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Abstract. The probabilistic nature of measurements in quantum
mechanics can be interpreted as a consequence of information
loss arising from the chaotic dynamics of measuring instru-
ments.
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1. Introduction

The question of the boundary between the ‘quantum’ and
‘classical” worlds has been in the spotlight since virtually the
advent of quantum physics, but today this area still contains
many open questions on which there is no consensus opinion
of the community. Probably the most well-known here is the
problem of measurement: how the rules that determine the
behavior of macroscopic (‘classical’) instruments in the
measurement of the properties of microscopic (‘quantum’)
systems follow from the equations of quantum mechanics
(and whether they follow at all).

First of all, it is necessary to make a caveat that the
terminology adopted in quantum theory differs essentially
from the general physical one. Usually in physics (and in
everyday life) measurement is understood as a comparison
between certain physical quantities and reference values,
which is carried out using a measuring device. In this case,
the measurement error is determined, as a rule, by the
imperfection of the equipment, and not by the properties of
the system under study, and can be reduced by improving the
instruments and the measurement procedure. In quantum
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theory, we are dealing with a situation where the uncertainty
of the measurement result arises in an inevitable way, due to
the laws of nature. One may argue whether the reason for this
uncertainty lie with the properties of the system, the device, or
the transformation of quantum information into classical
information—in any case, no improvement in measuring
equipment will make it possible to get rid of the source of
uncertainty under discussion.

Next, it is necessary to separate questions about the
possibility of obtaining information based on the average
results of measurements carried out on an ensemble of
independent implementations of the system and within the
framework of measurements carried out on one specific
implementation. ‘Ensemble’ measurements make it possi-
ble, in principle, to characterize a system with an arbitrarily
high accuracy. Although, for example, the quantum uncer-
tainty in the energy of atomic levels leads to a uniform
broadening of the spectral lines, multiple measurements
make it possible to determine the position of the lines with
an accuracy exceeding their natural width. A similar
situation is observed in relation to the measurement of the
energies of the excited states of nuclei by means of gamma
spectroscopy, the displacements of atoms by means of
tunneling or electron microscopy, and in general in all cases
when the experimental technique allows multiple measure-
ments over an ensemble of system realizations. Moreover,
quantum tomography protocols make it possible, through
multiple measurements over an ensemble of realizations, to
fully characterize not only an arbitrary observable but also
the wave function (or density matrix). However, when we are
dealing with a single measurement event (say, with the
frequency measurement of a single photon emitted by an
excited atom), then even complete information about the
object under study and the use of arbitrarily advanced
instruments do not allow predicting the measurement result
with arbitrary accuracy. Furthermore, it turns out that the
measurement inevitably affects the object under study, and
its final state is related to the result of the measurement.
Hereinafter, the problem of measurement in quantum theory
is understood as the question of the origination of quantum
uncertainty and the influence of measurement results on the
system under study, which take place in each specific
implementation of the experiment.
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The results of measuring the state of a quantum system are
fundamentally probabilistic. Attempts to abandon the prob-
abilistic interpretation of quantum mechanics by introducing
local hidden parameters were refuted in the course of
experimental verification [1-3] of Bell’s inequalities [4].
Generally speaking, quantum mechanics can be reproduced
at the level of nonlocal deterministic theories with hidden
parameters, which have their origin in the work of Bohm [5].
The construction of such models continues to the present:
mention can be made, for example, of Refs [6-8]. Without
digressing into a detailed analysis of the listed approaches,
which are not directly related to the subject of this work, we
note that nonlocal interpretations do not provide additional
information about observables in comparison with the
standard apparatus of quantum theory, i.e., from an opera-
tional viewpoint, the measurement results in these theories
remain probabilistic.

From the viewpoint of information theory, the appear-
ance of a probabilistic choice means an increase in entropy,
i.e., loss of information about the system. On the other hand,
the equations of quantum mechanics are linear; they do not
contain either dissipative or Langevin terms — it would seem
that the dynamics they describe are completely reversible and
there can be no talk of information loss in this case. The
complex of issues that arise around this contradiction are the
problem of measurement. It seems necessary to establish
some boundary separating the quantum and classical
worlds —information must be lost at this boundary — but
the physical nature of such a boundary is not entirely clear.

