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Abstract. A generalization of the classical procedure for form-
ing a receiving antenna beam in a homogeneous space to the
case of an inhomogeneous medium is discussed. In free space,
this procedure isolates the component of the registered field,
which represents the contribution of a beam of parallel rays. In
an inhomogeneous medium, the procedure should isolate the
contribution of a beam of rays, which, as a rule, are not paral-
lel. The generalization is carried out on the basis of the transi-
tion from the traditional representation of the registered field in
the form of a superposition of plane waves to the coherent state
expansion of the field borrowed from quantum mechanics. The
general approach is illustrated using the example of the lobe
formation of a vertical receiving antenna in an underwater
acoustic waveguide.

Keywords: antenna, beamforming, beam of rays, coherent state,
acoustic waveguide

1. Introduction

A conventional beamforming method for a receiving
antenna assumes that the registered field component is
that part of a plane wave corresponding to the arrival of a
beam of parallel rays [1]. This field component has a spatial
frequency k, = ksina on the antenna aperture, where k is
the wavenumber and o is the angle of beam incidence. The
beamforming takes place through spatial filtering of the
field received in the band x, &+ 2r/L, where L is the antenna
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size. The filter ‘passes’ signals that come from a relevant
source and ‘cuts out’ signals from other directions. This
method is oriented toward applications in an environment
which can be considered homogeneous, at least approxi-
mately.

In this paper, we consider a generalization of this method
to the case of an inhomogeneous environment, where multi-
path propagation takes place and the field on the antenna is
formed by several ray beams. A principal point is that the rays
making an individual beam are as a rule not parallel.

As an example of such an environment, we consider below
an underwater waveguide in the deep sea. It is assumed that a
field emitted by a point source is received by a vertical
antenna.

The key idea underlying our approach is formulated in
Ref. [2] (see also [3]). It consists in moving from the traditional
expansion of the field at the antenna in plane waves to the
expansion in coherent states borrowed from quantum
mechanics [4, 5]. This expansion establishes a link between
the ray and wave field representations and allows one to find
the distribution of complex field amplitude in the phase plane
angle y—depth z. This plane is an example of a phase plane
used in Hamilton’s formulation of classical mechanics and
geometrical optics [6-8]. An arrival of a ray to the observation
distance is depicted by a point in the phase plane.

A coherent state is associated with every point of the
phase plane (y, z). The projection of the received field on this
state singles out the contributions from waves arriving at the
depth horizons close to z under angles close to y. The use of
the coherent state expansion allows creating a spatial filter
which isolates a field component that corresponds to the
contribution of a given ray beam. In the vicinity of point z on
the antenna aperture, the grazing angles of waves forming the
component are close to the grazing angle y of the ray from the
selected beam that arrives at this point. This filter defines the
beamforming tuned to the beam registration. In the case of
parallel rays, a conventional lobe of directivity pattern in a
free space is formed.
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The material in this study is arranged as follows. Section 2
describes a model of an underwater waveguide used to
illustrate and test the described method. The main relation-
ships defining the coherent state expansion are given in
Section 3. Section 4 presents the results of numerical
calculations which characterize the sensitivity of field inten-
sity distribution in the phase plane to the sound speed
fluctuations in the waveguide. The procedure of beamform-
ing in an inhomogeneous environment is presented in
Section 5. In Section 6, an estimate of ‘noise’ that
‘percolates’ through a filter tuned to extract a given beam is
carried out. Section 7 shows that the method to isolate beam
contributions, discussed in this paper, can also be used to
solve the problem of sound source localization (estimate of
coordinates) in a waveguide. Sections 3-7 deal with a
pointwise tonal source. Section 8 briefly considers the
application of the discussed procedure to a field excited by a
pulsed source. Section 9 summarizes the work.

2. Environment model

To illustrate general statements, we use an idealized model of
the inhomogeneous environment, which is taken to be a
sound waveguide in the deep sea. To avoid discussion of
secondary details, we limit ourselves to a two-dimensional
case with the sound speed field ¢(r, z), where r is the horizontal
distance and z is the depth. Let ¢(r,z) = ¢p(z) + oc(r, 2),
where ¢;(z) is the unperturbed profile (Fig. 1a) and dc(r, z) is
a random function which describes weak fluctuations of the
sound speed. The z-axis is directed vertically downward, and
the water surface is located at z = 0.

