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Abstract. We present the results of processing the diffraction
patterns of dislocation half-loops in Si(111) silicon single crys-
tal, which were recorded by X-ray topo-tomography (XTT) at
the European Synchrotron Radiation Facility (ESRF). An
algorithm for preprocessing two-dimensional images by auto-
matic noise filtering was proposed and solution reliability cri-
teria were developed, which enabled a significant improvement
in the quality of three-dimensional reconstruction of the spatial
distribution of the defects under study. The experimental pat-
terns were compared with those simulated numerically using the
solution of Takagi equations. This approach made it possible
not only to determine the geometry of the defects but also to
derive information about the Burgers vector.

Keywords: synchrotron radiation, topo-tomography, dislocation
half-loops, silicon single crystal, Takagi equations

1. Introduction

A wealth of papers [1-6] are devoted to the study of lattice
defects and their influence on physical semiconductor proper-
ties, and attention to this area of physics has not eroded. On
the one hand, interest in it is growing due to the widespread
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use of semiconductors, in particular silicon, in the microelec-
tronics industry. On the other hand, modern technologies
have stimulated fundamental research in this field. In
particular, the technological process of making silicon
integrated circuits invites, in some cases, the controlled
introduction of extended defects (for example, dislocations)
into silicon, since they are excellent getters and are used to
effectively clean the working layer of silicon wafers from
harmful impurities [7-9]. Dislocations can help solve another
problem of modern silicon electronics, namely the production
of silicon light emitting diodes (LEDs) inside chips for
optoelectronic communication, which are currently not
efficient enough. One of the applications is the use of
dislocation luminescence by way of controlled dislocation
generation in a strictly defined area of silicon [10-12]. Finally,
studying the properties of dislocations in silicon was required
for the modern power industry, in which silicon containing a
large number of dislocations is widely used for the manufac-
ture of solar cells. In this case, dislocations strongly affect the
lifetime of minority current carriers and largely determine the
energy yield of solar batteries [13, 14].

Solving these problems calls for obtaining detailed
information about the structural state of bulk single crys-
tals, in particular, about the mechanisms of generation and
distribution of dislocations. As is well known, electron and
X-ray microscopy techniques are usually used to assess
structural perfection. The advantage of using X-ray methods
is that they enable obtaining information about the internal
structure of large (up to several cubic millimeters) crystals in a
nondestructive way. One of the currently available and most
promising methods for studying bulk single crystals is X-ray
topo-tomography (XTT), and for studying flat single-crystal
samples, for example, plates, X-ray diffraction laminography
[15]. The main idea behind these approaches is the combina-
tion of X-ray diffraction [16-18] and computed tomography
[19]. XTT refers to direct methods for studying the real
structure of crystals, which extract information about defects
from their diffraction images (topograms) obtained in the
Laue geometry for various angles of sample rotation [20-22].
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The nature of the sensitivity of XTT to defects in crystals is
deformational; the method reacts to defects that distort the
periodic structure of the crystal lattice. Although the
formation mechanism of diffraction images of defects is
complex, the images themselves are quite clear and allow not
only obtaining qualitative information about defects (data on
the spatial distribution of defects in the crystal volume) but
also quantitatively determining their parameters: the depth of
defects, their length, etc.

The range of possible applications of the XTT method is
broadening as new and more easily accessible synchrotron
stations appear [23]. At present, it is possible, for example, to
study the spatial distribution and plastic deformation of
grains in polycrystals [24-26], visualize the growth of cracks
[27], and study in situ the growth of crystals, as well as the
nucleation and motion of defects [28]. In combination with
the use of X-ray optics, such as compound refractive lenses, it
became possible to study individual dislocations with nan-
ometer-high spatial resolution [29]. Particular attention is
paid to the study of the nucleation and motion of dislocation
loops resulting from mechanical and thermal action on a
silicon platelet [30, 31]. Héanschke et al. [31] described
visualization of dislocation loops and indexing of their
Burgers vectors, which was performed by correlating the
data of two independent X-ray diffraction experiments in
combination with visible light microscopy.