Apparently, a possible solution was formulated for the
first time by Werner Heisenberg in his discussions with Niels
Bohr [9]: in his formulation, it is necessary to use the concept
of a classical meter, i.e., the boundary mentioned above is
quite sharp and passes between quantum microobjects and a
classical device. Subsequently, this procedure was introduced
by von Neumann as an axiom of the mathematical apparatus
of quantum mechanics [10]. Within the framework of this
approach, known as the Copenhagen interpretation, an
additional postulate is introduced in relation to the equa-
tions of quantum mechanics: reduction occurs during
measurement. The system under study instantly finds itself
in one of the eigenstates of the measured operator; the
probability of choosing each of the eigenstates is determined
by the square of the modulus of the product of the wave
functions before and after the measurement. A similar
viewpoint was held, for example, by V A Fock [11], who
considered it fundamental to divide the experiment into
several separate stages: preparatory, working, and measur-
ing, of which the first and third should be described at the
level of classical physics.

The head of the Copenhagen school himself, Niels Bohr,
however, was inclined to talk about the quantum nature of the
entire installation as a whole; in this case, the device should be
arranged in such a way that its readings could be interpreted
in classical terms [12]. The followers of this point of view, in
particular C F Weizsacker [13], repeatedly emphasized that
such properties are necessarily associated with the loss of
information in quantum systems.

Within the framework of the many-world interpretation
[14], a probabilistic choice is not made. It is assumed that the
Universe remains in a superposition state, in which there are
all possible outcomes of all measurements. However, our
consciousness is arranged in such a way that it ‘sees’ only one
of the possible realizations. This concept does not contain

internal contradictions, but it seems to the author to be
‘super-redundant’: when constructing a theory, one would
like to confine oneself to the single — observable — reality.

There is a viewpoint according to which the world as a
whole is ‘quantum’, but only our consciousness perceives it as
classical. Then, the choice naturally occurs at the moment
when the experimenter realizes the measurement results.
Relatively recently, M B Menskii and other authors pub-
lished a number of papers on this subject on the pages of Phys.
Usp. (see Review Ref. [15] and references cited therein). In this
connection, we can also mention the concept of ‘logical
inference’ [16], which explains quantum mechanics by
appealing not to the properties of the physical world but
rather to its possible perception by our consciousness. The
author, however, would like to think that the surrounding
reality is objective. As noted by V L Ginzburg concerning the
preface to the mentioned article by M B Menskii, it is hard to
believe that blackening on a photographic emulsion does not
exist with certainty until a person has looked at it.

The paradigm we adhere to is closest to the views of Bohr
and C F Weizsicker. Seeming desirable is a picture whereby
the system under study, the macroscopic device, and the
observer would be described by the same laws. (It is difficult
to refrain from quoting Margaret Thatcher’s phrase, even if it
was said on a completely different occasion: “There is no such
thing as public money; there is only taxpayers’ money.””) In
this formulation, the device, being a completely quantum
object, must nevertheless ensure the transformation of
quantum information into classical information, and it is
necessary to indicate some physical property inherent in all
(or at least many) devices that provides the possibility of such
a transformation.

Below, we present the view that the probabilistic choice in
quantum physics appears naturally and inevitably, since
quantum information in macroscopic measuring instru-
ments is inevitably lost due to the chaotic dynamics of their
multiple degrees of freedom. In order to make the text
consistent and understandable, including to interested stu-
dents, we start with a presentation of fairly well-known basic
concepts and illustrate them using the example of the simplest
models. What follows will require the involvement of more
modern concepts related to ergodicity in quantum systems; in
doing so, we will also try to avoid complex formal construc-
tions as much as possible. For definiteness, we note that we
restrict ourselves to the analysis of the measurement problem
in the original formulation, and do not touch, for example, on
weak measurements [17].

At the end of the introductory part, it is pertinent to note
that the measurement problem is part of a broader issue about
the properties of open quantum systems — compact quantum
objects interacting with macroscopic systems that play the
role of a thermostat. W Zurek developed the idea that
essentially nonclassical (and, in particular, entangled) states
of quantum systems in such a general case turn out to be
unstable under the influence of the environment [18]. In the
process of evolution, only so-called pointer states— those
close to classical ones— survive. For measuring devices, such
stable states should correspond to the classical measurement
results. However, it is still unclear for which class of physical
systems this approach is justified. In the context of the theory
of open systems, in the problem of measurement, the case in
point is a special choice of interaction between a quantum
system and its environment. Such a choice defines a natural
basis, and there is no need to specifically search for the pointer
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state. In this sense, analysis of the measurement problem is
simpler than that of a generic open system.