The plane-layered waveguide (dc =0) is considered
further as an available (approximate) model of a real
fluctuating environment. We assume that the flat bottom at
a 3-km depth is highly absorbing. As a result, the sound field
on the horizon z; = 0.7 km is created by waves trapped in the
refraction waveguide and propagating without bottom
reflections. These waves are formed by rays emanating from
the source at launch angles lying in the interval +y,,,,, where
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Figure 1. (a) Unperturbed sound speed profile ¢(z). (b) Examples of
realizations of random perturbation dc in vertical waveguide section.
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Figure 2. Trajectories of rays leaving a point source and crossing the
aperture of a receiving antenna (coordinates of antenna endpoints are
given in the text). These rays form three beams, each labelled by their
numbers.

Fluctuations in the sound speed field will be modeled by
the function dc(r,z) with zero mean (dc) =0 and the
correlation function

(6¢(r,z) oc(r',2"))

n(r—r')? miz—z')?
= (0¢ms)? exp (— ( B y _m B )>,

r

where d¢ms = 0.25m s, /., = 5 km, and /. = 0.5 km. Here
and below, the notation (...) implies averaging over an
ensemble of random realizations. This simple model differs
from more realistic ones used in underwater acoustics to
describe sound speed fluctuations in the deep sea [9, 10].
However, Ref. [11] shows that it is well suited for the analysis
of sound field components formed by the narrow ray beams
we are interested in. Figure 1b plots several realizations of dc¢
in vertical waveguide sections.

The refraction index is n(r,z) = ¢o/c(r, z), where ¢ is the
reference speed of sound. In underwater acoustics, the scatter
in values of ¢(r, z) is commonly small and ¢( can be assigned a
value that satisfies the condition |c(r,z) — ¢o| < ¢p. In our
example, we take ¢y = 1.47 km s~!. In this case, n(r, z) is close
to unity.

Further, we shall consider fields at the aperture of a
vertical receiving antenna with a length of 250 m, located on
the line r = 0 and covering the depth range z; < z < z,, where
z; = 0.75km, and z; = 1 km. Figure 2 shows ray trajectories
in an unperturbed waveguide which leave a point source S
located at distance rs = 30 km and depth z, = 0.7 km and
reach the antenna. The rays form three beams, and the subject
of our analysis is their isolation. Note that the antenna
intersects a caustic, which is touched by rays forming beam 2.

Below, all calculations of fields excited by a point tonal
source are carried out for the carrier frequency f'= 500 Hz. In
modeling the propagation of pulsed signals, this frequency is
the central one. Sound fields are computed using the method
of the wide-angle parabolic equation [12].

3. Coherent state expansion of sound field

To describe ray trajectories, we will use Hamilton’s formalism
[8, 13] in the framework of which the trajectory at each point
of distance r is given by vertical coordinate (depth) z and
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Figure 3. Ray line (thin line) and fuzzy ray line (domain shaded in light
green) at a distance of 30 km from the source. Dashed lines mark the
depths of antenna endpoints. Solid intervals of the ray line correspond to
the arrival of rays which form the three beams shown in Fig. 2. Dark green
color highlights the fuzzy segments which correspond to individual beams.
Each segment is labelled by the number of the respective beam.

momentum p = n(r, z) sin y, where y is the ray grazing angle.
Trajectories are governed by Hamilton’s equations
dz/dr = 0H/0p and d{)/dr:—@H/az with the Hamiltonian
H = —[n*(r,z)— p?]"*. If the field is excited at the point
(rs,zs), all the rays emanate from one and the same depth z
but with different initial momenta ps. At the distance of
observation, the arrival of each ray is plotted by a point in
the phase plane the momentum P—coordinate Z. The union of
such points forms a curve called a geometric ray line or simply
a ray line. In mechanics, it is referred to as a Lagrangian
manifold [14]. Since in our case n is close to one and
propagation angles y are small, the phase plane can be
interpreted as the plane angle—coordinate.

The thin solid line in Fig. 3 depicts a ray line describing the
arrivals of rays at the distance r = 0 from the source S (see
Fig. 2). Straight dashed lines indicate horizons that corre-
spond to antenna endpoints. They ‘cut’ segments of the ray
line that correspond to arrivals of the three beams shown in
Fig. 2. These segments are shown by bold line intervals, each
labelled by the number of the respective beam. Note that on
the segment that corresponds to beam 2 there is a point where
the tangent to the ray line is horizontal. This point depicts the
arrival of a ray that touches a caustic at the observational
distance [14]. In Fig. 3, as well as in Figs 4 and 5 further, a
second axis is drawn under the abscissas showing ray arrival
angles y, which corresponds to momenta P.

To clarify the relation between ray trajectories and the
wave field for a finite wavelength, we turn to the field
representation through the coherent state expansion which
is borrowed from quantum mechanics [4, 5, 15]. We will
consider a field excited by a point tonal source with angular
frequency o.