In this work, XTT is used to reveal the spatial arrange-
ment of single dislocation half-loops in an Si(111) single
crystal with a spatial resolution of about 1 pum using
monochromatic X-ray radiation from a synchrotron source
under weak beam conditions [32]. The linear defects under
study were introduced using a four-point bending method
[33]; in this case, two types of dislocations can arise, lying in
the slip planes (111) and/or (111) with the Burgers vectors
[011] and [101].

Note that the currently used mathematical algorithms for
processing topo-tomography data are a development of
absorption tomography methods, which do not make it
possible to accurately include the propagation of radiation
in a crystal and, therefore, interpret the effects of the phase-
amplitude image contrast. This paper proposes a combined
approach that allows us to detect defects in crystals by
traditional methods and then compare them with the data of
numerical simulation of diffraction images. The implementa-
tion of this approach is possible due to the use of a few-
parameter description of localized microdefects in crystals
and the reconstruction of the corresponding parameters from
a set of experimentally recorded X-ray images. To this end,
the existing algorithms for processing experimental data were
modified and software was developed for modeling images of
microsized defects in crystals.

In our work, modern methods of digital image processing
were applied to interpret experimental data. Such high-
resolution three-dimensional (3D) reconstruction methods
are sensitive to noise in projection data obtained even using
synchrotron radiation. One of the possible ways to improve
the quality of 3D defect images developed in this study
involves preliminary processing of experimental projection
images with automatic noise filtering, the separation of
images of dislocation half-loops based on a statistical
analysis of the intensity distribution and image structure,
and the application of solution reliability criteria. To improve
the quality of 3D reconstruction and minimize the effect of
artifacts, topographic images were reconstructed employing

widely used algebraic methods (Algebraic Reconstruction
Techniques, ART) [19] adapted to the geometry of the X-ray
diffraction experiment.

The paper also presents the results of dislocation half-loops
modeling based on the tools of the X-ray diffraction theory, in
particular, the Takagi equations. Previously, individual linear
dislocations were modeled using these equations [34], but they
were valid only for an infinite dislocation. For a more correct
comparison of the experimental data with the simulation
results, the expression for the displacement field was modified
with the inclusion of dislocation half-loop geometry.

2. Methods

2.1 X-ray diffraction measurements

An Si(111) single crystal measuring 50 x 3.55 x 0.78 mm with
artificially introduced dislocation half-loops was chosen as
the subject under study [21, 22]. The experiment was carried
out using a mobile X-ray diffraction complex developed at the
Karlsruhe Institute of Technology (German: Karlsruher
Institut fiir Technologie, KIT) and put into operation at the
ID19 station of the ESRF (European Synchrotron Radiation
Facility) synchrotron source (Grenoble, France). Use was
made of an approximately 2 x 2-mm-sized X-ray beam
monochromatized to 23.567 keV using a two-crystal Si(111)
monochromator. Two-dimensional diffraction projections
were measured using a recording system with an effective
pixel size of 0.96 um. The system consisted of a 25-um-thick
LuAG crystal, a 6.5-um pixel AndorNeo camera, and a
x7.5/x0.9 tubular lens. A dataset of 100 projection images
was obtained at equal angular intervals during the rotation of
the sample by 360° around the diffraction vector h [220)].

2.2 Noise filtration and smoothing

of two-dimensional tomographic projections

A feature of tomographic measurements is the impossibility
of recording the direct diffracted beam or its analogue
(obtained using the standard flat-field correction proce-
dure), which could be used to correct the background and
reduce the noise of topo-tomographic projections. Therefore,
in this paper, we propose a nonparametric statistical method
for analyzing topo-tomographic projections to separate the
noise component of the background (scattered radiation,
detector dark current, etc.) from the useful signal, which
makes it possible to reduce the influence of the subjective
assessment of the researcher on the filtering result. To this
end, a program was developed for effective noise suppression
of experimental XTT data based on the least squares method
with regularization and adaptive weighting reliant on the
results of their statistical analysis. In particular, the paper
proposes a nonparametric smoothing approach with a
Hamming kernel [35] in a two-dimensional implementation.
The results of filtering using other well-known algorithms
largely depend on the accuracy of estimating the noise
variance in the initial data.

