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Abstract. We discuss effective range expansion in a two-channel
system and establishing the nature of a near-threshold hadronic
resonance with the help of parameters obtained from a fit to
experimental data. In particular, the situation of two strong
thresholds located close to each other and a hadronic resonance
residing at the lower of them is considered. For the case of a
bound state, simple expressions are derived that allow one to
estimate the probability of finding the given resonance in each
hadronic channel and as a compact quark state if the resonance
wave function contains such a component.

Keywords: exotic hadrons, near-threshold resonance, effective
range expansion

1. Introduction

In the last two decades, a vast amount of experimental data
has appeared on so-called exotic hadrons, that is, strongly
interacting states with the quark contents beyond a quark—
antiquark pair in a meson or three quarks in a baryon. The
possibility of the existence of multiquark states (for example,
compact tetraquarks) was predicted already at the early
stages of the development of quantum chromodynamics as a
theory of strong interactions [1, 2]. Moreover, the non-
Abelian nature of strong interactions implies that gluons can
be constituents of hadrons, which makes possible the
existence of both hadrons composed simultaneously of
quarks and gluons (for example, hybrid mesons) and purely
gluonic states (glueballs). So far, no reliable experimental
evidence has been obtained for the existence of such hadrons
in nature, although promising candidates exist. At the same
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time, the corresponding theoretical predictions are widely
discussed in the literature, and the physical program of any
experiment in the field of high-energy physics necessarily
includes proposals for the search for such states. An intrinsic
feature of the above hadrons is that they are formed by the
confining forces and, therefore, have a rather small size, that
is, they are compact.

Meanwhile, significant recent progress in experimental
studies of hadrons containing heavy (charm and bottom)
quarks has made it possible to raise the energy above the
open-flavor threshold and thus to allow for the decay of a
meson consisting of a heavy quark and its antiquark (that is,
charmonium or bottomonium) into a pair of heavy-light
mesons through the production of a light quark—antiquark
pair from the vacuum (for a review of the experimental results
on the inclusive cross section of the eTe™ annihilation into
hadrons, see [3]). If a hadronic state resides near such a
threshold, the latter has a strong effect on its properties — in
the absence of physical reasons preventing the decay of the
hadron through the corresponding strong channel, the
probability of such a transition cannot be neglected, so the
reliability of naive calculations based on the quark model is
questionable.

Indeed, the very first exotic state— X(3872), discovered
by the Belle Collaboration in the spectrum of the charmo-
nium above the open-charm threshold in 2003 —demon-
strated properties at odds with the predictions of the quark
model [4]. The extremely close (within 200 keV) location of
X(3872) to the two-body threshold D’D*’ implies a large
probability of detecting this hadronic state in the form of the
above mesonic pair, so the molecular model was naturally
invoked to describe the properties of X(3872) (see, for
example, review [5] and the references therein, as well as the
review of the molecular model for exotic hadrons with heavy
quarks [6]).

In the almost 20 years that have passed since the first
observation of X(3872), the number of discovered exotic
hadronic states in the spectrum of the charmonium and
bottomonium is already several dozen (see review [7]). The
Belle II experiment is actively collecting data [8, 9]. In
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addition, the work of the planned Super-c-t factories [10, 11]
planned in the near future will allow us to collect a large
amount of experimental data on the exotic near-threshold
states. These all together make the task of constructing a
unified theoretical approach to the description of such states
extremely relevant and timely. As a primary task, such an
approach should allow all the information on the studied
resonance encoded in the experimental data to be extracted.

2. Weinberg method and its generalizations

Since the dynamics of the molecule constituents near the two-
body threshold is nonrelativistic, one of the most commonly
accepted approaches to the description of line shapes of near-
threshold resonances is the low-energy expansion of the
amplitude in the near-threshold region and extraction of the
corresponding expansion parameters (scattering length ¢ and
effective radius r) from fits to the data. In particular, in many
cases, a successful description of the data is gained using the
Flatté distribution [12],

B (1/2)g  (2E-E) .\
FE) = 5= ek~ *( g *‘k)
11 A\
:7<;+§rk271k> , (1)

where E is the energy of the system, Eris a parameter of the
distribution with the dimension of energy, and g is the
coupling constant with the hadronic channel, in which the
constituents have the momentum k and angular momentum
[ = 0 (S-wave threshold). This distribution can be regarded as
a generalization of the nonrelativistic Breit-Wigner formula
that takes into account an explicit energy dependence of the
width arising from the proximity to the threshold of an
S-wave channel, with the coupling strength given by the
constant g. Notably, account for the explicit energy depen-
dence of the momentum k  v/E allows one to study various
threshold phenomena. Moreover, it is easy to see that it is the
unitary term ik in the denominator that provides the leading
energy dependence near the threshold.

