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Abstract. We briefly review methods for modeling correlated
systems. The concept of correlations is of fundamental physical
importance for systems such as Mott—Hubbard insulators,
high-temperature superconductors, molecular magnets, and
twisted bilayer graphene. With the Hubbard model chosen as
areference, we systematically describe various numerical meth-
ods, starting with the mean-field and related theories that map
the physical system under study onto an effective interaction-
free ensemble. We also discuss the dynamical mean-field theory
(DMFT), which is one of the most common modern methods to
describe local correlations exactly. DMFT-based diagram
methods incorporate effects of nonlocal physics to varying
degrees, with the local correlations taken into account in full.
In addition, we describe the nondiagram fluctuating local field
method, whereby fluctuations of the leading collective modes of
the system can be treated nonperturbatively.
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1. Introduction

The many-particle problem in quantum mechanics reduces to
solving the Schrodinger equation and in the stationary case
can be represented as

h’v?
(_ 4 2m1 +Z<: V(xi,xj) —‘,—ZU(}Q)) ‘[’(xl,x2,...,xN)
i i<j i

XN s (1)

where V(x;,x;) is the potential energy of the interaction
between the ith and jth particles, v(x;) is the potential energy
of the ith particle in an external field, and x; = (r;, ;) denotes
the spatial position and spin direction of the ith particle.

We consider systems of identical fermions, and hence the
wave function ¥(xy,x,,...,xy) is assumed to be antisym-
metric under permutations of its arguments. The term
describing the interaction between particles is the source of
many interesting physical phenomena and simultaneously the
main difficulty in solving the problem. The correlations of
electron motion and the collective modes arising as a result of
the interaction between particles are important in many-
particle systems.

One of the best known examples from the history of
correlated materials is the physics of Mott insulators. By the
time of Mott’s celebrated paper [1], the Bloch-Wilson band
theory of conductivity [2], which actually is a mean-field
approximation, had already been well developed. According
to the Bloch—Wilson theory, current carriers in metals are
regarded as a gas of free noninteracting particles moving in
the effective field of the lattice and other electrons. The band
theory of conductivity predicts metallic behavior for all
substances with an odd number of electrons per unit cell of
the crystal. In [1], Mott made a number of important remarks,
including that some substances, such as nickel oxides, behave

= ElP(Xl,XZ, ‘e
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like insulators under certain conditions, although they must
be metals according to the band theory of conductivity. In
addition, it was noted that these materials have magnetic
properties, and, when heated, their insulating behavior is
superseded by a metallic one. Later, substances with the
above properties became known as Mott insulators, and the
transition of such substances between metal and insulator
phases was called the Mott transition. In [1], Mott suggested
that this phenomenon could be explained by the Coulomb
repulsion of electrons.

Later, in 1963, Hubbard, in a series of studies now known
as Hubbard I, Hubbard II, and Hubbard I1I [3-6], proposed a
model that became known as the Hubbard model. The goal set
by the author, the description of transition 3d-metals, was
achieved, notably, at the cost of a number of simplifications.
In the original Hubbard model, each lattice site has one s-like
orbital, transitions are possible only between nearest neigh-
bors, and the transition amplitudes for all pairs of nearest
neighbors are equal. The Hubbard model Hamiltonian has
the form

Hy ==Y &hée—pd (g +i)+UY Apy . (2)
(ifo j j

where ¢, and 5117 are fermion annihilation and creation
operators with the spin projection ¢ at site i, i, = éifac,,, is
the particle number operator, and —¢ corresponds to the
electron transition amplitude between adjacent sites (i) and
is a matrix element of the Hamilton operator in the basis
made of Wannier orbital wave functions. The coupling of two
fermions at a site is characterized by U. The number of
electrons in the system is determined by the chemical
potential (Fermi level) y; at u = U/2, half of the maximum
possible number of electrons are present in the system. The
Hubbard model defined on a square lattice of dimension d has
the dispersion law e = —ZtZ;lzl cosk, with band width
D =4dt. In some cases (in particular, when modeling
cuprate compounds), the model also includes hops along the
unit cell diagonal; the corresponding coupling is usually
denoted by ¢’. In this review, we restrict ourselves to the case
of equilibrium systems characterized by a temperature T
(which is measured in energy units here and hereafter; in
writing the formulas, we use the system where e =m =
h=1).

The Hubbard model has been successfully used to
describe Mott insulators. In two extreme cases, the free
electron limit (U — 0) and the atomic limit (¢ — 0), this
model can be solved exactly. In the first case, at half filling
n =ny +n; = 1, the model predicts the metal phase, and in
the second, the insulator phase. For a long time, the question
of the transition from one phase to the other remained
unresolved. The complexity of describing the intermediate
state is explained by the need to take both local and band
physics into account. This regime is called correlated. The
Hubbard lattice is a starting point for discussing many
problems that arise in describing correlation effects. Its
generalizations can involve an increase in the number of
orbitals at lattice sites, the possibility of hops between distant
neighbors [7, 8], and the Coulomb interaction of electrons at
different sites [9].

Thus, the Hubbard model is a prototype system in the
physics of strong correlations, mainly due to the simplicity of
its Hamiltonian. At the same time, Hubbard-class models
(typically, multiorbital ones) are also important for comput-
ing real compounds, with the parameters of their Hamilto-

nians determined, for example, based on the results of the
density functional method (see Section 2.3). Current interest
in strongly correlated systems is, incidentally, due to the
discovery in 1986 of high-temperature superconducting
(HTSC) cuprates [10], whose description does not fit into
the Bardeen—Cooper—Schrieffer framework [11]. It is gener-
ally assumed that the appearance of superconductivity in
HTSC cuprates is underlain by phenomena associated with
electron correlations [12], although there are features in the
electron [13] and phonon [14] spectra associated with a
significant electron—phonon interaction. In subsequent dec-
ades, materials with ‘nonconventional’ superconductivity
based on strontium ruthenate [15] and iron [16] were
discovered, and superconductivity in the neighborhood of a
quantum critical point was discovered in materials with heavy
fermions [17, 18]. The search for possible explanations for
superconductivity in these materials also had a significant
impact on the development of ideas about quantum spin
liquids [19], which are still being actively sought today [20,
21]. More details about materials with strong electron
correlations can be found in review [22].

The most recent examples of correlated systems of
fermions are atoms in optical traps [23, 24] and flat-band
van der Waals heterostructures [25]. A demonstrative exam-
ple of the latter is provided by twisted bilayer graphene (TBG)
[26], which, depending on the angle of relative rotation of the
layers and the occupation number, exhibits numerous phases,
for example, superconducting regions, Mott insulator and
semimetal states, states of integer and fractional topological
insulators [27-29], and heavy-fermion phases [30].

The rapid progress and large number of studies in the field
of strong correlations has resulted in a situation where many
representatives of the broader physics community have some
difficulty defining the main methodological results of recent
years and assessing the significance of the progress compared
to, say, the situation at the end of the 20th century. The
available methodological reviews, in our opinion, are aimed
at an excessively narrow target audience: the material
presented abounds with technical details and, while being
without a doubt useful for experts in the field and graduate
students working under their supervision, does not provide
an ‘external’ perspective. We believe that publications are
needed that play the same role as plenary talks at scientific
conferences, i.e., addressed primarily to physicists working in
related fields. This review pursues just that goal: we wish to
reflect the progress in the mean-field and related approaches
in the theory of correlated systems over the entire period of
the development of this field. At the same time, the balance of
clarity and details of the presentation is in most cases biased
toward clarity; for more details, the reader should refer to the
references.

We briefly review the mean-field approaches used in
modeling systems that can be described in terms of the
Hubbard model and its generalizations. Importantly, in our
view, the proposed methods by no means exhaust the possible
research directions. A significant role in solving problems of
the physics of correlated systems is also played by numerically
exact schemes. For example, the now ‘classic’ exact diagonal-
ization (ED) method, based on the diagonalization of the
Hamiltonian or a numerically accurate search for wave
functions and energies of states close to the ground state, is
still being actively developed [31-34]. To wit, recently, in [35],
the ED scheme was used to study the properties of molecular
crystals. A number of papers have been devoted to the study
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of TBG using ED [36-39]. The known limitations of the
method include, first and foremost, the small lattice size
available for calculation due to the computation cost, which
grows rapidly as the size increases.

