
Abstract. Using the example of an exactly solvable problem, it
is shown that the number of boundary conditions which is
necessary to determine the transonic hydrodynamic flow near
the so-called `nonstandard' singular point does not depend on
whether the separatrix characteristic passes or does not pass
through this point. Thus, a quite popular statement is called into
question, according to which the critical surface, on which the
regularity condition determines the flow structure, generally
coincides with the surface of separatrix characteristics, and
not with the sonic surface.
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The rapid development in analytical studies of strongly
magnetized flows, carried out from the 1970s to 1990s [1±7]
(they were simulated by the need to determine the structure
of the flow of matter in the vicinity of compact astro-
physical objects), forced us to turn to questions lying at the
very foundations of the hydrodynamical approach. In
particular, for astrophysical applications, this was linked
to the need to study a transonic version of the hydro-
dynamical equations that inevitably appeared in astrophy-
sical problems.

In fact, even in the simplest spherically symmetric
hydrodynamical models (Bondi accretion on a gravitating
center [8] and Parker solar wind [9]), it is necessary to consider
critical conditions on the sonic surface v � cs. In this case, the
problem requires finding three unknowns �any two thermo-
dynamic functions, for example, the density r�r� and the
sound speed cs�r�, and also the radial component of
velocity vr�r�� as functions of radius r. Three scalar equations
defining the flow structure (the continuity equation, the radial
component of Euler's equation, and the energy equation) can
be easily integrated, leading to the conservation of the flux
F � 4prvrr 2, nonrelativistic Bernoulli integral En � v 2

r =2�
w�r; s� � jg, and entropy s. Here, w�r; s� is the enthalpy and
jg�r� is the gravity potential. The problem, as we see, is three-

parametric. However, the relationship

r

r
dr
dr
� 2v 2

r � jg

v 2
r ÿ c 2s

�1�

for transonic flows requires an additional condition Ð that
the numerator be zero on the sonic surface vr � cs. As a result,
the number of necessary boundary conditions is one fewer
than the number of equations and unknowns. These bound-
ary conditions are usually taken to be the density and sound
speed at infinity (for Bondi accretion) or on the surface of a
star (for the solar wind). We stress that in both cases the
boundary conditions are imposed in the subsonic regime.

As concerns multi-dimensional transonic flows, it is well
known that in this case there are no general methods to
construct solutions to a direct problem, for example, the
problem of finding the flow structure by the known boundary
in a transonic flow domain or by the boundary conditions on
some surface in a subsonic domain [10±12], also including the
case of stationary hydrodynamical equations depending only
on two spatial coordinates, to which we will be limited here.
Such uncertainty, which inevitably and repeatedly arose in
concrete problems, was either explicitly or implicitly present
in all studies in this area.

Consider, for example, the textbook case of plane
potential flow, characterized by the potential f�x; y� which
defies the flow velocity as v � Hf (see Ref. [12], Ch. XII). In
this case, the hydrodynamical equations can be reduced to a
single second-order equation

fxx � fyy �
�fy�2fxx ÿ 2fxfyfxy � �fx�2fyy

�Hf�2D � 0 ; �2�

where

D � ÿ1� c 2s
v 2

; �3�

and the subscripts denote partial derivatives. Transforming
this equation into the canonical form Afxx � 2Bfxy�
Cfyy � 0, we obtain AC ÿ B 2 � D�D� 1�, so that the
equation changes from elliptical in the subsonic domain to
hyperbolic in the supersonic domain.

It will be important for us here, however, that, in order to
close this equation, as is well known, wemust additionally use
Bernoulli's equation En � �Hf�2=2� w�cs; s� to express the
sound speed cs, which enters Eqn (2), in terms of the unknown
function f. This requires, as is seen, that the boundary
conditions specify two further motion integrals, En and s.
This does not present any difficulties for subsonic flows,
since, to fully define the solution, we need to specify two
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thermodynamic functions and two components of the
velocity (i.e., the potential f and its derivative). These four
boundary conditions correspond to four scalar equations (the
continuity equation, two components of Euler's equation,
and the energy equation), which fully define the flow
structure.

However, if in this problem statement we try to determine
the structure of a transonic flow, for which, as we have
already seen, we need to impose an additional critical
condition (whose localization, by the way, is unknown until
the problem is solved!), it suffices to limit ourselves to only
three boundary conditions Ð one fewer than in the subsonic
case, as in the simplest cases mentioned above. The funda-
mental difficulty here is that, in this case, the boundary
conditions are insufficient to determine Bernoulli's integral,
which depends on all four quantities. As a consequence,
Eqn (2), which explicitly contains the quantity En, is
indeterminate.