The coherent state, or the state with minimum uncer-
tainty, associated with point u = (P, Z) in the phase plane, is
given by the function

n(z — Z)?

242

Y,.(z) = exp [ikP(z — Z) — , (1)

1
Nz

where A, is the spatial scale of the state and k = @/¢y is the
reference wavenumber. In quantum mechanics, (1) describes
a state with the minimum product of the variances of
coordinate and momentum [16], while in acoustics it can be
interpreted as the vertical section of a beam with width 4,
propagating under grazing angle y = arctan P. Although the
coherent states are not orthogonal, they form a complete set
of functions. An arbitrary function u(z) can be expanded as

(4]

u(z) = 27! J dupa,v,(z), 2)

where the integration is performed over the entire phase
plane, A = 2r/k is the wavelength, du = dPdZ, and

a, = rc dzu(z) Y, (z). (3)

—00

Let us mention a convenient formula which follows from (2)
and (3),

?, 4)

J dula,|* = 271 J dz|u(z)

and which we will need further.
A scalar product of coherent states associated with points
w = (P, Zy) and py = (P2, Z2) is

[ERACIACIEE G IEE 5
where
_ 2 — 2
d(uy, 1) _ (P A2P1) +(Zz Azzl) ) (6)

and 4, = 4/(24;). The function d (u;, 1) can be treated as a
dimensionless distance between phase plane points u; and u,.
The coherent states associated with these points will be
considered close for d < 1 and distant if 4 > 1. The distance
from an arbitrary point of the plane to the ray line (or its
segment) will be defined as that to the nearest point of this line
(segment).

The main contribution to the sound field comes from
coherent states associated with points u separated from the
ray line by the distance d < 1. This region is referred to as a
fuzzy ray line. Its area is determined by the choice of the
coherent state scales 4. and 4,,. Since they are linked by the
uncertainty relation

A
A4y =7 (7)

we in fact can choose only one of them. Reference [3] discusses
the question of the selection of 4. that would minimize the
area of the fuzzy ray line. Clearly, if 4, — 0 and 4, — oo, the
area will increase unboundedly. A minimum is reached for
some finite 4, which is governed by the shape of the ray line.
In Ref. [3], it is shown that this scale is proportional to 2'/2. In
our case, the minimum of area is reached for 4. = 0.09 km.
The respective fuzzy ray line is shaded in light green in Fig. 3.

The beam contribution to the total wave field is formed by
the coherent states associated with the phase plane points u at
the distance d < 1 from the segment of the ray line represent-
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Figure 4. Ray lines computed for 10 realizations of random perturbation
dc(r,z). Source is at a distance of 30 km. Light green color shows the same
fuzzy ray line as in Fig. 3. Dashed lines indicate antenna endpoints.

ing the beam. These points form the regions of the fuzzy ray
line which will be referred to as fuzzy segments. In Fig. 3, the
fuzzy segments that correspond to our three beams are shaded
in dark green.

4. Field intensity distribution in the phase plane

In this section, we present the results of numerical simulations
demonstrating the effect of perturbations dc on the ray
structure and the distribution of field intensity in the
waveguide model considered here.

Figure 4 shows ray lines computed by numerically solving
Hamilton’s equations (ray equations) for 10 realizations of
random perturbation dc(r, z). Each line depicts arrivals at the
distance of observation of the rays leaving the source under
grazing angles at the interval of +12°. As can be seen, these
lines are confined almost everywhere to the light green
domain (the same as in Fig. 3), which is the fuzzy ray line of
the unperturbed waveguide. This means that the distribution
of coherent state intensity |a#|2 in the presence of random
perturbation should be localized in approximately the same
phase space domain (fuzzy ray line) as in the unperturbed
waveguide. Figure 5 shows that this is indeed the case. It
shows the distributions of coherent state intensities |a, * in the
unperturbed waveguide (a) and in the presence of one
realization of perturbation dc (b). The solid white line shows
the boundaries of the fuzzy ray line in the unperturbed
waveguide which is shown in Figs 3 and 4.

Figure 6 shows the dependences of sound field intensity
|u(z)|* on depth in an unperturbed waveguide (red line) and in
the presence of random perturbation dc¢ (blue line). Compar-
ing Figs 5 and 6, we see that, even though perturbation dc
cardinally modifies the depth dependence of field intensity on
the antenna, it only weakly influences the distribution of field
intensity in the phase plane. This difference is explained by the
fact that there are no multipath effects in the phase plane [3].
Let us look at this in more detail.

