice, the number of events is
always finite, sometimes only in the order of ten. Therefore,
the effect of the finite ensemble size N on formulas (2)±(4)
needs to be investigated. To this end, numerical simulations
were carried out in [6]. Equations

_ui � ai ; _xi � ui ; �10�

where i � 1; 2; . . . ;N is the total number of pairs of such
equations, and ai is the acceleration of a single particle
without interaction with other particles, have been solved
numerically. For simplicity, equations (10) were solved en
masse for a one-dimensional case. However, the main
relations apply to two- and three-dimensional cases. The
accelerations ai were given by different types of distribu-
tions. The choice of the distribution functions and time step
has no significant effect on the second moments of the
velocities and displacements of the Lagrangian particles.
The results of such simulations are shown in Fig. 1. It can be
seen that, for the total number of particlesN � 10, the second
moment is proportional to time, despite apparent fluctua-
tions. The second moment of the displacements follows the
dependence hx 2�t�i � t 3 practically exactly. The distances
between particles are obtained by integrating the velocities,
which is equivalent to smoothing.
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Figure 1. Secondmoments of the probability density function for velocities

hu 2�t�i and distances between particles hx 2�t�i � t 3.
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We assume that the Lagrangian results are also applicable
in the Eulerian description, based on the fact that, under this
assumption, one can well describe real experimental data,
which was tested in [6]. The moments (2) and (3) will be
considered to be structure functions with zero or small initial
data; the same relationships hold for the individual compo-
nents of 6-dimensional vector uixi. We write (3) for the
vertical coordinate hh 2�t�i � et 3. If h is the height of the
peak of sea waves, and t the peak period, then we have the
famous relationship between the peak height and period,
discovered in 1978 [10]. This relationship was then found with
unusual accuracy, with the correlation coefficient r > 0:99
(see Section 4 for an explanation). The structure function (3)
implies [3] the frequency spectrum ekÿ4, which was shown by
the same author [11] in 1973.

Expression (2) for the mean square velocity can be
considered to give the energy of a particle per unit mass.
Such a formula was first proposed in 1944 by L D Landau in
the first edition ofMekhanika Sploshnykh Sred (Mechanics of
Continuous Media), which contains the expression u 2 � et.
These moments immediately give a description of cumulative
probability distributions, sometimes called integral distribu-
tions, which have the dimension of inverse time, i.e.,
frequency,

N�5E� � e
E

�11�

for the events associated with energy, and for spatial
processes, formula (3) allows us to write

N�5S� �
�
e
S

�1=3

; �12�

which gives the distribution for lithospheric plates [13] that
remainedmysterious for many years. The same distribution is
found in [5] for the masses of the nearest spiral galaxies,
assuming that their mass is proportional to their surface area.

Another observation about second moments immediately
solves the problem posed by Sir James Lighthill in 1995. In the
last decade of the 20th century, the UN proclaimed the
International Decade for Natural Disaster Reduction, and
Sir Lighthill, a fluid dynamicist and member of many
academies, including our own, became the head of the
Scientific Steering Committee. He said that we did not
understand how the kinetic energy of a tropical hurricane
could reach the energy level of the explosion of many
thousands of megaton bombs. The answer is to multiply the
product of the first two moments by the mass density of the
atmospheric columnM � 104 kgmÿ2, which these hurricanes
penetrate at up to 15±18 km. The energy is generated by the
concentration of angular momentum, driven by convection.
The buoyancy flux in this case is of the order of
b � e � ag f=rcp � 0:03 m2 sÿ3, and for the energy is the
equation

E �Mb 2lÿ4C ; �13�
where lC � �4p=T � sin y is the Coriolis parameter, which is
inversely proportional to the rotation period, and y is the
latitude. For lC � 0:5� 10ÿ4 at the latitude of 20�, we find [5,
15, 16] E � 1019 J. This number is backed by thousands of
papers. The explosion energy for 1Mt of TNT� 1:6� 1015 J.
Formula (13) was obtained earlier in 1997 by the methods of
similarity theory and dimensional analysis. Overall, this
earlier approach and ANK34 allow the subject of the studies
to be considered from different angles, supporting each other.

We will now turn to the consideration of individual
processes, uncovering their specific and general features. In
comparison with experiments, when the quantities with the
same dimensions are considered, dimensionless numerical
multipliers appear, which in turn may depend on other
similarity parameters if there is a sufficient number of
dimensional governing parameters in the system [7].