A way of deciphering the information encoded in the low-
energy parameters of the amplitude was suggested in the
pioneering work by S Weinberg [13]—in particular, the
extracted values of the scattering length a and effective
range r for the deuteron were employed to determine the
Z-factor, interpreted as the probability of observing the
deuteron (a bound state of a proton and neutron with
binding energy Eg) as an elementary particle,

20-2) 1 zZ 1
-, =
A XB

= 2)
where xg = y/2uEpg is the binding momentum and u is the

reduced mass of the constituents. The ellipsis stands for the
corrections suppressed by the small ratio

I—Z%B+”"

"7‘3<1, (3)

where A is the inverse range of the force. The ‘compositeness’
of the deuteron implies that Z is close to zero, so the scattering
length takes a natural value, a ~ 1/xp, while the leading
contribution to the effective range is small and neither its
value not even its sign can be established in a model-
independent way, since they are both determined by the

corrections in the small ratio (3). This results in a specific
pattern for the near-threshold poles, since, in disregarding the
small effective range term, the equation defining the position
of the zeros in the denominator (see Eqn (1)) becomes linear in
the momentum and provides only one near-threshold pole at
k = ixp responsible for the bound state of the proton and
neutron.

Since, on the one hand, the Weinberg method is a very
useful approach to establishing the nature of a near-threshold
state but, on the other hand, it is not directly applicable to
systems with unstable constituents or in the absence of a
bound state, there are many attempts at its generalization in
the literature. For example, in [14], a so-called spectral density
was suggested to observe an elementary state in the con-
tinuum spectrum. This spectral density contains the same
information about the compositeness of the near-threshold
state under study but allows a natural generalization to
unstable constituents and the nature of resonance different
from a bound state. A method to establish the nature of a
resonance based on the number of corresponding near-
threshold poles on the complex momentum plane was
suggested in paper [15]. Accounting for the finite-range
corrections is discussed, for example, in recent studies [16, 17].

In paper[18], an attempt is made to employ relations (2) to
extract some information that allows a simple and straight-
forward generalization from bound states to virtual states and
resonances. In particular, the binding momentum xg is
excluded from expressions for the scattering length and
effective range (2), which allowed the authors to arrive at
the compositeness, defined as X = 1 — Z, in the form

2r

() ®

and the authors justified the appearance of the absolute value
by the necessity of a smooth transition from a bound to
virtual state that corresponds to different signs of the
scattering length. From formula (4), it can be seen that a
small ratio r/aleads to X ~ 1, which can be interpreted as the
molecular nature of the studied state.

Thus, extraction of the low-energy parameters of the
amplitude from a fit to the data and using them to establish
the nature of the studied resonance provide a relatively simple
but promising phenomenological approach employed by
both theorists and experimental collaborations (see, for
example, recent studies [19, 20] on the extraction of the
parameters of the tetraquark state TJ from the data
obtained recently by the LHCb collaboration in the pro-
cesses of charm production in proton—proton collisions [21]).

3. Two-channel system:
Flatté formula and effective range

The interpretation of near-threshold state X(3872) as a
molecule was criticized in a recent paper [22]. The reason for
the criticism is the large (in absolute value, about several
Fermi) and negative effective range extracted from the LHCb
fit to the data on X(3872). Notably, it was argued that, even
by taking into account corrections due to the finite range of
force (in this case, the role of A is played by the pion mass n1,,),
the value of the effective radius could not be made positive, as
required by general quantum mechanical principles for a
molecular state [23, 24]. Accordingly, a conclusion was
made on the incompatibility of the data with the molecular
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nature of X(3872) and the inevitable presence of a compact
component in its wave function.! The analysis and conclu-
sions of [22] were criticized in paper [25] on a number of
points, the main one stressing incorrect extraction of the
effective radius from the low-energy expansion of the
scattering amplitude in the considered two-channel problem.
Indeed, since the neutral and charged DD * channels are split
by only 4~ 8 MeV [26], any realistic model for X(3872)
needs to take into account both channels.

The simplest generalization of the distribution (1) to a
two-channel case is

_ (1/2)g
E—Eq+ (i/2)g(ky + k2) ’

F(E) (5)

where the unitary term now contains two contributions, ik
and 1k,, where k| and k, are the momenta in the neutral and
charged DD* channels, respectively. For a fixed total energy
E of the DD* system, we have

ki _ k3
E‘z;ﬁz;ﬁ“’ (6)
where the mass difference between the charged and neutral D
mesons is taken into account in the quantity 4 but
disregarded in the corresponding reduced masses u; and u,,
so, in the last formula (and in what follows), we set
U; = pp = p. Then, excluding the energy from the relations
contained in formula (6), it is easy to find

. . .k
k2:1\/2,uA—kf%1\/2,uA—12\/zlﬁZ+..., (7)

where the momentum k; in the second channel was expanded
near the threshold of the first (lower) channel in the limit
kl — 0.