This statement is fully related to axisymmetric flows,
which are already described by five algebraic equations
(the continuity, three components of Euler's equation,
and the energy equation), which are reduced to three
integrals of motion (the specific angular momentum
Ln � rvj is added) and the second-order equation on the
potential F�r; y� [13]

ÿ r 2 sin2 yHk
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1
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which defines the flux rv,

rv � HF� ej
2pr sin y

: �5�

Equation (4) represents a generalization of the Grad±
Shafranov equation [14, 15] to the case of nonzero velocities.
Despite the cumbersome form of Eqn (4), the key property
AC ÿ B 2 is D�D� 1� as before, so that this equation also
changes from elliptic to hyperbolic on the sonic surface.

We will make further use of another important property
of transonic flows, which has been studied in detail for a plane
potential flow, i.e., for Eqn (2); this property naturally also
applies to an axisymmetric flow, i.e., to Eqn (4). It concerns
the so-called singular point where the streamlines are
perpendicular to the sonic surface. An analysis based on an
exactly solvable Tricomi problem, to which Eqns (2) and (4)
can be reduced near this point, showed that the solution is
analytic near this point [16]. Furthermore, the problem is
exactly solvable if its boundary condition is not specified in
the subsonic domain but on the streamline passing through
this singular point,

vx�x� � c? � k�xÿ x?� : �6�

For a polytropic equation of state P / rG �G � const�, the
solution of Eqn (2) in the vicinity of the singular point takes
the form [12]

f�x; y� � c?�xÿ x?� � k�xÿ x?�2
2

� k 2�G� 1�
2c?

�xÿ x?� y 2 � k 3�G� 1�2
24c 2?

y 4 : �7�

Here, the sound speed on the sonic surface c? is expressed
through Bernoulli's integral as En � c 2? =2� w�c?; s�.

The analysis of this solution showed that, in the majority
of points on the sonic surface where the streamlines and this
surface are not perpendicular, two branches of characteristics
are directed in opposite directions (lines 3 and 3 0 in Fig. 1). At
the singular point, however, there are already two character-
istics that touch the sonic surface and continue in the same
direction (characteristic 1 merges into characteristic 2 0, and
characteristic 1 0 merges into characteristic 2).

It should be noted that, in the initial phase, studies
devoted to astrophysical questions did not pay proper
attention to the question of the number of boundary
conditions. The point is that there was a certain gap between
these studies and the intensive research in this field carried out
from the beginning of the 20th century [16, 17]. In particular,
the generalization of the Grad±Shafranov equation to the
case of nonzero plasma velocity, first obtained byLSSolov'ev
in 1963 [18], was in fact repeated once again in [2, 3, 6] in the
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Figure 1.Classical singular point of a transonic flow which corresponds to

converging streamlines (bold solid lines) on a sonic surface (dashed line).

Shown are the characteristics in a hyperbolic flow domain, including two

separatrix characteristics which touch the sonic surface at the singular

point. Hyperbolic domain between the sonic surface and separatrix

characteristics (for example, point A) affects subsonic domain along

characteristics that terminate on the sonic surface.
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1970s. Similarly, the magnetorotational instability, discov-
ered by E P Velikhov [19] and S Chandrasekhar [20] in the
1950s, was only rediscovered for astrophysical applications
by S Balbus and J Hawley in 1991 [21]. It is therefore not
surprising that in those cases where questions about the
correct formulation of the problem came to the fore, the
astrophysical literature resorted to basically simplified
approaches, based to a considerable extent on heuristic
arguments.

Another bad joke was played by the circumstance that
quite early a large family of self-similar substitutions of
the form F�r; y� � r aY�y� was found for equation (4) [4,
22±29], leading to the ordinary differential equation
K d2Y=dy 2 � . . . � 0, many key properties of which differed
substantially from those of two-dimensional equations. In
particular, the singularity (the condition K � 0 for the
coefficient with the highest derivative) did not occur on the
sonic surface (in magnetohydrodynamicsÐon fast and slow
magnetoacoustic surfaces), but precisely on the separatrix
characteristic. Based on this important property (which, by
the way, was well known in classical hydrodynamics [11]), a
statement was formulated that is now accepted by the
majority of researchers, namely that the separatrix character-
istic, and not the sonic surface, is such a special surface on
which critical conditions define the unique solution [27, 30].

