
Abstract. Spin-fluctuation transitions (SFTs) are generally
understood as a change in the characteristics of spin fluctua-
tions in a magnet under the effect of control parameters (for
example, temperature or composition of the material), not
directly related to the formation of phases with long-range
magnetic order. Therefore, SFTs in most cases go beyond the
standard theory of phase transitions, where fluctuations are
typically considered a phenomenon accompanying a magnetic
transition. We examine the current state of the SFT issue from
the theoretical and experimental standpoints, including the
example of MnSi and Mn1ÿxFexSi helical magnets,
Hg1ÿxMnxTe magnetic semiconductors, doped compensated
Ge:As(Ga) semiconductors, and a strongly correlated metal
with hidden order, CeB6. The main methods for studying SFTs
(neutron scattering and electron paramagnetic resonance) are
discussed. We consider SFTs in the spin nematic phase, Ising
disordered systems, paramagnetic and magnetically ordered
phases, and quantum critical systems, as well as SFTs caused
by changes in the spin dynamics. In discussing the SFT issue, we
use the spin-polaron model, which unites objects of study that

look disparate at first glance. We note that SFTs have not been
studied in sufficient detail, and further research in this area may
be one of the growth points in the modern physics of magnetic
phenomena.
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1. Introduction

Classifying magnetic phase transitions cannot be considered
an altogether rewarding scientific task. On the one hand,
magnetic phases can easily be classified according to the type
of magnetic response, which divides them into two groups,
paramagnetic and diamagnetic. However, the most interest-
ing physical effects are then overlooked, and therefore the
classification has to bemademore intricate by considering the
types of magnetic interactions and the corresponding mag-
netic structures. A classic case is extending the systematics to
include magnetically ordered phases such as ferromagnets,
antiferromagnets, and ferrimagnets [1]. Because phases with
magnetic order are formed at certain values of external
parameters, the paramagnetic phase, which has no long-
range magnetic order, has to be made part of the `standard
picture.' The transition from magnetic order to magnetic
disorder is accompanied by symmetry changes, suggesting
that a suitable tool could be provided by the Landau theory
[2±5], where the order parameters can be chosen as the sample
magnetization, the sublattice magnetization, or their combi-
nation.

From the standpoint of the modern physics of magnetic
phenomena, the above list of phases is clearly incomplete. In
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the case of localized magnetic moments, it must be supple-
mented with a helical phase and a spin-glass phase. For
systems with nonlocalized magnetic moments (distributed
spin density), itinerant ferromagnets and antiferromagnets
must be included. The magnetism of band electrons intro-
duces a spin density wave phase and a superconducting phase.
Furthermore, we should not forget about magnetically
`exotic' cases, including systems with hidden (quadrupole)
order, spin liquids, dimerized, and spin-Peierls phases,
nontrivial spin textures, and skyrmion phases. The landscape
of magnetic phase transitions is further enriched with changes
in dimension and with quantum phase transitions. Of course,
the range ofmagnetic phases and phase transitionsmentioned
above is not exhaustive, and as the physics of magnetic
phenomena develops, new objects keep appearing. On the
other hand, complicating any classification scheme by
including various larger or smaller details would undermine
its usability.

Although magnetic phase transitions sometimes play the
role of model objects in the physics of phase transitions [4±6],
the terms `phase' and `phase transition,' borrowed from
thermodynamics, are not necessarily understood fully rigor-
ously in the field of magnetic phenomena. On the one hand, it
was noted in [7] that the ``special power of imagination is
required to discern a physical analogy between spontaneous
magnetization associated with the ordering of elementary
magnetic moments along a certain direction and the two-
phase gas±liquid state.'' On the other hand, interfaces,
equations of state, chemical potentials, and thermodynamic
variables and their derivatives, which are certainly important
in the thermodynamic description of gas±liquid or liquid±
solid transitions [2, 7], do not always manifest themselves in
the problems of magnetic phase transitions. In addition,
magnetic phase transitions, in and of themselves, amount to
a change in themagnetic properties of solids, which entails the
problem (which is not always recognized) of the applicability
of statistical mechanics [8]. As is well known, the antiferro-
magnetic phase, which is quite `respectable' in the physics of
magnetic phenomena, cannot be regarded as the ground state
[1]. Admittedly, classical statistical physics also has its own
`bottlenecks,' in particular, the problem of extending the
general systematics to metastable phases [9], which in
practical terms are no less real than ideal thermodynamic
phases. Phenomena that are not entirely canonical are also
known, such as phase transitions in liquids [10, 11], with long-
range order absent on both sides of the transition. Liquid
crystals are in a class of their own, where, for example, in
describing the simplest case of an isotropic liquid±nematic
transition, the order parameter is given by one of the
coefficients of the expansion in Legendre polynomials of the
angular orientation distribution function of molecules [12,
13].

An excursion into the field of phase transitions cannot be
complete without mentioning fluctuation problems. In the
vicinity of the transition temperature, it is always possible to
identify a region in which fluctuations play a significant role
and can result in a divergence of physical quantities. The
modern view of the problem of the fluctuation region implies
a universal description. If the theory involves power-law
divergences, then universality can be seen both in the values
of critical exponents and in the relations between them, which
often depend very weakly on the type of experimental system
undergoing a phase transition [7, 14, 15]. Another option for
describing the singularity is a logarithmic divergence at the

transition point, which is obtained theoretically for some
model systems [7] and, by definition, is universal and does not
require discussing the problemof phase transitions in terms of
critical exponents. There is also a version of the theory that
predicts not just power-law singularities [4]. Interestingly,
from the experimental standpoint, it may be almost impos-
sible in some cases to distinguish between logarithmic and
power-law singularities [16], and the interpretation of the data
may therefore become model dependent.

We have tried to note some features of the paradigm
within which various phase transitions are typically
described, by no means claiming completeness or rigor of
the presentation. It is apparently important that, as befits a
paradigm, it aspire to give a universal and comprehensive
description. We see, however, that there are several excep-
tions to the universal rules, including among magnets. For
example, the standard description of both the critical region
and the phase transition is significantly violated in the metal
oxide compound NaV2O5, whose magnetic structure is a spin
ladder with a 1=4 filling [16]. In particular, the analysis of data
on the dielectric constant, heat capacity, magnetic losses, and
ultrasound propagation speed in this material has shown that
various physical quantities exhibit identical temperature
dependences above and below the phase transition point,
regardless of the chosen method of description (power-law or
logarithmic divergences). In addition, deviations from the
standard theory of phase transitions discovered in [16] include
asymmetry of the critical behavior and the presence of an
anomalous baseline.

The purpose of this paper is not to extend the list of
`exceptions to the rules.' Instead, we try to demonstrate the
existence of a wide range of interesting magnetic phenomena
that have not yet been included in the generally accepted
taxonomy of magnetic transitions, and for which the term
`spin-fluctuation transition' (SFT) was proposed in [17]. By
definition, the characteristics of spin fluctuations changes
sharply under an SFT, and this change is not necessarily
associated with the emergence or alteration of long-range
magnetic order in the system. For an experimenter, SFTs are
no less real than ordinary magnetic phase transitions and are
therefore often confused with them. From a theoretical
standpoint, SFTs have not been sufficiently studied, and it is
not yet clear whether a consistent description of SFTs would
require fundamental changes to be made in the prevailing
paradigm. Because phase transitions in liquids and liquid
crystals can be considered the closest analogues of SFTs, at
least some SFTs may well be incorporated into the existing
theoretical scheme. However, there are SFTs for which the
known options of theoretical description are apparently
insufficient, and the study of SFTs can therefore stimulate
the development of our ideas about phase transitions.

We note that over the past decades a number of reviews
have been published on topical problems in the physics of
magnetic phenomena (see, e.g., [18, 19]). However, even if
these publications touch upon the spin-fluctuation problem,
it is not the main subject of the analysis. In addition, it is
known that fluctuations cause the appearance of a number of
features in lower-dimension systems, for example, in two-
dimensional systems with the Berezinskii±Kosterlitz±Thou-
less transition [20] or in quasi-one-dimensional spin chains
[21]. In this review, we consider three-dimensional systems
with SFTs, and the problem setting and results of possible
SFTs in lower-dimensional systems will be the subject of
subsequent publications.
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In considering spin fluctuation phenomena, we speak
about fluctuations of the vector field of the magnetization of
the system, and it must therefore be taken into account that,
unlike fluctuations in scalar quantities (pressure, tempera-
ture, density, particle number, etc.), fluctuations in vector
quantities can differ not only in size but also in direction. Two
types of effects can then arise: a sharp change in the amplitude
of fluctuations and a change in the anisotropy of fluctuations,
which consists, for example, in the transition from isotropic
to anisotropic fluctuations. As we show below, both these
possibilities not only follow from theoretical models but also
are observed experimentally.

This paper is organized as follows. We begin with the
history of the development of theoretical ideas about SFTs
and consider methods for studying them. After this, examples
of SFTs known from experiment are discussed. In conclusion,
we return to the ungratifying task mentioned at the beginning
of this section and consider the possible systematics of SFTs.

2. Theoretical models

2.1 Spin fluctuations and spin polarons
Surprisingly, SFTs appeared in the theory of magnetic
phenomena quite a long time ago. A typical SFT arises in
Moriya's theory of itinerant magnetism [22]. The initial goal
of this theory was to explain the paradoxical properties of
some magnetic metals, for which data on the temperature
dependence of magnetic susceptibility in the paramagnetic
phase yield an effective magnetic moment m � of the order of
the Bohr magneton per magnetic ion, m � � mB, but the
saturation magnetic moment in the ferromagnetic phase M0

is much less than mB (for such materials, the term `weak
itinerant ferromagnets' is used in the literature). The explana-
tion of the paradox, according to [22], is that the spin density
is not localized on magnetic ions but is distributed over the
unit cell of the crystal. The central quantity in Moriya's
theory is the amplitude of spin fluctuations SL�T �, which is
used to describe the temperature dependence of the Curie±
Weiss-type susceptibility with some effective parameters not
directly related to the magnitude and concentration of the
elementary magnetic moments [22]. At the same time, in the
framework of this approach, we have S 2

L�TC� � �3=5�M 2
0

[22], and hence just the saturation magnetic moment has a
direct physical meaning.

According to [22], in a system with ferromagnetic
correlations, the amplitude of spin fluctuations is given by�
SL�T �

�2 � �SL�Tsf�
�2 T

Tsf
at T5Tsf ; �1�

�
SL�T �

�2 � �SL�Tsf�
�2�

1� 2
ÿ
1ÿ �T=Tsf�4=3

�
3

�
at T < Tsf :

�2�

It is easy to see that SL�T � given by Eqns (1) and (2) has a
minimum at a characteristic temperature Tsf corresponding
to a sharp change in the amplitude of spin fluctuations. In
[22], Tsf is interpreted as the temperature of the transition
from the paramagnetic phase to the ferromagnetic phase
(Curie temperature TC), and hence the paramagnetic±
ferromagnetic phase transition is a version of an SFT.

We note that neither Moriya's theory nor its subsequent
modifications [23, 24] provide an answer about the nature of
another paradoxical property of `weak itinerant magnets,'

associated with the field dependence of the magnetization
M�B�. For example, for manganese monosilicide (MnSi),
which is considered a good example of the successful
application of Moriya's theory [22], the effective magnetic
moment meff, which determines the slope qM=qB in a weak
magnetic field, is � �5ÿ6�mB, which is different from
m � � �1:2ÿ1:3�mB. The magnetic saturation moment is then
of the order of M0 � 0:3mB=Mn [25]. In the case of
substitutional solid solutions FexCo1ÿxSi, which are also
classified as `weak itinerant magnets,' the anomaly of the
field dependence is even more pronounced, and the effective
magnetic moment can reach values meff � 13mB [26], while the
parameterM0 lies in the range of �0:05ÿ0:2�mB=Co [27]. The
lack of explanation for the anomalously large values of meff is
probably a consequence of the conceptual shortcoming
inherent in models based on the dominant role of spin
fluctuations. A characteristic feature of such theories is the
effect of suppression of spin fluctuations by a magnetic field
[22±24], and the magnetic field therefore `destroys' the basis
for considering magnetic properties in a finite magnetic field
within this approach. These difficulties of the theory of
itinerant magnetism can be overcome in a consistent manner
in the framework of the spin-polaron model [17, 25, 28, 29],
which yields a complete description for the entire set of static
and dynamical magnetic properties of materials such asMnSi
and Mn1ÿxFexSi, including features of their magnetic phase
diagrams.