2. Reduction or entanglement?

To clarify the physical meaning of the measurement proce-
dure, we first consider how information about the state of a
quantum system can be transferred to another quantum
object. Let us address the problem of measuring the
projection of the spin of a particle with spin 1/2. Let us add
another particle (playing the role of a measuring instrument)
whose spin is initially oriented downwards, so that the two-
particle wave function of the system is of the form
) (e =0) =y, 1).

Suppose that we have somehow organized the interaction
between two spins, which is characterized by the Hamiltonian
H=2 + 1/2)&@, where §(!) and 59 are the operators of
the z- and x-projections of the spins of the first and second
particles, respectively. The interaction is turned on at the
initial moment of time and is valid for the period ¢ = =, after
which it is turned off, and subsequently the systems do not
interact. Solving the Schrodinger equation, one can verify
that the wave function of the system after switching off the
interaction has the form |¥)(t = n) = ¥ |1,T) + 4|1, ]) (in
the language of quantum computing, the described process
corresponds to the action of the CNOT operator). Next, a
third particle can be added and, acting in a similar way, we get
the state

|P) (1 =m) =y | T,10) + ¥ 1L L) - (1)

If the system under study is known in advance to be in one of
the eigenstates of the measured quantity —in our case, in the
state | 1) or ||)—such a procedure is a measurement in the
usual, classical sense: the wave function of the system remains
invariable, and the information about it can be copied into an
arbitrary (including macroscopic) number of degrees of
freedom, which can be identified with the operation of a
classical device (although the whole procedure is completely
quantum). It is measurements of this type that we will consider
a ‘bridge’ between the quantum and classical worlds: we will
reduce any ‘classical’ information about the system to measure-
ments on systems that are in the eigenstates of the measured

operators.
In the case of an arbitrary position, wave function (1)
describes the state of ‘Schrodinger’s cat’— a coherent

superposition of two different states of many-particle
systems. Suppose now that we have lost access to the third
particle. A complete description of the possible evolution of
the remaining two in this case is given by the density matrix

p =y PIT YL T+ I PLL DL (2)

which is determined by taking a partial trace over the
projections of the inaccessible third spin.

The result obtained can be easily correlated with the
axiom of measurement. Indeed, it is well known that the
density matrix can be introduced in two ways: either as done
above, by taking a partial trace for a system in a state of
quantum entanglement by its environment, or as an average
| ) (¥| over a random ensemble in which each realization of a
quantum system has its own wave function. These two
methods lead to completely equivalent results in the sense
that, based on the density matrix, it is impossible to determine

its origin. The behavior of a set of systems characterized by a
given density matrix will be the same, regardless of whether
we are dealing with many identical copies of a system
entangled with the environment or an ensemble of systems,
each of which is in a randomly selected pure state. It is easily
comprehended that the von Neumann postulate corresponds
to an ensemble in which the states |1) and |]) appear with
probabilities |y, |2 sy |2, and that this ensemble corresponds
to the density matrix (2). In addition, since in the ensemble
interpretation for each implementation the wave function is
an eigen one of the observable operator, it allows a classical
measurement, in accordance with what was said above.
Therefore, from a formal point of view, the measurement
axiom only sets the statistical ensemble corresponding to the
required density matrix. Nevertheless, several physically
significant issues call for discussion.

One can raise the question of the reality of the reduction
(collapse) of the wave function. Is it true, as von Neumann
postulates, that for each specific implementation of a
quantum system we are dealing with an eigenstate of the
measured quantity? First of all, we note the incorrectness of
such a formulation of the question: for one specific imple-
mentation, there is no way to find out what quantum state it is
in (to avoid misunderstandings, we note that quantum
tomography allows us to determine the wave function only
if there is not a unique implementation, but an ensemble of
identical systems). It is possible to unambiguously judge the
wave function of a given quantum system only in the presence
of additional classical information, for example, about the
presence of the system in the eigenstate of some observable.
Next, it is quite obvious that, in the example under
consideration, the reduction did not occur: we just took the
third particle out of the scope of consideration; the whole
system is in reality still in an entangled state. We come to the
conclusion that real reduction, if it takes place, is associated
with a complete and irreversible loss of information about
quantum entanglement, instead of which classical informa-
tion about the state of the system should appear.