The abundant family of quantum Monte Carlo (QMC)
methods [40-43] must also be mentioned. QMC methods have
a reputation as a powerful tool for studying correlated
systems [44—46]. The lattice sizes available for calculations
with them are somewhat larger than in the case of ED, but
researchers face another limitation: the so-called sign pro-
blem, whose solution remains an urgent task for experts in this
field [47—-49]. A gratifying approach in this situation is to use
the QMC method combined with other schemes. In [50], for
example, the low-temperature range in the Hubbard model,
inaccessible to QMC due to the sign problem, is studied using
the density matrix renormalization group (DMRG) method.
This combination of methods allowed the authors to
reproduce the ‘striped’ magnetic structure of the system,
which is consistent with the experimental data for HTSC
cuprates [51]. A wide field for the use of the DMRG in its
original form is provided by quasi-one-dimensional systems
[52, 53]. In general, the DMRG occupies an important
place in the toolbox of numerically exact methods in the
physics of correlated systems [54-56] and is often success-
fully applied to solving problems associated with super-
conductivity [57-59] and complex strongly correlated
systems [60, 61]. We note, however, that the application
of the DMRG to 2D and 3D systems remains challenging;
currently, active work is underway to improve the method
in this regard [62, 63]. It is worth noting the use of tensor
networks to describe correlated systems, a direction that
has been actively developing in recent years. In particular,
renormalization group approaches to the construction of
tensor networks allow calculations in the two-dimensional
Hubbard model on lattices with sizes up to 10 x 10, and not
only at zero but also at finite low temperatures [64]. Of
interest is the possibility of using quantum processors to
simulate correlated materials. Modern quantum processors
are capable of simulating the magnetic properties of small
molecules and clusters based on spin Hamiltonians [65, 66].
However, full simulation of more complex systems requires
processors with a large number of long-lived qubits and a high
accuracy of single- and multiqubit transformations. The
practical feasibility of such projects has become an option
due to the introduction of the Bravyi—Kitaev transformation
[67] into the computational procedures, which allowed
mapping the local fermion operators of a system of m
fermionic modes onto O(logm)-qubit transformations in a
system of m qubits [68, 69], which in the future can lead to
achieving a high computational efficiency of quantum
simulators of large-scale correlated systems.

After a brief digression into the methods that remain
beyond the scope of this review, we return to our main
subject. The review is constructed as follows. We start with a
discussion of the family of mean-field methods and the
variational principle in Section 2. Mean-field theory and the
methods based on it take little or no account of correlation
effects. In Section 3, we discuss one of the most popular and
powerful numerical approaches to many-particle physics that
allows taking local correlations into account: the dynamical
mean-field theory (DMFT). Section 4 is devoted to methods
that go beyond the DMFT and, to one degree or another, take
nonlocal correlation effects of various scales into account. A
brief summary is given in Section 5.

2. Mean-field theories

One of the basic approaches to describing many-particle
systems is the mean-field (MF) theory. In the framework of
MF methods, the entire interacting problem is reduced to the
analysis of some selected collection of degrees of freedom in
an effective environment. In the simplest case of stationary
MF theory, a many-particle system is reduced to a single
mode in an external field. A more complex density functional
method in principle allows taking all modes into account,
making the description of the system exact, even if limited in
practice by the lack of information about the exact form of the
density functional. At the same time, the DMFT provides a
complete description of a selected site, which ensures that all
local effects are taken into account, as we discuss in Section 3.

We start in Section 2.1 with a description of the
variational method as a general scheme that allows us to
systematically introduce the MF concept.

2.1 Variational method in many-particle problems

When considering problems in quantum mechanics, directly
solving the Schrodinger equation often turns out to be
impossible. One of the approaches to solving the problem in
such cases is the variational method. In the simplest formula-
tion, the variational method amounts to considering the
ground state energy as a functional of the wave function,

E[W(©)] = W(OIHWQ), (3)

where ( is a parameter of the trial wave function ({).
Minimizing (3) yields an approximation for the wave
function v, and the ground state energy Ej.

One of the most celebrated variational methods in the
physics of correlated systems is the Gutzwiller approximation
[70]. The trial Gutzwiller wave function of the Hubbard-
model ground state, represented as

N

Wa) = [[(1 = Ganin) |¥o) (4)

i=1

is constructed so as to describe the decrease in the contribu-
tion of states with double filling of sites compared to the
contribution of the ground state |¥,) of the noninteracting
system. In this scheme, {, called the Gutzwiller parameter, is
found by minimizing the ground state energy. This scheme is
interesting in that it allows approaching the description of the
Mott transition: a change in the coupling U leads to a change
in the sought value of {, which makes it possible to smoothly
pass from the limit of noninteracting fermions to the atomic
limit. As one of the main disadvantages of the Gutzwiller
method, we note the difficulty in controlling the error and the
possibility of improving the result obtained.

In many cases, instead of a trial wave function, it may be
easier to introduce a trial Hamiltonian whose eigenfunctions
and spectrum can be calculated explicitly. It is then often
convenient to use the Gibbs—Bogoliubov—Feynman (GBF)
inequality [71], which minimizes the free energy F =
—T InTrexp (—H/T) and is therefore applicable to systems
at a finite temperature. The GBF inequality has the form

F<F'+(H-A", (s)

where primed quantities refer to the trial ensemble for which
the solution is known, and {...)" denotes thermodynamic
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averaging over this ensemble. A detailed derivation of (5) can
be found in book [72]. Inequality (5) allows obtaining an
upper bound for the free energy and minimizing it by varying
the parameters of the trial Hamiltonian A’({). The equation
for the optimal value of the variational parameter {, then
becomes

5F|, = 0. (6)

2.2 Mean-field theory

We formulate the stationary MF theory in the context of the
variational method. The effective field can then be regarded
as a free parameter of the trial MF Hamiltonian and its value
can be chosen by varying free energy (5).

We show how this procedure is applied to the Hubbard
model, with each site feeling the action of the external
magnetic field /; directed along the z-axis. The Hamiltonian
of the system hdS the form H = Hy — > (i — iy ), where
Hy is the Hubbard model Hamiltonian, Eqn (2). We write the
trial Hamiltonian in the form

Hvp =~ élée = by —fy) (7)
7 7

where iif" is the effective magnetic field. The GBF inequality
(5) then takes the form

F< —ThhZur + Z<Uﬁﬁﬂjl — w(Ajy + nyy)
J

hj) (ﬁﬁ - ﬁjl)>MF ’ (8)

where Zyr = Trexp (—I:IMF/T).

We note that —T'8InZyg = —(i;; — iy )y 4T, and,
because the trial ensemble is noninteracting, i.e., Gaussian,
it follows that (717 )\p = (A1 )Me () ) me- Next, varying the
magnetic field does not change the on-site charge states:
S3(nj1)mp = —0(j )p- Taking these relations into account,
we apply condition (6) to (8) to obtain the well-known result

i = e o)

+ (hjeff _

ff
h]'e = h.i +

Equation (9) can be solved, for example, by iterations, at each
step calculating

H
(jg)p = Zagpe Tr {ﬁﬂf exp (f % )}

and updating i,

We consider the case of a uniform external magnetic field
hj = h. Then, the trial system is a collection of two ensembles
of electrons, with opposite z-components of spins, character-
ized by the effective chemical potentials u — 4" and p + h°.
Because a change in the chemical potential leads to a change
in the concentration that at low temperatures is proportional
to the density of states p(u) near the Fermi level, it follows
that (A; — 7))y = 2h°Tp(u). Thus, the susceptibility in the
ferromagnetic channel in the MF approximation is given by

LT [— (WU’
For p(1) U = 1, the susceptibility diverges, which corresponds

to the spontaneous appearance of ferromagnetic ordering.

Expression (10) is called the Stoner criterion. In 1938, Stoner
formulated a condition that determines whether a material
with a given band structure is ferromagnetic [73]. As follows
from the Stoner condition, materials with a high density of
states at the Fermi level are ferromagnetic, which explains
why transition metals with an unfilled d-shell, such as Fe, Ni,
and Co, are ferromagnetic.

2.3 Density functional method

An important example of the development of the idea of
reducing a many-particle problem to a single-particle one is
the density functional theory (DFT), currently one of the most
popular methods in quantum materials science and quantum
chemistry [74, 75]; it is theoretically exact and shows good
agreement with experimental data [76, 77].

The DFT is based on the Hohenberg—Kohn theorem [78],
which states that, given the particle number density in the
ground state, n(r), one can uniquely determine the ground-
state wave function y,. Technically, this allows representing
any quantities characterizing the system as density func-
tionals of the number of particles. Further, Kohn and Sham
showed that the spatial density distribution of system (1) with
the Coulomb interaction V(ry,r;) = 1/|r; — 13| can be repro-
duced exactly if we consider a system of noninteracting
particles in the potential

I>s =(r) + J |:f;)/|

&Er’ + e, (11)

where the first term on the right-hand side, v(r), is the external
potential acting on the system, the second term is the averaged
potential of the electrons that make up the system, and the
exchange—correlation energy Uy formally includes all multi-
particle effects. In accordance with the Hohenberg—Kohn
theorem, 0y, is uniquely determined by the system density
n(r).

We emphasize that, from the mathematical standpoint,
Uxe 18 an unknown density functional of the system. The
success of the DFT is due to the existence of good
approximations for this functional dependence. For exam-
ple, in the local density approximation (LDA), Uxc = vxc(r) is
determined only by the density at a given point r (and not at
all points of the system, as should be the case in the exact
theory).