The coefficient for the term k7 in the denominator of the
amplitude (5) has the meaning of the effective range (see
equation (1)), for which it is easy to derive

r=ro+or, (8)
where
2 1
ro=——, 8}":——, 9
T T g V2ud ®)

and dr ‘blows up’ in the limit 4 — 0. It is easy to see that
taking this limit is not legitimate, because it contradicts the
expansion made in equation (7) that requires 4 > k7 /(2p).

Meanwhile, the case 4 = 0 is obviously an adequate limit
in many physical applications; it is reached, for example, in
the exact isospin or heavy quark spin symmetry limit, so it
should not cause trouble. Indeed, setting 4 = 0 under the
square root in equation (7) before expanding it, we arrive at
the result k, = ky, which is quite natural in this limit. Thus the
problem is reduced to a single-channel case and the effective
range expansion can be performed without concern about its
convergence.

There is no formal logical flaw in the effective range
expansion in the considered two-channel system for 4 # 0,
since this expansion is single channel by definition, so the

! This conclusion is not at odds with the X(3872) model often discussed in
the literature and described in detail, for example, in review [5].

threshold of the second channel only limits its radius of
convergence. The absence of any restrictions implies
A — oo, that is, the limit of the large threshold splitting
compared with all typical energy scales of the problem.
However, most realistic physical systems considered to
employ this approach correspond neither to 4 =0 nor to
A — oo. Thus, for X(3872), the negative contribution of the
term dr from equation (9) obtained in [22] is numerically large
(comparable in magnitude to ry). Since the appearance of the
dr contribution is no more than a manifestation of the
presence of the second channel in the system that has nothing
to do with the interaction (this contribution is universal and
does not depend on the distribution parameters— the
coupling constant and/or binding energy), it was suggested
in [25] that the effective radius should be defined without
taking this contribution into account, which eventually made
it possible to obtain an effective range of X(3872) still
negative but compatible in magnitude with the finite range
corrections that can eventually allow for its positive value, by
analogy with Weinberg’s description of the deuteron. This
removes the contradiction with the molecular model for
X(3872) described in [22].

The same phenomenological approach allowed realistic
estimates of the low-energy parameters for the T, state [20]
that resides in the close vicinity of (slightly below) the DD *
threshold and is an analogue of X(3872). At the same time,
the LHCb data are also available below the threshold that
allows one to build a reliable fit to the line shape and extract
the parameters of the amplitude. In addition, the composite-
ness of T} obtained from the extracted parameters of the low-
energy expansion is about unity [20], thus hinting at its
molecular nature. However, the analysis demonstrates the
same difficulties as in the case of X(3872), namely, the naive
single-channel low-energy expansion of the amplitude is
applied to a two-channel problem. This issue generated lively
discussion in the scientific community; for its synopsis see, for
example, recent paper [27]. Since the situation with a physical
state located near two strong thresholds occurs quite often, in
this paper we address the low-energy expansion in such a
system. In particular, bypassing auxiliary formulas like (4),
simple expressions will be derived for the compositeness of the
state under study in each hadronic channel evaluated on the
basis of the parameters extracted directly from fits to the
experimental data.

4. Low-energy expansion
in a multichannel system

First, we pose and solve the problem as follows. There are two
mesonic channels, labeled as 1 and 2, with thresholds split by
A (the threshold of channel 2 lies above that of channel 1). The
splitting 4 is neglected in the reduced masses in both channels,
so, as before, we always set u; = u, = . It also proves
convenient to define the parameter 1 = /2u4.

The interaction potential is chosen in a separable form,

!/ ! A2
Vot/}(pvp ) :f(P)Uaﬂf(P )7 f@) :m ) O(,ﬁ = 1727
(10)
where A is the inverse range of the force and
v 1
= (%) (1)
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is a real constant matrix of contact potentials. The employed
condition for the diagonal matrix elements vy = vy, simpli-
fies the formulas but does oversimplify the problem, since, in
many physical applications, such conditions arise naturally
due to various internal symmetries of the system under study
such as the above-mentioned isospin or heavy quark spin
symmetry.