2. Earthquakes

An overwhelming number of earthquakes (EQs), more than
90%, occur near the boundaries of lithospheric plates.
Convection in the mantle with velocities of several cm yrÿ1

is inhomogeneous in space and time. By entraining the plates,
convection creates stresses at their boundaries, which are
released by a rupture and an EQ in Earth's crust. In the early
1940s, an empirical law was established for the occurrence of
EQs as a function of their magnitude [17, 18], which became
known as the Gutenberg±Richter (GR) law,

lgN�5m� � aÿ bm ; �14�

whereN�5m� is the cumulative number of EQs ofmagnitude
5m during the time interval studied; a is a constant that
depends on the choice of measurement units, the time
interval, and also the place of observation; and b � 1. The
magnitudem is related to the logarithm of the EQ energy and
is estimated by the amplitude of the surface or volume seismic
waves [18].

The analysis of seismograms allows one to estimate the
parameters of the fault: length L, area S, development time t,
andmean displacement of the crustal blocks along the fault u,
and also to calculate the seismic moment, the measure of EQ
energy in the form (see [18])

M � mSu ; �15�
where m is the crustal shear modulus. There is an approximate
relationship between the values of magnitude and seismic
moment that is supported by some theoretical considerations
and observational statistics [17, 18],

m � 2

3
lgMÿ 6 ; �16�

where the quantityM is measured in SI units, i.e., [N m]. The
quantityM is the torque of the forces acting in the system, i.e.,
it is the absolute value of the tensor (see Kasahara [18]).
Dimensionally, the moment is equal to the energy. In terms of
the moment, the GR law (14) is written with the exponent
b 0 � 2=3. From this and from (14), it then follows that

N�5M� �Mÿ2=3 :

Kanamori and Anderson (see [18]), based on a simple model
for rupture and fault dynamics and also on the postulated
scaling, assumed that the drop in stresses Ds in the crust
(accompanying an EQ) is approximately constant and found
that the fault area S /M 2=3. This is true [7] for EQs with
m5 6. This gives another interpretation of themagnitude [17,
18]

m � lg

�
S

S0

�
; �17�

where S0 � 100 m2 � 0:01 ha� 1 are.
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A special test has shown that the drop in stresses (see [5])
in the crust is about 4.5MPa for a change in themodule of the
moment tensor of 5±6 orders ofmagnitude. Analysis of global
EQ catalogs has shown that there is a value Mcr �
1:6� 1020 N m around which the quantity b in (14) varies
from 1 to 1.5. This is certainly observed for the EQ near mid-
ocean ridges, where themagma spreads outward at the rate of
3 km3 yrÿ1 and solidifies in the crust, and where the crust is
thin. To analyze the EQ process, we first use the similarity
theory [17].

We take the shear modulus m � �3ÿ7� � 1010 N mÿ2, the
density r � 3� 105 kg mÿ3, and the stress drop Ds �
4:5� 106 N mÿ2 as the material constants of the crust [18].
The origin and the measure of the power of all geodynamical
processes is the geothermal flux F � 4:5� 1013 W with an
geothermal flux density of 86 mW mÿ2 [19]. The global data
for EQs also reveal the thickness of the plates h. We have four
parameters with three dimensions. One can form the length
and time scales [17] that characterize an individual EQ,

L �
�
M

Ds

�1=3

; T �M

F
:

In the 20th century, the strongest EQ, with m � 9:5, i.e.,
lgM � 20, occurred in Chile in 1960. The four external
system parameters lead to one dimensionless similarity
parameter

P � L

h
� M 1=3

Ds 1=3h
: �18�

Based on the dimensional consideration, we can write the
number of events with the dimension of frequency

N�5M� � F

M
f �P� ; �19�

where f �P� is some function P of the similarity parameter
which has to be determined from observations. According to
global catalogs, P5 1 near the mid-ocean ridges, and so we
can assume that f �P� ! const. ForP < 1, this function can
be expanded in theMaclaurin series, which should begin from
a linear term (no EQ if there is no excitation). Then,
f �P� � c1P � c1M

ÿ1=3Dsÿ1=3=h. Processing the global cat-
alogs [5, 20] gave the value for the constant c1 � 0:35. For
P > 1, it is also found that c1 � 0:34� 0:02 for b � 2=3.Note
that, for 5 < m < 7:5 in [21], it was found that b �
0:65� 0:02. So, if the EQ is inside the crust, then b � 2=3,
and if it goes outside the crust, then lgN�5M� �Mÿ1. EQs
with P > 1 will occur less frequently than for P < 1 when
lgN�5M� �Mÿ2=3.