Practical calculations using the DFT consist in iteratively
solving the Kohn—-Sham equations— the Schrodinger equa-
tion for noninteracting particles in the effective field that
depends on their density. At some step of the procedure, given
the effective potential Vs, one finds the density of the system
of noninteracting fermions located in the field of that
potential. This problem reduces to solving the one-particle
Schrédinger equation Hysy,(r) = e, (r) with the Hamilto-
nian

2

~ h A
Hys = —— V> + V5.
2m

Then, based on the found density n(r) =3, W;(r)|*, where
the sum is taken over the occupied states, one constructs a
new effective potential, and so on until the iterations
converge.

The DFT method developed for ab initio Hamiltonians
can be used to construct model lattice systems, in particular,
to find the r and U parameters of the Hubbard model [79, 80].
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However, directly applying the DFT to the description of the
Hubbard lattice itself requires a corresponding reformulation
of the Hohenberg-Kohn theorem and the Kohn-Sham
equations, as was done in [81].

By constructing the original theory, the DFT method is
designed to determine the properties of the ground or
equilibrium state. The eigenvalues ¢; of the Hamiltonian
Hys, initially introduced as auxiliary quantities, are often
used in practice to compute the band structure of materials,
sometimes with good results (see Fig. 2 in Section 2.4). In
what follows, we are interested in single-particle excitations of
thermodynamically equilibrium systems. To analyze them,
we use the Green’s function in the Matsubara representation
[82, 83],

1T
Gy = *J (&(r)é) (0)) exp (ivr) dr,
0

where v = (2j + 1)n7, j is an integer, and ¢(r) = exp (tH) x
¢exp (—tH). The noninteracting ensemble is characterized by
the Green’s function

GO,vrr’ :ZM ) (12)

- v — g
7 '

where i/; and ¢; are single-particle wave functions and energies
obtained within the DFT by solving the Kohn-Sham
equations.

If the system under consideration has translation invar-
iance, and if it is specifically defined on a simple lattice, then
its Green’s function depends only on the difference between
the spatial arguments r —r’, and it is natural to move to the
Fourier transform of the Green’s function G,,. The Kohn—
Sham equations are then solved by plane waves with the
dispersion law g, and the Green’s function in the DFT
approximation has the form

(13)

The use of the Matsubara representation requires further
comments. We use it here and below for the uniformity of
presentation, because, for the DMFT family methods (see
Sections 3 and 4), computations of equilibrium systems are
actually done only in this representation. However, the real
spectrum of electron excitations is determined by the density
of states A(w) = —(1/m) >\ Im Gk, where G is the Green’s
function at real frequencies. (Here and hereafter, the symbol
for the summation over momenta includes the factor 1/N,
where N is the number of lattice sites, and hence ), 1 = 1.
Similarly, summation over Matsubara frequencies includes
the factor T.) The function G, can be obtained by an analytic
continuation of G,i; in the above formulas, this continuation
corresponds to the substitution iv — w + 0.

2.4 GW method
The DFT calculations of the electron spectrum are insuffi-
cient in many cases: interaction effects lead to a renormaliza-
tion of the excitation spectrum, which formally corresponds
to the appearance of the self-energy X,k defined by the
relation G! = G, — Z.x. A significant part of the studies
of correlated systems is devoted specifically to the calculation
of the renormalization of their electron spectrum.

A possible avenue for further development is offered by
perturbative methods, starting from the DFT result as the

Figure 1. Block diagrams of the GW method: self-energy X in the GW
approximation, the Dyson equation relating Green’s function G and the
self-energy, and the equation for screened interaction W in the random-
phase approximation.

zeroth approximation. As an example of this approach, we
consider the GW method. This is a perturbative diagram
method (Fig. 1) in which the self-energy function X is
expanded into a perturbative series in the screened Coulomb
interaction W, and only the first term of the expansion is
preserved (for simplicity, we write equations for a translation
invariant system),

2k =— Z GroxqWaq,
Qq

(14)

where W, is the Fourier transform of W. We note that, in
contrast to the Fourier transform of the Coulomb interaction
Vg4, Waq also depends on the bosonic Matsubara frequencies
Q, thus defining not only the screening but also the
retardation.

For the screened interaction, we can use the random phase
approximation [84]:

qu = Vq + Z VqGQ_wq_ka?k WQq . (15)
vk

The above expressions for X, G, and W make up a self-
consistent system of equations. If the starting point is Gy,
taken from calculations by the DFT method, then, in order to
avoid double counting of the interaction effects, we must
subtract the exchange—correlation potential from the GW
self-energy, and hence the Green’s function becomes

1
ka '

Gy=——"—"—
-1
GO,vk + Uge —

(16)

where vy, is the exchange—correlation energy (a constant in
the spatially homogeneous case).

Figure 2 shows a comparison of the results of DFT and
G W calculations of the band gap for various substances. The
LDA gives the band gap of the correct order of magnitude for
many materials, but systematically underestimates its value
quantitatively. It can be seen from the figure that the GIW
approximation significantly increases the LDA accuracy.
However, the method predicts nonphysical effects near the
atomic limit and also suffers from the self-screening problem
[85, 86]. To overcome these difficulties, the G method can
be combined, for example, with corrections to vertex
functions, which corresponds to taking quantum effects into
account in the exchange—correlation component of the self-
energy function X [87, 88].
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Figure 2. Comparison of theoretical and experimental values of the band
gap for semimetals (left-hand side, negative gap), semiconductors (middle
part), and insulators (right-hand side) obtained in the DFT (red squares)
and GW (blue dots) frameworks [89].

3. Accounting for local correlations

The GW method, which is limited to only one self-energy
diagram, is not applicable to strongly correlated systems, for
example, to the description of Mott transitions. The minimal
description of Mott physics seems to require explicitly
including the many-particle effects associated with the
presence of Hubbard terms in the Hamiltonian, as is done,
for example, in the Gutzwiller approach. We also note the
LDA + U method [90], where a simple functional correction
to the LDA result allows taking correlations into account at
the static level. The LDA + U method actually turns out to be
useful in practical calculations of the properties of transition
and rare-earth metal compounds with moderate correlations.

A major breakthrough in this area was paper [91], where,
based on the MF approximation, a generalized version of the
LDA + U method was developed in the limit of a large
coordination number, called the local-impurity self-consis-
tent approximation (LISA). Later, the method became known
as the DMFT, emphasizing the possibility of accurately
taking local correlations into account in that framework.

We first consider a method that is ideologically related to
the DMFT and which had appeared somewhat earlier, the
coherent potential approximation in the theory of inhomoge-
neous systems.

3.1 Anderson model. Coherent potential approximation
The Anderson model in general describes a class of systems
with so-called diagonal disorder. The Hamiltonian of such a
system can be expressed as

H=—t>"¢lei+> vy, (17)
(ij) i

where v; is a random potential at the ith site with specific
values corresponding to some probability distribution. For
example, for a model of a binary substitutional alloy whose

lattice is made of two types of sites, A and B, the potential
takes one of the two random values v and v®. The v; on
different sites are not correlated. We pose the problem of
finding the Green’s function of such a system, averaged over
realizations of the random potential.

A convenient approach to solving the Anderson model is
the coherent potential approximation (CPA) [92]. The idea of
the CPA is to consider an auxiliary system given by a
collection of isolated impurity problems — decoupled sites,
each of which feels a random potential v; and the effective
hybridization 4. The latter is determined so as to best describe
the average effect exerted on a given site by its neighbors on
the original lattice (17). Physically, it is important that this
effect be delayed: the lattice response is determined by the
state of the site not only at the current time but also at earlier
times. This corresponds to a frequency-dependent hybridiza-
tion 4 =A4,. The impurity problem thus becomes non-
Hamiltonian and is described by the action written in terms
of Grassmann variables ¢ and ¢, [84, 93]:

S[c;,cj] :ZCJ(—iV—FUj—FAv)CV. (18)

v
We write the impurity Green’s function averaged over the
realizations of v as

_ ! _ p(v)
G = <ivaijv>v:Z v—v—4,’

v

(19)

where p(v) defines the probability distribution for random
impurities. The practical calculation of G, is straightforward:
for example, for a binary alloy, the sum in (19) contains only
two terms. The impurity self-energy

S=iv—4,—(G)" (20)
determines how disorder modifies the Green’s function of the
impurity problem ‘on average.” The basic assumption of the
CPA method is that, for the original problem (17), on
average, disorder leads to the same effect: the lattice Green’s
function can be expressed as

_ 1
Tiv—a— 2,

(21

Gvk

The above system of equations is additionally subjected to the
condition that the properties of the lattice sites be modeled by
the impurity problem in the best way possible. For this, we
require that the Green’s functions of the original and
auxiliary problems locally coincide: G, = >, Gx. This equal-
ity is the self-consistency condition of the method, stating that
the 4, hybridization must be chosen such that the condition
holds at any Matsubara frequency.