In general, the concept of spin (magnetic) polarons is used
to describe a wide range of phenomena in strongly correlated
electron systems. Various types of self-localized states, as well
as ferron- and fluctuon-type states, can then be considered
[30]. In cases involving changes in the electron dynamics and
renormalization of the effective mass, a spin polaron is
understood as an electron moving through a crystal and
carrying spin polarization due to the interaction with
localized magnetic moments (LMMs). This approach has
been developed in recent years for two-dimensional systems
and has been used to describe superconducting cuprates [31].
The spin polarons considered in this paper are close to the
bound states that arise at low temperatures in the Kondo
model [32], when the interaction between conduction elec-
trons and LMMs leads to LMM screening. We note that the
formation of magnetic polarons also follows from some
models of concentrated Kondo systems (to be discussed in
more detail in Section 4.3 below when describing the Yu±Min
scenario).

The spin-polaron model [17, 25, 28, 29] was originally
proposed to explain electron paramagnetic resonance [28],
and then demonstrated its effectiveness in a joint description
of electrical conductivity and magnetic properties, as well as
in constructing magnetic phase diagrams [25]. In addition,
spin polarons naturally explain the striking similarity of the
temperature dependence of the electrical conductivity of
MnSi in the vicinity of the ferromagnetic transition (includ-
ing the `fine structure' of the resistivity derivative with respect
to temperature and its evolution under high pressure [25, 33])
with experimental data for a classical compound with spin
polarons, EuB6 [34, 35].

Studies of the dynamical magnetic properties of MnSi
clearly show that the magnetic subsystem of manganese
monosilicide consists of LMMs [17, 25, 28]. This result is
consistent with those of LDA calculations, according to
which the MnSi spin density is localized on manganese ions
and themagnitude of suchLMMs is mMn � 1:2mB [36]. In such
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a situation, the small value of the saturation magnetic
moment is associated with the screening of manganese
LMMs by band electrons in spin-polaron states. In essence,
such states are quasibound states of band electrons and
LMMs, in which the LMMs and electron magnetic moments
are oriented antiparallel (Fig. 1). Such a structure can be
considered a nanosize ferrimagnetic cluster, and it can be
shown that, for a certain configuration of spins inside the
cluster, its magnetization rapidly saturates as the magnetic
field increases, which corresponds to the `giant' magnitudes
meff 4 m �; mB [29]. In the spin-polaron model, the expression
for the Curie constant involves the concentration and the
corresponding magnetic moment of magnetic ions [29].

The spin-polaron model not only explains the majority of
magnetic properties but also naturally gives rise to spin
fluctuations associated with electron transitions between
quasilocalized states in the vicinity of the LMMs and band
states (see Fig. 1). Because spin fluctuations are then of an
electron nature, it can be assumed that, to describe them or at
least qualitatively assess spin fluctuation effects, model
expressions (1) and (2) deduced from Moriya's theory can be
used. The temperature Tsf should then be interpreted as the
temperature of the ordering of spin fluctuations in the spin-
polaron state, not necessarily coincident with the temperature
of the transition to the magnetically ordered phase [37].

2.2 Brazovskii's theory and helical magnets
In the theory of phase transitions, a situation is known when
strong fluctuations change the transition order: instead of a
second-order transition, a first-order transition occurs at a
critical temperature Tc that is lower than the transition
temperature TMF in the mean-field approximation. At the
phase transition point, the divergence of the correlation
length Rc disappears. A general theoretical description of
such a specific phase transition was given by Brazovskii [38].
We are interested in generalizing the theory in [38] to the case
of helical magnets (including the already mentioned manga-

nese monosilicide, MnSi), which typically have an extended
fluctuation region in the vicinity of the phase transition [39].

The magnetic structure of a helical magnet with Heisen-
berg LMMs can be obtained using the Hamiltonian

Ĥ � Ĥex � ĤDM � ÿJ
X
i6� j

SiSj �D
X
i6� j

Si � Sj ; �3�

where Ĥex describes the ferromagnetic exchange with energy
J, and ĤDM defines the Dzyaloshinskii±Moriya interaction
with the Dzyaloshinskii vector D. If the Dzyaloshinskii
energy is zero (D � 0), ferromagnetic ordering arises in the
magnet, and a nonzero vectorD twists the magnetic structure
into a spiral. In known experimental objects, the condition
J4D is satisfied and an incommensurate magnetic structure
with pitchR0 of the order ofR0 � aJ=D4 a emerges, where a
is the lattice constant (Fig. 2a).

The Dzyaloshinskii±Moriya interaction must be allowed
by the symmetry of the crystal and typically appears in
crystals without an inversion center. Such structures include
the group B20, in which MnSi and substitutional solid
solutions Mn1ÿxFexSi crystallize (Fig. 2b). For MnSi,
R0 � 180 �A [39], and the helical magnetic structure is
incommensurate and has a period much greater than the
lattice constant. Because the localization radius of spin
polarons in MnSi is � a [29], the condition R0 4 a implies
that the Dzyaloshinskii±Moriya interaction can be neglected
when describing spin-polaron states, and LMMs are the
reduced magnetic moments of spin polarons [29]. Therefore,
Hamiltonian (3) is then an approximation, because it does not
include the interaction of band electrons and LMMs and the
formation of quasibound states.

In a generalization of Brazovskii's theory in [39], the
possibility of SFTs is not considered, but several spin
fluctuation regimes arise, smoothly transforming one into
another. The crossover region between different types of spin
fluctuations is determined from the condition Rc � Ri, where
Ri is the spatial scale associated with a certain type of
interaction in the system and Rc is the correlation length
that determines the magnitude of spin fluctuations [39]. The
role of Ri in the theory in [39] is played by the length
RDM � f �J=D� defined by the Dzyaloshinskii±Moriya inter-
action and dependent on the ratio of the exchange energy J to
the Dzyaloshinskii energy D; the Ginzburg length RGi [39],
which specifies the radius of fluctuations in Landau's theory;
and (implicitly) the pitch R0 of the magnetic spiral in the
helical phase. A condition on the hierarchy of scales is then

Quasibound
state

Continuum
state

Spin êuctuations b

� �

LMM Band
electron

Quasibound
state

Spin polaron
a

Figure 1. (a) Formation of a spin polaron (a quasibound state of band

electrons and LMMs in a crystal). (b) Spin fluctuations caused by the

transition of an electron from a quasibound state to the band continuum.

a bB20 structure

Mn, Fe
Si

a � 0.456 nm

R0 � a
J

D

Figure 2. (a)Magnetic helix arising as a result of the combined influence of

ferromagnetic exchange and the Dzyaloshinskii±Moriya interaction.

(b) Unit cell of the B20 structure into which MnSi and substitutional

solid solutions Mn1ÿxFexSi crystallize.
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adopted in the form R0 > RGi > RDM. As a result, as the
correlation length Rc�T � increases with decreasing tempera-
ture, fluctuations undergo a transformation: in the range
Rc�T � < RDM, ferromagnetic fluctuations associated with
the main exchange J dominate, whereas, for Rc�T � > RDM,
the Dzyaloshinskii±Moriya interaction must be taken into
account, giving rise to helical (chiral) fluctuations whose size
continues to increase to the phase transition point, where the
condition Rc�Tc� � R0 must hold. Because RGi > RDM in the
model under consideration, it follows that, forRc�T � > RDM,
we can distinguish a range associated with the Ginzburg
length, RGi < Rc�T � < R0, which in [39] is described as a
range of strongly interacting chiral fluctuations.

In the version of Brazovskii's theory used in [39], the
transition temperature to the helical phaseTc is lower than the
transition temperature TMF that a helical magnet would have
if the mean field theory were applicable, and TMF and the
Ginzburg length RGi are related as Rc�TMF� � RGi. For a
conventional second-order magnetic transition, the inverse
correlation length k � 1=Rc has the form [3, 14]

k�T � � k0

�
T

TMF
ÿ 1

�n

; �4�

but, for the Brazovskii transition, the relation obtained in [39]
is �

k

kGi

�2

ÿ 1

k=kGi
� Tÿ TMF

T0
; �5�

where kGi � 1=RGi and T0 determines the region of thermal
smearing of the fluctuation region. It is easy to see that, in the
limit of large k (smallRc), when the first term on the left-hand
side of (5) dominates, we obtain the inverse radius of
fluctuations in the form of expression (4), which is standard
in Landau's theory with the critical index n � 1=2. To achieve
full agreement with Landau's theory [2], whence the asymp-
totic form with k0 � kGi follows in the form k�T � �
kGi�T=TMF ÿ 1�1=2, we must set T0 � TMF in Eqn (5).

It follows from expression (5) that the dependence k�T �
does not vanish anywhere in the region T5Tc, and therefore
the magnitude of fluctuations remains finite even at a
temperature equal to the transition temperature T � Tc. An
additional condition therefore arises in the theory in [39]:
k�Tc� � 1=R0. In addition, a change in regime at Rc � RDM

does not lead to any features in the behavior of the correlation
length (Eqn (5)).

We note that Brazovskii considered the application of his
general theory [38] to the description of phase transitions in
cholesteric liquid crystals [40, 41]. We next see that there is a
significant similarity between spin fluctuation phenomena
and phase transitions in liquid crystals.

2.3 Spin-fluctuation transition to the spin nematic phase
in systems with quadrupole order
The statement about the similarities between liquid crystals
and magnets formulated at the end of the preceding
subsection looks strange at first glance. Indeed, the simplest
liquid crystal phase, nematic, arises as a result of the
orientation of rod-shaped molecules that float in the liquid
and can rotate through an arbitrary angle. In the transition
from the phase of an isotropic liquid, in which the molecules
are oriented randomly, to the nematic phase, where a
preferred orientation direction (director) appears, the sym-

metry changes, and hence Landau's theory can be used to
describe this transition [12, 13]. The distribution function of
molecules with respect to angles is introduced as

F�cos y� �
X1
n�1

anPn�cos y� ; �6�

which is traditionally expanded in a series in Legendre
polynomials Pn�cos y�, with only even terms remaining in
the expansion for nonpolar molecules [13] (here, y is the angle
between the axis of the molecule and the director). In the
framework of this approach, it is natural to choose the
coefficient a2 as the order parameter [13]. We also note that,
from the mathematical standpoint, the isotropic liquid±
nematic phase transition for nonpolar molecules is equiva-
lent to the appearance of quadrupole order [12, 13].

Thus, a liquid crystal is a fundamentally classical system
consisting of elements that cannot be considered point-like. In
this regard, a natural question arises as to why electrons in a
crystal (point-like objects), obeying the rules of quantum
mechanics, can behave like rods floating in a liquid and
exhibit orientational ordering [42]. Electron nematic effects
manifest themselves in experiments in the form of resistivity
anisotropy, and the greatest attention of researchers has been
attracted to iron-based superconductors, ruthenates, and
systems with the quantum Hall effect [42±44]. From a
theoretical standpoint, the mechanism underlying the
electron nematic effect is not unambiguous. Considered
most often are changes in the topology of stripe phases
and the Pomeranchuk instability, leading to a deforma-
tion of the Fermi surface as a result of ferromagnetic
interaction [42].

In the case of magnetic systems, a transition to the spin
nematic phase can occur [45]. This transition belongs to SFTs
and allows a clear physical interpretation at the qualitative
level. For simplicity, we consider a model 3D magnet. In the
paramagnetic phase, the average spins at the sites are zero,
hSxi � hSyi � hSzi � 0, and their fluctuations are the same in
all directions, hS 2

x i � hS 2
y i � hS 2

z i 6� 0. If an ordinary mag-
netic transition occurs, then the relations hSxi � hSzi � 0 and
hSyi 6� 0 hold in a magnetically ordered phase (for example,
of a ferromagnetic type), describing the situation where all
spins are aligned parallel to the y-axis. In the spin nematic
phase, the average spin at a site is still zero, and there is no
long-range magnetic order, but the fluctuations are no longer
equal, and a preferred direction, for example, the x-axis,
appears: hS 2

x i 6� hS 2
y i � hS 2

z i. From a formal standpoint, this
problem reduces to the appearance of a quadrupole order in
the system [45], which supports the similarity to classical
liquid crystals. Thus, electrons in a crystal do not of course
become elongated objects reminiscent of molecules in a liquid
crystal; the role of molecules (`rods') is played by anisotropic
spin fluctuations. Obviously, systems with quadrupole order-
ing, for example, cerium hexaboride CeB6 [45], are to be
regarded as candidates for the observation of the spin nematic
effect. The corresponding models for this material are
described in Section 4.1 below. In addition, the influence of
quadrupole effects is also significant for pure cerium; for
example, they can be used to describe the g! a phase
transition [46].