So, is the loss of information described above only a
consequence of our unwillingness to monitor the necessary
degrees of freedom, or in certain cases are we talking about
processes that are irreversible in the true sense? Of course, if
we specifically want to get rid of quantum information, this is
not difficult to do: it would suffice to organize the mixing of
the system under study with a photon and send it into
space—it will no longer be possible to catch up with a
photon moving at the speed of light, which means that for
an earthly observer such information is irretrievably lost.
Similarly, quantum coherence can ‘leak’ into the excitations
of the medium with which the quantum system interacts:
B B Kadomtsev [19, 20], considering some gas as a thermo-
stat, wrote about the emergence of an irreversibility front,
behind which there is a propagation of a set of wave packets
that uncontrollably carry information into the surrounding
world. A similar approach also helps in modeling quantum
systems: the researcher considers a set of electromagnetic field
modes as a thermostat, in which, once inside, information is
irreversibly lost [21]. But one can always object to such
arguments by saying that in fact there was no collapse of the
wave function or emergence of a statistical ensemble, and the
Universe is still in a single entangled state. In fact, such a
picture underlies the multi-world interpretation of quantum
mechanics. In any case, talking about the wave function of the
Universe is completely speculative, since it is not clear
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whether quantum mechanics applies to the Universe as a
whole. For us, it seems more important that real measuring
instruments do not contain any specially organized channels
for information output. On the other hand, one can hardly
expect that, by isolating a macroscopic measuring device well
from the rest of the world, we will achieve some fundamental
differences from the case when this device simply stands on a
shelf in the laboratory (in fact, Schrodinger wrote about this,
ruling out the possibility of a superposition of a living and
dead cat enclosed in a sealed container). A more acceptable
view would be that, both in a ‘normal’ and even in a very well
isolated macroscopic system, information is somehow lost, so
that instead of a superposition we are dealing with a mixed
state.

So, there is good reason to understand: can information
be lost and, in particular, the collapse of the wave function
take place in large but isolated physical systems? The initial
answer to this question is negative: the evolution of a finite
quantum system is completely reversible in time, and the loss
of information inevitably means irreversibility. However,
such a formulation of the question is too formal: absolutely
isolated physical objects do not exist. It should be asked
whether a significant loss of information can take place in
systems whose communication with the outside world is very
weak.

Recent decades have seen the appearance of a number of
papers devoted to the search for systems that are prone to
wave function collapse, even with a weak interaction with the
environment. For example, Zimanyi and Vladar [22] came up
with the idea of simulating a classical measuring device using
a system prone to spontaneous symmetry breaking. The
simplest example of such a system is the Ising model, a set of
spins with an interaction of the form Zi_/- J,-jsAfjf, Jij <0.In
the limit of an infinitely large number of spins, the model has
two equivalent ground states, |[TT...7) and ||| ... ]). Ttis
hypothesized that a large but finite system, initially placed ina
state of superposition between these states, will be ‘forced’ to
choose only one of them under even a very weak interaction
with the environment, which will correspond to a projection
during measurement. An attempt to implement such a layout
by performing a direct calculation for a specific model [23],
however, was not entirely successful: information about the
measurement results was present in the system while the
measured object interacted with the device, but was instantly
forgotten as soon as the interaction was turned off (real
devices, of course, store information even on completion of
the measurement procedure). In addition, it is significant that
spontaneous symmetry breaking does not actually underlie
the measuring instruments actually used by physicists (at least
in the vast majority of cases).

Apparently, the most common device in quantum
measurements is the detector—a device that triggers when a
particle is detected in a given state (the emulsion grain turns
black when a photon hits a given point, the photodetector
produces a current pulse, etc.), and does not trigger in the
opposite case. For example, Fioroni and Immirzi [24] talk
about a first-order phase transition or about the decay of a
metastable state when a measuring device is triggered.
However, they do not analyze the mechanism of information
loss, restricting themselves to the statement that “the
evolution of the order parameter is irreversible.” Nakajima
[25] considers a meter constructed similarly to a photomulti-
plier and also talks about the ‘obviously’ irreversible nature of
the considered processes, without analyzing the fundamental

sources of this irreversibility. We will present a simple
microscopic model corresponding to a measurement with
the use of a detector in which the source of information loss is
the chaotic dynamics of the device.

3. Chaos

The question of the relationship between random and
predetermined in physics had long been discussed before the
formulation of quantum theory. In this context, it is
appropriate to distinguish between truly random and
pseudo-random variables: the value of the former cannot be
determined in advance in principle, while the latter could be
predicted if the necessary information about the system and
perfect computing facilities were available. For a long time, it
seemed that there was no place for true randomness in an
isolated conservative system: solving equations of motion is
a purely technical task; however, from a mathematical point
of view, the trajectory of the particles that make up the
system is uniquely determined by the law of their interaction
and initial conditions. This view of things since the end of
the nineteenth century was one of the main arguments of
critics of Boltzmann’s statistical theory — why describe in
terms of statistical ensembles a system that is not really
random?