This method successfully predicts the optical and trans-
port properties of alloys [92]. Importantly, the method has an
MF nature: in fact, for each site, the disordered environment
is replaced by an averaged one, described by the 4,
hybridization (Fig. 3). Accordingly, the CPA does not take
nonlocal correlations into account, which complicates its use
in those cases where the environment of each site strongly
fluctuates, as in lower-dimensional systems and in Anderson
insulators [94, 95]. In addition, the CPA does not reproduce
the corrections to conductivity at low temperatures due to
weak localization, and it also entails difficulties for systems
with off-diagonal disorder [92].
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Figure 3. In the CPA framework, a system with disorder is replaced with an
ensemble of problems for each type of impurity with weights correspond-
ing to how often a given impurity occurs in the alloy.
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3.2 Dynamical mean-field theory

The DMFT is one of the most important methods for
describing correlated systems and allows accurately describ-
ing local on-site fluctuations. We first consider a system of
self-consistent DMFT equations using Hubbard model (2) as
an example, with the Hamiltonian conveniently represented

as
I:IH = Z I—A[jat + Z Skélidék” B (22)
J ko

where H = Uiy, — u(fj; + ;) is the Hamiltonian of an
isolated Hubbard atom.

We first introduce the basic DMFT equations without
formal justification, as we did in Section 3.1 for the CPA, and
then show how these equations can be obtained from a
variational principle. As in the derivation of the CPA
equations, we introduce an auxiliary system given by a
collection of impurity problems, each of which corresponds
to a lattice site with an effective hybridization 4,, the so-called
Anderson impurity model (AIM). The action of the impurity
problem is given by

Slej, ¢ = 5%0ef )+ D el dveyin, (23)

where §* [c;, ¢j] is the action of a Hubbard atom correspond-
ing to the Hamiltonian H;‘t. To simplify the formulas, we
assume that the system symmetry is not broken, i.e., the
hybridization is the same for all sites and is independent of
spin.

We now have to find the Green’s function G of the
impurity problem. In the case of the CPA, the Green’s
function could be found analytically, but for hybridization
of a general form, such a problem does not allow an analytic
solution. However, there are algorithms and numerous
software implementations, so-called AIM solvers, that allow
solving the impurity problem numerically rather efficiently
[96-100]. We note one more difference between the CPA and
DMFT. In the CPA, as follows from (19), a change in
hybridization at some frequency leads to a change in the
impurity problem Green’s function only at the same
frequency, whereas, in the DMFT, G, is a functional of the
hybridization 4,, defined for the entire frequency spectrum.

If the Green’s function of the impurity problem is known,
then it is easy to find the self-energy >, =iv+u— 4, — g;‘.
Substituting X, for the lattice self-energy, we again obtain an
expression for the DMFT lattice Green’s function, which
coincides with (21). The Green’s function can also be
expressed as

1

Gx=—"F"7"—.
g;l + Av — &k

(24)

(25)

gv = Z G-
k

In practical implementations of the method, an iterative
procedure is followed. The first step consists in adopting
some assumption about the hybridization function, for
example, setting 4, = 0. At the nth iteration, hybridization
changes according to the rule

-
s —ap v e(X6) e
k

where the Green’s functions of the lattice and impurities are
obtained for the hybridization 4" by the method described
above, and & ~ 1 is a parameter of the numerical procedure
that must be chosen so as to ensure the best convergence of
iterations. It is easy to see that a fixed point of such a
transformation corresponds to the satisfaction of condition
(25). It can also be shown that, in the limit of a noninteracting
system, the described procedure with ¢ = 1 already leads to a
solution after the first iteration.

We must now reconsider the question of the use of the
Matsubara representation. Like the methods described
above, the DMFT equations can be formulated using
both Matsubara and real frequencies. However, numerical
schemes for solving the Anderson impurity problem turn
out to be much easier to implement for the Matsubara
representation (a discussion of the sources of difficulties
associated with the so-called sign problem and modern
progress in solving them can be found in [101, 102]); in
practice, therefore, DMFT calculations for equilibrium
systems are always performed in the Matsubara represen-
tation. There are methods that allow analytically continu-
ing numerical results to the real frequency axis [103, 104]
(although such a problem is ill defined) and thereby
construct the spectrum of the density of states of the
system.

From the standpoint of diagram techniques, the DMFT
can be considered an approximation in the sense that the
diagram series pertain not to the entire lattice but to a single
site. Accordingly, when calculating the self-energy, the full set
of diagrams is taken into account, but for each of them,
instead of summing over all positions of the internal sites,
only one of them is taken (Fig. 4). If we recall that the
probability of hopping from site to site (nonlocal effect)
decreases in inverse proportion to the coordination number
Z, it becomes clear that the self-energy function becomes
purely local in the large-Z limit. In other words, the DMFT is
an exact method in the limit Z — oo.

We now show how the DMFT equations can be obtained
using the GBF variational method. The action corresponding
to the Hubbard model Hamiltonian can be represented as

Slet ] = ZS[C;, ol + chfkg(ak —4,)Cke
J

vko

o

Figure 4. DMFT self-energy is the sum of all local Feynman diagrams.

(26)
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where we took into account that 3 _; el o Cvic = Dk ¢ Cikos the
impurity model action § [c ¢l is deﬁned by formuld (23). We

consider the Gaussian approximation for S [c ¢}, which
exactly reproduces the free energy

F=-TIn Jexp (fS[c,»T, cj]) D[cf, ¢l
and the impurity problem Green’s function

5 g —— Z wrr cv,c, In gv) . (27)

The DMFT approximation can be regarded as the result of
replacing S[ch,cj,-] in lattice action (26) with approximate
expression (27)

S[Cf,c]fifz g + 4, *Sk) CikgCrke — h’lg‘}. ( )

vko

As can be seen, approximation (28) indeed corresponds to the
Green’s function (24). We can hence also obtain the DMFT
approximation for the free energy of the system. After
substituting S, integration gives

F= N]—'—&—TZl

vka

gv (29)

In tensor notation, the second term on the right-hand side of
(29) can be written as —T'In[l + G(4 — ¢)].

In accordance with the GBF variational principle, we
require that F be invariant under small variations in 4. We
have to calculate the total variation, i.e., take into account
that varying the hybridization 84 entails varying the self-
energy 02. The calculation leads to the equation

> (G —G,)8%, =0.

k

(30)

Because the variation 8% can be arbitrary, self-consistency
condition (25) follows from Eqn (30).

Being a formally exact method in the limit of a large
coordination number, the DMFT has been successfully used
to describe many real systems. In particular, this method
ensures a good description of the above-mentioned Mott
transitions caused by the Coulomb repulsion of electrons at
lattice sites [105, 106]. Various hybrid schemes, for example,
GW + (E)DMFT [107-109], also provide options for solving
physical problems.

Finally, we note that the DMFT method can easily be
generalized to the case of symmetry broken either sponta-
neously or by external fields. The hybridization then remains
spatially local, but turns out to depend on the spin and the
lattice site number, and may in addition contain anomalous
components, which motivates rewriting the formulas in
tensor form. In particular, the Green’s function then takes
the form

T (1)
G +4-c¢

where the tensors G and A are diagonal in the (r,v)

representation but have off-diagonal spin components. On

the contrary, the ¢ tensor is diagonal in spin and frequency

indices in this representation, but is not diagonal with respect

to the coordinate indices. Self-consistency condition (25) then
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Figure 5. Spectral density (density of states, DOS) as a function of real
frequency w for different ratios U/D of the interaction strength to the
band width, calculated using the DMFT. Four top curves correspond to
the metal case, bottom curve (U/D = 4) corresponds to an insulator. For
intermediate values of U, a peak at w = 0, which is characteristic of a
single-site DMFT [111], is clearly visible.

implies that the diagonal components of the lattice Green’s
function in the coordinate representation coincide with the
solution to the impurity problem at each site.

It is worth mentioning one of the DMFT problems, which
is typical for one-site impurity problems. It follows from
Luttinger’s theorem that, if the self-energy of a Fermi liquid
is local, then its density of states at the Fermi level is
independent of the interaction strength. It follows from such
pinning of the density of states at the Fermi level that, for
metal systems close to the Mott transition, the DMFT
predicts a peak, characteristic of the Kondo problem, at the
center of the emerging Mott band gap (Fig. 5); this peak exists
as long as the system remains a Fermi liquid. Being an artifact
of the method, the peak does not give rise to additional
difficulties in predicting the properties of real materials,
however [110]. This artifact disappears when using multi-
orbital models or cluster methods, which are described in
Section 3.3.

Cases of successful use of the DMFT include, in
particular, the description of the Mott-insulator-metal
phase transition in vanadium oxide V,0; doped with
chromium [112]. Tt is known from experimental data [113]
that V,0s3 is an insulator. Doping V,0; with chromium
increases the electron mobility, which leads to a decrease in
the effective Coulomb repulsion between electrons. The DFT
incorrectly predicts the metallic state for underdoped V,Os.
Figure 6 shows the densities of states for V,03 calculated
using the LDA and LDA + DMFT methods. The density
functional method gives a nonzero density of states at the
Fermi level and incorrectly predicts undoped vanadium oxide
to be a metal. However, the combination of the density
functional theory with the DMFT, LDA + DMFT, shows a
transition from the metal to the Mott insulator with an
increase in the Hubbard interaction U. We also see in Fig. 6
that the characteristic width of the LDA + DMFT spectral
function is larger than for the LDA method. This is related
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Figure 6. Spectral density as a function of energy E calculated using the
LDA and LDA + DMFT methods at two Hubbard interaction strengths
U =4.5and 5.5 eV for the Mott insulator V,03. E = 0 corresponds to the
Fermi energy, black and blue curves refer to the respective orbital states
ajg and ef. LDA erroneously predicts the final density of states at the
Fermi level (metal), while LDA + DMFT with a sufficiently large
U = 5.5 eV predicts a gap in the density of states (insulator) [112].

to the renormalization of the effective mass of the density
of states, which follows from the frequency dependence of
the self-energy X,. Among the recent achievements of the
DMFT, it is worth noting its application to two-layer
twisted structures, in particular, WSe, and MoTe,;/WSe,,
whose magnetic and metal-insulator phases are success-
fully described within this approach [114].