Let the system at hand possess a bound state with the
binding energy Ep, associated with a physical state. The
bound state momentum xg is introduced as given in equation
(2). We work in the limit

%B
A

A
<1, 1 <1, (12)
and expansions in both ratios will be performed below. No
relation between the parameters »g and 4 (that is, between the
binding energy Ey and the threshold splitting 4) is assumed;
in what follows, different limiting cases will be studied.
The Lippmann—Schwinger equation for potential (10)
takes the form

Taﬂ(paplvE) = Vot/?(papl)

2 d3q
ZJW VV}(I’?‘[)G/(%E)T//f(qaplvE)7 (13)
=1

where the two-body propagator in the channel o = 1,2 is

2 -1
D .
G, (p.E) = ( M, —M-i0)
7 E) < o, 1>

(14)

My, denotes the threshold in the channel o, and the energy is
counted from the lower threshold, £ = M — My,,. The widths
of the constituents are disregarded.

A separable form of the potential allows one to find an
explicit dependence of the amplitude on the momenta,

Ta/f(paplvE) :f(p)fot[f(E)f(pl)v (15)

where the elements of the matrix T obey an algebraic system of
equations

Top(E) = vap — i Uy (0,2 (E) Ty (E) - (16)
The loop integral can be evaluated explicitly,
LB = Jé? F(@Gula. B

A ¢)<A22_Ak“2+1k7>, (17)

where k, is the momentum in the channel o.
Then, the solution of matrix equation (16) for the
diagonal components takes the form
B Jr(vg —vE) + v
]1]2(’002 — 1)12) —+ (]1 +J2)1)0 +1 ’

T o =111(J1 = J2).

(18)

Let us study the low-energy expansion of the amplitudes
(18) and to this end consider their common denominator. The
bound state present in the system implies that there is a pole
on the complex energy plane residing on the first (physical)
sheet of the four-sheet Riemann surface at the energy

E = —FEg below the lower threshold. The denominator
vanishes at the pole,

Ji(—Ep)J2(—Ep)(vg — v})

+ [J1(=Eg) + J2(—Ep)]vo + 1 =0. (19)

In a two-channel system with the thresholds split by 4, it
proves convenient to use the generalization of the single-
channel complex k-plane, which provides a convenient
visualization of the four-sheet Riemann surface in the
complex energy plane. The idea of [28] is to make a
conformal transformation that turns the complex energy
plane into the unitary-cut-free complex plane of a new
parameter. In particular, for a given energy E, instead of the
momenta k; and k, related with the energy through relation
(6), a single complex quantity w is introduced as

A 1 A 1
which gives for the energy
A 1
E="(0*+—5+2]). 21
4 ( +w2 + ) (21)

The complex w-plane is cut-free, and a one-to-one correspond-
ence between the Riemann sheets (labeled as RS-X, where X =1,
IL IIT, IV) of the complex energy plane and different regions in the
complex w-plane reads

RS-1: Imk, >0, Imk»>0, /L o

RS-I: Imk <0, Imky >0, /™!

RS-1II: Imk, <0, Imk, <O, 71'\\ W S

RS-1V: Imk; >0, Imk,<O0. N
mear (22)

The threshold of channel 1 corresponds to the points
o = =i, the threshold of channel 2, to the points w = £1, and
the bold black line, to real-valued energies E lying on the first
sheet of the complex E-plane (the physical region). Moreover,
it is easy to see that the bound state with binding energy Ep
corresponds to a pole on the complex w-plane lying on the
imaginary axis outside the circle |o| = 1,

wy=1i(l1+b), b>0, (23)
and it is easy to find from equation (21)
VEg+VEg+4 .
CUQZIMZI(\/S—F\/I-&-é), (24)

VA

where we introduced the distances A4; = Fg = 40 and
Ay = Eg + 4 = A(1 4 9) from the pole position at £ = —FEpg
to the first and second threshold, respectively. Then,

hb=Vo+V1+05—1. (25)

Traveling alone, the segment of the circle || = 1 from the
lower threshold (w; =1) to the upper one (w; = 1) corre-
sponds to w changing as

T

w = exp {i(%—f)] —iexp(—if), ¢e {075}. (26)
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It is easy then to find the following expressions for the two
momenta and the energy:

ki =Asiné, ky=—idcosé, E=Asin’¢. (27)

The low-energy expansion of the amplitude near the lower
threshold corresponds to the expansion at £ — 0. Then, it is

easy to demonstrate that, up to an irrelevant overall factor,
the expansion of the denominator of the amplitudes (18) takes

the form
+§2)+...,

(28)

i (b2(4 + b(7b +12))