In this work, advantage was taken of the smoothing
method without using a priori estimates of the variance. The
main criterion for the solution quality was the magnitude of
the autocorrelation of the differences w; between the initial z;
and smoothed s; intensities, w; = z; —s;, which should
correspond to a sample from a random sequence. The most
suitable estimate was the Durbin-Watson autocorrelation
test (or DW-criterion) [36] applied to a sequence of N
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Figure 1. Example of the shape of the weight function (kernel) of
smoothing for a window of 9 x 9 pixels. The x- and y-axes show the
indices of points in the scanning window, and the z-axis shows the values
of the normalized weight function. The smoothed value is obtained at the
point with indices 5,5.

differences w; within a scanning window ranging in size from
3 x 3to9 x 9 pixels:

SN wiwi
DW =2 -2 =5 (1)
Do Wi
The sequence of values w; in the window (i=1,2,..., N,

N = M?, where M is the linear size of the square window) was
obtained by the reciprocating raster method, i.e., after
sampling was completed from the current row of differences
in the window, the next row was scanned in the opposite
direction in order to preserve the step length between adjacent
pixels. The degree of smoothing was considered acceptable if
the criterion value averaged over the image was in the range of
1.7-2.2, which corresponded to the 95% significance level of
the hypothesis about the absence of autocorrelation between
the intensities of differences in adjacent pixels. A two-
dimensional analogue of the nonparametric method with a
Hamming kernel (weight window) was used for smoothing.
[35]. The smoothed value s at the central point of the scanning
window was obtained as an average value calculated with a
weight proportional to the value of the rasterized, as
described above, bell-shaped function ¢;,i = 1,..., N, having
a generatrix with the shape of one period of the cosine shifted
vertically to the positive region with the center coinciding

with the center of the window (Fig. 1): s = Z]iv:] z;t;. Weight
function #; was normalized to the unit sum of its values.

The degree of smoothing was controlled by varying the
size of the scan window. This size, which depends on the
resolution of the image, ranged from 3 to 11 pixels in this
work. For additional verification of the result, use was made
of several semi-empirical criteria reliant on an analysis of the
curvature of the smoothed surface (the criterion was the value
of the total second derivative calculated from the finite
differences on the grid in the scanning window) and the
relative value of the systematic component in the residuals
(the ratio of the norms of the initial data arrays to the
smoothed differences between original and smoothed data).

Figures 2a and 2b show an X-ray diffraction image of a
silicon crystal domain containing a cluster of dislocation half-
loops. As one can see from Fig. 2c, a significant decrease in
the background noise component was obtained after applying
the algorithm developed.

2.3 Topo-tomographic reconstruction

To perform the topo-tomographic reconstruction, we used
the assumption that the image from the crystal under study
was formed in the Laue geometry, when the angle of incidence
of the radiation was equal to the angle of reflection. To
simplify the description of the measurement geometry, a
virtual X-ray source was introduced, the rays from which
were shifted by a double Bragg angle relative to the real source
(Fig. 3).

Let the beam in the xz plane fall on the object at the Bragg
angle 0g to the x-axis; the reflected beam then lies in the
xz plane. The object rotates about the z-axis at angular
increments of ¢. We introduce the following notation:
Py(y,z) is the experimental X-ray image (intensity at
detector point (y, z)) obtained at the object rotation angle ¢;
X, (x,y,z) is the object being reconstructed (three-dimen-
sional distribution of the object reflectivity) at the nth
iteration; X?(x,y,z) is the X,(x,y,z) object rotated by the
angles ¢ and 0p; and P (y,2) is the calculated image of the
object X)¢ (intensity at detector point (y, z)).

The task of topo-tomographic reconstruction is to find an
object X, such that its projections are as similar as possible to
the measured ones, i.e., it is necessary to solve the optimiza-
tion problem for all rotation angles of the object ¢:

||P<,,(y,z) =P, Z)H2 o min.