Several clarifications are certainly in order here. First of
all, we do not question the number of boundary conditions
needed to determine the structure of the transonic flow. In a
general case, the number of boundary conditions b can be
written in the form [13]

b � 2� iÿ s 0 ; �8�

since, for the second-order equation on the potential f�x; y�
or the potential F�r; y�, one needs to fix i motion integrals,
and s 0 critical conditions (the absence of singularity) will play
the role of additional constraints that fix the flow structure. In
the case of ideal hydrodynamics, when there is only one
critical surface �s 0 � 1�, we obtain b � 4, given the required
three integrals of motion (Bernoulli integral En, the specific
angular momentum Ln, and entropy s). Note that formula (8)
is not applicable for a spherically symmetric case, since there
is no need to solve the second-order equation. The spherically
symmetric flow is also degenerate, because its sonic surface
coincides with the separatrix characteristic.

Furthermore, there is no doubt that it is the surface of
separatrix characteristics and not the sonic surface that
defines the boundary of influence on the solution in the
subsonic domain. As shown in Fig. 1, the hyperbolic domain
between the sonic surface and separatrix characteristics
affects the subsonic domain along the characteristics ending
at the sonic surface. This property is essentially connected
with the argument in favor of the singularity on the separatrix
characteristic.

Indeed, let us assume that two conditions on some
boundary in the subsonic domain together with the regular-
ization condition on the sonic surface completely determine
the solution upstream from the critical surface. But, accord-
ing to, for example, Ref. [30], this leads to a contradiction,
since signals that can propagate from perturbations between
the critical and separatrix surfaces will affect the solution in
the domain bounded by the critical surface, and hence the
solution obtained will not be unique. In simpler terms,
assuming that a unique solution is constructed for a

hydrodynamic flow, a perturbation is introduced in the
domain between the sonic surface and separatrix character-
istics (an `obstacle' at point A, the modification of the flow
boundary in the supersonic domain), which will inevitably
modify the flow in its subsonic domain.

As we see, the main argument in favor of singularity not
on the sonic surface but on the separatrix characteristic is not
the existence of the singularity itself but reasoning related to
causality. This is also an interesting moment. On the
separatrix characteristics, no critical condition can be for-
mulated, whereas on the sonic surface the derivative of
density r over coordinates,

Hi r � Ni

D
; �9�

should satisfy the conditions Ni � 0. And in all cases when
exact solutions to concrete problems were constructed [1, 31±
36] (they were all obtained as small perturbations of known
spherically symmetric cases, when the position of the sonic
surface was known), namely the condition on the sonic
surface Nr � 0 determined the flow structure. Granted, in all
these cases, owing to the smallness of the perturbation to the
spherical flow, the separatrix surface coincided with the sonic
one in the zeroth approximation. This is why this considera-
tion could not serve as an argument against the statement that
the separatrix characteristic is a singular surface.

However, the reasoning above contains one implicit
assumption which in our opinion violates its strictness. This
is the assumption that the position of the sonic surface does
not change on adding a perturbation. The solution in the
subsonic domain is considered to be given. However, even in
the textbook case of plain potential flow, given two known
integrals En and s, there is freedom in the choice of two
constants, x? and k, in the expression for the velocity along
the x-axis (6) which fully specifies a smooth transonic flow, as
shown above, i.e., in reality, an infinite set of flows exists with
given integrals that do not have a singularity on the critical
surface, whatever it is.

Indeed, let us consider flow (7) that corresponds to
boundary condition (6) and place its boundary such that it
coincides with some streamline with the shape of parabola

yb � y0 � A�xÿ x0�2 �10�

with given values of x0, y0, and A. In this case, with quadratic
accuracy, we have a solution to the direct problem (i.e., a
solution of Eqn (7) with the given flow boundary) with the
values

x? � x0 � k�G� 1�
6c?

y 2
0 ; �11�

k �
�

2Ac 2?
�G� 1�y0

�1=2

: �12�

If we now `perturb' the flow boundary, also in the region
between the sonic and separatrix surfaces (but still within the
framework of the quadratic approximation!), we simplymove
to other values of constants x? and k. This is understandable,
because the position of the sonic surface is not determined by
the condition D � 0.

Reference [37] shows that the direct problem can also be
solved for the next approximation for the flow boundary
yb � y0 � A�xÿ x0�2 � B�xÿ x0�3, if the quadratic term in
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expansion (6) is taken into account. It is true that in this case
one has to solve a nonlinear system of algebraic equations to
determine the coefficients defining the flow. However, this
does not change the essence. Changing the boundary in the
supersonic domain and even placing an `obstacle' in this
domain (when it is necessary to consider an infinite series
in (6)) will only change the position of the critical surface.