The paramagnetic±spin nematic phase transition is a
striking example of an SFT in its modern understanding
[17], when the anisotropy of spin fluctuations changes sharply
at the transition point, but the magnetic order type does not
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change (the spin system remains disordered). Considering the
analogy with liquid crystals, we can expect that, in this case,
too, Landau's theory can be used to describe the transition.
For liquid-crystal phases, the expansion of the free energy F
in terms of the order parameterQ is typically used in the form
[12]

F � F0 � aQ 2 � bQ 3 � cQ 4 ; �7�
where Q, for example, can be chosen as Q � jhS 2

x i ÿ hS 2
y ij.

However, this approach, despite being obvious, has not yet
been applied. In particular, in [45], the authors limited
themselves to considering the quantum mechanical aspect of
the spin nematic problem. We note that, in the case of
magnets, well-known ordering models with the thermody-
namic potential expanded in the quadrupole order parameter
have previously been repeatedly used only in describing phase
diagrams and transitions between various magnetic struc-
tures and phases with hidden order.

2.4 Spin-fluctuation transition
in the Ising model on random sites
In the foregoing, we discussed spin fluctuations of a
dynamical nature in crystals. In [47], the Ising model was
considered for magnetic centers randomly located in space
and having a concentration n and a Bohr radius a. The
interaction energy of centers i and j located at distance ri j
was taken into account by using the exponential termwith the
prefactor

J�ri j� � �J0
�
ri j
a

�5=2

exp

�
ÿ 2ri j

a

�
: �8�

The sign in (8) determined the type of magnetic interaction in
the system, antiferromagnetic or ferromagnetic. In this case,
J�ri j� is a random variable. The spatial average of the spin hSi
and spin fluctuations hS 2i per center were studied in [47]. It
turned out that, for studying spin fluctuation phenomena, the
model Ising Hamiltonian with spins Si; j � �1 can be
conveniently represented as

Ĥ � 1

2

X
i6� j

J�ri j�SiSj � 1

2

X
i

JiSi ; �9�

with the exchange energy introduced as JiSi �
P

j; j 6�i J�ri j�Sj

to define the interaction of a spin Si with all other spins. Next,
the exchange energy distribution functions w�JS� were
numerically calculated in the antiferromagnetic and ferro-
magnetic cases, depending on the dimensionless control
parameter na 3. Random centers with antiferromagnetic
interaction had been studied in [48], where it was shown that
long-range magnetic order does not arise in such a system due
to the formation of strongly interacting pairsÐantiferro-
magnetic dimers (the so-called singlet phase [48]). We
emphasize that, in contrast to [48], a more precise expression
(8) for the exchange integral was used in [47], and an analysis
scheme was applied based on the understanding of the
importance of the SFT problem, which allowed obtaining
fundamentally new results.

Let us consider the behavior of the function w�JS� found
in [47] as n increases (Fig. 3). With the description method
discussed above, the plot is divided into two symmetric
halves, corresponding to the spins S � �1 and S � ÿ1, and
the chemical potential is located at the point JS � 0 [47]. The
change in the distribution function with a change in

concentration is qualitatively the same in the antiferromag-
netic and ferromagnetic cases, and we therefore consider the
data for a system with ferromagnetic interaction (see Fig. 3).
At small n, w�JS� has two pronounced peaks due to the
predominant influence of pairs of strongly interacting
centers on the magnetic properties. For antiferromagnetic
interaction, these peaks correspond to the singlet phase
(antiferromagnetic dimers with zero total spin) [48], and,
for ferromagnetic interaction, to ferromagnetic dimers (in
[47], the term `singlet phase' is somewhat misleadingly used
in all cases of dimer formation). As the concentration of
centers increases, the distribution function w�JS� trans-
forms into broad singularities (a `Gaussian phase' in the
terminology in [47]). The transition from the dimer phase
to the Gaussian phase is then abrupt [47] and occurs at
na 3 � 0:01 (see Fig. 3). However, the most conspicuous
physical phenomenon that occurs in this model is the SFT
in the Gaussian phase.

The evolution of spin fluctuations in the case of
ferromagnetic interaction as a function of the ratio of the
Bohr radius to the average distance between centers r � nÿ1=3

is shown in Fig. 4 in accordance with the data in [47]. We can
see that the system switches between states with hS 2i � 5 and
hS 2i � 6000 in the range 0:4 < a=r < 0:6, and a=r � 0:5 can
be taken as the transition point (Fig. 4).

We emphasize that magnetic order does not arise in the
model under consideration, and the average spin at a center is
zero in the entire range of parameters studied in [47]. Thus, in
the Ising model, the SFT occurs at random centers with
ferromagnetic interaction where the amplitude of spin
fluctuations changes significantly [47]. Interestingly, in the
model with antiferromagnetic interaction, the change in hS 2i
with varying a=r is not so pronounced [47], but in that case an
SFT point can be identified at which the functional depen-
dence hS 2i � f �a=r� changes. We also note that the most
significant transformation of the mean square of spin
fluctuations occurs in the vicinity of concentrations char-
acteristic of the metal±insulator transition in doped semi-
conductors.
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2.5 Spin-fluctuation transitions
on magnetic phase diagrams
The idea to determine the boundaries of spin fluctuation
phases on a magnetic phase diagram based on a comparison
of different spatial scales in the presence of disorder in a
crystal was proposed in [49]. The role of characteristic lengths
was played by the correlation length of classical fluctuations
in the spirit of Landau's theory, Rf1, given by an expression
similar to (4) with a1 � kÿ10 , Tc � TMF, and n1 � n, as well as
by the correlation length for quantum fluctuations Rf2 [50]:

Rf1 � a1
�T=Tc ÿ 1�n1 ; Rf2 � a2

T0

T
: �10�

The parameters a2 and T0 in the expression for Rf2 define the
respective spatial and energy scales for quantum fluctuations.
Next, the control parameter x that defines the disorder in the
system is introduced, with the associated percolation-type
correlation radius given by [51]

Rs � Rc�x� � l

�1ÿ x=xc�n ; �11�

where xc is the percolation threshold, n � 0:9 is the critical
exponent in the three-dimensional system, and l is the
minimum length, of the order of the size of the unit cell,
corresponding to the ordered case (x � 0) [49].

According to [49], different SFTs arise when characteristic
lengths (10) and (11) become equal (Fig. 5). The conditions
Rf1 � Rs andRf2 � Rs give rise to SFT1 and SFT2 transitions
at the temperatures

T1�x� � Tc�x�
�
1� DT�0�

Tc�0�
�
1ÿ x

xc

�n=n1�
;

�12�
T2�x� � T2�0�

�
1ÿ x

xc

�n

:

In Eqns (12), DT�0� � T1�0� ÿ Tc�0� � �a1=l�1=n1Tc�0� and
T2�0� � �a2=l�T0. The condition Rf1 � Rf2 corresponds to
SFT3 at the temperature Teq�x�, separating the regions

dominated by classical and quantum fluctuations (see
Fig. 5). If n1 � 1=2, then Teq�x� can be found from the
equation

A � z 2

zÿ 1
; �13�

where z � Teq�x�=Tc�x� and A � T 2
2 �0�=DT�0�Tc�x�. Let the

dependence Tc�x� of the temperature of the transition to a
phase with long-range magnetic order on the control
parameter be known from experiment and the SFT1
temperature T1�0� in the absence of disorder, at x � 0, also
be known. Two parameters then suffice to specify the Tÿx
magnetic phase diagram: the percolation threshold xc and the
energy scale associated with quantum fluctuations T2�0� [49].

The model in [49] partly resembles the approach used in
[38, 39], although the change in the fluctuation regime for
different relations between spatial scales is understood there
not as a crossover but as an SFTwith awell-defined transition
temperature. Another feature of the description of the Tÿx
diagram proposed in [49] is the coexistence of two types of
fluctuations, quantum and classical, for any x, not only at the
quantum critical point. There is currently no rigorous
theoretical justification for such a hypothesis, although, for
specific magnetic systems, arguments can be made in favor of
the possibility of the coexistence of different types of
fluctuations. It is therefore of interest to compare the results
in [49] with experiment, first of all selecting those that cannot
be obtained in the framework of classical theories or their
generalizations [38, 39]. In particular, the model in [49]
predicts an SFT3 transition at Teq�x� to be observed in the
paramagnetic phase for Teq > T1;T2 (see Fig. 5). Another
interesting consequence is the possibility of an SFT inside
the magnetically ordered phase when the condition
Tc�x� > T2�x� is satisfied [25]. As we show in subsequent
sections, these nontrivial consequences of the model in [49]
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are confirmed experimentally. In addition, the considered
approach allows quantitatively describing the Tÿxmagnetic
phase diagram of substitutional solid solutions Mn1ÿxFexSi
[49]. In this case, the control parameter x (disorder in the
system) can be related to the concentration of iron in the solid
solution.

It is worth noting how the SFT develops when the
magnitude of fluctuations reaches the correlation radius
associated with disorder. In [49], it was assumed that Rs

bounds the increase in the magnitude of fluctuations as
temperature decreases because, having `captured' structural
inhomogeneities or defects, fluctuations freeze and their
radius no longer increases, remaining constant [49]. How-
ever, this behavior contradicts experimental data on the
temperature dependences of the correlation length [39, 52] in
spin-fluctuation phases. Obviously, in a system with struc-
tural disorder, a spherically symmetric fluctuation can exist
only in the range Rf < Rs, and in the range Rf > Rs the
fluctuations interact with structural defects and apparently
cannot grow equally in all directions. In that situation, an
anisotropic fluctuation regime can arise, for example, as a
result of the presence of small anisotropic terms in the spin
Hamiltonian, the influence of an external field, or sponta-
neous symmetry breaking, when one fluctuation randomly
extended along some direction would determine the orienta-
tion of fluctuations at neighboring spatial points. We can
therefore expect the resulting spin-fluctuation phase at
Rf > Rs to be characterized by anisotropic spin fluctuations
characteristic of the spin nematic phase. Another option for
the occurrence of the spin nematic effect is the possibility for
correlations setting in to correspond to an initially aniso-
tropic spin fluctuation in a magnetic system. This case can
also be realized in helical magnets.

3. Experimental methods
for studying spin-fluctuation transitions

It is obvious that studying SFTs requires the use of methods
that are sensitive to spin fluctuations. This trivial statement is
not always easy to implement in practice, because the use of
popular physical characteristics in the field of magnetic
phenomena such as magnetization, magnetic susceptibility,
and magnetoresistance requires a priori information that
these quantities depend on the spin-fluctuation regime of the
sample under study. But this can only be judged on the basis
of certain theoretical models, among which `suitable' ones
should be selected depending on the description preferred by
the researcher. This methodology is unpromising for the
demonstrative identification of the group of magnetic
phenomena under consideration. Nevertheless, experimental
methods for studying spin fluctuations exist, and using them
allows obtaining reliable data on SFTs.

3.1 Neutron scattering
We consider the use of small-angle neutron scattering (SANS)
to solve the problem posed by discussing example of helical
magnetsÐ substitutional solid solutions Mn1ÿxFexSi [53].
SANS polarization experiments demonstrate a change in the
scattering pattern with temperature (Fig. 6). In the para-
magnetic phase T > T1 (region 1), scattering is isotropic. In
the range T < T1 (regions 2 and 3), a characteristic crescent-
shaped structure appears, which becomes more pronounced
as the temperature decreases. Interestingly, this scattering
pattern is identical to the X-ray scattering data for the

nematic phase of liquid crystals [13]. We therefore relate this
behavior to the regime of anisotropic spin fluctuations. A
further decrease in temperature leads to the transformation of
the crescent into Bragg peaks, indicating the formation of a
helical magnetic phase with long-range magnetic order at
T4Tc (region 4). According to [39, 53], the temperatureT1 is
determined by the DzyaloshinskiiëMoriya interaction,
T1 � D=kB, and isotropic ferromagnetic êuctuations in the
system transform into helical ones at this temperature. Helical
êuctuations are obviously anisotropic, and parts of spin
spirals dynamically appearing in the bulk of the sample play
the role of rod-shaped molecules in liquid crystals, which
explains the similarity of scattering patterns [13, 53]. Thus, at
T � T1,Mn1ÿxFexSi undergoes an SFT into the spin nematic
phase (see Section 2.3).