Induced EQs are known to occur after the construction of
large water reservoirs or to accompany large-scale gas and oil
extraction [22]. In these cases, there are changes in the internal
pressure in the systemÐthe quantity dp=dz � ÿrg. These
changes lead to a violation of isostasy, i.e., to the appearance
of new stresses and modifications of old stresses in the crust
[5, 22, 23]. These EQs are satisfactorily described by the
Gutenberg±Richter laws. The spectra of microseisms (Fig. 2)
in the two frequency ranges from 1 to 0.1 Hz and from 10ÿ2 to
5� 10ÿ4 Hz behave as oÿ4 � T 4, in accordance with the
second moment (3). The first interval reflects the breaking of
sea waves with such a spectrum on the coast, and the second
corresponds to periods in the minute range due to the
combination of numerous random factors inside and outside
Earth's crust, in agreement with ANK34.

Starquakes observed in our Galaxy are also distributed
close to the Gutenberg±Richter laws, i.e., under appropriate
conditions, these laws apply everywhere [5, 24, 25].

3. Energy spectrum of cosmic rays

The theoretical derivation of this spectrum has been awaited
for more than half a century, and the mechanism by which
particles of cosmic rays (CRs) are accelerated up to ultra-
relativistic energies of 1012 GeV was not clear either. In
monograph [26], which is still useful in many respects, it is
stated that the full explanation of CRs and their spectrum
may possibly require some new physics. Already in 1949,
Enrico Fermi formulated a hypothesis that acceleration could
take place at the inhomogeneities of the galactic magnetic
field. However, it was not until 2001 that MMal'kov [27], the
former doctoral student of R Z Sagdeev, explained that the
acceleration occurs at the fronts of collisionless shock waves.
In 2014, the results of the Russian±European experiment
PAMELA were published [28], in which five years of
measurements aboard the Resurs-5 spacecraft operating
since 2003 showed the power-law character of the spectrum
with the exponent n � 2:67� 0:02. Figure 3 shows the
spectrum based on data from terrestrial measurements [26]
with the exponent 2.7 or in the integral (cumulative) form
with n � 1:7, which is close to 5=3.

In our Galaxy, supernovae explode 2±3 times per century,
producing CRs, magnetic fields, turbulence in the interstellar
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Figure 2. Spectra of microseisms from [5].
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gas, and shock waves. The experimental determination of the
CR spectrum has its own specificity: it is the number of
particles detected in a given energy interval per unit time and
per unit area. This corresponds to an energy supply to the
Galaxy with a radius of 50 thousand light years and disk
thickness of 200 pc� 6� 1018 m. The energy of a supernova
explosion is 1042ÿ1043 J, i.e., the average power entering the
system isG � 2� 1033 W, and part of it feeds the acceleration
of CRs. Reference [26] gives an estimate for the volume
density of the CR energy w0 � 0:5 eV cmÿ3 � 10ÿ13 J mÿ3.
The full energy of the CR particles in the Galaxy is
W � 1048 J. The estimated particle time will be t �W=G �
5� 1014 s� 1:6� 107 yr, while the Galaxy's age is on the
order of 1010 years, and it has seen about a thousand particle
generations. These particles are brought into rotation by the
galactic magnetic field with an average amplitude H �
5� 10ÿ6 G [26]. The energy density in this field is about
H 2=8p � 10ÿ13 J mÿ3, i.e., the same as the energy of CRs, and
during their lifetime the particles are accelerated many times
in random shock waves propagating in the interstellar gas
after supernova explosions.

It has beenmentioned that the specificity of CRs lies in the
measurements per unit area. This quantity can only be
obtained from the volume density of the rays. As for a gas,
we will assume that this density is w0 � nE (in a gas E � kT ),
where n is the concentration with the dimension cmÿ3. Then,
the quantity with the dimension of area S is estimated as
�w0=E �2=3. The concentration over energy [26]

n�5E� �
�1
E

n�E� dE � 4p
c

�1
E

I�E� dE � 4p
c

I�5E� �20�

is the quantity proportional to the integral spectrum, and c is
the speed of light. Further, it is easier to find the integral
spectrum based on dimensional considerations, I�5E� �
Sÿ1T ÿ1, w0 � ESÿ3=2, G � ET ÿ1, �E � � E; here, we use the

dimension of energy instead of mass, and taking the
dimension of time from G=E and the area from �w0=E�2=3,
we obtain

I�5E� � c1
G

E

�
w0

E

�2=3

� Eÿ5=3 : �21�

The spectrum after the bend is already defined by particles
that are not confined by the magnetic field, i.e., for such
particles, the generator is the spectrum given by (21).
Repeating the same procedure as for the derivation of (21),
we find [29]

I�5E� � C2c
ÿ2=3G 5=3w

4=9
0 Eÿ19=9 � Eÿ19=9 ; �22�

while in [26] the spectral index is estimated to be 2.1, and in
[28] there were no measurements in this spectral range. We
have 19=9 � 2� 1=9, i.e., the difference is 1=90.