o p_ie_ L2 A
f(&)=-b-i 3¢+ TR

where the expansion was made for ¢ <1 and /4 <1
simultaneously, and the ellipsis denotes disregarded higher
terms in both expansion parameters. No additional assump-
tions about the quantity b were made. The last term on the
right-hand side provides corrections due to the finite range
of the force. They are model dependent (depend on the
regularization scheme for the loop integral and the form
factor shape) and disappear in the limit 4 — oo. The
necessity of taking such (and higher order) corrections
into account depends on the required precision of the
calculations performed and the quality of the available
experimental data. It is instructive to estimate the value of
the expansion parameter A/A for typical near-threshold
systems in the spectrum of the charmonium and bottomo-
nium. For example, for X(3872) and T}, we have
A~1 GeV and pu=~1 GeV, while threshold splitting
appears as a result of isospin symmetry breaking,
A= MD'D*) — M(D’D*) ~ 8.2 MeV for X(3872) and
A= M(D D) — M(D°D*") = 1.4 MeV for T. Then, it is
easy to find that 1/4 < 0.1. For a bottomonium system, the
mass difference between the charged and neutral B mesons is
negligibly small, so, to a high accuracy, the corresponding
charged and neutral channels can be treated as degenerate in
energy. Thus, in the b-sector, the splitting of the thresholds
appears due to heavy quark symmetry breaking,
A = mg- —mpg ~ 45 MeV. This gives 1/4 ~0.5. A ratio of
the same order of magnitude appears in charmonium systems
if one considers the thresholds split by the value
A = mp- — mp ~ 140 MeV. Therefore, taking into account
finite-range corrections definitely lies beyond the reasonable
accuracy (at least for the experimental data currently
available) for the states X(3872) and T..; however, in studies
of, for instance, the bottomonium-like resonances Z,(10610)
and Z,(10650) and their spin partners, as well as those of
X(3872) and T, a more adequate approach is provided by
the effective field theory, which allows a systematic and
model-independent account for higher orders in the expan-
sion parameter. Further discussions of the corrections in the
ratio 1/4 go beyond the scope of the present work and in
what follows they will be omitted, so formula (28) can be
presented in a simple form,

@)~ —b-ic—5 8, (29)

that resembles effective range expansion in a single-channel
problem performed in terms of the dimensionless quantity &.
It is seen from equation (27) that, in the limit £ — 0, k; =~ A&,
so expansion (29) can be re-written as the standard effective

range expansion in terms of the momentum kj,
2
ki

b —1iky — —~
b lkl 31

(30)
where one can see that the last term causes the aforemen-
tioned divergence problem in the limit 4 — 0. Meanwhile, it is
easy to see that the term o &2 stems from the expansion of
cos & contained in k, (see the corresponding expression in
equation (27)).

We will revisit this discussion later and now turn to the
derivation of the expressions for the compositeness of the
considered resonance. It is important to mention that, in
setting up the task itself, we are dealing with a purely
molecular state without any admixture of the compact
component, so its total compositeness is X = 1. Once there
are two channels, one can define the probabilities of finding
the physical state either in one of them or in the other — X
and X», respectively. Then, a self-consistency condition,

Xi+X=1, (31)
should hold.

General physical considerations allow establishing some
natural properties of the quantities X and X;. Indeed, the
closer the state resides to a threshold, the higher the
probability of observing it in this particular channel.
Furthermore, it is obvious that in the limit of coinciding
thresholds (4 = 0) the probabilities of observing the reso-
nance in either of the two channels constitutes one half. In
other words, the following conditions should hold:

Xi(6=0)=1, X5(6=0)=0,

1

(32)

It is well known [29-32] that the compositeness of a
resonance with respect to a particular channel o can be
evaluated as a product of the derivative from the correspond-
ing loop integral and the residue of the amplitude at the pole,

dJ, (M)

X, = lim o |

M"Mpole

(M? = Myo1e) (M) (33)

where no summation over the repeated index o is implied.
Then, by an explicit calculation with the help of the formulas
from equation (18), we can find
(InJy) (1 +vo2)
(ll’lJ] )/(] + U()Jz) + (ln Jz),(l + U()J]) ’
(111]2)/(1 + U()Jl)
(111]1)/(1 + U()Jz) + (11’1]2)/(1 + U()Jl) ’

X = (34)

X, = (35)
where the prime denotes a derivative with respect to the
energy E (or the dimensionless quantity w). All loop
functions and their derivatives are taken at the pole (the
argument —FEp is omitted for simplicity). In the above
derivation, the following trivially verified relations valid at
the pole were used:
J](—EB)(U2 — Uz) +v9g=————(1+ UoJ](—EB) s

0 1 JZ(_EB) ( ) (36)

Jz(—EB)(UOZ - Ulz) + vy = —ﬁ (1 + Uon(—EB)) .
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It is easy to see that expressions (34) and (35) obey the
condition X + X»> = 1 discussed above.

It is instructive to study decoupled channels first, that is,
take the limit v; = 0. Then, the system of the Lippmann—
Schwinger equations splits into two decoupled equations for
the components of the amplitude 7;; and 1, with the
solutions trivially found in the form

1 1

M=, =——""7>-
TR LB P g+ ()

(37)

Assuming a pole in the first (second) channel and setting
voJ1(—Eg) +1 =0 (voJ2(—Ep) + 1 = 0), it is easy to verify
that formulas (34) and (35) give X; =1, X, =0 (X; =0,
X, = 1), in agreement with natural expectations.