3.3 Cluster generalizations

of the dynamical mean-field theory

Cluster methods are based on the idea of approximating the
entire lattice with a large number of degrees of freedom by a
small cluster placed in an effective environment simulating
the remaining degrees of freedom [115]. The cluster DMFT
scheme is in many respects similar to the one-particle scheme.
First, the cluster degrees of freedom are determined and the
exact Green’s function and self-energy function are found.
Then, the self-consistency condition is formulated. At the
final stage, the relation between the cluster and lattice self-
energy functions is established [116].

The main methodological problem of cluster methods is
that the choice of the effective hybridization and hence the
relation between the lattice and cluster Green’s functions is
ambiguous. Various cluster schemes are known. We confine
ourselves to a brief comparison of the most common
approaches; a detailed analysis of various cluster methods
and a comparison with the results of other well-known
approaches can be found, for instance, in reviews [115, 117].

The simplest cluster scheme is the so-called cellular DMFT
(CDMFT). In the CDMFT approach, the original system is
represented as a superlattice, each of whose cells contains
several lattice sites of the original system. For example, in the
simplest version of the Hubbard model, cells of 2 x 2 atoms
are selected, after which one-site DMFT equations can be
used, with each superlattice cell regarded as a multiorbital
system hybridized by a self-consistent field. By construction,
the CDMFT takes intersite correlations into account within
each superlattice cell. This inclusion of nonlocal effects, even
if partial, allows the CDMFT to yield a number of results

that are unavailable in the one-site scheme [118, 119]. In
particular, unlike the DMFT, CDMFT shows the formation
of a pseudogap preceding the Mott transition [120, 121]
(Fig. 7). In one of the possible modifications [122], the
CDMFT with 2 x 2 clusters predicts d-wave superconductiv-
ity in the doped Hubbard model.

However, the CDMFT suffers from a number of
disadvantages associated with the artificial violation of
periodicity when the initial system is divided into clusters. In
particular, except for the minimum 2 x 2 cell, the CDMFT
cluster sites turn out to be nonequivalent: one part of them
belongs to the cluster boundary and the other part is located
inside it. This problem is solved in the dynamical cluster
approximation (DCA) method [123-125], where periodic
boundary conditions are introduced for cluster sites, such
that the cluster wave vector ranges the values from the
discrete series K, , =2mj, /Ly ,,0 <jy,, < Ly, with the
overall cluster size No = L, x L,. The wave vector of the
original lattice can be represented as k = K +k, where
|ky,y| < m/Ly . The self-energy in the original lattice prob-
lem is assumed to depend only on K, 2 Kik = 2Ks and
coincide with the cluster self-energy. Thus, the Green’s
function of the complete problem has the form

1
Ok = Ok = rw
K+k vK

(32)
The DCA is therefore said to lead to a coarse-graining of the
space of wave vectors.

Given some hypothesized 2,k and hence G, g i, we can
construct a coarse-grained Green’s function

~ N,
G"’K = WCZ Gv,K+f( .
k

The impurity problem then has the hybridization 4,x =
v —eg — 2K — G~‘](1 and the local interaction U. Calculating
the Green’s function G using the cluster solver allows
finding the next iteration for the cluster self-energy 2,
which closes the chain of self-consistent DCA equations.

As the cluster size increases, the DCA method provides
faster convergence of results than the CDMFT: DCA
corrections decrease quadratically as the cluster size
increases, while the CMDFT ones decrease linearly [126].
We note, however, that, even for resource-demanding
calculations with a 4 x 4 cluster, the achievement of practical
convergence of the result with an increase in cluster size
cannot be considered established in the DCA. Nevertheless,
an important advantage of the DCA method is that calcula-
tions with it allow reliably obtaining superconductivity and a
pseudogap in the two-dimensional Hubbard model [124, 125].

A further search for the best cluster method has led to the
emergence of the variational cluster approximation (VCA)
scheme [127-130]. In the VCA method, various cluster
theories are considered from the standpoint of the Luttin-
ger—Ward functionals that generate them. The optimum
cluster scheme corresponds to the minimization of this
functional. Figure 8 shows an example of calculating the
antiferromagnetic and superconducting order parameters
[130] with the VCA method for the two-dimensional
Hubbard model.

Speaking about the disadvantages of cluster methods, we
must first of all note the high computational complexity,
which sharply increases with the increase in cluster size. In
addition, in any case, cluster methods cannot describe the
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Figure 7. Density of states (DOS) as a function of the actual frequency w calculated using the CDMFT for clusters ranging from 1 to 4 sites in size at
different interaction strengths U. As the cluster size increases, a gap in the density of states opens at progressively lower U, which do not correspond to the
Mott insulator state, possibly indicative of the existence of a pseudogap in the two-dimensional Hubbard model [120].
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Figure 8. Dependences of order parameters for d-wave superconductivity
(Dy) and antiferromagnetism (M,) at zero temperature on electron
density n for 2 x 4 clusters at U = 6¢, 8¢, and 12¢ calculated using the
VCA [130].

physics associated with the existence of long-wavelength
collective fluctuations on scales exceeding several lattice
constants. For a number of many-particle systems, including
planar and layered (low-dimensional) ones, leading collective
modes turn out to be highly delocalized, and their fluctua-
tions can occur in a wide range of amplitudes. In such cases,
taking only local fluctuations into account on the cluster scale
turns out to be insufficient, and further development of the
methods is needed. Going beyond the DMFT in different

directions is possible. Recently, considerable attention has
been devoted to the development of a family of diagram
methods constructed on top of the result of a single-site
DMFT scheme [131]. We review the main representatives of
this family of methods in Section 4.

4. Post-DMFT methods

4.1 Accounting for nonlocal correlations

using diagram methods

In the context of constructing post-DMFT theories, diagrams
include strongly renormalized vertex functions that describe
the local physics, and lines represent nonlocal effects. Various
methods of this family differ from each other, usually in the
way of renormalizing the vertex functions and/or in choosing
the retained diagram types. This approach, unfortunately,
has a number of disadvantages, significant among which is
the rapidly growing complexity of practical calculations when
introducing new expansion terms that are important for
taking nonlocal correlations into account.

In Sections 4.1.1-4.1.3, we consider several diagram
methods. We start with a description of the dual variable
formalism as an illustration of the general approach to the
construction of perturbative diagram theories and then
proceed to specific implementations.

4.1.1 Methods of dual variables and the dynamical vertex
approximation. We again consider the Hubbard action in
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Eqn (26). Each term Y, ¢l (ex — 4,)cuo in the partition
function Z = [exp (—S)D[c',c] of that system can be
subjected to the Hubbard-Stratonovich transformation
[132, 133]

exp [—cl(ex — 4y)c] = Gy(ex — 4y)

XJ exp {— [g;l(ffc + ')+ G, (e — Av)ilftf] }D[fi,f] )
(33)

where ¢ and ¢ are Grassmann variables corresponding to a
chosen mode (v,k, ¢), and fand /T are dual fermions (DFs)
[134]. After this transformation in the partition function, we
can formally integrate over the original variables ¢! and c,

with the result
2=z [ep {= 30 - (- 20706, Al f
vko

Z ANA }D[ﬂ,f},

(34)

where Z; is a factor arising from the Hubbard—Stratonovich
transformation; for the dual potential V] ﬂ, /;], the Taylor
expansion coefficients are known: they are given by the total
vertex functions of the impurity problem. In the leading
order, for instance, we have

VI B == > 00 sefiafisiall g o forior

w'Qaoa’

where 7@ is the full two-particle vertex function of the
Anderson impurity problem,

gv g ’+Qg gv+an’Q -T g g 1690

yu ’Q

+T7'6,1G, 108, (35)

Vo

Green s functlon [83] in the Anderson impurity problem,
=Z- j .exp (=8)D[cT, ¢] is the averaging over the
1mpur1ty problem, and §,, is the Kronecker symbol.

The advantage of switching to DFs is that, by appro-
priately choosing the hybridization 4, one can take some of
the correlations into account in the procedure of moving to
the new variables and thus significantly suppress correlations
in the dual system. This motivates constructing a diagram
expansion about local theories in powers of V[f;', f],
expecting the expansion to have good convergence proper-
ties. For example, if we choose the DMFT hybridization to be
A, then the zeroth order of the resulting theory reproduces the
DMFT, the first-order correction vanishes, and the second-
order correction allows reproducing significant effects of the
physics of HTSC cuprates that are absent on the single-site
DMEFT level: the formation of arcs and pinning of the van
Hove singularity on the Fermi surface [135].