What is the relation with ANK34? The integral spectrum
I�5E� is inversely proportional to time, and here lies its
connection to the first moment (2), but it is also inversely
proportional to the unit of area over which the measurements
are made. And this peculiarity of the measurement procedure
is the new element, not in physics, but in the definition of the
spectrum, which causes the appearance of thirds in the
spectral exponent.

4. Sea wind waves

Waves on the sea surface are one of the most fascinating
natural phenomena. And they are the direct manifestation of
ANK34, although this was only discovered in 1978 [10, 11]:
Toba found that themean peak height h is proportional to the
power of its period as T 3=2. This dependence taken to the
power of two is the third invariant of ANK34: h2 � T 3!
Initially, many researchers did not understand the origin of
this relationship, until the derivation and the experimental
test of the frequency spectrum for sea waves [11],
Sh�o� � eoÿ4, which leads to the Toba relationship after
integration. But now this spectrum is the consequence of the
third invariant hx 2

i �t�i � et 3. If this is considered a structure
function [3], its spectrum is exactly eoÿ4!

In fact, two similarity parameters for wind waves related
to wave conditions were established a long time ago, and their
relevance was already noticed by seafarers in ancient times.
They are the age of sea waves [31, 32]

O � U

cj
;

where U is the wind speed, routinely taken at 10 m above sea
level, and cj is the phase speed of the main peak. Over deep
water, the dispersion relation is o2 � kg and, in this case,
cj � o�k�=k � �g=k�1=2.

The second similarity parameter is thewave fetch, which is
related to the distance x to the windward shore, F � gx=U 2.
We note that the productOF � opx=U � opT, where T is the
time the wind acts on the waves. It was noticed long ago that
young waves are steeper than well-developed waves, which
are close breaking. Systematic theoretical studies of sea waves
were initiated about 60 years ago by K Hasselmann, who
derived kinetic equations for the energy of sea waves and
organized experimental studies (he was awarded the 2021
Nobel Prize in Physics). Since then, studies of wave evolution
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Figure 3. Cosmic ray energy spectrum, Wikipedia.
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have continued, in particular, the dependences [31]

U fr
g
� AF ÿa ;

g 2e
U 4
� BF b ; e � h 2

r

16
; �23�

where hr is the so-called significant wave height, which is the
measure of wave kinetic energy.

Measurements give the exponents a in the range from 0.23
to 0.33, and b in the range from 0.7 to 1.0. These exponents
are lower when the water is colder than the air. When the
water is warmer, convection develops in the water (and air). It
facilitates the transfer of wind momentum and energy to the
water. Overall, the process is consistent with ANK34, so that
3a � b. In the longest complex measurements [32], a � 0:33
and b � 1:0. Reference [33] compiled numerous measure-
ments of the Toba law h 2 � T 3, shown in Fig. 4, where the
dashed contour lines correspond to the spectral slopes
calculated in [34], which differ by �1=3 from the basic
exponent of ÿ4, the bold line corresponds to ÿ13=3 for
young waves with O > 2 and to ÿ11=3 for waves with
ages 1:2 > O > 0:83, and in the gap the exponent is ÿ4,
corresponding to waves that are not yet old but already
developed (earlier, the age was associated with the inverse
quantity).

The wave age influences both the wave spectrum and the
dispersion of contaminants over the water surface. The sea
wave characteristics which were estimated and tested here
affect both the eddy diffusion coefficient, which is slightly
reduced, and the pollution area (see [5, 43]), and since the
frequency spectrum and the dispersion equation are different
here, the exponent in the evolution of the polluted area with
time is modified [5].

5. Probability distribution of cloud fields

Statistics on the sizes of cloud fields is the clearest natural
manifestation of the Kolmogorov±Obukhov turbulence
theory proposed in 1941. This became clear after the detailed
analysis of the global cloudiness patterns provided by the
special US spacecraft mission CloudSat [35]. The spectra of
the horizontal lines n�L� of the lengths of individual clouds
and cloudless intervals are shown in Fig. 5. These lengths are
approximated as n�L� � Lÿb exp �ÿ�L=L��2�, where b �
ÿ1:66� 0:00... and L� � 1850 km. A cloud consists of
droplets formed from condensed water vapor for a particular
combination of humidity and temperature. Both quantities
are considered to be passive scalars transported by velocity
fluctuations [3].