The total field u(z) is a superposition of components u,(z),
n=1,2,3, each formed by one of the ray beams shown in

—10° —5° 0°

Figure 5. Distributions of coherent state intensity |a,,\2 in an unperturbed
waveguide (a) and in the presence of perturbations dc¢ (b). Solid violet
curve and white lines (the same in panels a and b) depict, respectively, the
geometrical ray line and the boundaries of the fuzzy ray line in the
unperturbed waveguide. Dashed lines show antenna endpoints.
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Figure 6. Depth dependence of field intensity in an unperturbed waveguide
(red line) and in the presence of one realization of perturbation dc (blue
line). Vertical lines show antenna endpoints.

Fig. 2. The width of each beam does not exceed the vertical
scale of perturbation dc. For this reason, the rays of the nth
beam cross approximately the same inhomogeneities, and



September 2023

Isolation of the field component formed by a given beam of rays 955

their phases acquire approximately the same increments ¢,,.
Since the inhomogeneities crossed by different beams are
uncorrelated, the increments ¢,, that correspond to different n
are statistically independent. Despite dc¢ being small, the
values of ¢, can exceed m and the superposition of the
component u,(z) in the presence and absence of fluctuations
can be cardinally different. Namely this is seen in Fig. 6.

In agreement with the discussion above, the effect of
fluctuations on the component u,(z) can be roughly
accounted for by multiplying it by exp (i¢,). According to
(3), the influence of fluctuations on the amplitudes of
coherent states a, associated with the points of the fuzzy
segment g, is approximately accounted for by the multi-
plication of all such a, by the same phase multiplier, which
does not change |a#|2. This explains the stability of the
distribution of coherent state intensity |a,4|2 against perturba-
tion dc, seen in Fig. 5.

The circumstance that ray lines in Fig. 4 almost always
stay within the confines of the fuzzy ray line of the
unperturbed waveguide is the consequence of dc¢ being weak
in the case considered. An increase in dc will cause a stronger
deviation of the ray line from its position in the unperturbed
waveguide. In this case, the distribution of intensity |au|2 will
be localized in a wider phase plane region.

5. Isolation of the field component formed
by a given ray beam

We return to Fig. 5 and remark that in both unperturbed and
perturbed waveguides the intensity is localized inside of fuzzy
segments g,, n=1,2,3, computed for dc =0, which are
shown in Fig. 3. This means that, in the presence of
perturbation, field component u,(z), representing the con-
tribution of the nth beam, is formed by the superposition of
practically the same coherent states as for dc¢ = 0. It should,
however, be stressed that the complex amplitudes of these
states a, depend on perturbations dc, and therefore the
components u,(z) are random functions.

It is assumed that the antenna length L is substantially
larger than the scale 4.. In this case, the coherent state
amplitudes a,, associated with the points in the domain g,
can be found by formula (3), where integration is carried out
over the antenna aperture. The field component u,(z) is given
by the superposition of such states [2]:

Uuy(z) = 271 J dpa,Y,(z). (8)

On

Using (3), for an antenna covering the depth range
z1 < z < z, expression (8) can be rewritten as

un(2) = Jzz ,(z,z") u(z") dz’, 9)
where
,(z,z) =" J duY,(2) Y, (). (10)

Thus, the isolation of the beam contribution in the total field
is realized with the help of linear spatial filtering. The filter
parameters are defined by the fuzzy segment, which is
computed for the unperturbed waveguide. By selecting o,
the filter is ‘tuned’ to the desired beam.

o a
L
0

b
N
L

P Pa—Ap Pa Pat4p

Figure 7. Antenna in a free space. (a) Beam of parallel rays incident on the
antenna. (b) Segment of the ray line and the fuzzy segment (green color)
which corresponds to the beam.

In the case of free space with a constant sound speed ¢,
this procedure reduces to the standard beamforming. The
field on an antenna at a large distance from the source is
formed by a beam of parallel rays (Fig. 7a). The segment of
the ray line which represents the beam is given by the segment
P = pa, Where p, = sina, whereas the respective fuzzy seg-
ment is given by a rectangular domain bounded by inequal-
itles 0 < Z< L, p,— A4, <P <p,+ 4, (Fig. 7b). If 4. > 4,
the filter kernel computed by formula (10) can be approxi-
mately presented in the form

sin [Tc(z — z’)/Az]

11(z,2') & exp [ikpa(z = 2)] —m——3

(11)

Spatial filtering with such a kernel isolates contributions from
waves propagating at grazing angles from the interval
o+ /4. If A, approaches L, the width of the angular
interval reaches values of the order of 1/L.