By analogy with the DF method, one can construct a
transition procedure to dual bosons (DBs) [136]. In the case of
DBs, the diagram decomposition of the dual system is carried
out around the extended DMFT (EDMFT) [111]. This
approach works well in describing systems with pronounced
collective (bosonic) modes. However, the Firtz ambiguity,
which is characteristic of all bosonic methods of this kind,
must be taken into account: the final result of calculations

where g< 0 = (cT cv+gv,,c§,+9 ,1Cvgr) s the two-particle

strongly depends on the specific method for dividing the
fermion—fermion interaction into channels [137, 138].

Another possible generalization of the DMFT method is
the dynamical vertex approximation, DI'A [139], based on the
assumption of the locality of the full irreducible two-particle
vertex function in the two-dimensional Hubbard model,
which is confirmed by cluster computation data [140]. This
approach allows using the Anderson impurity problem to
calculate local vertex functions, which are then used to
calculate one-particle and two-particle Green’s functions of
the full problem using parquet equations or ladder diagrams
(see Section 4.1.3). The whole procedure is entirely analogous
to the DMFT, but at the two-particle level: the self-
consistency condition states the equality of the local part of
the completely irreducible vertex function of the Hubbard
model and the completely irreducible vertex function of the
impurity problem. The set of diagrams generated by DT'A is
quite close to the DF perturbative series, although there are
some variations [141].

We also note a number of methods in which the single-
particle Green’s functions are subjected to the procedure to
establish self-consistency. For example, in the DMFT + Xy
approximation [142, 143], a characteristic spatial scale &
associated with nonlocal fluctuations is introduced into the
self-consistent DMFT equations. In turn, the DMFT+
FLEX method [144], which includes loop and ladder
diagrams, can be interpreted as a simplified version of the
parquet equation method described in Section 4.1.3, in the
sense that DMFT + FLEX allows considering fluctuations in
different channels simultaneously.

One of the main advantages of the diagram methods
mentioned above is the fundamental possibility of simulta-
neously taking local and nonlocal effects into account. But
the practical applicability of these methods, unfortunately, is
severely limited due to high computation costs entailed by
their implementation. For example, the diagram series of the
DF, DB, and DI"A methods include local four-point vertices,
which requires calculating an object with four external
frequency indices, and, in the case of multiorbital systems,
also with orbital indices.

4.1.2 TRILEX and D-TRILEX methods. In 2015, an attempt
was made to overcome the limitations on the range of
nonlocal correlations without overstretching the method in
terms of computation costs. In [145, 146], a diagram
computational scheme, TRILEX (TRiply-Irreducible Local
EXpansion), was proposed, based on the self-consistent
approximation of the vertex function A that describes the
fermion—boson interaction.

The first step in the TRILEX construction scheme is the
separation of the interaction term into two channels, spin and
charge, using the Hubbard-Stratonovich transformation.
The auxiliary bosonic fields introduced in this way are
coupled to the fermionic ones, which is described by the
effective fermion—boson vertex A renormalized by the
interaction. This quantity enters the expression for the self-
energy function and the polarization operator via the Dyson
equation

Su=Gon— Gyl =— ZA'7G‘,+Q,k+qW Ao (36)
Qqn

Pl =Wohy = Wad =2 XGuianigGudlyy, (37)
vk
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Figure 9. Diagram of the nonlocal self-energy function of (a) TRILEX and
(b) D-TRILEX methods. G and W (G and W) are fermionic and bosonic
propagators in the direct (dual) space.

where Gy, W, and G, W are the lattice Green’s functions of the
fermionic and bosonic fields, respectively free and with
interaction, and 4 is the free fermion—boson vertex (Fig. 9a).
The index # ranges in the values 0, x, y, z, with n =0
corresponding to the charge channel and the other three
values corresponding to the spin polarization components in
the magnetic channel.

The Dyson equations are formally exact. The TRILEX
approximation itselfin its simplest form amounts to assuming
the fermion—boson vertex function to be local and coincident
with the vertex function of the impurity problem, the action
for which has the form

Sf,b [CT, ¢, d] = Z Cv]Lko'g()_,tl'ko'c"’k‘7

vko

1 ~1
) Z quWfl)q d_g, —q
Qq

E :E :E : g
+ /“"chk(rgo'o"CV?Lka?quO”d*Q-,*[I .
kq

vQ oo’

(38)

The requirement that local functions coincide with those
of the auxiliary impurity problem ()., Gx =G, and
>k Wok = Wo) closes the TRILEX system of equations.

By construction, it is claimed that TRILEX, on the one
hand, describes the local (Mott) physics, and, on the other
hand, takes long-range correlations into account. This allows
regarding TRILEX as a full-fledged alternative to the DMFT
cluster versions. For example, as shown in [147, 148], single-
site TRILEX is capable of describing d-wave superconduc-
tivity, which in terms of the DMFT is only possible in its
cluster generalization. Good results can be obtained by
applying the method to models where the spin—orbit
coupling plays a significant role in the background of a
strong local interaction [149]. Another important advantage
of the TRILEX method is that, in contrast, for example, to
the related GW + DMFT method [150-153], it takes both
charge and spin fluctuations into account. However, as in
other schemes based on the division of local interaction
into channels, TRILEX suffers from the Firtz uncertainty
problem. The current lack of a systematic strategy to resolve
the Firtz uncertainty makes it impossible to apply the
TRILEX method to the description of interacting fermionic
systems in the regime of strong bosonic fluctuations in several
channels or to the description of multiorbital systems, in
particular, isotropic spin fluctuations in perovskite materials
[154].

An attempt to overcome this obstacle was the cluster
generalization of the TRILEX method [155]. In that case, the
Firtz parameter, which determines the division of interaction
into channels, is considered free, to be determined so as to

ensure the best convergence of the numerical scheme.
However, this does not free the cluster TRILEX method
from the previously noted shortcomings of cluster general-
izations of the DMFT, including translation symmetry
breaking: the diagram of a nonlocal self-energy function
within a cluster varies between neighboring clusters. It was
also shown in [156] that the asymmetry of the TRILEX
diagrams for self-energy and polarization functions leads to
incorrect results for susceptibility in the strong-coupling
regime.

The above problems were solved by the authors of a
related method called dual TRILEX (D-TRILEX) [157, 158].
D-TRILEX is another diagram computational scheme based
on partial bosonization (via the Hubbard-Stratonovich
transformation) and starts with a transition to dual vari-
ables, which allows distinguishing among fermion—fermion,
boson—boson, and fermion—boson interactions; as usual, the
consideration is limited to the lowest order in the interaction
of fermions and bosons,

~ - 1 L1
Sf*b = Z .f;'I(ﬂGt'kzlj'.f;’kG - EZ bgq W{ﬂ)q bi!),fq

vko Qqn
§ :} :} : nopetoon n
+ AL'Qf;'kUO—JG’f;"+ka+q=J/be,fq ’ (39)
kq vQ noo’

where f1 and f are dual fermionic variables, b are dual
bosonic variables, and W is a dual bosonic propagator in the
absence interaction. The boson—fermion vertex A of the
impurity problem in this formalism is a nonrenormalized
lattice-model vertex S¢_. The highest of the discarded terms
in expansion (39) contain the four-point vertex y %) describing
the fermion—fermion interaction, neglecting which simply
turns out to be impossible. On the other hand, direct
calculation of @ is a rather resource-demanding computa-
tional problem. Therefore, the D-TRILEX formalism is
constructed so as to select a specific type of bosonic
interaction so as to minimize the contribution of the y?
vertex to the diagram series.

Next, the self-energy function and the polarization
operator are determined by the leading (second) order of the
expansion in A:

ka = — Z A,‘1,+nyQG~v+Q,k+q quA:ZQ ’ (40)
Qqn
i)gq =2 Z A g _oGriaxraGudly. (“41)

vk

We note that the A vertices enter the D-TRILEX
expressions in a symmetric way, unlike those in similar
expressions of the TRILEX method (cf. Figs 9a and b). A
detailed discussion of the specifics of constructing such
diagrams in dual variables is offered, for example, in [159].
An expansion of the full vertex function similar to that used in
D-TRILEX can also be found in paper [160], published
almost simultaneously with [157]. The authors of [160] called
this approach the single-boson exchange (SBE) decomposi-
tion.

The D-TRILEX method is based in the approximation
of the DB scheme, which means that this method inherits
the self-consistency property from the parent scheme and
does not therefore suffer from the Firtz ambiguity
problem. The division into spin (s) and charge (c)
channels is done for an artificially introduced coupling,
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Figure 10. Comparison of results of calculations for the real and imaginary parts of the nonlocal component of the self-energy function at the first
Matsubara frequency, obtained using the DF method (DF-ladder), D-TRILEX with the decomposition U¢ = —U® = U/2 (TRILEX?), and D-TRILEX

with the Ising decomposition of the coupling (TRILEX?) [157].

and the criterion for choosing a specific division type
U¢=—-U®=U/2 is, as mentioned, the minimization of
the contribution of diagrams discarded in accordance with
the adopted approximation.