Slight differences in the spectra for clouds and blue sky
regions can be attributed to the ambiguity in defining the
boundaries of the experimental regions in the sky. Exactly the
same conclusions have also been drawn for the shape of
noctilucent cloudsÐ ice particles at an altitude of 80±90 km
[36]. So the results for different types of clouds are again the
direct consequences of ANK34.

About a half a century ago, Benoit Mandelbrot [37]
introduced the concept of a fractal, a power-law statistical
relationship between two random quantities. For the char-
acteristics of clouds, it was proposed in [38] to use the
relationship between their area A � R 2 � BP a and peri-
meter P � CR b. Forty years ago, it was found that
b � 1:35. In the same paper, it was noted that this value is
close to 4=3 (the difference is only 1=60 [39]). Later, b � 1:35
was also found for noctilucent clouds [36] and in a number of
numerical simulations (see [39]). The explanation for 4=3 was
given in [39]. It is easy to see that from the relation between the
area A and its perimeter P it follows that

ab
2
� 1 ; �24�

BC a � 1 ; �25�
C � Bÿ1=a ; �26�

and if b � 4=3, then a � 3=2, C � 0:15ÿ2=3 � 3:7 kmÿ1=3.
Unfortunately, the authors of many regression analyses

do not give estimates of the uncertainty in the exponents like a
and b, even with the standard 95% precision. To estimate
their error bounds, in [39], we digitized 76 points of Fig. 1
from [38] and found that b � 1:35� 0:02. The quantities B
and C show an arithmetic pre-fractal relation, which is rarely
mentioned in studies dealing with fractal analyses, although it
carries some useful information.

Reference [39] proposes a theoretical derivation of
b � 4=3 based on the similarity theory and dimensional
analysis and using the results of ANK34. Unfortunately,
an expression for line elongation in a turbulent flow based
on first principles has not yet been proposed (see [3]).
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Figure 4. Test of the statistical Toba law based on data for individual

waves. 1ÐH � � 0:062T � �3=2�, 2ÐH � � 0:062T � �5=3�, 3ÐH � � 0:062�
T � �4=3�. Black crosses correspond to the results of [10]. Gray and black

circles are data obtained on the Gorky Reservoir (gray circles, O �
1:5ÿ3:5, black circles, O � 0:3ÿ0:8), solid red line is the approximation

H � � 0:062T � �1:448�0:003� (see [33] for details).
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From a dimensional consideration, [39] suggests that the
length varies with time as lP�t� � �K1�l; t� t�1=2 and that the
length lA � �A�t��1=2 grows with time according to a parabolic
law, and the perimeter P�t� grows with the time t � �l 2=e�1=3,
but withK1�t�, i.e., because of turbulence.We can further find
the ratio K1�t�=K2 without concentrating on their individual
values. The ratio of the perimeter to the mean radius is the
similarity parameter

P � P����
A
p � Bÿ1=aA1=a����

A
p �

�
K1t
K2t2

�1=2

�
��

a�R 2=e�1=3
t2

��1=2
;

�27�
where a � K1=K2 is the ratio of the diffusion coefficients for
the perimeter and area. Using a � 3=2 and the above
relationships, taking into account the pre-fractal values of B
and C according to the results of [38], we find with 95%
significance

P � 3:54A1=6 � CR 1=3 ; �28�
which illustrates the proximity of the exponent b to 4=3. The
similarity parameterP > 1 is the ratio of the cloud perimeter
to themean cloud size. To obtain the dissipation rate e, we use
the result of [40] that the kinetic energy generation rate in the
atmosphere is 2.3 W mÿ2. With the mass of the atmospheric
columnM � 104 kgmÿ2, weobtain eÿ1=6 � 40:4 sÿ1=2 kmÿ1=3.
Then, using (27), we obtain for the similarity parameter P
values from 5.4 to 37.2 for the areas from 10 to 106 km2,
averaged over the globe.We stress that themain hypothesis of
A N Kolmogorov consists in the Markov character of the
forces, i.e., the accelerations acting in the system, and the
evolution of the probability density p�t; ui; xi� for the
6-dimensional vector written in the form of the Fokker±
Planck±Kolmogorov equation corresponds to ANK34.

6. Hurricanes and physical analogs
of similar vortices

These formations also follow the laws of ANK34, but for a
given basic rotation period and given lower boundary
conditions at the interface between the ocean and atmo-
sphere, which are not in thermodynamic equilibrium. The
1990s were proclaimed by the UN as the International
Decade for Natural Disaster Reduction. The activities of
this decade were guided by the International Scientific
Committee chaired by a distinguished British scientist, a
member of the academies of several leading countries,
including our own, Sir James Lighthill. In 1995, at one of
the committee meetings, he said that we still do not under-
stand why the energy of a hurricane can reach the level of the
explosive energy of many thousands of H-bombs. This is
clarified in Section 1 of the present paper on the background
of ANK34, but in 1997 I obtained formula (13) based on the
ideas of similarity and dimensional analysis, having estimated
separately the speed and size of a hurricane.