Figure 2. X-ray topograms of defects in the Si(111) single crystal under study: (a) initial topogram; (b) an enlarged part containing a bunch of dislocations;
(c) topogram after applying background signal smoothing using the Hamming kernel. Arrow shows the direction of diffraction vector h.
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Figure 3. Schematic of the topo-tomographic experiment. /— monochro-
matic beam, 2—diffracted beam, 3— two-dimensional detector, ¢ —
sample rotation angle, 0y — Bragg angle, h—diffraction vector.

This problem was solved using the Conjugate Gradient
method for Least Squares (CGLS) implemented in the
ASTRA Toolbox software package [37].

To obtain a high-quality tomographic reconstruction,
it is necessary to correctly determine the position of the
axis of rotation. When the rotation axis is perpendicular to
the X-ray beam, the search for the axis is performed by
combining opposite images, i.e., those obtained at angles
of 0 and 180° [38]. In the case of topo-tomography, the axis
of rotation is tilted at the double Bragg angle, so the
resultant opposite projections can differ significantly
(Fig. 4). However, one can see from Fig. 4 that, although
points on opposite projections may be shifted vertically
along the axis of rotation of the object, their horizontal
distance to the axis of rotation is preserved. To search for
the position of the rotation axis in the crystal images,
several characteristic points were selected so that they
could be visually identified in different images of the
object. These points were used to find the axis of rotation
as a straight line lying at an equal distance from the
characteristic points on opposite projections.

2.4 Simulation of topo-tomographic experiment
We used the Takagi equations [39] to simulate the topo-
tomographic experiment:

_ %aDazér) = 70Do(r) + Cy;Dy(r) exp (—ihu(r)), o)
~ DU _ (1~ )y(6) + Couu(e) exp (~ihule))

where k is the wavenumber, y,, y,, and y; are the Fourier
components of the crystal polarizability for the transmitted
and diffracted waves, Dy and Dj, are the amplitudes of the
transmitted and diffracted waves, 0/0sp and 0/0s; are
derivatives with respect to the directions of the transmitted
and diffracted waves, respectively, coefficient C =1 for
g-polarization and C = cos (205) for n-polarization, h is the
diffraction vector, u(r) is the vector of the displacement
(strain) field, and o is the deviation from the exact Bragg
condition:
ki — kg

o
2
kO

3)

Equations (2) describe the wave field propagation in the
bulk of the crystal. To calculate the wave amplitudes, we used
triangular grids constructed on the unit vectors of the
transmitted and diffracted waves in the skew coordinate
system (X, Y, S) (Fig. 5). In this coordinate system, Eqns (2)
assume the form

Dy(X,S) = Do(X +p,S—p)

+ A[Dy(X,S) + Dp(X +p, S = p)], (4)

Dy(X,S) = Dy(X,S — p) + B[Do(X,S) + Do(X, S — p)]
+ Dy(X,S)W(X,S) + Dy(X,S — p)W(X,S —p),

where the following notation is introduced:

4 = PkCri B _ PkCr ’
41 41 (5)
__pka p 3(hu(X,Y,S))
WX, Y.5) 4 2 as

The equations also contain the diffraction vector h
scalarly multiplied by the displacement field vector u char-
acterizing the dislocation [40]:

zo b —1(b1)

b
u(rg) = 7 arctan T + =

YoZo
2(1 =v)(yg +25)

v -2
i +z&>) - (©)

txb/1-2v
S L | 2 2
o (4(1—v) n( +7) +

Expression (6) uses the following notation: b is the
Burgers vector, T is a unit vector parallel to the dislocation
line, and v is Poisson’s ratio. The equation is given in a
rectangular coordinate system (x, yo, zo), where the xy-axis is

Figure 4. Search for the axis of rotation of the object under study. Shown are the dislocation images obtained at rotation angles (a) 0 and (b) 180°. Dashed
circles mark the characteristic points that were used to determine the position of the axis. Vertical dashed-dotted straight line is the rotation axis of the

object.
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Figure 5. Triangular grid for calculating wave amplitudes constructed in
the skew coordinate system (X, Y, S) (Y-axis is perpendicular to the plane
of Fig. 5). ¢ is the sample rotation angle, 7 is the plate thickness, p is the
grid step corresponding to the resolution of the original topogram
(0.96 um), sy and s, are unit vectors along directions of incident and
diffracted waves.

directed along the t vector, and the zy-axis is directed along
the T x b vector.