For a nonvanishing off-diagonal potential v; # 0 and,
therefore, for the two channels coupled to each other, neither
voJ1 + 1 nor wvyJy + 1 vanishes at the pole individually,
allowing us to simplify expressions (34) and (35) employing
the fact that the leading term in both loop integrals is given by
the large inverse range of the force A, so we can set J; =~ J,
everywhere but in the terms with derivatives where the leading
nonvanishing contribution stems from the subleading term in
the integral (see the explicit expression for the loop integral
(17)). Then, it is easy to find

J{ 1 1
X, = [
RV 2( w%)’

J; 1 1
X, =—"2 —_(1+—
R 2( +w6)’

where the explicit expression for the pole position wgy from
formula (24) should be used. It is then straightforward to
arrive at the following final result:

VI+o Vo
== X2:77
Vo+VI+0 Vo+V1+0

which can be verified to satisfy all the properties of the
quantities X established above and enumerated in equation
(32). It should also be noted that the obtained expressions for
the compositeness are free of any troubles in the limit 4 — 0.
Also, it is worth mentioning that no effective range expansion
was employed in the derivation.

Meanwhile, the formulation of the problem just solved
differs from a typical situation encountered in the analysis of
the experimental data for near-threshold resonances. Indeed,
a pure molecule was studied above, so the absence of a
compact component in the wave function of the resonance
was assumed from the beginning. On the contrary, a typical
task in studies of a near-threshold resonance is to extract the
information on its nature — the position of the pole on the
complex plane and the contents of the wave function—
directly from a fit to the data.

In [33], the interplay of the hadronic and quark dynamics
in a near-threshold resonance was studied for the case of
several hadronic channels present in the system. In particular,
in the two-channel case, the wave function of the resonance
was taken in the form

VZ |Yy)
nu@) MMy |,
%2(p)[M21 M)

(38)

X, (39)

W) = (40)

where [}) is a compact state, |My,My) (0 =1,2) are
hadronic channels, and y,(p) is the momentum-space
wave function in the channel «. In the simplest case of no
near-threshold poles produced by the hadronic dynamics
alone, the expression for the amplitude is given by
distribution (5). Then, if the system possesses a bound
state with the binding energy Ep, the Z-factor describing
the probability of observing the resonance as an elemen-
tary particle takes the form [33]?

~1
P (1+ﬂg(K1 +K2)> 7

41
2K1K> (41)

where k, = Imk,(E = —Eg), that s,

K1 =/ 2uEg = A0, Ky =\2u(Eg+4) =W1+05. (42)

Itis easily seen from expression (41) that the limit 4 — 01is
trouble free and amounts to setting x, = k;, which gives

Z(4=0) = (1+\/2“5_EB>_1.

In the opposite limit of 4 > Eg, the quantity Z also takes a
simple form,

(43)

1

Hg
2\/_2uEB> ! 49
where the splitting 4 dropped out, as expected.

Therefore, by extracting two parameters (the binding
energy Ep and the coupling constant g) from a fit to the
experimental data, one can evaluate the probability of the
studied resonance being an elementary state. For example, for
the central values of the parameters used in [22],

Z(A—>oo):<l+

A4=28.2 MeV, EB =18 keV, g = ZLHCb = 0.108, (45)

formula (41) gives Z ~ 0.1, which coincides with the estimates
found in the cited work. In other words, the probability of
X(3872) being a molecule is about 90%.

Meanwhile, such estimates need to be treated with care.
On the one hand, final conclusions on the nature of a near-
threshold state can only be made after performing a combined
analysis of the entire experimental information collected for
it, including data on its production in different reactions and
its decays into various final states. On the other hand, the
parameters used in the estimate may contain uncertainties
caused by particular procedures employed to extract them.
For example, if the Flatté formula is used in the analysis of the
data collected in a narrow near-threshold region, the term
o« E in the denominator is very small; however, if it is
neglected, the distribution demonstrates a scaling property
[34] and its parameters can be re-scaled with an arbitrary
factor without changing the line shape. Then, the fit
convergence is spoiled and it may fall into an unphysical
local minimum with parameters very different from the
correct physical values. For instance, the plot of the like-
lihood as a function of the parameter £, given in [35] has a flat
section (nearly a plateau) where, however, the coupling
constant g significantly changes.