As a further argument in favor of our viewpoint, we
analyze below the construction of the solution for an
axisymmetric steady flow in the vicinity of a `nonstandard'
singular point. A short historic reminder is in order here: the
research with an astrophysical focus which was mentioned
above has nevertheless contributed substantially to the theory
of transonic flows. It became clear that, in the absence of flow
boundaries (accretion on a compact object, stellar wind),
there must be another singular point on the sonic surface,
where a streamline is perpendicular to the sonic surface.
However, unlike the standard singular point shown in Fig. 1,
it corresponds to streamlines that diverge with respect to the
sonic surface. Such a singular point is impossible for plane
potential flows and has therefore not been discussed in
classical studies on transonic flows1 [10±12, 16].

As it turns out, the flow in the vicinity of `nonstandard'
singular point has surprising properties. First of all, we
note that the separatrix characteristics cannot originate
from the hyperbolic domain, but must start at some other
point on the sonic surface (Fig. 2). It also turns out that, in
the vicinity of `nonstandard' singular point, characteristic
surfaces have a very different structure, as we will show
below.

Consider an axisymmetric stationary flow similar to the
Bondi±Hoyle accretion, shown in Fig. 2. An important
simplifying assumption, which will not affect our argu-
ments, is the absence of axial rotation �Ln � 0�, and also the
constancy of Bernoulli's function �En � const� and entropy
�s � const� in the entire domain. In this case, the Grad±
Shafranov equation (4) for the potential F, which enters into
the definition (5), in a compact form looks like [13]

r 2 sin2 yHk

�
1

rr 2 sin2 y
HkF

�
� 0 : �13�

It will be recalled that this equation should be complemented
by the Bernoulli equation

�HF�2
8p2r2r 2 sin2 y

� c 2s
Gÿ 1

� jg�r� �
�G� 1�c 2?
2�Gÿ 1� � jg�r?� ; �14�

where

jg�r� � ÿ
GM

r
: �15�

It implicitly gives the dependence r � r�F�, accounting for
which leads to additional second derivatives of potential F.

Writing now Eqn (13) in the standard form ACrr�
2BCry � CCyy � . . . � 0, the equation on characteristics
dr=dy � �B � �B 2 ÿAC�1=2�=C can be rewritten as

dR

d#
� a#�

����
R
p

: �16�

Here, the angle # � yÿ y�,

R � r��#� ÿ r

r�D1
; �17�

D1 � r��qD=qr�� at r � r�, and r� and y� are the singular point
coordinates. Finally [38],

a � ÿ�q
2D=qy 2��
D 2

1

ÿ r��q2F=qrqy��
�qF=qy��D1

: �18�

The positive values of a correspond to the standard singular
point (converging streamlines), whereas negative values of a
correspond to a `nonstandard' singular point (diverging
streamlines).

It can be readily verified that Eqn (16) has an exact
solution in the form of two parabolas,

R�#� � w 2
1; 2#

2 ; �19�

where

w1; 2 � 1� ��������������
1� 8a
p

4
: �20�

While for a > 0 the smaller root corresponds to two
separatrix characteristics entering the standard singular
point and the larger root corresponds to two characteristics
leaving it (Fig. 3), for a < 0, i.e., for the `nonstandard'
singular point, the situation is fundamentally different.

First, real roots w1; 2 exist only for ÿ1=8 < a < 0. In this
case, both parabolas correspond to the characteristics leaving
the singular point. As shown in Fig. 3a, there are infinitely
many exiting characteristics in the vicinity of the parabola
corresponding to the smaller root w that touch the parabola
at the singular point. One of these is the separatrix character-
istic, but it cannot be found in the vicinity of the `non-
standard' singular point, since the trajectory of the character-
istics up to the standard singular point should be determined
for this. For us, it will only be important that for
ÿ1=8 < a < 0 the separatrix characteristic passes through
the `nonstandard' singular point.

Second, for a < ÿ1=8, the expressions for w (20) become
complex. This means that for a slow change in parameters the
net of characteristics undergoes an abrupt structural change.
This is the remarkable property of the bifurcation of
characteristics [27, 30, 38]. As shown in Fig. 3b, the
hyperbolic domain in the vicinity of the singular point starts

`Nonstandard'
singular point

Standard
singular point

Figure 2. Behavior of characteristics in the Bondi±Hoyle accretion case. A

separatrix characteristic exits from the `nonstandard' singular point on the

sonic surface (dashed line), which corresponds to diverging (with respect

to the sonic surface) streamlines.

1 More precisely, the authors are unaware of studies on these topics, with

the exception of those devoted to astrophysical flows.

744 V S Beskin, T I Khalilov Physics ±Uspekhi 66 (7)



to affect the subsonic domain, since perturbations from point
A reach the sonic surface along the characteristic. An
important point for us here is that for a < ÿ1=8 no
characteristic passes through the `nonstandard' singular
point, including the separatrix characteristic, which is now
located further upstream with respect to the `nonstandard'
singular point.