The so-defined displacement field describes an infinite
rectilinear dislocation. To describe dislocation structures
consisting of several straight dislocations, the displacement
field of each dislocation is limited by the window function
w(xo, Yo, z0). Then, the expression for the displacement field
of the dislocation structure takes on the form

u=wmw +uwwy +...+u,w,, (7)
where n is the number of dislocations that make up the
dislocation structure; each term is given in its own coordinate
system: w, = i (Xok, Yok Zok)» Wk = Wk (Xok, Yok, Zox ). How the
coordinate systems (xo,)o0,20), (X,,z), and (X,Y,S) are
related is described in detail in Ref. [41].

3. Results and discussion

The use of the developed algorithms and programs for
efficient automatic noise filtering and two-dimensional
tomographic projection smoothing using the criteria for the
autocorrelation of differences made it possible to carry out a
three-dimensional (3D) reconstruction of dislocation half-
loop clusters in an Si(111) crystal (Fig. 6). An indisputable
advantage of the XTT method over conventional two-
dimensional projection topography is the possibility of
separating out almost any section from a three-dimensional

Figure 6. Result of a three-dimensional reconstruction of the spatial
arrangement of a dislocation half-loop cluster in an Si(111) single crystal
after applying the filtering procedure. (111) slip plane is shown. / is a single
dislocation, 2 corresponds to a bunch of dislocation half-loops.

a
1n[101] /u [101]
|
\ / >
\\[ h [220]
2 [TI% T, b [011]
, b
7 Yol R Y3
(111) 2 o |
Yol ’ o2
S X02 Sz
R1 ! R}

Figure 7. Schematic representation of a dislocation half-loop in the (111)
plane. (a) General view: n is the normal vector to the surface of the crystal
plate, h is the diffraction vector, t;,3 are directions of dislocation
portions. (b) Slip plane containing the half-loop: S;, S, are planes
separating dislocation segments; Ry, R,, Rj are regions of space sepa-
rated by planes S;, S; and the surface of the crystal.

volume. In particular, slip planes (111) were identified, in the
images of which the half-loops under study were clearly
discernible. Figure 6 (image /) clearly shows a single
dislocation loop. In addition, a defect is located in the same
plane, consisting of at least 12 single dislocations densely
spaced relative to each other (image 2 in Fig. 6). These images
were subsequently used to estimate the geometric dimensions
of the defects under study and their subsequent simulation.

A single dislocation half-loop was used for simulation
(image / in Fig. 6). A schematic representation of a half-loop
consisting of three segments is shown in Fig. 7a.

The geometry of this half-loop is such that the angle
between the neighboring dislocations is 120°. In order to
construct a window function for each of the dislocations, we
draw two planes, S; and S,, through the intersection points of
neighboring dislocation segments perpendicular to the half-
loop plane (Fig. 7b). For ease of calculation, the planes are
chosen so that they make equal angles of 60° with the
dislocation lines. The window function assumes a value
equal to either unity or zero, depending in which region of
space the given point belongs. For example, if the point
considered belongs in the space bounded by the S; plane
and the crystal surface (domain R; in Fig. 7b), then the
window functions assume the following values: w; =1,
wy = 0, w3 = 0. Therefore, Eqn (7) can be represented as

u; (xo1,y01,201), ifreRy,
u(r) = ¢ w(xo2,y02,202), ifreRy, (8)
u3(xo3, Y03, 203), ifreRs.