2 The coupling constant g introduced here is related to the constant g, from
[33]as g = g7/2.



January 2024

On effective range expansion in a multichannel system and compositeness of near-threshold resonance 77

It is instructive to substitute expression (41) into formula
(2) for the effective range, which gives

2 VEg+ 4 (46)
r=--—- |
ug VEg+Eg+4

It is easy to see that this expression does not contain terms
singular in the limit 4 — 0. At the same time, in the case of
A > Ep (see, for example, the parameters contained in
equation (45)), one finds

(47)

r~——=1ryp,
Hg

which coincides with the first term in formula (8). In the
limit 4 — 0, the effective radius acquires the factor
VEs +4/(VEg + VEp + 4) = 1/2 canceled by the addi-
tional factor 2 introduced to take into account the presence
of two identical channels in the system. Thus, we revisit the
conclusion that r = rg. This result complies well with the
suggestion contained in [25] to remove the second term
or o 1/\/Z in formula (8) when evaluating the effective
range in a two-channel system.

The expressions for the compositeness (39) derived above
can be generalized to the case when the wave function
contains a compact component. To this end, it is sufficient
to modify the normalization condition and require that
X1+ X,=1—Z while preserving the ratio X;/X;=
V1+6/V/6 (see formula (39)). Then, it is easy to arrive at
the following final expressions:

- 1 )“
V2uEs  \/2u(Es + 4))

2= I (Il +
1 1 -l
= V2uEg ('r()' " V2uER * V2u(Es + A)) 48
1 1 1 -
2u(Es + 4) ('”" " VEs /2B A)) ’

X, =

where the quantity ry defined in formula (9) can be interpreted
as the ‘effective range’ in the considered two-channel system.
In the limit of a purely molecular state g — oo, so the previous
expressions turn into Z = 0 and the compositenesses quoted
in formula (31). On the contrary, in the opposite limit of
g — 0, we have Z =1 and X; = X; =0, in agreement with
natural expectations for a purely compact (not molecular)
state.

The structure of the derived expressions for X7 and X, can
be easily understood. As one can see from definition (33), the
additional contribution |r| in the denominator stems from
the term o E in the denominator of the amplitude (see, for
example, Flatté formula (5)), which, in turn, arises from the
Green’s function of the compact state 1/(E — Ey) (here, E; is
the bare energy of the compact state absorbed by the
‘renormalized’ parameter of the distribution Er (see the
derivation of the corresponding equations, for example,
in [33])).

Formulas (48) allow a straightforward generalization to
an arbitrary number of thresholds N and take a simple and
unified form,

R;

Xi=——"
i N
ijo R./'

; (49)

where i = 0 corresponds to the compact state with Ry = |ro|,
and R; = 1/4/2ud; for all i >0 (see the definition of the
quantities 4; given after equation (24)). In the formal limit of
A; — oo, the corresponding channel decouples from the
system and does not affect its dynamics. In this limit, R; — 0
and X; — 0, in agreement with natural expectations, and
formula (49) reduces to the case of N — 1 channels. It is
worth mentioning, however, that this is a purely academic
limit, since large splitting between thresholds implies a large
difference in the masses of the constituents in different
channels, so the approximation of equal reduced masses
employed in this work fails. Notice also that the ‘radius’ R;
for the ith channel is defined by the quantity A4; that has the
meaning of the ‘binding energy’ with respect to the corre-
sponding threshold —a typical long-range behavior of the
bound state wave function. It is also instructive to emphasize
that the ‘radius’ Ry that corresponds to the compact state is
given by the quantity |r¢| independent of the threshold
splittings.’

5. Discussion

In this paper, we considered a generalization of effective
range expansion to a two-channel system and its application
to extracting the nature of near-threshold resonances from
the data. Interest in this problem is related to the appearance
of experimental data on exotic hadrons and the necessity of
studying their properties on the basis of the available
experimental information. Fitting the data in a near-thresh-
old region with the help of simple analytical formulas is the
only approach available to experimental collaborations.
Since the dynamics of the system in the near-threshold region
is essentially nonrelativistic, then low-energy expansion of the
amplitude is a powerful and convenient method of investiga-
tion. Meanwhile, a naive application of the single-channel
formulas to a system for which it is necessary to take into
account two hadronic thresholds residing close to each other
leads to a number of difficulties that are a direct consequence
of using the given approach beyond the scope of its
applicability. It is demonstrated how these difficulties can be
overcome by explicitly accounting for both hadronic channel
and the possible presence of a compact component in the
resonance wave function. The resulting expressions from
equation (48) make it possible to estimate the probability of
observing the studied resonance in each hadronic channel
separately, solely on the basis of the masses of the constituents
(that determine the splitting 4 between the thresholds and the
value of the reduced mass u) and the two parameters (the
binding energy Eg and the coupling constant with the
hadronic channels g) extracted directly from a fit to the
experimental data.