Among the advantages of D-TRILEX, we note the
comparative ease and low computation costs of its imple-
mentation, which, notably, allows applying this method to
the description of systems, such as indium selenide, with
strong Coulomb correlations in the background of
significant electron—phonon interaction [161]. Moreover,
the method allows obtaining results of the same accuracy
as, for example, the much more resource-demanding DF
(Fig. 10). We also note that D-TRILEX is free from non-
physical divergences of the self-energy function that arise in a
number of approaches using the inversion of the response
function matrix [162—164].

D-TRILEX is a self-consistent diagram extension of the
DMFT that takes collective electron fluctuations into
account. Importantly, it can be successfully applied to the
description of multiorbital systems [154]. At the time of
writing, this method is the only one that allows describing
nonlocal correlations in strongly interacting multiorbital
systems. The authors of a series of papers [165-167] have
developed a full-fledged multiband version of the D-TRILEX
method and successfully applied it to describing the proper-
ties of the generalized Hubbard model on cubic and square
lattices, the two-orbital Hubbard—Kanamori lattice, and a
two-layer Hubbard lattice.

To summarize, we can characterize methods of the
TRILEX type as an attempt to combine the exact
description of local fluctuations using the DMFT and the
approximate description of nonlocal effects at the level of
the GW method. The principal point here is that nonlocal
fluctuations are included into consideration without taking
the mutual influence of the channels into account. How-
ever, this is known to be insufficient for a number of
physical systems, including cuprates, because collective
fluctuations occur there in several channels simulta-
neously and can influence each other. In Sections 4.1.3

and 4.2, we expound on the methods that allow taking the
corresponding effects into account.

4.1.3 Method of parquet equations in dual variables and the
functional renormalization group. A developed diagram
approach to taking nonlocal correlations into account in
all channels simultaneously is the method of parquet
equations. It is based on the parquet decomposition of the
full vertex function Finto a completely irreducible vertex A
and vertices @, that are reducible in particle-hole, particle—
hole transverse, and particle—particle scattering channels
(r = ph, ph, pp). The term completely irreducible means that
these diagrams cannot be divided into disconnected pieces by
cutting any two lines. The reducible vertices @,, in turn, can be
cut along two internal lines (Fig. 11). Vertex functions @, can
be constructed from the corresponding irreducible vertices
I', = F — @, using ladder equations, schematically written as
@, = FGGT,, also known as the Bethe—Salpeter (BS) equa-

= A + Ton | +
+ Y o+ Top
 —
I

Figure 11. Parquet decomposition of full vertex function F into a
completely irreducible vertex part A and reducible vertices @y, (bp—h, and
@, Reducible vertices @, are expressed in terms of irreducible vertices
I', = F — &, using Bethe—Salpeter equations.
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Figure 12. Eigenfunction corresponding to largest eigenvalue A, = 0.99 of
the Bethe—Salpeter equations calculated on a 32 x 32 lattice by the method
of parquet equations in dual variables. Form of the function indicates the
presence of d-wave superconductivity in the doped two-dimensional
Hubbard model [174].

tion. Supplemented with the Schwinger—-Dyson equation
relating the self-energy X to the full vertex F, the parquet
and BS equations form a closed system and are solved self-
consistently. For a detailed acquaintance with the method of
parquet equations, we refer the reader to the classic survey
[168], as well as to recent work where the method of parquet
equations, free of any approximation, was first applied to
small Hubbard clusters [169, 170].

The main advantages of the method of parquet equations
include taking all effects into account based on the mutual
screening of various bosonic modes. In the framework of this
approach, it is possible to construct all one- and two-particle
correlation functions given the full irreducible vertex func-
tion. However, although various approximations of this full
function are used in practical implementations, the method of
parquet equations entails high computation costs. This
restricts the size of physical systems amenable to the
description: the maximum size of the momentum lattice is
currently 6 x 6 sites [171, 172].

We note the achievements of recent years in the field of
numerically solving the parquet equations. First, the use of
the high-frequency asymptotic form of the Green’s functions
[170] and the form-factor basis for the spatial indices of the
vertex functions [172] have allowed using smaller frequency
and momentum lattices with greater efficiency. Second, the
method of partial bosonization of the vertex functions for
parquet equations was implemented in [173], allowing the
long-wavelength fluctuations to be described as bosonic
degrees of freedom. The computational advantage is achieved
by switching from four-point to three-point Green’s functions.

A significant reduction in the numerical complexity of
solving parquet equations was possible by moving to dual
variables, as in [174]. With this procedure, the high-energy
physics associated with local correlations is taken into
account at the level of the transition to dual variables, such
that the parquet equations actually describe only low-energy
processes associated with fluctuations in the collective modes
of the system. This allows integrating out most of the
Matsubara frequencies, restricting oneself to lower-order

T/t \ \3

0.15 =y —e—DPSC
—=a—DP AF

—»— DFSC
—o— DF AF

--¢--DCA SC4x4 —o— DMFT+FLEX SC
--a--DCA AF 2x2—<— DMFT+FLEX AF

0.10

0.05

0.10 0.15

Doping level

0.20

Figure 13. Phase diagram of the two-dimensional Hubbard model in
coordinates (doping level, temperature) obtained using various methods:
dual parquet (DP) equations for U = 8¢, ' = —0.21,¢” = 0.1z, DCA for
U=6t, t' =—-0.2t, and t" =0, DF in the ladder approximation for
U=28t t'=t"=0, DMFT + FLEX method for U= 5¢, t' = —0.21,
and ¢t” = 0.16¢. Here, ¢, t’, and " are the respectively amplitudes of hops
between nearest sites, along the diagonal, and over a site. Blue curves
correspond to the transition to the superconducting state, and red curves,
to antiferromagnetic ordering [174].

diagrams. The low-energy model constructed in this way,
which includes only the lower Matsubara frequencies, allows
an efficient solution for lattices with up to 32 x 32 sites
(Fig. 12), with all fluctuations in different channels taken
into account on an equal footing.

Accounting for nonlocal correlations in several channels
is of fundamental importance, for example, when describing
systems with quantum phase transitions or when consider-
ing scenarios of Cooper pairing due to spin fluctuations.
Figure 13 shows the phase diagram of a two-dimensional
Hubbard lattice for parameters corresponding to HTSC
cuprates. As we can see, taking the mutual influence of
bosonic modes into account at the level of the single-site
DMFT or the ladder-approximation DF constructed on top
of it does not reproduce the typical dome-shaped structure of
the superconducting phase, and the cluster method (DCA),
which is very expensive in terms of numerical resources,
reproduces it less pronouncedly than the dual parquet
formalism. This can be explained by the absence in DCA of
the necessary renormalizations of the two-particle vertex
function in the long-wavelength range.

The functional renormalization group (fRG) method
[177, 178] can also be used to describe systems with
competing instabilities. The idea of the original method is a
smooth evolution to a correlated system from an exactly
solvable Gaussian system. Such an evolution generates
equations containing correlation functions that are typically
cut off at the two-particle level. This technique works
successfully for weak interparticle interaction, but in the
strong-coupling regime it requires higher-loop corrections to
be taken into account. A number of papers [179-181] show
the equivalence of the multiloop fRG method and parquet
equations; the methods also show comparable computational
complexity.

The fRG equations can also be generalized to the case
where the starting point of the renormalization group flowis a
collection of isolated Anderson impurity problems with
parameters corresponding to the DMFT solution [175]. The
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Figure 14. Illustration of the DMF?RG method, which consists of the
evolution from the impurity Anderson problem (¢ = 1) to the full lattice
problem (¢ = 0) via renormalization group equations [175].

n=0.96

1
0.4

£ 0.5

Figure 15. Dependence of inverse effective coupling D in the Cooper
d-wave channel on parameter ¢ at different values of electron density n,
obtained using the DMF?RG method for the Hubbard model with
parameters U =8¢, t' = —0.2¢, and T = 0.08z. ¢ = 1 corresponds to a
collection of impurity problems, and & = 0, to the Hubbard model [176].

action can then be written as

Sf — Z(IV — ﬁAv — (l — é)gk)cjko-cvko'
vko
1/T

+ ZJ dz Ul’lffﬂln‘l ,
i

where the free term is determined by the contribution of both
the Anderson impurity problem and the noninteracting
lattice problem. The starting point S=' corresponds to a
collection of identical impurity problems whose hybridiza-
tions are obtained from the DMFT, and S corresponds to
the Hubbard model (Fig. 14).

Similarly to other schemes that take the mutual influence
of various fluctuation channels into account, the fRG method
also signals the presence of a superconducting dome in the
phase diagram of the Hubbard model. Figure 15 shows the
dependence, obtained in [176] for different electron densities,
of the inverse effective coupling for the d-wave pairing of
electrons corresponding to the wave vector Q = 0 and zero
frequency on the renormalization group flow parameter &.
For density n = 0.96 and n = 0.88, the flux is shown up to the
critical values &, at which magnetic instability occurs. It can
be seen that, in approaching half filling from n = 0.80, the
pairing correlations start increasing but cannot fully develop
due to the appearance of magnetic instability.