It is noteworthy that, at characteristic temperatures T1

and Tc, not only does the neutron scattering pattern change
but also features appear in the temperature dependence of the
magnetic susceptibility derivative qw=qT (see Fig. 6). It was
found in [53] that the temperature T1 corresponds to a
minimum, and the temperature Tc, to a maximum of qw=qT.
This result has practical significance for the study of magnetic
transitions and SFTs in Mn1ÿxFexSi. Once the relation
between the properties of a physical quantity (in this case,
magnetic susceptibility) and structural data that provides
information about spin fluctuations is established, this
`secondary' characteristic can be used to identify SFTs.
Measuring w�T � is a simpler and less expensive task than
conducting neutron experiments.

It is assumed in [53] that, in the range T < T1, another
characteristic temperature T2 can be identified that separates
the regions 2 and 3 in Fig. 6. The boundary between the
regions, as proposed in [53], is associated with the singularity
of the second derivative q2w=qT 2. Helical fluctuations in the
range Tc < T < T2 are then more pronounced than in the
range T2 < T < T1 while maintaining the qualitative neutron
scattering pattern. A more transparent physical reason can
also be adduced to identify this boundary within the range
T < T1. For this, we can use the data on the inverse lifetime of
spin fluctuations G, which was found in [53] using neutron
spin echo data (Fig. 7). It is easy to see that, at T � T2, the
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temperature dependence G�T � has a maximum, indicating a
change in the spin-fluctuation dynamics under some SFT.We
note that, in the sample with x � 0:08, the G�T � curve has yet
another feature at T � 11:8 K corresponding to a minimum
of the second derivative of the magnetic susceptibility with
respect to temperature (see Fig. 6). Thus, the study of
relaxation characteristics indicates the existence of another
SFT in Mn1ÿxFexSi, associated with a change in the
dynamical characteristics of spin fluctuations.

In neutron scattering studies [39, 53], it is often stated that
SANS data allow determining the correlation length, i.e., the
radius of fluctuations. These data are typically given in the
form of the dependence 1=Rc � k�T �. Experiment actually
allows determining the effective size of the coherent scattering
region, which is identified with the correlation length of spin
fluctuations. As far as we are aware, anisotropic character-
istics of spin fluctuations from neutron scattering data have
not yet been determined. An example of the experimental
dependence k�T � is shown in Fig. 7. It can be seen that, under
the SFT in the range T < T1, the slope of the k�T � curve
changes, and therefore the derivative qk=qT acquires SFT-
related features. Thus, SFTs can manifest themselves in both
the dynamical and spatial characteristics of spin fluctuations,
and a sharp change in the fluctuation radius can be used to
detect an SFT.

3.2 Electron paramagnetic resonance
The problem of the influence of spin fluctuations on the
characteristics of electron paramagnetic resonance (EPR) in
various systems with strong electron correlations was recently
addressed in review [17]. It follows from the analysis
performed that is the EPR linewidth W the most sensitive to
the effect of spin fluctuations [17]. The currently known
theoretical results for systems with strong electron correla-
tions amount to the fact that spin fluctuations broaden the
absorption line, while ferromagnetic correlations `strive' to
make the resonance narrower [54±56] (Fig. 8). The narrowing
of the EPR line is regarded as a generalization of the classical
Korringa spin relaxation mechanism [56], for which
W � 1=w�T � because the magnetic susceptibility increases in
the ferromagnetic case. We note that, in addition to spin
fluctuations, antiferromagnetic correlations can also lead to
EPR line broadening, leading to a decrease in w�T �.

Thus, a change in the EPR linewidth as a result of an
SFT can occur in the background of a temperature

dependence caused by magnetic interactions in the system
under study. This may complicate the identification of the
relevant spin-fluctuation contribution. However, it turns
out that SFTs occur in the W�T � temperature dependence
in the form of sharp features, similarly to the G�T � data
(see Fig. 7).

In addition, to study an SFT into the spin nematic phase,
it may be useful to study the angular dependence of the
linewidth. Indeed, if the anisotropy w is small or known, then
in the spin-nematic phase we can expect a stronger angular
dependence of W or its modification compared with the
magnetic susceptibility anisotropy. As in the case of neutron
experiments, the EPR data used to find the SFT can be
associated with some `secondary' physical quantity, changes
in which can be used to identify the SFT. This approach
turned out to be effective for studying the SFT in CeB6, to be
discussed in Section 4.

A problemmay be encountered in determining the type of
fluctuations, i.e., deciding which fluctuations, quantum or
classical, lead to the observed transition. For a concentrated
Kondo system, an analysis in the framework of the Fermi
liquid theory, which includes both the strong interaction
between band electrons and LMMs and the ferromagnetic
correlations, was performed in [54±56]. It was shown that the
change in the g-factor is negligible, and the leading effects are
to be seen in the linewidth that depends on the temperature in
accordance with the lawW �W0�1� AT 2�.

A possible modification of the spin dynamics in the
framework of the semiclassical Landau±Lifshitz equation
with quantum fluctuations of the magnetic moment taken
into account was considered in [57]. In the case of classical
magnetization fluctuations, only the linewidth changes, and
the resonance frequency (the g-factor) does not shift.
Quantum fluctuations are characterized by a correlation
between fluctuations in the spin precession frequency and
magnetization fluctuations in the direction parallel to the
external constant magnetic field [57]. This implies that the
shift of the g-factor and the spin fluctuation contribution to
the EPR linewidth are related to each other [57]:
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Here, o and n are the respective frequencies of microwave
radiation and spin relaxation; a0 describes the effect of
quantum fluctuations and can be estimated as a0 �
2DM 2

z =mBM0, where DMz and M0 are the amplitude of
fluctuations and the average magnetic moment per magnetic
ion (the external magnetic field is assumed to be directed
along the z-axis). The use of Eqns (14) and (15) to identify the
type of fluctuation that determines an SFT is discussed below
with the example of MnSi. It can also be shown [58] that, in
the absence of quantum effects, the fluctuation correction to
the linewidth is of the order of DW � DM 2

x ;DM
2
y , where the

coordinate axes x and y are directed perpendicular to a
constant magnetic field. Thus, if the average spin is zero,
hSi � 0, then, in estimating the spin-fluctuation contribution
to the linewidth, we can assume that DW � hS 2i.

In addition, if we use the classical approach to describe
EPR, then the linewidth is inversely proportional to the spin
relaxation time, and hence the EPR technique provides
combined information about the amplitude of spin fluctua-
tions and their characteristic frequency.

4. Examples of experimental observation
of spin-fluctuation transitions

4.1 Spin-fluctuation transitions in the spin nematic phase
(cerium hexaboride)
Cerium hexaboride CeB6 has a simple body-centered cubic
(bcc) structure formed by two cubic sublattices made of Ce3�

ions and boron octahedra B6, shown schematically in Fig. 9a.
In the physics of strongly correlated electron systems, CeB6 is
usually regarded as an example of a metallic concentrated
Kondo systemwith heavy fermions [59±65]. Despite its simple
crystal structure, this compound has a nontrivial magnetic
phase diagram due to the interaction of spin and orbital
degrees of freedom. In a zero magnetic field, as the
temperature decreases, a magnetic transition occurs at
T � TAFQ � 3:2 K, which precedes the formation of a long-

range antiferromagnetic order with a complex structure at
TN � 2:3 K. Switching on a magnetic field B leads to an
increase in TAFQ�B� and a decrease in TN�B� [59±65]. This
sequence of magnetic transitions in CeB6 was established
using neutron diffraction [59], resonant X-ray scattering [60],
heat capacity [61], NMR [62], magnetization [63, 64], and
transport measurements [65].

The most popular model concepts in the literature are
those relating the physical properties and features of the
magnetic phase diagram of CeB6 to the interaction of
quadrupole electric moments of the 4f shells of Ce ions,
which result from the splitting of the 2F5=2 level by the crystal
field [66±72]. Various terms are used to designate the phase
existing in the range TN < T < TAFQ: `antiferroquadrupole
phase,' `orbitally ordered phase,' `hidden-order phase,' or
simply `phase II.' Such a discrepancy in naming nevertheless
corresponds to almost identical model ideas. In most studies,
CeB6 is assumed to have the lowest-energy state G8 with a
quadrupole moment. In the paramagnetic phase (T > TAFQ),
the spins and quadrupole moments of the 4f shells are
disordered, but, at T4TAFQ, a three-dimensional lattice
appears in which the quadrupole moments �Q and ÿQ
alternate in a checkerboard pattern [59]. The concept of
ordering of quadrupole moments is a version of the descrip-
tion of the orbital ordering effect applicable to cerium
hexaboride. It is believed that orbital ordering at the
boundary TAFQ�B� between the paramagnetic and orbitally
ordered phases occurs without changing the lattice constant
[60] due to the weak contribution of the 4f electrons to the
chemical bond. This highlights a dramatic difference between
the orbital effects in CeB6 and in manganites, where orbital
ordering changes both the crystal structure and the magnetic
order [73±75].

The magnetic nature of the transition at T � TAFQ

manifests itself when an external magnetic field is imposed,
giving rise to an additional magnetic moment in the orbitally
ordered phase, whose amplitude increases with increasing B;
this magnetization component obviously has a 3D checker-
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board antiferromagnetic structure. Experimentally, this effect
is detected in the form of magnetic reflection with the wave
vector k0 � �1=2; 1=2; 1=2�, whose intensity increases with the
magnetic field and, in the simplest model, vanishes in a zero
magnetic field [59]. This property of the orbitally ordered
phase of CeB6 justifies the term antiferroquadrupole (AFQ)
phase, which we use in what follows. The absence at
T � TAFQ of the usual type of magnetic order justifies the
term `hidden order' used to denote this type of magnetic
transition.We note that the consideredmodel representations
constitute a physical description at the minimum minimorum
level and do not reêect the entire set of phenomena
characteristic of the low-temperature magnetic properties of
CeB6. However, the model approach described above is
sufécient to understand the SFT problems in this material.
We refer those readers who are interested in a more complex
picture of the physical properties of the AFQ phase to review
[76].

As already noted, in a system with quadrupole order, spin
fluctuations must exhibit anisotropy, and a spin nematic
phase must form [45]. The anisotropy of spin fluctuations
can lead to anisotropy of the angular dependence of the EPR
linewidth W�y� (see Section 3.2). A low-temperature EPR
experiment at a frequency of 60 GHz, with a CeB6 sample
rotated in a magnetic field about the �1�10� direction, was
performed in [77], where the angular dependence of the line
shape in the AFQ phase was obtained and compared with the
results of independent measurements along the principal
crystallographic directions (Fig. 9b). In [77], the angle
y � 0� corresponds to direction [001]. It was found that, at
T � 1:8 K, the EPR linewidth is anisotropic (Fig. 9c), in
agreement with theoretical expectations. Moreover, it turned
out that the normalized angular dependences of the linewidth
W�y� and the magnetoresistance r�y� in the field B � 2:8 T,
which is close to the magnetic resonance field, are almost
identical (Fig. 9c). This result suggests that anisotropic
magnetic scattering in CeB6 occurs on the same spin
fluctuations that determine the EPR anisotropy [77]. In
addition, we here see the possibility of using a `secondary'
physical quantity, magnetoresistance in this case, to study the
SFT. This is fundamentally important for studying the spin
nematic phase in thismaterial, because EPR is solely observed
in CeB6 in the AFQ phase, and, as the temperature
approaches the phase boundary TAFQ�B�, the line broadens
so significantly that the magnetic resonance cannot be
detected in the paramagnetic phase [17, 76, 77].

The anisotropy of magnetoresistance in cerium hexabor-
ide was studied in detail in [78] in a geometry different from
that shown in Fig. 9, with the sample rotated about the [001]
axis, along which the measuring current was directed. The
magnetic field changed its direction in the plane perpendicu-
lar to [001]. First, it was found that, in the range B4 3 T, the
angular dependence r�y� can be represented with high
accuracy as the sum of the second and fourth Legendre
polynomials [78],

r�B;T; y� � r�B;T; 0� f �y� ; �16�
f �y� � 1� a2�B;T �P2�cos y� � a4�B;T �P4�cos y� :

Here, direction [110] is taken as the origin for the angle. We
first consider the temperature dependences a2�T � and a4�T �
in fixedmagnetic fields (Fig. 10a, b). It is noteworthy that, as a
result of the decrease in temperature below a certain Tmax�B�,
finite values of the coefficients a2 and a4 appear step-wise,

while the range T > Tmax�B� is characterized by zero values
a2 � a4 � 0. As the temperature decreases in the range
T < Tmax�B�, a2 monotonically decreases and a4 monotoni-
cally increases; at certain temperatures that are close to but
not coincident with each other, the sign of these parameters is
reversed (Fig. 10a, b). Following [78], we let T0�B� denote the
characteristic temperature at which a2 changes sign (Fig. 10a).
We note that, in addition to the above features, in the field
B � 1 T, the a2�T � and a4�T � curves exhibit a kink associated
with the transition to the antiferromagnetic phase
(Fig. 10a, b).