To apply the procedure discussed here (in both homo-
geneous and inhomogeneous media), the antenna should
be sufficiently long. According to (1), the function Y,(z) is
localized in the interval with a width of about 4. centered
at z=Z. For this reason, the amplitudes of coherent
states a, can only be found for the phase plane points u
with coordinates Z inside the interval z; +4./2 < Z <
2y — A./2. In numerical results presented below, the integra-
tion in (8) and (10) is carried out only over such u. Since in the
examples considered here the scale 4. is small compared to
L =z — z;, this leads to only a slight reduction in the
integration domain o,. Furthermore, it should be mentioned
that, because the amplitude of Y, (z) rapidly decays outside
the interval Z & A, /2, the procedure works satisfactorily even
for A, close to L.

Let us mention the following fundamental point. The
inaccuracy in the mathematical model of environment—
which is the lack of strong fluctuations in dc¢ in our
example—can be the reason why calculations of the fuzzy
segment g, will result in the domain of phase plane o, which
does not even intersect with g,. Such an error, admittedly,
would not allow the isolation of the required field component.
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This difficulty can be overcome by expanding the domain o,
to a size which ‘warrants’ the inclusion of ¢,,. This should be
done based on a priori information about possible variability
in parameters of the environment model. An analog of such
an expansion is the broadening of an antenna beam in a free
space through a reduction in the antenna length or the use of
only a part of its aperture.

The procedure of isolating the component u,(z) discussed
here assumes that the fuzzy segments ¢, (and also their
expanded variants) that correspond to different beams do
not overlap. In a waveguide, this condition is valid only on
sufficiently short propagation paths. With an increase in
distance, the ray line fills the region allowed for the rays
more densely. In this process, the dimensionless distances that
correspond to neighboring segments become shorter, the
fuzzy segments begin to overlap, and eventually the contribu-
tions of individual beams can no longer be resolved. In free
space, a similar situation takes place in detecting waves from
two or more sources such that the angular distance between
them is smaller than the antenna beam width. In Section 8, we
shall see that for pulsed signals the possibilities of resolving
the contributions from individual beams are essentially
broader.

6. Contribution of a noise component

Together with the field u(z) to be analyzed, the antenna
usually receives ambient noise (in our example, this is some
sea noise [17]). We denote by #(z) the complex amplitude of
noise on the same carrying frequency f as u(z). We assume
that #(z) is a statistically homogeneous random function with
a zero mean and the correlation function Q(z—z') =
(20" (=").

To estimate the contribution of noise in the filter output
signal given by relationships (9) and (10), we expand the noise
field in coherent states

n(z)=27" J dub,Y,u(2), by= J dz Y, (z)n(z).

As can be readily seen,

{|b?) = [ dzdz' ¥} (2) Yu(z)0(z — 2). (12)

The noise field is formed by waves propagating under the
grazing angles from the interval —y .. < % < Ymax- FOT
simplicity, we assume that energy is uniformly distributed
over angles. Then, one can take /;, = 4/}, as an effective
scale of the correlation function Q(z). Assuming that /, < 4.,
the noise correlation function on the right-hand side of (12) is
written in the form

- & (z—1z2").

/(max

0(z,2") = (In*)

Then, taking into account (5),

y)

2
(1bul") = () . (13)
){max
The noise component exiting the filter is
n(z) = 27! J dub,Y,(2), (14)
[

where ¢ is the fuzzy segment which corresponds to the
component of field u(z) being isolated. Since #,(z) is localized
mainly within the interval of depths that correspond to the
aperture of the antenna, and function b, is localized inside the
fuzzy segment o, from (4) one gets an approximate equality:

L
||zl =2 [ auls, . (15)

Averaging this expression while taking into account (13) and
assuming that (|n,(z)|?) varies but weakly along the antenna
aperture, we get

Sa

(ns?y = (Inl*) T

where s, is the area of a.

For an antenna in free space, s, = AL/4. (see Fig. 7).
Choosing the largest possible scale of coherent state 4, ~ L,
we find

(nsl?y 4
<|7’]|2> LZmax

(16)

This relationship allows a simple interpretation. From the
total noise field formed by plane waves propagating at
grazing angle y lying in the interval with a width of the order
of ymax» the antenna beam ‘admits’ only waves with angle y at
the interval with the width of /L.

The main result of this section is expression (16),
according to which the level of noisy signals at the filter exit
is proportional to the area of fuzzy segment ¢. For this reason,
in order to reduce the level of noise, the scale 4. should be
selected so as to minimize o. However, in the preceding
section, we have seen that, to ‘overcome’ the inaccuracy of
the model, one may need an increase in ¢. The incurred
deterioration of the signal-to-noise ratio will be the payment
for the possibility of reliably isolating the required field
component.

7. Source localization

In this section, we consider an application of the procedure
for isolating the ray beam contribution described in Section 5
to the problem of source localization, i.e., reconstruction of
its coordinates based on acoustic measurement data.