The displacement field defined in this way describes the entire
dislocation half-loop. However, in order to unambiguously
define the half-loop, it is necessary to introduce its geometric
dimensions. In this case, we used the length of the middle
dislocation / and its distance from the crystal surface d. Since
side dislocations emerge on the crystal surface, these para-
meters are sufficient to determine their length. The required
dimensions of the half-loop, d = 63 pym, /= 100 um, were
determined from tomographic images after its 3D reconstruc-
tion (see Fig. 6).
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Figure 8. Diffraction images of a dislocation half-loop: (a) initial experi-
mental data, (b) experimental data after filtering, (c) model topogram with
the Burgers vector [011], (d) model topogram with the Burgers vector
(101].

The numerical solution of the equations was based on the
program code, whose algorithm is described at length in
Ref. [41]. The solutions of the equations are the amplitudes
of the transmitted Dy and diffracted D, waves in the bulk of
the crystal. The displacement fields u(r) of each individual
dislocation are linked into a single expression to describe the
entire half-loop. In this case, the displacement field was
artificially limited by the length of the middle portion of the
dislocation and its depth. Since the radiation enters the
detector upon exiting the crystal, the intensity distribution
on the output surface of the sample is taken as the topogram.
However, for nonzero values of the rotation angle ¢, the
output plane of the plate is not parallel to the detector surface,
and such a pattern does not correspond to the experimental
image. To take into account this circumstance, a correction
was introduced to project the image along the direction of
diffracted radiation.

Model topograms were calculated for two Burgers
vectors, [011] and [101], for a single dislocation loop, whose
directions are shown in Fig. 7. Simulations were carried out
for the angle of rotation ¢ = 302.4° and the parameter o in the
range from —0.004° to 0.004°. Experimental images and
simulation results are shown in Fig. 8.

For a criterion of the correspondence between the
experimental and model topograms, we employed the
convergence parameter L:

n n
L= (Z (chw‘ - Icalc,i)2> <Z Iczalc,i>
i=1

i=1

-1
)

©)

where Ix, and Ic.ic are the intensities of the experimental and
model topograms, and # is the number of image pixels.

The values of the L? factor were calculated according to
formula (9). For the Burgers vector [011], the L? factor was
1.133, while for the Burgers vector [101], it was 1.155. Both
figures indicate good agreement between the model topo-
grams. However, one can see from the images that the
intensity from the middle part of the dislocation loop in the
experimental image is much weaker than from the side ones.
The same is observed in the case of the model topogram for
the Burgers vector [011]. Consequently, the observed disloca-
tion half-loop in the experimental topogram has the Burgers
vector [011]. This result is confirmed by the data obtained
previously in Ref. [22].

To simulate topograms of more complex structures, such
as a bunch of dislocation loops, one has to know the position
in space of each of the half-loops, which depends on the
direction t of each dislocation, the depth d, and the length of
the middle dislocation /. Furthermore, the displacement field
can have a very complex structure, but for the sake of
simplicity of simulations we can assume that the displace-
ment field at a given point is a vector sum of the displacement
fields of individual dislocation loops. The displacement field
of the dislocation bunch can then be represented as

m

u(r) = u(r),

i=1

(10)

where m is the number of dislocation loops, and u;(r) is the
displacement field of an individual half-loop given by
expressions (6) and (7).

To unambiguously determine the orientation of the bunch
in the crystal, it only remains to find the length of the middle
dislocation segment / for each half-loop from the bunch and
the depth d. To this end, as in the case of a single dislocation,
the 3D model (Fig. 9a) was used to determine the depth range
of the dislocation structure, which was 166 < d < 200 pum.
Since the central segments of dislocations cannot be resolved,
their depth was determined by the following algorithm. Based
on the intensity profile of the topogram of side dislocations
(Fig. 9b), their positions D; (i=1,2,...,12) are found
relative to the conventional point (see Table). Since the
dislocation loops are geometrically similar to each other, the
ratio of the distances between the middle segments is equal to
the ratio of the distances between the corresponding side
segments. Therefore,

di—dy  D;— Dy
d,—d,  D,—D,’

i=12,...,n,

Table. Positions D of dislocation side segments and depths d.