The Coriolis force varies with latitude, and for the latitude
y � 20� lC � 5� 10ÿ5 sÿ1, the heat flux from water together
with the latent heat of condensation is estimated to be
1 kW mÿ2, which gives the buoyancy flux b � 0:03 m2 sÿ3.
Hurricanes are also observed over polar seas, when cold air
with temperatures T4ÿ 30�C from the latitudes covered by
sea ice intrudes into areas with water temperature T � 0�.
References [5, 42, 43] give nomograms that specify necessary
conditions for the occurrence of intense vortices. Their
construction takes into account the conditions of water
evaporation and subsequent heat release due to water vapor
condensation, as well as the change in the thermodynamic
parameters that depends on temperature. Since the vortex
area is inversely proportional to l 3C, polar hurricanes, called
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Figure 5. Distributions of horizontal lines n�L� for clouds and cloudless intervals given, respectively, by circles and blue rhombi (a); (b) green line

n�L� � Lÿb exp �ÿ�L=L��2�, where b � 1:66� 0:00 and L� � 1850 km.
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mesocyclones, are typically several times smaller than their
tropical counterparts, as is observed in nature [5, 16]. The
exchange of momentum, heat, and moisture in this case is
routinely described by the so-called bulk formulas. These
semi-empirical formulas all include proportionality to U10,
i.e., a wind speed at 10 m in height. Since ANK34 allows the
squared velocity to be estimated from meteorological data,
this provides an additional estimate of hurricane size.
Tropical hurricanes develop within half a day, polar hurri-
canes, within several hours, which was taken into account in
the construction of the nomograms for the necessary
condition of vortex development, while the stratification of
the atmosphere, important for obtaining sufficient condi-
tions, was taken into account only in the mean. The
insufficient accuracy of satellite measurements of the vertical
structure of the atmosphere will delay the development of
numerical forecasts based on satellite data for a long time (if
not forever). However, if such a vortex is already present, the
numerical weather forecast models can predict its motion
with ever increasing accuracy.

Spiral vortices on the surface of seas and oceans, which
again occur when the atmosphere is colder and are seen when
sea waves are weak [44], are described analogously. These
spiral vortices are not observed in the �5� equatorial band.
When water is cooled from the surface, convection that
develops in the water is characterized by the flux of buoyancy
bwhich is five orders ofmagnitude smaller than in hurricanes,
since the material parameters for water differ substantially
from those for air. This leads to vortices with diameters of
several kilometers and velocities of � 5 cm sÿ1 [43, 45].

During the Second World War, massive fires accom-
panied the bombing of Hamburg, Dresden, and Hir-
oshima. Convection of hot air from large fire areas causes
lateral inflow of surrounding air masses, which concen-
trates angular momentum and creates a fire tornado.
Simulations [46] show that, after the onset of a model
fire, the emerging cyclonic vortex develops hurricane-like
velocities up to 70 m sÿ1 (in accordance with the laws of
ANK34!) within several hours.

The similarity of large-scale processes in nature is obvious
and they provide inspiration to study them in more detail.

7. Statistical structure of the relief
on the surface of celestial bodies

Space research has uncovered many new laws for which there
was no physical understanding for decades. The first of these
is the Kaula rule [47, 48]. It was found that fluctuations in
gravitational force, and then of the relief, expanded in a series
in spherical harmonics, starting from n5 4 decay as nÿ2.
Later, the same was established for the Moon, Mars, and
Venus, and also for smaller bodies (see [5, 50, 51]). An
explanation and the sense of this law were given only in 2019
[5, 50, 51] and are based on the ANK34 rules or, even simpler,
on the standard Fokker±Planck equation for the probability
density of the relief field p�y; h�, where y is the meridional
coordinate and h is the vertical one.

The standard form of the Fokker±Planck equation is

qp
qt
� D

q2p
qh 2

; p � p
ÿ
h�t�; t� ; �29�

where h�t� is the random altimeter record. For a known flight
speed u, the recorded time is transformed into the horizontal

coordinate y � ut, and then

qp
qy
� D1

q2p
qh 2

; D1 � D

u
; �30�

whose second moment has the form hh 2�y�i � 2�D=u�y, and
this structure function has a spectrum

S�k� � D

2p
kÿ2 ; k � 2p

ly
; �31�

where ly is the horizontal wavelength of the random relief.
This equation is valid for small regions 2 < y < 60 km [5, 48].
Based onmeasurements in the state of Oregon for 24 flights in
different directions over mountainous, hilly, and flat regions,
S�k� � kÿn, where n � 2:03� 0:04.