(42)
0

4.2 Description of nonlocal correlations

without the use of diagram series

The DMFT diagram expansions described in Section 4.1
allow consistently incorporating both local correlations and

essentially nonlocal effects associated with the formation of
collective modes. A numerically exact solution of the DMFT
problem means that the theory does not contain constraints
on the magnitude and nature of local correlations. However,
it is easy to understand that summing up only the selected
classes of diagrams implies certain assumptions about the
nature of fluctuations. Namely, the use of ladder and parquet
approximations is justified if the collective fluctuations can be
considered Gaussian or nearly Gaussian. But this is not true,
in particular, for finite systems (for example, magnetic
molecules [182]) at sufficiently low temperatures. In that
case, the collective degree of freedom corresponding to the
order parameter is affected by a Mexican-hat potential, and
hence the fluctuation statistics turn out to be essentially non-
Gaussian. We next describe the fluctuating local field method
that allows going beyond the local DMFT physics by
introducing an auxiliary classical field without assumptions
about the magnitude and nature of collective fluctuations.

4.2.1 Fluctuating local field method. As a new way of taking
collective fluctuations into account, the fluctuating local field
(FLF) method was proposed in [183]. Originally formulated
to describe fluctuations of a classical field defined on a finite
lattice, the method was subsequently generalized to quantum
systems.

Assuming that the leading fluctuation channel is known,
the FLF method is technically based on the exact transforma-
tion of the partition function, which for the lattice model
described by an action S is expressed as

Z= jexp (=S[e’, )Dlcl, o] = (275\;])3/2

[ Jexw { =stct, = 37 (< = 209+ L1l )}

x Dlef, ] d’¢. (43)

Here, { is an artificially introduced classical vector field
conjugate to the order parameter 5, and ||...|| is the length
of a vector. In the case of antiferromagnetic fluctuations, for
example, the components of § are given by

T /T t
"= N,[o Z €Xp [l(qrj)} cr_jao—:a’c?fg’ de ’
J

where q = (m, ), 1; is the position of site j, and x is a free
parameter of the model that determines the amplitude of the {
field fluctuations. We see that a full square is added to the
exponent, such that the integration over { does indeed
produce the original partition function. It is important to
note that, if we first integrate over fermionic fields, then such
a transformation can be regarded as the introduction of an
ensemble Z o [ Z; d’¢, where Z; is the partition function of
the system at a specific value of the fluctuating field (.
Calculating Z; may be easier than the original Z because,
due to the appearance of the %52 term in the action for Z,
order parameter fluctuations at each fixed value of { decrease
compared to the original ones. This allows invoking the
perturbation theory, which would be inapplicable for the
original system. Convergence can be additionally improved
by the optimal choice of »x. The total magnitude of fluctua-
tions is restored in that case by the subsequent integration
over d{. Importantly, the proposed method does not impose
restrictions on the magnitude and statistics of the moments of
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lattice, obtained using the quantum Monte Carlo method (QMC), MF approximation (Hartree-Fock, HF), dynamical mean-field theory (DMFT), and
fluctuating local field method based on them (FLF-HF and FLF-DMFT) [184].

the fluctuations under consideration: they can be essentially
non-Gaussian.

In practice, the FLF method is developed based on some
‘parent’ approximation, such as the mean field or DMFT.
Notably, the DMFT + FLF scheme was developed in [184] to
describe nonlocal magnetic fluctuations in two-dimensional
Hubbard clusters. According to the Mermin—-Wagner theo-
rem, this system is paramagnetic, and hence the DMFT
solution in the absence of an external magnetic field should
be based on the assumption of a zero local magnetic moment
of the impurity. However, this approach does not include
fluctuations of the impurity magnetic moment near the mean
value, which are correlated across different lattice sites. In the
FLF framework, this can be rectified by introducing the
dependence of the impurity Green’s function on the magni-
tude of the fluctuating field. In the simplest case, this
dependence is linear; the impurity Green’s function is
expressed as

=G — Y "fi(w
n

Gt ol exp [i(qr)] (44)

where G; is the impurity Green’s function corresponding to
some hybridization A4, calculated by the DMFT method
under the assumption of no magnetic polarization, and
f:(w) determines the frequency profile of the { field. Thus,
various values of the local magnetic moment are included
in the consideration. Because the fluctuating field breaks
the symmetry of the system, we use tensor notation in what
follows. We introduce a tensor L whose nonzero compo-
nents in the Fourier representation are LL K kiqo0 =
Ji(w)o!  exp[i(qr;)], such that expression (44) ‘takes the
form G; — ({L) in tensor notation. Then, by analogy with
the derivation of formula (29) for a Hubbard lattice with the
dispersion ¢, we can obtain the free energy F; = —T In Z; in

the form [184]

+ (G- L)(A—e)] + 2, (45)

F,=NF - >

Indet [1
where F is the free energy of the unpolarized impurity, and
the Green’s function at a certain value of { is equal to
G =1[(G:— (L) "' +4—¢ ' The final DMFT-based
FLF Green’s function is obtained by averaging over all
values of (,

FLF __ 1
© <<gv (L)

B

> , (46)
+ A — &/ FLF

where (.. Vg p=2Z 7 [...Z ¢

Finally, the value of the parameter » and the function
f:(o) must be determined. This can be done by noting that
fluctuations of the order parameter taken into account in the
FLF method can be eliminated by replacing the averaging
over { with the choice of a single value corresponding to the
point {y at which Z; is maximum (a saddle point). We require
such an estimate to reproduce the result of the approach that
is originally free of order parameter fluctuations, the DMFT.
We consider the case of a system placed in a weak external
field, which guarantees a deviation of {, from zero and the
presence of spin polarization in the DMFT solution. We let
GPMFT denote the Green’s function of such a spin-polarized
solution. To determine x and f;(w), in accordance with our
strategy, we then require that

GDMFT — 1

(gé - (COL)) -

Condition (47) closes the system of FLF equations.
Figure 16 shows the results of calculations of the Curie
constant C = Ty, where y is the susceptibility in the anti-

7 . (47)
+4—¢
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ferromagnetic channel, for half-filled 4 x 4 Hubbard lattices
with U = 2¢ (moderately correlated system) and U = 8¢
(strongly correlated system) obtained using the FLF-HF
(FLF based on the MF Hartree—Fock approximation) and
FLF-DMFT schemes. The behavior of the system under
study is determined, first, by the physics associated with the
formation of local moments, and, second, by the developed
collective antiferromagnetic fluctuations. Among the consid-
ered approximations, only FLF-DMFT includes both these
mechanisms. It can be seen that this scheme also gives the best
description of the Curie temperature constant.

We emphasize that the FLF method allows improving the
accuracy of the results by increasing the number of considered
oscillating modes near the leading one. The efficiency of the
multimode FLF regime for the classical Ising and Heisenberg
systems was demonstrated in [183]; in [185], this scheme was
successfully used to calculate the free energy of one-dimen-
sional Hubbard chains. We note, however, that an increase in
the number of modes requires additional computation
expenditures, and hence the FLF is currently technically
limited in this respect. Nevertheless, the simplicity of the
implementation, the flexibility of the method, and the absence
of restrictions on the magnitude of collective fluctuations
allow the FLF to be regarded as a promising numerical
scheme for studying correlated systems in various modes.
We also note that, although at the time of writing the method
has been developed only for problems with one fluctuation
channel, its construction scheme does not impose restrictions
on the number of channels.

5. Conclusions

We have given a brief review of the numerical methods that
exist today for describing correlated systems. Starting with
the MF approximation, which maps a many-particle problem
to a one-particle problem in an effective external field and
does not take correlation effects into account, we first moved
to a locally exact DMFT and then considered a number of
schemes developed for taking nonlocal correlations into
account.

In view of the significant achievements of the DMFT
method, it is easy to understand why many subsequent
frameworks use it as a basis. Accounting for nonlocal effects
in the form of expansions near the local physics looks quite
natural. However, we must not forget that a good numerical
method must satisfy a number of requirements, one being that
physical laws (symmetry, observable results, etc.) be taken
into account. A simple software implementation and, when-
ever possible, low computation costs are also highly desirable.
At the same time, describing phase transitions also implies the
possibility of treating physical systems in a wide range of
parameter values. Among the methods mentioned in this
review, D-TRILEX and FLF satisfy these requirements,
although this can be stated with full certainty only after a
number of additional checks.

The physics of correlated multiparticle systems is being
actively developed. In this review, we did not attempt
anything close to covering all work in this field, or even
presenting a complete list of the existing methods. How-
ever, we hope that our review will help the reader navigate
across the landscape of post-DMFT schemes, and the list
of references will enable those interested to gain deeper
insights into particular methods. A good addition to this
review is given by [186], where results of various schemes

for a particular system (the half-filled Hubbard model with
U = 2t) are systematically compared.
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