A traditional method to solve this problem is based on
using so-called matched field processing [12, 18, 19]. The
measured field u(z) at the aperture of a receiving antenna with
length L is compared with the fields U(z,R) on the same
antenna calculated for test sources placed at different points
in the waveguide R. A quantitative characteristic of the
resemblance between u(z) and U(z,R) is provided by the
uncertainty function

R) = UOL u(z)U*(z,R)dz (7
(fOL dz |u(z)|2>l/2 (foL dz |U(z, R)|2>1/2

An estimate for the source position R corresponds to the
maximum of this function. In practice, the efficiency of this
approach is limited by unavoidable inaccuracy in the
environment model, which is manifested especially strongly
under multipath propagation conditions.

To overcome problems related to limited information on
the environment, a series of robust algorithms has been




September 2023

Isolation of the field component formed by a given beam of rays 957

r, km 35

25 30

25 30

r, km 35

Figure 8. Uncertainty function C(R) in unperturbed (a) and perturbed (b) waveguides. Uncertainty function C(R) in unperturbed (c) and perturbed (d)
waveguides. White dashed lines depict central rays of beams /, 2, and 3 and their continuations for r > rs. Each line is labelled with the number of the

respective beam.

proposed. One of them is based on the method of spatial
processing under multiple constraints [20]. In the framework
of this method, the measured field is compared to the fields
calculated for the source coordinates and some medium
parameters lying in some admissible intervals [18, 21, 22]. In
the framework of yet another known approach, in addition to
the parameters sought for, one adds a set of parameters
characterizing the propagation environment. The problem
in this case consists in finding the entire set of unknown
quantities based on Bayesian estimation theory [23, 24]. The
description of this and other methods of matched signal
processing is the subject of a vast literature (see monographs
[12, 19] and review [25]). Nevertheless, the lack of information
on the environment remains a serious problem [26], explain-
ing the continuing studies on this topic.

As an alternative, we consider the following approach.
For each test point R, with the help of ray computations, we
find all N ray beams that leave the point and arrive at the
antenna, and for each beam we find the related fuzzy segment
on, n=1,..., N. Assuming that the source which creates the
field u(z) on the antenna is located at point R, with the help of
N filters (9), we isolate from u(z) the components u,(z). The
‘energy’ of each isolated component jOL |un(2)[* dz should be
maximal for point R = (rg, z5), which corresponds to the true
source position. For this reason, we take as the uncertainty
function

C(R) = iJL‘un(z)fdz (LL’u(z)yde)l .

n=1+70

(18)

This is an example of so-called quadratic processing [25]:
isolation of uncorrelated signals arriving from different
directions and their noncoherent summation. If the fuzzy
segments do not intersect, in analogy with (15),

LL|un(z)|2dz ~ ;”ﬂj

|a,)* du. (19)

On

In a homogeneous space, N = 1 and the value of C(R) is
proportional to the ‘energy’ of the antenna output signal with
the main antenna beam oriented toward point R.

It is natural to expect that the change from uncertainty
function C(R) to C(R) reduces the demand to the accuracy of
the environment model. Indeed, the use of C(R) requires
accurate computations of the complex amplitude of the total
field at the antenna U(z, R). In Section 4, it was explained that
this is difficult to achieve in conditions of multipath
propagation. On the other hand, in order to use the function
C(R), one in fact only needs to determine the fuzzy segments
g, which, as we have seen, can be found with an unperturbed
waveguide model, provided the perturbation dc is weak.

Figure 8 shows examples of uncertainty functions com-
puted for the model of waveguide described in Section 2 in a
situation when the antenna and the source to be localized are
located as shown in Fig. 2. Figure 8a,c shows, respectively,
the uncertainty functions C(R) and C(R) in the unperturbed
waveguide (6¢ = 0). Such functions computed in the presence
of one of the perturbation realizations are shown in Fig. 8b, d.

In Fig. 8a, we see that in an unperturbed waveguide, i.e., in
the situation when the model of the medium is exact, the
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function C(R) has a sharp peak at the point of the true source
location (rs = 30 km and z; = 0.7 km). This peak is so narrow
that it is difficult to distinguish it in the figure. However, in the
presence of a weak random perturbation (Fig. 8b), it ‘breaks’
into numerous local maxima.

In contrast, the function C(R) in an unperturbed
waveguide has a broad peak with the center at the point
(s, z5) (Fig. 8c). The transition from C(R) to C(R) in this case
substantially reduces the accuracy of how the source
coordinates are estimated. However, in the presence of
perturbations, the function C(R), different from C(R),
experiences almost no changes. It preserves a well pro-
nounced peak with its center close to the point (r, zg).