The analysis of experimental data carried out in [78]
allowed establishing a highly nontrivial fact. We transform
Eqn (16) into the form

r�B;T; y� � r�B;T; 0�
n
1� a2�B;T �

�
P2�cos y�� bP4�cos y�

�o
;

�17�
where b � a4=a2, and analyze the field dependence of the
parameters. In the range T < Tmax�B�, we select two regions
in which the temperature is less than or greater than
T � 3:5 K; in each of these regions, the condition b � const
is then satisfied, but the ratios b � a4=a2 are different (see
inset in Fig. 10). The coefficient a2 depends linearly on the
magnetic field, a2 � Bÿ B0, where B0 � 0:5 T (inset in
Fig. 10). Thus, according to [78], the field and temperature
dependence of the anisotropic magnetoresistance of CeB6 is
determined by the coefficient a2, which can be considered an
order parameter for the SFT occurring at Tmax�B�, entirely
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meets the case of classical liquid crystals [13], and a sharp
change in the parameter b reflects a change in the symmetry of
spin fluctuations [78]. This effect is illustrated in Fig. 11a,
which shows the angular dependences of the normalized
function f �y� for T < 3:5 K and T > 3:5 K. We can see that
the spatial orientation of spin fluctuations does not remain
constant, and the extrema of f �y� rotate through 45� at
T � 3:5 K.

In [78], a scaling for the parameter a2 was also obtained in
the form

a2 � �Bÿ B0�j
ÿ
Tÿ T0�B�

�
; �18�

corresponding to the normalization of the amplitude by
Bÿ B0 and the shift of the temperature dependence by the
sign reversal temperature T0�B� (Fig. 10c). This analysis
indicates the presence of some feature in a weak magnetic
field. Interestingly, the corresponding line on the magnetic
phase diagram was previously predicted theoretically in [71]
and discovered experimentally in [79]. In addition, it turns out
that just the characteristic temperature T0�B� is to be related
to the change in the symmetry of spin fluctuations shown in
Fig. 11a [78].

We now analyze the results obtained in [78] from the
standpoint of theoretical expectations expressed in [45]. For
this, we plot the obtained points Tmax�B� and T0�B� on the
magnetic phase diagram of CeB6 (Fig. 11b). It can be seen
that the temperature Tmax�B� at which anisotropy occurs is
ideally coincident with the boundary between the paramag-
netic phase and the AFQ phase. This result is totally
consistent with the theory in [45], according to which the
spin nematic phase with anisotropic spin fluctuations is the
phase with hidden (quadrupole) order. However, as follows
from experimental data, a change in the spatial orientation of
spin fluctuations at T0�B� occurs in the range of existence of
the AFQ phase, where, according to the currently known
structural data, no fundamentally new magnetic order arises,
be it conventional or hidden. Thus, it was shown in [78] that
CeB6 undergoes two spin fluctuation transitions, SFT1 and
SFT2. The first, SFT1, at the boundary of the AFQ phase, is
associated with the appearance of anisotropic spin fluctua-

tions, and the second transition, SFT2, corresponds to a
change in the symmetry of spin fluctuations at T0�B� and is
not associated with a change in any magnetic order, i.e., is an
SFT in purissima. It is obvious that SFT2 in CeB6 can be
considered a spin-fluctuation analogue of the orientation
transition in magnetic materials [78].

The special character of SFTs in CeB6 clearly manifests
itself in the unusual scaling of the order parameter (Eqn (18)).
Indeed, according to the simplest version of Landau's theory
with a single order parameter, we expect scaling with the
magnetic transition temperature Tmax�B�, which obviously
contradicts experiment (Fig. 10c). At present, it is not clear
whether this anomaly can be included in the standard
paradigm [2±4], for example, by introducing several interact-
ing order parameters.

We note that SFT1 is accompanied by a heat capacity
feature characteristic of first-order phase transitions [61], in
full accordance with the liquid-crystal analogy for the
transition to the spin nematic phase, because the isotropic
liquid±nematic transition refers precisely to this type of phase
transition [13]. However, for orientational SFT2, there is no
pronounced thermal effect or any heat capacity feature in
CeB6. It cannot be ruled out that this SFT is a crossover;
however, the ultimate answer to the question about the nature
of this SFT requires the development of theoretical models,
which remains a task for future research.

4.2 Toward experimental verification of the SFT
in the Ising model on random sites
(doped compensated germanium)
To our knowledge, the theoretical results described in
Section 2.4 have not yet been subjected to a dedicated
experimental test. Nevertheless, the results in [80, 81], whose
publication preceded the theoretical prediction of the SFT in
the Ising model on random sites [47], are of some interest. In
[80, 81], EPR in germanium prepared by neutron doping [82]
was studied. This method is based on nuclear reactions that
occur when neutrons are captured by isotopes of a semi-
conducting material, when the sample is exposed to a neutron
flux. In the case under consideration, the isotopes 70Ge, 74Ge,

[100] a

[110]

3T

180

150

120

90
60

30

0

330

300

270

240

210

y�

1.0

f
�y
�=
f m

a
x

0.5

0

0.5

1.0

4.5 K
2.5 K

T, K

3

B
,T

2

1

0
1 2 3 4 5

[100]

[110]

AF

AFQ

P

B0

T0

TN

TAFQ

b

Figure 11. (a) Normalized angular dependences of the magnetoresistance of CeB6 in a 3 T field at temperatures of 4.5 K and 2.5 K. (b) Magnetic phase

diagram of CeB6 constructed with results of a study of the spin nematic effect taken into account: PÐparamagnetic phase, AFÐantiferromagnetic

phase, AFQÐantiferroquadrupole phase. Solid lines are literature data; white dots are plotted according to the characteristics of microwave absorption.

Temperature T0 (triangles) corresponds to an SFT in the antiferroquadrupole phase. Asterisks show temperature Tmax at which magnetoresistance

anisotropy occurs. Dashed line B0 shows the expected additional line on the magnetic phase diagram in a weak magnetic field. (Based on [78].)

January 2024 Spin-êuctuation transitions 33



and 76Ge are suitable for producing electrically active
impurities that are respectively converted into gallium,
arsenic, and selenium as a result of neutron capture. Gallium
is an acceptor, and arsenic and selenium are donors. It is
important that the neutron doping technique allows effec-
tively controlling the degree of compensation in samples [82].

Ge:As(Ga) crystals initially doped with arsenic and
compensated by a gallium impurity introduced into the
sample by neutron doping were studied in [80, 81]. In such a
system, depending on the doping level and the degree of
compensation, both ferromagnetic [83] and antiferromag-
netic [80, 81] interactions between impurity centers can
emerge. In what follows, we consider data on samples in
which the interaction between the spins of donor-localized
electrons is antiferromagnetic [80, 81]. In such a system, EPR
is observed on neutral donors.

For the study of SFT problems, experimental data on the
EPR linewidth are of greatest interest. In [80], the experi-
mental dependence of the parameter C �W�110�=2, equal to
half the linewidth along the [110] direction of the magnetic
field, on the gallium concentration NGa is given. To
compare the data in [80] with the theoretical dependences
found in [47], we must first determine the spatial scale a=r.
As an estimate, we assume that a=r � a�NAs ÿNGa�1=3 in
compensated samples. Then, apparently, the dependence
C � f �NGa� found in [80] could be obtained in samples
with slightly different initial arsenic concentration NAs,
and, in our case, this parameter therefore has the meaning
of some effective `average' concentration of donor centers.
We also assume that the leading contribution to the EPR
linewidth of Ge:As(Ga) comes from spin fluctuations and
W�110� � hS 2i, where the function hS 2i � f �a=r� for anti-
ferromagnetic interaction was found in [47]. To compare the
theoretical dependence with experimental data, we then have
to determine three fitting parameters: a, NAs, and the
proportionality coefficient between hS 2i and W. The result
of such an analysis forNAs � 4� 1017 cmÿ3 and a � 13 nm is
shown in Fig. 12. It can be seen that the chosen values provide
good agreement between the experimental data and the
theoretical dependence. We note that, according to [47], the
SFT in a system with antiferromagnetic interaction in which
dimers disappear and the Gaussian phase is formed occurs at

a=r � 0:2, a value corresponding to the inflection point on the
hS 2i � f �a=r� curve (see Fig. 12).

Unfortunately, the range of impurity concentrations in
the samples studied in [80] is obviously insufficient for testing
theoretical predictions in [47]; however, our analysis shows
that the study of doped semiconductors by EPR may be
promising for detecting the SFT expected in the Ising model
on random sites. Interestingly, the estimate a � 13 nm is
somewhat higher than the localization radii for arsenic,
a�As� � 6 nm, and gallium, a�Ga� � 9 nm, impurities in
germanium [51]. However, the value we obtained is in good
agreement with the characteristic size of antiferromagnetic
clusters, � 10 nm, which, according to [80, 81], form from
neutral donor impurities in Ge:As(Ga). Nevertheless, the
question of the effective localization radius involved in the
theory in [47] requires additional research.

The temperature dependence of the EPR linewidthmay be
of significant interest for the detection of SFTs. In Fig. 13, we
show the temperature dependence ofW�T � for a sample with
NGa � 4:1� 1017 cmÿ3 and the degree of compensation
K � 0:7 from [81]. Noteworthy is the sharp change, almost a
kink, in the curve atT � 17K, indicating a possible SFT. The
SFTs corresponding to a sharp change in the amplitude of
spin fluctuations are considered in more detail in the next
subsection.

We also note that the above example does not exhaust the
options for studying SFTs in semiconductors. In particular,
study [84], where CVD diamond plates were studied by EPR,
is of interest. In this material, a spin glass state of radiation
defects emerged after irradiation with neutrons. Interestingly,
a fluctuation change in the g-factor was discovered in such a
system, and the idea of the formation of ferron-type spin-
polaron states was used to explain the observed effects [84].
Yet another promising semiconducting material for studying
spin fluctuation phenomena will perhaps be Si:P, in which
weak ferromagnetism was discovered [85].

4.3 Spin fluctuation transitions accompanied
by a sharp change in the amplitude of spin fluctuations
with varying temperature (Hg1ÿxMnxTe and MnSi)
A step-wise change in the EPR linewidth with varying
temperature was discovered when studying the magnetic
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semiconductor Hg0:865Mn0:135Te [86]. Measurements were
carried out using an X-band spectrometer at a frequency of
9.36 GHz. Three lines were observed in the experiment,
caused by different configurations of magnetic manganese
ions in the HgTe matrix [86]. In Fig. 14, we show the
temperature dependence W�T � of the EPR line with the
maximum width for which the largest spin fluctuation
contribution can be expected. A sharp change in W�T �
occurs at T � 67 K and T � 19 K, and pronounced features
of the remaining lines are also observed at the same
temperatures [86].

Because Hg0:865Mn0:135Te has nomagnetic ordering in the
temperature range under consideration, the observed jumps
in W�T � can apparently be caused by SFTs that occur in the
paramagnetic phase. We note that the Hg1ÿxMnxTe system is
a classic example of a system with spin polarons [87] and is
therefore characterized by a `natural' general mechanism for
the occurrence of spin fluctuations (see Section 2.1 andFig. 1).
Nevertheless, it remains unclear from [86] what exactly
happens to spin polarons in Hg1ÿxMnxTe in the range of a
sharp change in the EPR linewidth.

We now consider the behavior of spin fluctuations in the
paramagnetic phase of another systemwith spin polarons: the
strongly correlated metal MnSi. For single crystals of this
helical magnet, detailed data are available both on the
temperature dependence of the correlation length extracted
from SANS experiments [39] and on the EPR linewidth
measured at a frequency of � 60 GHz [37]. The results of
these independent experiments were compared in [88].

It is convenient to start the analysis with the temperature
dependence of the inverse correlation length k�T � � 1=Rc�T �
(Fig. 15). To explain the experimental results, Brazovskii's
theory generalized to the case of helical magnets was used in
[39]. As noted above, the possibility of SFTs is not taken into
account in this approach; however, several spin fluctuation
regimes arise that smoothly transform one into another. The
crossover region between different types of spin fluctuations
is determined from the condition Rc � Ri, where Ri is the
spatial scale associatedwith a certain type of interaction in the
system (see Section 2.2). Thus, the domains of ferromagnetic,
chiral, and strongly interacting chiral fluctuations can be
considered in the paramagnetic phase of MnSi (see Fig. 15).