A complete understanding of the fundamental inevitabil-
ity of the emergence of random variables in classical
mechanics was achieved only in the middle of the 20th
century, with the development of the concept of dynamic
chaos. If a conservative dynamical system is nonlinear and is
far from the equilibrium point, then its dynamics in many
cases turn out to be chaotic, i.e., the trajectory of its motion
turns out to be unstable with respect to small changes in the
initial conditions. If we consider the distance between two
trajectories that differ, for example, by a small shift in the
initial coordinates of the particles, it turns out that the
specified distance increases exponentially fast with time:

5x(1) ~ 5x(0) exp <i) :

L

where 2 = 1/11 is the Lyapunov exponent. In fact, this means
that it is possible to calculate the evolution of the system
under given initial conditions only over an interval of several
ten 71: for long times, even a very small error in the initial
conditions will change the trajectory beyond recognition. The
converse statement is also true: looking at the state of the
system at a given point in time, it is possible to understand
from what point in the phase space the evolution began only if
the evolution under consideration did not last very long — the
exponential divergence of trajectories in the phase space
means that the system ‘forgets’ the initial conditions. Under
these conditions, the evolution of the system should be
considered a random process. Only a few quantities asso-
ciated with the integrals of motion, for example, the total
energy of the system, remain defined. One of the traditional
examples of systems with chaos is dynamical billiards,
systems in which a material point moves on a plane inside a
closed figure of a given shape, elastically reflecting from its
walls. In many cases (in particular, when the billiard has both
corners and curvilinear sections, as in Sinai billiards), the
motion in such a system turns out to be chaotic. After
sufficient time, the distribution function of such a system
turns out to be uniform: a particle can be found with equal
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probability at any point in the phase space with a given
energy. (Of course, here, we deliberately simplify the pre-
sentation and sacrifice many details important for the study
of specific dynamical systems at the expense of general clarity
of the text.)

We now turn to quantum systems. An important property
of quantum mechanics is its linearity with respect to initial
conditions (while Newton’s equations are nonlinear). Indeed,
the solution of the Schrodinger equation with a time-
independent Hamiltonian is of the form

P(1)) = exp (—“;”) 7).

where exp (—iHt/h) is the unitary evolution operator. A small
variation in the initial wave function by the time 7 will lead to
the variation |8 ¥(r)) = exp (—iHt/h)|d ¥,). Since unitary
operators conserve the norm of vectors, |8 ¥ (7)|| = |0 Poll,
small variations of the initial wave function certainly do not
lead to a significant change in the result of evolution.

Nevertheless, quantum systems exhibit chaotic behavior
to the full extent. To see it, instead of small variations in the
initial conditions, we should consider small variations in the
Hamiltonian, on which the evolution operator depends in a
nonlinear way. With regard to billiards, the transition to
quantum mechanics means that a wave packet rather than a
material point should be placed on the billiard. In this case,
exponential instability manifests itself not with respect to a
change in the initial characteristics of the wave packet but
with respect to small variations in the shape of the billiard
(classical trajectories actually show instability to variations of
both the initial conditions and the Hamiltonian).

As a quantitative measure of the sensitivity of a quantum
system to variations in its parameters, advantage can be taken
of the Loschmidt echo—the square of the modulus of the
scalar product of wave functions corresponding to evolution
with slightly different Hamiltonians: |<‘P|Y”>|2, where
|¥) = exp (—iH1/h)|¥y) and |¥') = exp (—iH't/h)|¥).
Quantum chaos in large (i.e., containing many particles
and/or large compared to their de Broglie wavelength)
systems manifests itself in the exponential decay of the
Loschmidt echo with time [26, 27]. The difference between
quantum and classical chaotic systems lies primarily in the
fact that the Loschmidt echo in the quantum case begins to
noticeably decrease not immediately but some time after the
beginning of evolution. For us, this difference is not
significant: in any case, after a sufficient lapse of time, the
calculation of evolution for a specific Hamiltonian of a
quantum system with chaos loses its meaning and it is
necessary to consider an ensemble of quantum systems, i.e.,
move from the wave function to the formalism of the density
matrix. The role of the uniform distribution function is played
by the diagonal density matrix f(E)>|j)(j|, where the
envelope f(F) cuts out states belonging to a certain energy
interval of width SE. As is easy to see, the entropy of the
system, initially equal to zero (since the system had a certain
wave function), eventually turns out to be equal to
In (A SE), where Ag is the density of states. The generation
of nonzero entropy characterizes the loss of quantum
information.