White dashed lines in Fig. 8c, d, intersecting at the point
(rs,zs) depict central trajectories of beams 7, 2, and 3 from
Fig. 2 and their continuations for r > r,. The uncertainty
function C(R) is localized predominantly in the vicinity of
these lines. This fact is explained as follows. Let us select the
dashed line which corresponds to the nth beam. This beam
partly overlaps with the beam formed by the rays emitted
from an arbitrary point (r!, z,) of the line under consideration
and reaching the antenna aperture. Hence, different fuzzy
segments, which correspond to these two beams, partly
overlap too. A filter tuned to the detection of signals from
the point (rs, zs) will partly let in the signals from the point
(1!, 2).

Thus, because of multipath propagation, the uncertainty
function C(R) in a waveguide has the form of several beams
intersecting at the point where the source is located. In
Fig. 8c,d, the dominant contribution comes from beam 2,
which, in fact, is focused close to the antenna. As mentioned
in Section 2, its ray touches the caustic intersected by the
antenna.

In a homogeneous space, where multipath propagation is
absent, C(R) is localized in the vicinity of the straight line that
connects the source and the center of the antenna. In this case,
the uncertainty function allows only the direction toward the
source to be determined.

8. Pulsed signals

Here, we briefly consider the application of the procedure of
Section 5 to isolate the contribution of a ray beam in the field
emitted by a pulsed source. The complex amplitude of the
field of such a source at a distance of observation v(z, 1) is
synthesized from monochromatic fields u(z, f) at frequencies
f in the band of the emitted signal,

v(z, 1) = J dfu(z, f)exp (—2mift).

Since the ray trajectories in an underwater waveguide do not
depend on frequency, the ray lines coincide for all f. However,
from condition (7), it is clear that at least one of the coherent
state scales 4. and 4, must depend on frequency.

The component of field v(z, ), which represents the
contribution of the nth beam, is synthesized from the
components u,(z, f) found with the help of (8) or (9) for
particular frequencies f. It is equal to

W@w=jwm@an«4mm. (20)

In the transition from a tonal to a pulsed source, the
possibilities of isolating the beam contributions become

102.6

102.7 s

Figure 9. (a) Ray line (thin) and fuzzy ray line (shown in light green color)
at a distance of 150 km from the source. (b) Distribution of intensity
|v(z,))* in the plane time-depth and the timefront (thin line). Bold
segments in panels (a) and (b) show arrivals of rays forming the beams,
while dashed lines show horizons of antenna endpoints.

substantially wider: spatial resolution is augmented by the
temporal one. Let us see this using a concrete example.

We continue to use the environment model described in
Section 2 and assume that the receiving antenna covers the
same depth range. Let a point source be at the same depth
zg = 0.7 km as in Fig. 2, but at a much larger distance from
the antenna ry = 150 km. We assume that the sound pulse
s(t) = exp (—mt?/t? — 2mifyt), where fy = 500 Hz and © =
0.01 s, is emitted. The emitted field is synthesized from
monochromatic fields u(z, /) at frequencies f lying in the
range of 500 + 150 Hz. The vertical coherent state scale 4. is
taken to be 90 m at all frequencies.

The thin line in Fig. 9a depicts the ray line at a distance of
150 km from the source. A comparison with Fig. 3 shows that,
in agreement with the remark at the end of Section 5, the ray
line fills the region of the phase plane admissible to the rays
more densely. The number of segments between the two
dashed lines that show the depths of antenna endpoints
increased from three in Fig. 3 to eleven in Fig. 9. Each
segment presents a ray beam as earlier. The fuzzy ray line at
the frequency of 500 Hz, which is localized close to the
geometrical ray line in Fig. 3, nearly becomes a light-green
spot in Fig. 9.

If at a distance of 30 km the fuzzy segments that
correspond to separate beams do not overlap (see Fig. 3),
this is not the case at a distance of 150 km. We denote as A and
B two ray beams that correspond to two neighbor segments in
Fig. 9a. The fuzzy segment that corresponds to beam A at
frequency = 500 Hzis shown in dark green color. It strongly
overlaps with the fuzzy segment which corresponds to beam B
(not shown in the figure), which implies that the contribution
of beam A cannot be isolated from the total field in the case of
a monochromatic source. This is true for all frequencies in the
frequency band of the emitted signal.
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Figure 10. Distribution of intensity |va (z, 7) |2 in the time—depth plane in an
unperturbed (a) and perturbed (b) waveguide. Thin lines show the
segments of the timefront in the depth range covered by the antenna.
Segments A and B are shown by bold lines.