If we use expression (5) for the inverse correlation length,
then the approximation of the experimental data depends on
three parameters: TMF, T0, and kGi. But if the parameter TMF

is fixed, then the point k�TMF� � kGi on the curve k�T � is
actually fixed, and the only adjustable parameter is the
smearing temperature T0. If we additionally require the
condition k�Tc� � 1=R0 to hold for the helix pitch in the
helical phase, then T0 can be considered fixed. For
R0 � 180 �A [39], this procedure provides a good description
of the experimental dependence k�T � with the parameters
TMF � 30:5 K, kGi � 1:9� 10ÿ2 �Aÿ1, and T0 � 0:5 K (curve
1 in Fig. 15).

It is noteworthy that, in the theory under consideration,
k�T � remains finite in the entire region T5Tc, while, for a
conventional phase transition, the correlation length diverges
at the phase transition point (Eqn (4)), and therefore k�T �
vanishes [39]. It is interesting that if the standard formula (4)
is used to approximate the inverse correlation length ofMnSi,
then the fit also gives a result that is in good agreement
with experiment at the parameters TMF � 29:44� 0:02 K,
n � 0:64� 0:06, and k0 � �2:19� 0:02� � 10ÿ3 �Aÿ1 (curve 2
in Fig. 15). Formula (4) then describes experiment in the
range T > 30 K, and deviations from theoretical dependence
(4) in the range Tc < T < 30 K can be associated with the
formation of intermediate spin-polaron phases that can arise
during the paramagnet±ferromagnet phase transition [89] and
(or) with SFTs. Thus, a description of the temperature
dependence of the inverse correlation length for MnSi can
be obtained in the framework of various models.

However, the picture of a smooth change in the correla-
tion length, although consistent with the standard description
of a magnetic phase transition, is incomplete. To identify spin
fluctuation features, it is convenient to consider the tempera-
ture derivatives of the inverse correlation length qk=qT and
of the EPR linewidth qW=qT [88]. From a comparison of
the data on qk=qT and qW=qT, it is clear that, at certain
temperatures,MnSi exhibits a sharp change in the parameters
of spin fluctuations: their amplitude and (or) frequency
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defined by the width of the EPR line, as well as the spatial
scale (correlation length), acquire features at almost identical
temperatures (Fig. 16). Because the k�T � data were obtained
in a zero magnetic field [39], and the EPR linewidth
corresponds to the resonant field � 2 T [37], such a
correspondence of the data indicates that, in the considered
domain of the temperature±magnetic field parameters, MnSi
undergoes several SFTs, and the corresponding boundaries
on the magnetic phase diagram are almost vertical.

Let us first note features atT � 32K (arrow 1 in Fig. 16: a
jump in the derivative qW=qT and a maximum of qk=qT ).
This SFT1 is observed in the temperature range where helical
fluctuations occur, according to [39]. But, in contrast to the
model description in [39], the experiment shows that the
transition between ferromagnetic and helical (chiral) fluctua-
tions in MnSi occurs via a sharp change in spin fluctuation
characteristics and is not a crossover.

The strongest change in qW=qT and qk=qT and the
corresponding SFT2 occurs at T � 30:5 K, i.e., according to
[39], at T � TMF (arrow 2 in Fig. 16). The transition
presumably related to an increase in the interaction of helical
fluctuations is therefore not smooth, as was assumed in [39],
but is a typical SFT. We note that the features of qW=qT and
qk=qT at T � TMF imply the presence of steps in the
temperature dependences W�T � and k�T � (in agreement
with the data shown in Fig. 15 and the temperature
dependence of the EPR linewidth given in [37]). In view of
the previously described results for the Hg1ÿxMnxTe system,
we can conclude that such steps are a characteristic feature of
magnetic transitions in spin polaron systems.

At temperature T � 29 K, equal to the critical tempera-
ture Tc in a zero magnetic field, a jump in the derivative
qW=qT is observed (arrow 3 in Fig. 16). The discontinuity of
qW=qT corresponds to a break in theW � f �T � curve, which
can be associated with another SFT. Thus, the magnetic
transition from the paramagnetic phase to the magnetically
ordered phase in MnSi has a very complex nature and occurs
via several successive SFTs [88].

Interestingly, three successive transitions that occur with
decreasing temperature in a system of spin polarons were
predicted by Yu and Min [89]. This approach was applied to

the description of the paramagnet±ferromagnet magnetic
transition in EuB6 [89]. In the framework of the proposed
model, the evolution of a magnetic system made of LMMs
and conduction electrons is understood as the emergence of
an inhomogeneous magnetic spin-polaron state and the
subsequent change in its spatial characteristics (Fig. 17).
Initially, at T � T1, isolated spin polarons form, which exist
up to T2 < T1. At T4T2, the size and number of spin
polarons in the system increase so much that they can no
longer be considered isolated, and a range of existence of
linked spin polarons arises. With a further decrease in
temperature to T � T3 < T2, the spin polarons begin to
touch each other, and a phase of merged spin polarons is
formed, which is identified in [89] with a ferromagnetic
phase with long-range magnetic order (see Fig. 17). Thus,
the approach under consideration not only takes the
hierarchy of interactions in the system into account but
also includes the change in topology in the system of spin
polarons.

It is not inconceivable that the SFTs observed in the
paramagnetic phase ofHg1ÿxMnxTe andMnSi are associated
with the Yu±Min transitions. In this case, the maximum SFT
temperature should be associated with the formation of spin
polarons. However, neither the spatially homogeneousmodel
[39] nor inhomogeneous magnetic states [89] account for the
experimentally observed sharp change in the characteristics
of spin fluctuations during SFTs.

4.4 Spin-fluctuation transitions on the magnetic phase
diagram of substitutional solid solutions Mn1ÿxFexSi
Wehave shown thatMnSi-type helical magnets are promising
subjects for the search and study of SFTs. In substitutional
solid Mn1ÿxFexSi solutions, which are also metals, the BÿT
[90, 91] andTÿx [49, 53, 90] magnetic phase diagrams exhibit
so-called intermediate magnetic phases. Historically, these
phases were regarded as domains with specific spin fluctua-
tions [39] or disordered magnetic phases with intermediate
(short-range) magnetic order, corresponding to ordered
domains 10±50 nm in size [52]. From the standpoint of
modern SFT problems, the `alternative' approaches to the
description of intermediate phases [39, 52] are nothing more
than a terminological distinction. Indeed, it was already
noted in [52] that the neutron diffraction pattern in inter-
mediate phases of Mn1ÿxFexSi is identical to diffraction data
for classical liquid crystals. This observation is fully consis-
tent with the spin nematic model [45], and therefore the
appearance of the intermediate phases under consideration
should be associated with an SFT.

Features of various physical properties necessary
for constructing the Tÿx magnetic phase diagram of
Mn1ÿxFexSi are extracted from magnetic susceptibility data,
neutron scattering, and magnetization analysis in Belov±
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Arrott coordinates [49, 52, 53, 90, 91]. The dependence of the
derivative of the magnetic susceptibility qw=qT allows finding
the temperature of the transition to a phase with long-range
magnetic order and the SFT temperature (see Fig. 6).We note
that there is a problem in comparing data obtained by
different authors, because the nominal composition specified
during synthesis is used to identify samples in most studies,
but the actual content of elements in the resulting crystals may
differ significantly from the nominal one. In this regard, we
next consider data in [49], where not only the actual iron
content was experimentally determined but also the stoichio-
metry in the samples was controlled.

To describe the Tÿx magnetic phase diagram of
Mn1ÿxFexSi, the model proposed in [49] turned out to be the
most successful (see Section 2.5). When analyzing the
magnetic phase diagram, it is necessary to keep in mind that,
in the Mn1ÿxFexSi system, the replacement of manganese
with iron dilutes the magnetic subsystem of manganese ions,
and hence both structural and magnetic disorders are related
to a change in composition. If the iron content in the samples
is not too high, it can be assumed in the first approximation
that the control parameter x that specifies the magnetic
disorder in the model is proportional to the concentration of
iron. Then, the temperatures of SFTs following fromEqn (12)
can easily be compared with experiment, if we take into
account that the temperature of transition to the helical
phase Tc�x� decreases in accordance with the linear law
Tc�x� � �xÿ x ��, where x � � 0:11 [49]. Because the depen-
dence Tc�x� is given and the SFT temperature in the range
x < x � is known for at least one composition, it follows from
Eqn (12) that, to describe the diagram, it suffices to take the
energy scale for quantum fluctuations T2�0� and the percola-
tion point xc as fitting parameters.

The results of modeling the Tÿxmagnetic phase diagram
for the critical exponent n1 � 1=2 are shown in Fig. 18a. It can
be seen that the proposed approach yields quite satisfactory
agreement with experiment. We note that the Belov±Arrott
analysis yields SFT temperatures (triangles in Fig. 18a) that
exceed the SFT temperatures deduced from the magnetic
susceptibility data (squares in Fig. 18a), and this difference is
most pronounced in the range of small x, including at x � 0
(pure MnSi). We assume that the Belov±Arrott analysis gives
the temperature at which ferromagnetic correlations are
established outside the temperature range in which SFTs
were considered in Section 4.3. Within the Yu±Min sce-
nario, the maximum SFT temperature can be associated
with the appearance of isolated spin polarons, because their
formation is accompanied by the appearance of a specific
mechanism of spin fluctuations (see Fig. 1). In addition, it is
obvious that the model under consideration is too simple to
fully describe the entire complex sequence of SFTs that can
occur in a manganese monosilicide (see Section 4.3).

It is clear from Fig. 18a that the model allows describing
both SFT1 associated with classical fluctuations (line 1) and
SFT2, which is presumably due to quantum fluctuations
(line 2). As already noted in Section 2.5, the coexistence of
classical and quantum fluctuations leads to the appearance of
another SFT (SFT3) in the paramagnetic phase (P) at Teq�x�
(dashed line 3). Moreover, the position of this feature on the
Tÿx diagram is determined automatically without the use of
any additional parameters [49]. This transition separates the
regions where classical fluctuations or quantum fluctuations
dominate (the respective CF region on the left and QF region
on the right of curve 3 in Fig. 18a). The existence of SFT3 was

experimentally confirmed by data on the temperature
dependence of the resistivity r�T; x� [92] and the results of
studying the anomalous Hall effect [93]. In particular, it was
shown in [93] that, due to a change in the nature of magnetic
scattering on spin fluctuations in the expression for the
anomalous contribution to the Hall resistance raH � S1rM,
proportional to the magnetization M, the coefficient S1

changes signwhen crossing theCF ±QFborderline (Fig. 18a).
The three SFTs considered above, which follow from the

model in [49], do not exhaust the spin-fluctuation phenomena
that can be observed in the Mn1ÿxFexSi system. It was found
that, in the region x5 xc � 0:24, the minimum on the curve
qw=qT � f �T � corresponding to an SFT is not observed and
T2�x� vanishes. Thus, the value of xc is known from
experiment and the quantitative description of the Tÿx
diagram essentially depends on one parameter, T2�0�. At the
same time, at x5 xc, the nature of the temperature depend-
ence of the magnetic susceptibility changes. In [49], the
magnetic susceptibility in that range of iron concentrations
was found to depend on temperature according to a power
law

w�T � � 1

T x �19�

with the exponent x � 0:5ÿ0:6. This behavior is typical of the
disordered Griffiths phase formed by spin clusters in a system
with a power-law distribution of exchange integrals [94, 95].
For x < xc, there are no clusters in the system, but there are
fluctuations, and spin clusters appear in the range x5 xc, and
it is therefore natural to assume that the spin fluctuations
freeze out on line 4 (see Fig. 18), which is accompanied by an
abrupt change in their characteristic frequency. Thus, the
results in [49] suggest the presence of another SFT type, a
dynamical one. This hypothesis is qualitatively consistent
with the results of a study of the frequency of spin fluctuations

60

50

40

30

20

10

0

T
em

p
er
at
u
re
,K

2 T
8 T

MnSi

TL

TMF

P
ar
am

ag
n
et
ic
p
h
as
e

S
p
in
-p
o
la
ri
ze
d
p
h
as
e

0.6
r�B�=r�0�
0.8 1.0

b

Mn1ÿxFexSi

S

P

CF

S1 4 0 S1 5 0

QF

G

2

2
1

1

3

4

0 0.05 0.10 0.15 0.20 0.25 0.30
x

a

Figure 18. (a) Magnetic phase diagram of substitutional solid solutions

Mn1ÿxFexSi according to data in [49]. Dots show the experiment and lines,

a theoretical model. Helical phase S and paramagnetic phase P are

indicated. Lines 1 and 2 show boundaries of intermediate states arising

due to SFTs associated with classical (line 1) and quantum (line 2)

fluctuations. Dashed line 3 in the paramagnetic phase corresponds to the

SFT between classical (CF) and quantum (QF) fluctuations. Line 4

denotes the Griffiths-phase boundary. (b) Temperature dependences of

the magnetoresistance of MnSi in fixed magnetic fields of 2 T and 8 T.