The formulas in this paper were derived in certain
approximations. To begin with, the problem of instability of
the molecule constituents deserves a comment. Indeed, in
actuality, the hadrons forming a molecular state are unstable
and have finite widths. Then, the pole identified with a bound
state and lying below the lower of the two thresholds
considered above does not reside on the real axis but gets
shifted to the complex plane. It does not lead to a contra-
diction of the basic principles of quantum mechanics, since

3 Strictly speaking, such a dependence arises if the approximation of the
equal reduced masses in all channels is relaxed; however, it is very weak
and does not lead to a singularity in the limit 4; — 0.
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the Riemann surface on the complex energy plane becomes
multi-sheeted, with the branch points at all thresholds,
including those lying lower in energy and representing the
decay channels due to constituent decays. However, direct use
of the Weinberg formulas provides an unsatisfactory result in
this case—the quantity Z takes complex values and its
straightforward interpretation as a probability fails. It is
then necessary to employ generalizations of the Weinberg
method and consider, for example, the spectral density [14].
The results of the application of a generalized approach to
data analysis for the scalar mesons ay(980) and f,(980) can be
found in [36]. Shortcomings of this approach are a lack of
simple and transparent formulas and the theoretical uncer-
tainty related to a particular choice of the interval of
integration for the spectral density to estimate the prob-
ability of observing the resonance as a compact state— such
an integral needs to be taken in the near-threshold region, but
the exact limits of integration can not be determined as a
matter of principle. Strictly speaking, to tackle this problem,
one needs to extend the set of coupled channels to incorporate
all final states that provide a nonvanishing width of the
studied resonance. For example, if weak decays of the
D meson are neglected, then for the states X(3872) and T}
it is necessary to additionally consider the three-body
channels DDn/DDy and DDnr/DDy, respectively. In [37],
the line shape of a near-threshold resonance with the three-
body dynamics included was studied in such an extended
formulation. The formulas derived allowed the authors to
arrive at a realistic description of the line shape of the
resonance in a near-threshold region and naturally repro-
duce such effects as a nonvanishing signal below the formal
two-body threshold and interference of different contribu-
tions to the amplitude coming from nonequivalent ways of
the decay reaction. Unfortunately, these formulas are not
simple algebraic expressions and can hardly be used in the
experimental data analysis.

In [38], and then much later in paper [39], simple analytic
formulas for the momentum in the two-body channel and its
‘analytic continuation’ below the threshold were suggested.
As demonstrated in the study [37], the suggested formulas
provide a satisfactory agreement with the exact result near the
two-body threshold but demonstrate a wrong behavior near
the three-body threshold. Employing the formulas with a
finite D* width included as suggested in paper [39] for the
X (3872) allows one to have a nonvanishing signal below the
nominal two-body DD* threshold and, if there is a bound
state in the DD* system, describe the below-threshold peak
that appears as a result of the decay of the D* meson as a
bound state constituent. However, since the experimental
data are missing in the below-threshold region, the influence
of this effect on the line shape above the threshold is minimal
[40]. Thus, a conclusion on whether or not various extensions
of the simple two-channel approach need to be employed in a
particular analysis should be based on the quality of the
experimental data. Since, for example, the LHCb data for the
T [21] are much more precise than the Belle data for X(3872)
[4], to analyze the former, it is necessary to resort to
approaches that explicitly include multibody effects (see, for
instance, [20]).

Another phenomenon that may potentially play an
essential role in the description of the exotic near-threshold
resonances is the interaction in the final state. In particular,
nontrivial effects due to a direct interaction between molecule
constituents were studied in [33, 39]. Moreover, for a specific

choice of the constituents’ masses and the mass of the
exchanged particle, the amplitude may possess a logarithmic
singularity known as triangle singularity; a related discussion
for the X(3872) state can be found, for example, in [41—43]
and for T, in papers [44, 45].

cc?

6. Conclusions

The aim of the present work is to extend the Weinberg
analysis to a two-channel system. The derived formulas
contain only two parameters: the binding energy and the
coupling constant with the hadronic channels that are
extracted from the data and absorb all the information
about the studied resonance. If the amplitude meets all
required physical constraints, such as unitarity (including
the multiparticle one) and exact and approximate symmetries
present in the system, and takes into account all additional
effects like the aforementioned triangle singularity and so on,
then the corresponding information will be contained in the
extracted parameters, too. If the imaginary part of the
binding energy is not large, it can be disregarded for
estimates based on the formulas derived in this study.
Violation of unitarity due to this disregard can be treated as
a model uncertainty; it may not exceed the uncertainties
stemming from other effects— for example, experimental
errors.

This study was supported by the Ministry of Science
and Education of the Russian Federation under grant
14.W03.31.0026.
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