Performing all the necessary manipulations with spherical
harmonics [50, 51], we find for the vertical component of the
relief

Sn � 4prD1

n�n� 1� ; �32�

where r is the radius of the celestial body, i.e., the harmonics
decay slightly faster than nÿ2. Book [48] presents 180 spherical
harmonics for Earth and 60 for Venus in logarithmic scales.
Processing the harmonics in the first case gave D1 �
1:3� 0:3 m, and in the second, D1 � 0:2� 0:03 m with an
accuracy of about 20%. The Venusian atmosphere is 65 times
denser, so that the erosion processes on it are more intense
than on Earth, and the relief is an order of magnitude less
pronounced.

Other surface features, modified by other erosion pro-
cesses, defined by the climate, first and foremost by precipita-
tion, evaporation, soil structure, etc., are linked to the spatial
relief spectrum proportional to kÿ2. Therefore, the cumula-
tive distribution of the number of rivers over length l behaves
asN�5 l� � lÿn with n � 1:9, and for the distribution of lakes
over an area S, we have N�5S� / Sÿn with n � 0:95 (see [4,
46]). The equality of the exponents in the cumulative
distributions of river length and mean linear lake size clearly
points to the role of relief. A small deviation in n from 1 or 2 is
indicative of the role of large-scale erosion processes, which
shape the relief in a purely randomMarkov manner.

The celestial bodies are finite spheres, and their spectral
harmonics are discrete. A corresponding analysis using the
associated Legendre polynomials was carried out in [49±51].
The derivative of the relief over the angle, i.e., the slope
g cos y, is a random Markov variable. Water flows over the
slope, boulders roll down it, the slope resists wind action, i.e.,
it is a factor forming the relief. Performing the necessary
operations, we find the expression for the spherical harmonic
in the form [50]

Sn � a 2

n�n� 1� ; En � 2pr 2
X1
n�1

Sn ; �33�

where a 2 is the mean square of the random angle.

8. Size distribution of water reservoirs
and the damage caused by floods

When I was the director of the Institute of Atmospheric
Physics (1990±2008), my scientific thoughts were far from the
subject of hydrology. However, in 1998, I saw a graph
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showing the value of the damage D caused floods (Fig. 6):

N�5D� � Dÿn ; n � 0:65 ;

without the limits on n, but visually they were �0:03. For
about 20 years, I kept this in mind, noting that 0.65 is close to
2=3. After 2008, I continued as a professor of climate theory
at Lomonosov Moscow State University (MSU) and the
Moscow Institute for Physics and Technology (MIPT) and
started to write a book [52] on these issues.

The damage is estimated by the flooded area, which
depends on the relief, and the random quantity is the volume
of precipitation,

V � ptS ; �34�

where p is the mean precipitation rate during the time t over
the river catchment area S. In this case, our formula (34)
shows that the cumulative distribution of precipitation over
the volume (see Section 1)

N�5V� � AVÿ1 ;

where A is a quantity with the dimension V=T. We assume
that the damage D� aV is proportional to the volume of
precipitation, where �a� � DVÿ1, and D is the dimension of
the damage, for example, in monetary units. The flooded area
Sy � hbÿ1L, where h � h�V� is the mean flood depth, b the
mean angle of the river valley side slope, and L � h=b1 is the
length of the flooded valley, where b1 is the slope coefficient of
the river discharge.

Specific damage per unit area will be y � a1h, where
�a1� � DLÿ3. The volume of water flooding the territory will
be

V � hSy � ySy

a1
� D

a1
;

and at the endV � hSy � a1h 3=bb1. The area and the damage
are determined by the geomorphological parameter bb1,
which depends on the concrete conditions and serves as a
natural similarity parameter defined by external conditions.
This parameter

P � �bb1�ÿ1=3 � hÿ1
�
D

a1

�1=3

: �35�

We rewrite the empirical considerations in a general form,

N�5D� � c�P�aD ÿ1 ; �36�

where we allow the numerical coefficient c to depend on the
similarity parameter. Leaving only the first linear term in the
expansion c�P� � P, we find P�D� � D1=3, in good agree-
ment with empirical expression (36).

This derivation is presented with additional details in [54].
In the same reference, we also presented data on statistics of
`turbid mushrooms,' areas of the sea surface occupied by
turbid plumes from river discharges: the areas of these
mushrooms are P � Ab, b � 0:6ÿ0:7, and their number as a
function of area is distributed as N�5P� � Pÿb, b �
1:02� 0:03. Thus, all these results are governed by the
relationships between the catchment areas A with the
flooded areas P and the volume V of precipitation over
them. It should be recalled that �S� � �V�2=3 by dimension,
i.e., a lower layer of precipitation is essential.