Main minimum of magnetoresistance corresponds to the boundary

between the paramagnetic phase and the spin-polarized phase (according

to [25]).

January 2024 Spin-êuctuation transitions 37



[53], according to which features in G�T � can arise under an
SFT (see Fig. 7).

Dynamical SFTs can also be associated with specific
points on the Tÿx magnetic phase diagram. The model in
[49] was built under the assumption of the existence of two
singular points, the first of which, x � � 0:11, is the vanishing
point of Tc�x�, the temperature of transition to the helical
phase with long-range magnetic order. As the temperature
decreases along the x � x � line, SFT2 occurs first, and
therefore such a singular point can be classified as a quasi-
hidden quantum point. The second singular point x � xc
corresponds to the vanishing of the temperature T2�x�;
however, from the theoretical standpoint, it is not clear
whether it can be considered a quantum critical point [50].
At the same time, in [96], for Mn1ÿxFexSi samples with
x � x � and x � xc, in contrast to all other compositions, a
particular temperature dependence of the linewidth W�T �
was discovered, which can be quantitatively interpreted in the
framework of a theoretical description of spin relaxation in a
quantum critical regime [55]. Thus, the results in [96] show
that an SFT with a change in spin dynamics can occur at the
quantum critical point.

To conclude this section, we note that describing the Tÿx
magnetic phase diagram of substitutional solid solutions
Mn1ÿxFexSi requires taking frustration effects into account
[93]. As was shown in [93], magnetic interactions in this
system cannot be completely described in the framework of
a simple model that includes only the ferromagnetic interac-
tion and Dzyaloshinskii±Moriya interactions between man-
ganese ions (Eqn (3)). The reason for this is that the exchange
interaction between LMMs of manganese is the Ruderman±
Kittel±Kasuya±Yoshida (RKKY) interaction via band car-
riers, and hence, in addition to the leading nearest-neighbor
exchange energy J1, the interaction energy J2 between next-
to-nearest neighbors must be taken into account [93]. In
Mn1ÿxFexSi, depending on the iron content, the concentra-
tions of electrons and holes modulating the RKKY exchange
vary, giving rise to a nontrivial behavior of J1�x� and J2�x�.
Thus, the exchange energy J1�x� decreases as x increases and
changes sign at x � 0:17, which corresponds to a change in
the type ofmagnetic interaction from the ferromagnetic to the
antiferromagnetic one. In contrast to J1�x�, the exchange
energy J2�x� weakly depends on x and corresponds to
antiferromagnetic interaction in the entire range x4 0:26
[93]. As follows from Fig. 18a, the temperature of transition
to the helical phase Tc�x� vanishes at x � � 0:11, i.e., at the
iron concentration for which the main ferromagnetic
exchange is nonzero. However, in the vicinity of x � � 0:11,
the conditions jJ1�x�j � jJ2�x�j and J1�x�J2�x� < 0, charac-
teristic of strong frustration, are satisfied. It is assumed in [93]
that precisely the frustration effects caused by competing
types of magnetic interactions with energies J1�x� and J2�x�
lead to the suppression of the helical phase at the iron
concentration x � � 0:11, which is less than x � 0:17 corre-
sponding the vanishing of J1�x�. Curiously, in the neighbor-
hood of the second singular point xc � 0:24, the relation
jJ1�x�j � jJ2�x�j is again valid for Mn1ÿxFexSi, but in this
case both exchange energies are of the antiferromagnetic type
[93]. It is easy to see that the neighborhood of xc also
corresponds to strong frustration when the interactions
J1�x� and J2�x� tend to orient the LMMs in opposite
directions. Apparently, frustration in the Mn1ÿxFexSi sys-
tem is also responsible for the position of the percolation
threshold. Indeed, at xc � 0:24, from a geometric standpoint,

an infinite cluster of manganese LMMs is preserved in the
structure of the solid solution. However, the frustration effect
can apparently enhance the tendency toward magnetic
inhomogeneity of Mn1ÿxFexSi, and, at x5 xc � 0:24, can
stimulate the decay of the magnetic subsystem of solid
solutions into individual clusters that make up the Griffiths
phase [93].

Thus, using the example of SFT2, we see that frustration
can affect an SFT. Frustration, in turn, can also affect spin
fluctuations in the system. However, the details of the relation
between frustration and SFTs remain unclear. It cannot be
ruled out that theoretical and experimental study of this
problem would represent a promising task for further
research.

4.5 Spin fluctuation transition
in the magnetically ordered MnSi phase
The SFTs described above occur in magnetic phases in which
long-range magnetic order is either absent (the paramagnetic
phase) or hidden (the quadrupole-order phase). In addition,
an SFT apparently also occurs at the magnetic transition
point. It is appropriate to ask whether an SFT is possible in a
magnetically ordered phase. A possible answer to this
question was obtained in a recent study [37] where EPR in
single crystals of manganese monosilicide was investigated.

We first consider the magnetic-phase BÿT diagram of
MnSi, constructed in accordance with the data in [25] and
with the literature data presented in that paper (Fig. 19). In a
zero magnetic field B � 0 at Tc � 29 K, a transition occurs
from the paramagnetic phase to the helical phase. An increase
in the magnetic field in the range T < Tc leads to rapid
suppression of the helical phase and the formation of a
mixture of domains from conical phases. A further increase
in the magnetic field leads to a reorientation of the domains,
resulting in the formation of a conical phasewith the cone axis
directed along the magnetic field. At B � 0:5 T, the conical
phase turns into an analogue of the ferromagnetic phaseÐa
spin-polarized phase in which the magnetic moments are
aligned in parallel. All magnetically ordered phases in Fig. 19
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represent different spin-polarized phases, and, in addition,
spin polarons can exist in some range in the paramagnetic
phase (T > Tc). A possible exception to the set of spin-
polarized phases may be a small pocket in the vicinity of Tc

formed by the skyrmion phase (or, according to the terminol-
ogy used in the literature, the A-phase), which in turn has an
internal structure [97].

The spin-polaron nature of the various magnetic phases in
MnSi is of fundamental importance for understanding the
physics of the transition between the paramagnetic and spin-
polarized phases. For a standard ferromagnet in a nonzero
magnetic field, there is no phase transition between the
paramagnetic and ferromagnetic phases [1], and we can only
talk about a greater or lesser degree of LMM ordering
depending on temperature. As follows from the analysis of
experimental data on magnetization and magnetoresistance
performed in [25], the transition between the paramagnetic
and spin-polarized phases of MnSi is abrupt. It was estab-
lished in [25] that the position of a wide minimum on the
temperature dependence of magnetoresistance at B � const
(Fig. 18b) corresponds to some well-defined temperature that
coincides with TMF within the experimental error (line AÿA
in Fig. 19), which is due to the peculiarities of magnetic
scattering in this material [25]. For spin-polarized phases, the
standard restriction [1] on the paramagnet±ferromagnet
transition is lifted and, according to [25], it is at the AÿA
boundary that the reduced magnetic moments of spin
polarons are ordered.

In [25], in addition to the main magnetoresistance
minimum in the range of existence of the spin-polarized
phase, an additional minimum was discovered at TL � 15 K
(Fig. 18b). The nature of this anomaly had had no explana-
tion until recently; however, it follows from the data in
Fig. 18b that the temperature TL corresponds surprisingly
well to the characteristic SFT temperature on quantum
fluctuations T2�x�, extrapolated to x � 0 (pure MnSi, the
green dashed line in Fig. 18a). Thus, the low-temperature
magnetoresistance feature ofMnSimay reflect a change in the
nature of spin fluctuations in the spin-polarized phase of
MnSi as a result of some SFT. To test this hypothesis, it is
necessary to confirm the change in the nature of spin
fluctuations at the relevant temperature, and also to verify
that it can indeed be associated with the effect of quantum
fluctuations.

A positive answer to the questions posed was obtained in
[37], where high-frequency (� 60 GHz) EPR in MnSi single
crystals was studied in the temperature range of 2±40 K in a
magnetic field B up to 8 T. For a frequency of� 60 GHz, the
magnetic resonance field in MnSi is � 2 T (see Fig. 19). The
focus was on obtaining the most detailed data, for which
several temperature scans were performed in the specified
interval and about 200 spectra were recorded, yielding a
record number of experimental points for the temperature
dependences of the linewidthW�T � and the g-factor g�T �. To
find the derivatives of these parameters with respect to
temperature, each scan was processed separately, after
which all obtained data were analyzed together on a common
graph.

We first consider the temperature dependence of the
linewidth. As the temperature decreases, the linewidth first
decreases and passes through a minimum at T � 26 K; then,
in the range T < 26 K, a significant low-temperature increase
in W�T � is observed: as the temperature decreases from
T � 26 K to T � 2 K, the line width more than doubles

(Fig. 20a). In the range T > 26 K, a group of A features is
observed (discussed in detail in Section 4.3), which is caused
by SFTs and amagnetic transition to the spin-polarized phase
(Fig. 20a, b and Fig. 16).

In addition to the jump in the line width on the W�T �
curve discussed above, we can identify an anomalous region B
in the vicinity of T � TL � 15 K, where the slope of the
qW=qT � f �T � curve changes by a factor of 2.4 (Fig. 20b).
Thus, EPR data indicate that, in the temperature range
13 < T < 17 K, where an SFT within the spin-polarized
phase is expected for MnSi, a change in the nature of spin
fluctuations actually occurs. We note that, according to [37],
feature B corresponds to a local maximumof the derivative of
the linewidth with respect to temperature; however, as can be
seen from Fig. 20b, its amplitude is comparable to the
magnitude of the error in calculating qW=qT from experi-
mental data (Fig. 20b).

The observed nonmonotonic dependenceW�T � (Fig. 20a)
is highly nontrivial. Indeed, for a strongly correlated metal
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such as MnSi, a Korringa-type spin relaxation is expected in
the paramagnetic phase with W�T � � 1=w�T �, where w is the
magnetic susceptibility [17, 56]. Because the magnetic
susceptibility increases as it approaches the point of transi-
tion to the quasiferromagnetic spin-polarized phase, the
linewidth should decrease, which is indeed observed experi-
mentally (Fig. 20a). In this case, w�T � is given by the Curie±
Weiss law, and therefore a linewidth dependence of the form
W�T � � 1=w�T � � Tÿ Tc should be observed. But the
calculation of the derivative qW=qT shows that this quantity
in the paramagnetic range T > Tc is linear in temperature,
rather than being a constant (Fig. 20b). As a result, the
linewidth W�T � in the paramagnetic phase of MnSi depends
on temperature quadratically, and the standard Korringa
mechanism of spin relaxation in the range T > Tc can be
applicable to the description of experimental data only at a
qualitative level. We note that the decrease in the line width
with decreasing temperature continues in the range T < Tc,
down to the minimum point of W�T � at T � Tsf � 26 K
(Fig. 20a). If we stay within the `Korringa paradigm,' we have
to assume that the correlations in the MnSi magnetic
subsystem are weakened throughout the entire range
T > Tsf, and not only in the paramagnetic phase with T > Tc.

This assumption is obviously not valid for the magnetic
subsystem formed by conventional LMMs, but it may make
sense for a system of spin polarons. We have shown that the
process of formation of the spin-polarized phase in MnSi has
a complex multistage character and is accompanied by a
change in the characteristics of spin polarons. Therefore, the
temperature Tc of the transition to a phase with long-range
magnetic order and the temperature Tsf at which magnetic
correlations are enhanced may differ.

In [37], a simple model was proposed to describe the
temperature dependence of the EPR linewidth. For spin-
polaron states, fluctuations in the magnetic moment were
assumed to be caused by transitions of electrons from
quasibound states in the vicinity of Mn LMMs to band
states. The electron nature of spin fluctuations suggests that
the Moriya theory [22] may be promising for solving the
problem, and we can use Eqns (1) and (2) for the amplitude of
spin fluctuations SL�T � in a system with ferromagnetic
correlations. The function SL�T � given by Eqns (1) and (2)
has a minimum at a characteristic temperature Tsf, which is
interpreted in [37] as the temperature of ordering the spin
fluctuations in the spin-polaron state, in other words, as the
temperature of an SFT associated with the electron subsystem
of the spin polaron. The spin-fluctuation contribution to the
magnetic susceptibility, according to [22], is then inversely
proportional to the square of the spin fluctuation amplitude
w�T � � 1=S 2

L�T �. The nonmonotonic theoretical dependence
SL�T � is in qualitative agreement with the experimental data
forW�T �.