Dislocation number i D, um d, pm
1 10.5 166.0
2 26.9 171.9
3 35.5 174.9
4 44.2 178.0
5 49.9 180.1
6 57.6 182.8
7 65.3 185.6
8 73.0 188.3
9 80.6 191.1

10 90.2 194.5
11 97.9 197.2
12 105.6 200.0
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Figure 9. (a) Part of a bunch of dislocation loops. Illustration shows
the proportionality of the length of middle dislocation / to depth d.
(b) Intensity profile of the topogram of side dislocations for determining
positions D between them.

where d; is the depth of the ith middle dislocation
(di = 166 pm, d,, = 200 um), and D; is the position of the ith
side dislocation. In formula (11), only the depths d; are
unknown, and their values are calculated and displayed in
the Table.

Figures 10 and 11 show the experimental and correspond-
ing model topograms before and after noise filtering for
angles ¢ = 122.4° and 316.2°. The choice of rotation angles
is determined from the point of view of contrast, clarity of
their structure, and the absence of extraneous crystal defects
in the immediate vicinity of the selected dislocation fragment.
One can see that, for different Burgers vectors, the topograms
differ in contrast. The middle dislocation segments for the
Burgers vector b = [011] have sharper boundaries than for the
Burgers vector b = [101]. It is noteworthy that the left side of
the studied closely spaced defects has a more complex
tortuous structure (see Fig. 6) and was not considered in this
simulation.

To date, the determination of the direction of the Burgers
vector of a dislocation has been based on the decrease in the
intensity of a diffraction image that satisfies the condition
hb = 0 (here, h is the diffraction vector and b is the Burgers
vector). In this paper, we propose a method for determining
the direction of the Burgers vector of a dislocation half-loop
in an Si(111) silicon single crystal by comparing experimental
topograms obtained by XTT and their model analogs at
different crystal rotation angles. To do this, two parameters
were extracted from the reconstructed 3D model of the cluster

Figure 10. Topographic images of a part of a bunch of dislocation loops for
angle ¢ = 122.4°: (a) experimental, (b) filtered from noise, (c) model with
Burgers vector b =[011], (d) model with Burgers vector b= [101].
Topogram pixel size is 0.96 pm.

of dislocation half-loops which were used in the simulation:
the length of the middle segment of the dislocation and its
distance to the nearest surface of the silicon plate (the middle
segment of the dislocation was parallel to the surface of the
single crystal).

4. Conclusions

The set of methods developed for processing X-ray diffrac-
tion tomography data, which comprises preliminary proces-
sing of experimental images by automatic noise filtering and
criteria for the reliability of the solution, has significantly
improved the quality of the three-dimensional reconstruction
of the spatial arrangement of a cluster of dislocation half-
loops in an Si(111) single crystal.

Furthermore, a mathematical apparatus based on the
Takagi equations has been developed, which permits model-
ing two-dimensional topographic images of dislocation
structures to determine their quantitative characteristics.
For the purpose of testing, this approach was applied to
dislocation structures in Si(111) with already known para-
meters. It is shown that the calculated and measured
characteristics correspond to each other. We can therefore
conclude that the newly developed approach makes it
possible to obtain theoretical quantitative estimates of the
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Figure 11. Topographic images of part of a bunch of dislocation loops for
angle ¢ = 316.2°: (a) experimental, (b) filtered from noise, (c) model with
Burgers vector b= [011], (d) model with Burgers vector b= [101].
Topogram pixel size is 0.96 pm.

observed contrast from various dislocation structures with-
out performing a complex and time-consuming XTT experi-
ment.

In general, such an approach to projection data proces-
sing makes it possible to solve the problems of interpreting
images in diffraction tomography to reconstruct three-
dimensional elastic displacement fields of microsized defects,
which in turn makes it possible to reconstruct the geometry of
3D dislocation structures in a volume of single crystals. The
solution to this problem is sought after in the development of
new functional materials.
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