9. Discussions of results and conclusions
on the role of ANK34

The reader is reminded that the ANK34 theory describes
random motions and not random walks, as the ordinary
Fokker±Planck equation does. We list the main points of
ANK34 for the Markov character of the accelerations:

(1) The proportionality of the mean velocity squared, i.e.,
the energy per unit mass, to the time in random processes.
L D Landau was the first to mention this relation in the first
edition of the Mechanics of Continuous Media in 1944. The
statistics of the set of random events follows from here in the
form of cumulative distributions N�5E� � Ce=E, where e is
the measure of process excitation, and C is a dimensionless
coefficient which may depend on the dimensionless similarity
parameters acting in the system [7]. Such is the distribution of
cities by population size, stones on the surface of Mars by
weight, or the relief spectrum of celestial bodies (see Section 7
and [5]). Such is the occurrence law for earthquakes with two
intervals in their spectrum (see Section 3 and [5]).

(2) The proportionality of themean square of the distance
between random events to the cube of time, i.e., the
proportionality of the structure function to t 3, and the
associated frequency spectrum to oÿ4, which corresponds to
most sea waves and the Toba relation [10] between the square
of wave peak height and the period h 2 � T 3, the latter simply
being relationship (3).

(3) For terrestrial hurricanes, this explains why their
energy is on the order of the explosive energy of thousands
of megaton bombs. Formula (12) contains the product of the
first and second moments of ANK34 multiplied by the air
mass with the time replaced by an expression based on the
Coriolis parameter lC � �4p=T � sin y, where y is the latitude.
Since the result includes lÿ4C , polar hurricanes (mesocyclones)
are several times smaller than tropical ones.

(4) The cumulative distribution of objects over areas has
the dimension of inverse time, so, according to (3),
N�5S� � C�e=S�ÿ1=3, and the lithospheric plates are empiri-
cally distributed with the exponent 0.33 [12]. Spiral galaxies
are distributed over masses in the same way [5], which can be
understood under the assumption that their masses are
proportional to their areas.

(5) Systems can have their own similarity parameters,
which can modify the self-similarity regimes of the processes
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Figure 6. Cumulative distribution of the number of floods versus their

damage [53].
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under study; this should always be kept in mind [7], and here
the notion of intermediate asymptotic forms emerges [7±9].

(6) The existence of the self-similar form of equation (1),
the basis of ANK34, paves the way for its use in the
description of other probabilistic processes.

All this illustrates the idea that, on a large scale, nature
strives to configure itself according to general laws. The book
[5] contains two epigraphs. The first one is by Gibbs: ``The
goal of science is to find the point of view from which the
problem can be solved in the simplest and most natural way.''
It can be argued that ANK34 extended by the similarity
theory and dimensional analysis can solve a wide range of
questions and in this sense corresponds to Gibbs's goal. The
second epigraph belongs to A N Kolmogorov (according to
[7]) and was formulated about half a century ago: ``Random-
ness is a necessary, if not the most important, element of
nature, and yet it possesses a certain order which leads to
concrete, often stable structures. Stability is limited in time
and space, depending on concrete conditions.'' This order
manifests itself in the asymptotic forms of the moments of
the distributions. Thus, ANK34, with additions from the
similarity theory, illustrates both epigraphs.

An addition to the proofs
The same methods as above can be used to calculate the
forcing of tornados and storms and their destructive
strength. Reference [55] uses data for 164 vortices regis-
tered and quantitatively described in Russia for the period
2001±2021. The description gives their linear size near the
surface 2R in meters. Those vortices with a vertical axis
are cylindrically symmetric, so knowing their diameter
gives the area S � pR 2. Their velocities are estimated by
the Fujita index, F0; . . . ;F4, which is related to the
velocity ranges of 18±32; . . . , 93±116 m sÿ1. Mean values
are taken for the velocities. Then, to estimate the forcing,
e � �u 2=t � �u 3=S 1=2, where t � ��u 2=S�1=2. The destruction in
rural areas takes place roughly in the lower 10 m (up to 30 m
in forests), and then the vortex energy in the lower 10 m of the
atmosphere for an area of 100 m2 is in the limits from 4� 107

to 1:1� 1011 J, and the energy needed to damage a house with
a volume of 103 m3 will be from 10 kg to 26.4 t in units of TNT
equivalent, which is now not far from nuclear artillery.
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