So, we are sure that for a > ÿ1=8 the separatrix
characteristic passes through the `nonstandard' singular
point, and for a < ÿ1=8 it no longer does. On the other
hand, if the separatrix characteristic was indeed a critical
surface, i.e., it defined the necessary number of boundary
conditions, then the construction of a solution in the vicinity
of the `nonstandard' singular point would require a different
number of free functions defining a unique solution when
passing through a � ÿ1=8. It is easy to show that this is not
the case.

Indeed, the analyticity of the singular point allows us to
seek a solution to Eqn (13) as an expansion in integer powers
of distances from the singular point. In this case, as in the
standard approach, we will assume that the longitudinal
velocity vr along the flow axis is given:2

vr�r� � ÿc?�1ÿ kh� : �21�

Here, by definition,

h � rÿ r?
r?

: �22�

This selection of signs corresponds to the case k > 0 (the
velocity increases on approaching the gravitational center).
Further, one can readily check that, owing to definition (5),
Eqn (13) is nothing but the condition rot v � 0, which, in our
case, should hold identically. We then can define the
components of velocity v in the form

vr�r; y� � ÿc?
�
1ÿ khÿ 1

2
Ky 2

�
; �23�

vy�r; y� � c?Ky : �24�

Accordingly, the flux function F�r; y� should be defined,
which we write as

F�r; y� � ÿF?

�
y 2

2
� bhy 2 ÿ q

24
y 4 � . . .

�
: �25�

Here, F?� 2pr 2? n?c?. In this case, for a monopole solution
F�r; y� � F?�1ÿ cos y�, we have q � 1 and b � 0. If we also
write the density r�r; y� as

r�r; y� � r?

�
1� Z1h�

1

2
Z2y

2

�
; �26�

all other coefficients of expansion can be found from the
Bernoulli equation (14) and definition (5).

Indeed, expanding the radial component of relationship
(5) up to the first powers of h and y 2 and also using the leading
�/ y� y-component of this relationship, we find

Z1 � k� 2bÿ 2 ; �27�

Z2 � K� 1

3
ÿ q

3
; �28�

K � b : �29�

Expanding the Bernoulli equation (14) up to the first powers
of h and y 2, we find, taking into account relationships (28)
and (29),

b � 1ÿ GM

2r?c 2?
; �30�

Z2 � bÿ b 2 : �31�

As a consequence, denominator D (3) will be written as

D � ��G� 1�kÿ 2�Gÿ 1��1ÿ b��h� b�G� 1��1ÿ b� y
2

2
:

�32�

Finally, we obtain

a � ÿb 2�G� 1�k� �1ÿ b��5ÿ 3G�
D 2

1

; �33�

where

D1 � �G� 1�kÿ 2�Gÿ 1��1ÿ b� : �34�

As one might expect, all the coefficients are expressed in
terms of c?, which is defined by Bernoulli's integralEn and the
position of the singular point r?, which determines the values
of b and k. For a spherically symmetric solution �b � 0�, we
have a � 0. On the other hand, for a singular point further
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Figure 3. (a) Behavior of characteristic surfaces when parameter a for the

`nonstandard' singular point (left) satisfies the condition ÿ1=8 < a < 0.

Separatrix characteristics and solutions that correspond to w � w1 and

w � w2 are depicted by bolder lines. Standard singular point a > 0 is

shown on the right. Point A has no influence on the subsonic domain.

(b) Same as in (a), but for a < ÿ1=8. A perturbation from point A reaches

the sonic surface along the characteristic.

2 A different approach has been considered in Ref. [38].
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away from the gravitating center compared to the spherically
symmetric case �b > 0�, we get a < 0, i.e., what is required for
the `nonstandard' singular point (see Fig. 2). Correspond-
ingly, for the standard singular point, we have a > 0.

However, the most important point for us is certainly that
the solution procedure is in no way related to the value of a.
For the `nonstandard' singular point, the solution is con-
structed in exactly the same way for both a > ÿ1=8 and
a < ÿ1=8, and, to find it in both cases (in addition to two
integrals of motion), one needs to specify only one function:
in our caseÐ the radial velocity vr�r�. For zero angular
momentum Ln, this number of boundary conditions corre-
sponds exactly to relation (8). Thus, at least for the exactly
solvable problem considered here, it is clear that the
separatrix characteristic is not a critical surface that imposes
additional constraints on the parameters of the supersonic
flow.

The study was carried out with the support of the Russian
Foundation for Basic Research (project 20-02-00469).
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