Figure 9b displays the distribution of sound field intensity
|u(z, 1)|* at a distance of 150 km in the arrival time —depth z
plane. A thin solid line depicts the so-called timefront, each
point of which shows the ray’s arrival at the 150-km distance
in the time—depth plane. The solid segments of the timefront
show the arrivals of rays which form individual beams. The
segments that correspond to beams A and B are labelled.

Figure 10 demonstrates the intensity distribution
lva(z, 1), where wa(z,7) is the result of isolating the
contribution from beam A from the field v(z,7) with the use
of filtration at frequency f by formula (8) and subsequent
synthesis by formula (20). Figures 10a and b show the
distributions |va(z, #)|* in the unperturbed waveguide and in
the presence of one of realizations of perturbation dc,
respectively. Because of the intersection of fuzzy segments
which correspond to beams A and B, when isolating the
contribution of beam A at separate frequencies f, the filter
also partially ‘passes’ the contribution from beam B. How-
ever, in Fig. 10, we see that the additional selection with
respect to arrival time allows the contribution from beam A to
be resolved. A similar situation takes place in free space by
resolving signals arriving from close directions, but from
sources placed at different distances from the antenna.

9. Conclusions

This study describes a processing method for signals detected
by a receiving antenna in an inhomogeneous medium, which
generalizes the standard beamforming procedure in a homo-
geneous space. From a formal viewpoint, the generalization is
based on the change from the expansion of the field at the
antenna in plane waves to the expansion in coherent states.
The idea of the proposed approach is illustrated using an
example of a two-dimensional acoustical waveguide in the
deep sea. A two-dimensional model of a waveguide in the
shallow sea can be considered analogously [27].

The proposed description can be easily generalized to a
three-dimensional inhomogeneous acoustical medium, not
necessarily a waveguide. In this case, in addition to z, one
more transverse coordinate y is introduced, and the phase

plane (P, Z) is generalized to the phase space (P, P., Y, Z). A
coherent state will be represented by the product of two
functions of the form (1): one will have arguments P, Y,
and y, and the other one, P., Z, and z. In underwater
acoustics, the use of a three-dimensional environment model
will allow analyzing the work of a horizontal receiving
antenna.

The proposed method needs a model of a propagation
environment. It is used to calculate ray trajectories arriving at
the antenna aperture. Based on these calculations, one finds
the fuzzy segments which define the parameters of spatial
filters isolating separate ray beams introduced in Section 5. It
should be stressed that the presence of caustics does not create
problems. Indeed, calculations deal with the parameters of
trajectories in phase space where the singularities related to
caustics are absent.

In the example considered, the plane-layered channel
represents an idealized environment model. Its idealization
lies in neglecting fluctuations in the speed of sound dc¢ that are
present in a real waveguide. For the applicability of our
approach, the model should be accurate enough for calcula-
tions of fuzzy segments o, at the distance of observations. The
results of simulations given in Section 4 indicate that, at a
distance of 30 km, this requirement is fulfilled: the fuzzy
segments computed for unperturbed and perturbed wave-
guides at least half-overlap. This allows beamforming in a
fluctuating waveguide based on computations of trajectories
for dc= 0. In the same section, it has been mentioned that
model inaccuracy can be compensated by broadening the
region o,.

The approach discussed in this paper can be applied for
solving the same problems as matching field processing
methods (isolation of a signal from a given direction, source
localization, remote sounding, etc.). Its main advantage is the
possibility of using an idealized environment model. The
traditional methods are, as a rule, based on comparing
measured and computed signals [25]. One cannot rely in this
case on approximate calculations of trajectories. The need in
calculations for a complex field amplitude at the antenna
aperture significantly raises the requirements for the accuracy
of the environment model, especially in conditions of multi-
path propagation.

In Section 7, using a concrete example, it was shown that
the transition from the traditional method of solving
localization problems based on matched field signal proces-
sing to our approach reduces the requirements for the
environment model’s accuracy. Close results were obtained
in Refs [30, 31], where the isolation of ray beam contributions
is also based on the field expansion in coherent states.
However, these works use a simplifying assumption that the
effect of perturbation dc is fully accounted for by multiplying
the unperturbed component u,(z) by a random phase factor.

It should be noted that the estimate of limiting distances,
for which our approach is applicable, requires additional
studies. When detecting the field of a tonal source, the
principal limitation is given by the condition that fuzzy
segments which correspond to different beams not overlap.
It holds only for relatively short paths. In Section 8, it was
shown that in the case of a pulsed source this limitation
becomes substantially weaker. It can be expected that our
approach is applicable to work with pulsed sources, even
under conditions when the effects of ray and wave chaos begin
to appear [8, 28, 29]. However, this question is beyond the
scope of the present paper and is not considered here.
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