Within this approach, for the standard Korringa mechan-
ism at T > Tsf, the EPR linewidth still depends on the
temperature linearly, W�T�� 1=w�T�� S 2

L�T�� T (Eqn (1)),
which is in poor agreement with experiment (curve 1 in
Fig. 20a). The situation can be remedied by a standard
linewidth renormalization by some fast process with a
characteristic time t, which alters the nature of phase
coherence at resonance [98]: ~W�T � �W 2�T �t. Under cer-
tain conditions, we can then expect a modified Korringa law
W�T � � 1=w 2�T � � S 4

L�T � � T 2. This estimate for the
experimental values of Tsf and W�Tsf� that correspond to a
minimum ofW�T � demonstrates satisfactory agreement with

experiment for T < Tc (curve 2 in Fig. 20a). We note that an
alternative interpretation of the quadratic dependence was
proposed in [55], where this effect was associated with the
relaxation of quasiparticles in heavy-fermion systems, to
which manganese monosilicide belongs (according to [99],
the effective electron mass of MnSi in the temperature range
under consideration is 10 times the free electron mass).

In the range T < Tsf, the system of spin polarons is
ordered and Korringa-type formulas W�T � � 1=w�T � or
W�T � � 1=w 2�T � are not applicable. In the magnetically
ordered phase, an option for taking the spin-fluctuation
contribution like W�T � � S 2

L into account, considered in
Section 3.2, is also invalidated because the range of applic-
ability of the corresponding correction is limited by the
paramagnetic phase. From Figure 20a, we can clearly see
that the dependence W�T � � S 2

L is in poor agreement with
experiment in the entire range T < Tsf (curve 3). Therefore,
the following version of the description of the temperature
dependence of the EPR linewidth in a magnetically ordered
phase was proposed in [37]. If DM is the amplitude of
magnetization fluctuations along the external field direction,
then, in the absence of correlations between fluctuations in
the spin precession frequency and magnetization, we can
assume that W�T � � DM=�qM=qB� � SL�T �. This approx-
imation is in good agreement with experiment down to
TL � 15 K (curve 4 in Fig. 20b). In the low-temperature
range T < TL, additional line broadening occurs that cannot
be described using the model function SL�T � for T < Tsf

(Eqn (2)). It follows from Fig. 20a that, at T � 2 K, the
experimental value of the line width is 1.6 times larger than
expected from the model calculation. As noted above, in the
vicinity of T � TL, the dependence qW=qT � f �T � experi-
ences a significant change (Fig. 20b). Thus, both the
experimental data and their theoretical analysis are
consistent with the idea of a change in the nature of spin
fluctuations in the vicinity of the temperature of the
assumed low-temperature SFT in MnSi.

We next analyze the temperature dependence of the g-
factor. The temperature dependences of g�T � and of the
derivative qg=qT � f �T � obtained in [37] (Fig. 21) provide
additional information about the decisive role of spin
fluctuations in generating low-temperature dynamical mag-
netic properties of MnSi. It is clear from Fig. 21a that the
g-factor first increases with decreasing temperature, passes
through a maximum at T � 5 K, and then starts decreasing in
the rangeT < 5K. The group of A features (the vicinity of the
transition between the paramagnetic and spin-polarized
phases) appears in the form of a break in the curve
qg=qT � f �T � (Fig. 21b), while feature B (the SFT expected
at TL) cannot be identified to within the error on the
temperature dependences g�T � and qg=qT (see Fig. 21). We
note that the characteristic temperature Tsf corresponding to
the EPR linewidth minimum cannot be associated with any
pronounced changes in the temperature dependence of the g-
factor or its derivative either.

According to [37], the initial growth part of the g-factor
with decreasing temperature in the range T > Tc can be
associated with a change in the local field in the vicinity of
the manganese ion in the paramagnetic phase due to a change
in the LMM screening by band electrons in the process of
rearrangement of the system of spin polarons. To estimate the
effective value of the spin polaron g-factor gS in the limit
T! 0, we can use the results for a two-sublattice ferrimagnet
[100] in the configuration of oppositely directed magnetic
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moments of electrons me and manganese LMMs mMn in the
spin-polaron state [29],

gS � gemene ÿ gMnmMnnMn

mene ÿ mMnnMn
� gMn

gemMn=gMnme ÿ 1

mMn=me ÿ 1
; �20�

where ne and nMn are the numbers of electrons andLMMs in a
spin polaron. In (20), we used the relation ne=nMn �
�mMn=me�2 obtained in [29] as the spin polaron stability
condition. To obtain an estimate, we assume that the g-
factor of electrons is ge � 2, and use the high-temperature
value in the paramagnetic phase for the g-factor of Mn,
gMn � 1:9 (Fig. 21a). For me � mB and mMn � 1:3mB [29], we
can then use Eqn (20) to find gS�T! 0� � 1:23gMn � 2:3.
Thus, in the SP phase, in which spin-polaron states form at
T < Tc, it is natural to expect an increase in the g-factor with
decreasing temperature in accordance with the observed
behavior (Fig. 21a). Moreover, our numerical estimate
gSP�T! 0� � 2:3 is also in reasonable agreement with
experiment.

The decrease in the g-factor observed at T < 5 K
(Fig. 21a), first, indicates the presence of an additional
particular contribution to g�T �. Second, the decrease in
g�T � occurs in the range where the dependence W�T �
changes, which can also be associated with an additional
contribution to the linewidth. This behavior is consistent with
the predictions in [57] (Section 3.2, Eqns (14) and (15)) that
taking quantum fluctuations of the magnetic moment into

account gives rise to a renormalization of the parameters in
the Landau±Lifshitz equation, as a result of which the EPR
linewidth and the resonance field change. Quantum spin
fluctuations act to simultaneously increase W and decrease
g, which is in qualitative agreement with experimental results
in the range T4TL � 15 K (see Figs 20 and 21).

Thus, the set of EPR data forW�T � and g�T � obtained in
[37] is consistent with the idea of an SFT in the vicinity of
TL � 15 K associated with quantum fluctuations. These data
confirm the possibility of the existence of an SFT in a
magnetically ordered (spin-polarized) phase in MnSi, which
significantly extends the range of applicability of the SFT
concept.

5. Conclusions

According to our observations, at a certain stage in its
development, any field of research goes through a phase of
being `written in stone,' when exhaustive definitions are given
and maxima are stated that practically take the form of
aphorisms. It is difficult to resist the temptation and not
quote one of the books written in the middle of the last
century, according to which a ``fundamental feature of the
magnetic properties of matter is the coexistence and `struggle'
of mutually opposite phenomena: paramagnetism and dia-
magnetism, paramagnetism and antiferromagnetism, and
ferromagnetism and antiferromagnetism. Only a thorough
study of this struggle allows revealing the connection between
magnetic properties and structural features'' [101].

This review will hopefully allow the reader to conclude
that, while the above `struggle' of classical concepts was under
way, a new group of magnetic phenomena took center stage,
the SFTs. Spin fluctuation transitions clearly manifest
themselves as a sharp change in the characteristics of spin
fluctuations, observed via electron paramagnetic resonance
and SANS methods. This group of magnetic phenomena can
occur both in magnetically ordered phases and in phases
without magnetic order or with a hidden magnetic order.

Systematic research into SFTs is just beginning. Never-
theless, the available experimental data and theoretical results
allow outlining an approximate classification of SFTs:

Disorder±disorder SFT. Transitions of this type reflect a
change in the nature of magnetic fluctuations in the para-
magnetic phase of magnetic semiconductors Hg1ÿxMnxTe
and helical magnets based on MnSi. Such SFTs can be
diagnosed by changes in magnetization and magnetic
susceptibility, EPR, and neutron scattering patterns and are
therefore often described as phases with intermediate mag-
netic order (the magnetic analogue of a liquid or amorphous
phase). From a theoretical standpoint, describing the SFT in
MnSi and Mn1ÿxFexSi requires taking the coexistence of
classical and quantum fluctuations into account.

A study of the disordered Ising model showed the
emergence of an SFT that consists of a sharp change in the
amplitude of spin fluctuations and the exchange energy
distribution function when the concentration of magnetic
centers randomly located in space changes. Interestingly,
SFTs of this type occur for both ferromagnetic and anti-
ferromagnetic exchange. Doped semiconductors may be
promising subjects for testing theoretical predictions.

Disorder±hidden (quadrupole) order SFT. This is a mag-
netic transition to the spin nematic phase, under which the
anisotropy of spin fluctuations changes. In the paramagnetic
phase, the average spin at a site is zero, and spin fluctuations
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Figure 21. Experimental temperature dependences of (a) the g-factor and

(b) the derivative qg=qT. Features and characteristic temperatures follow-

ing from the temperature dependence of the EPR linewidth are noted

(notation is the same as in Fig. 20). Error in determining the g-factor in

Fig. a corresponds to the size of an experimental point. (From [37].)
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(average squared spin) are identical in all directions. With the
transition to a phase with quadrupole order, the average spin
is still zero, but the average squared spin is different along
different directions. The spin nematic effect was discovered in
the antiferroquadrupole phase of CeB6 by studying the
angular dependences of EPR and magnetoresistance.

Orientation SFT consists of changes in the preferred
direction of anisotropic spin fluctuations. It was experimen-
tally observed in the antiferroquadrupole phase CeB6 with
varying temperature.

Order±order SFT. EPR studies have allowed detecting an
SFT caused by quantum fluctuations at T � 15 K in the
magnetically ordered (spin-polarized) phase of MnSi. It is
noteworthy that this SFT occurs at a temperature signifi-
cantly lower than the transition temperature to the magneti-
cally ordered phase (� 30 K) and is outside the region of
classical fluctuations.

Currently, the set of experimental examples inwhich SFTs
have been analyzed includes highly correlated metals,
magnetic semiconductors, and even a classical semiconduc-
tor, doped germanium. It seems very likely that all these
systems are united by the presence of spin-polaron effects. A
spin polaron is a quasibound state formed by several
conduction electrons and LMMs in a crystal. At a qualitative
level, such an object seems very convenient for describing the
mechanism of the occurrence of spin fluctuations and SFTs in
a wide variety of materials. Another type of system where
strong spin fluctuations and the associated SFTs can also
occur are frustrated systems. Unfortunately, SFTs in fru-
strated systems have not been studied in sufficient detail.

A careful study of SFT problems allows expecting them to
be detected in a wide variety of systems, including very exotic
ones. Candidates include a nematic-type transition inside the
skyrmion phase (A-phase) of MnSi [97] and a magnetic
transition at T � 5 K on the surface of a strongly correlated
topological insulator SmB6 [17, 102].

The detection of SFT has become possible due to the
development of experimental methods, primarily EPR and
SANS. Their improvement has allowed going beyond the
classically recognized `smooth' dependences of the correla-
tion length andwidth of the EPR line. As a result, a window of
opportunity opened for experimenters to observe a sharp
change in the parameters of spin fluctuations that is outside
the standard theory of phase transitions. Because the data
obtained indicate the limitations and incompleteness of the
existing models of magnetic phase transitions, we hope that
studies of SFTs will serve as a stimulus for further develop-
ment of theoretical concepts. As a promising avenue, we note
the description of phase transitions using a multicomponent
order parameter and models of phase transitions in liquids
and glasses [103]. This is supported by a certain similarity
between the phase diagrams of liquids with dynamical lines
[10] and magnetic phase diagrams in the system of
Mn1ÿxFexSi solid solutions [52, 104]. However, phase
diagrams of liquids are currently considered from the
standpoint of changes in their structure under the influence
of external conditions, and it remains unclear whether the
change in the structure of short-range order in a liquid can be
rightfully compared with the change in the regime of spin
fluctuations in magnets.

In this paper, we essentially avoided the question of the
possible classification of spin fluctuation phenomena by
analogy with the division into first- and second-order
transitions, crossovers, etc., as accepted in thermodynamics

and statistical theory. The exception is the SFT to the spin
nematic phase in CeB6, where the heat capacity data
correspond to a first-order phase transition. The reason for
this omission is obvious, and it lies in the absence of models
based on the expansion of the thermodynamic potential in the
order parameter(s) that would specifically describe the SFTs,
and not just the transitions between different magnetic
structures. Based on the extensive methodological ground-
work available in Landau's theory of phase transitions, we
can expect that its generalization to the case of SFTs will be
fruitful and will bring about answers to many questions in the
physics of spin fluctuations that currently remain unan-
swered.
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