Let us formulate once again the source of randomness
origination in chaotic systems. In our world, both the initial
conditions and the Hamiltonians of the systems under study
are never known exactly, both because of the imperfection of

measurement methods and because there is no way to
completely eliminate the influence of external factors.
Perhaps, for a precise formulation of the theory, we should
introduce the definition of a physically closed system — such
a system whose interaction W with the external world can be
considered small, while In~" W is not small compared to 71 /.
A physically closed system does not exchange energy or
particles with the outside world. Also, changes in the
parameters of a physically closed system are so small that
they cannot be detected by direct measurements. However, in
the case of chaotic systems, the uncertainty of the system
parameters leads to an exponentially growing uncertainty of
the result of evolution with time. In this paradigm, the
modeling of any physically closed system must involve the
analysis of an ensemble of systems with slightly different
parameters. It is significant that no improvement in isolation
from the outside world will lead to a significant change in the
situation due to the exponential nature of the instability.
Therefore, the inability to calculate a specific trajectory which
a chaotic system describes or to determine the initial
conditions that brought it to a given state should be
attributed to the fundamental properties of the system itself,
and not to the imperfection of our description. In precisely the
same way, NP-hard (i.e., requiring an exponentially large
number of operations) problems should be considered
fundamentally unsolvable using a classical computer, and
the impossibility of solving them must not be attributed to the
imperfection of existing computing systems. To state it in
different terms, the loss of information in chaotic systems is
fundamentally irreversible, in contrast to the case when the
information carrier is removed from the region accessible to
the experimenter, but, in principle, continues to exist. The
result of evolution of a chaotic system, both in the classical
and in the quantum case, is truly random.

The inevitability of information loss in physically closed
systems with chaos seems to be important for substantiating
the basic principles of physics related to the (ir)reversibility of
the flow of time, such as the principle of causality and the
second law of thermodynamics. The equations of motion are
symmetrical with respect to time reversal, and it is not clear
why, in accordance with the second law of thermodynamics,
the entropy of a closed system increases when moving from
the past to the future and decreases when moving backwards.
The standard explanation relates this asymmetry to the fact
that information about the system is given at the initial, and
not at the final, moment of its evolution. With this approach,
the direction of the flow of time is actually imposed
axiomatically (time in a closed system flows in the same way
as in the rest of the world, which is expressed at the instant the
initial conditions are set). The introduction of such ‘super-
fluous’ axioms can be avoided if one bears in mind that the
term ‘closed’ actually means a physically closed system. In
this case, small fluctuations of random forces from the
environment during the evolution of the system will lead to
a loss of information, i.e., an increase in entropy, both for
forward and reverse time.

If we consider an ensemble of identical physically closed
billiards, then, after a sufficiently long evolution, on average,
for half of them, a particle will be found in its left half, and for
the other half, in its right, but there is no way to predict the
result of evolution for a given implementation. For now, we
are abstracting from what the term ‘discovered’ means in
relation to a quantum system, but in any case it is clear that
the mechanism for randomness origination under discussion
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has nothing to do with von Neumann’s postulate: quantum
and classical billiards behave in a very similar way; only the
language differs—a description in terms of distribution
functions and the density matrix, respectively.

Let us show that the concept of information loss in
quantum chaotic systems may be used to understand the
nature of measurements in quantum theory.

4. Quantum chaotic system
as a measuring device

Let us still measure the spin state of a particle with spin 1/2,
and assume that the particle itself is localized in a single level
of the discrete spectrum of a potential well located near a
quantum billiard (i.e., in fact, another well with ‘vertical’
walls, much larger than the de Broglie wavelength of the
particle and having an irregular shape). We assume that the
barrier between the wells depends on the particle spin: for the
state | ), the barrier is too high for tunneling to be noticeable,
but for a particle in the state | 1), tunneling is possible (i.e., the
system is described by the Hamiltonian p2/2m + Uy (7)+
Up(7) + V(#)s., where Uy and Ug are potentials of the well
and billiard, respectively, and V describes the spin-dependent
part of the potential in the space between the wells). Then, the
coordinate part of the wave function of the particle actually
serves to measure its spin projection: when the spin is directed
downward, the particle remains on a localized level, and when
the spin is directed upward, it obviously tunnels into the
billiard. If we start with the spin part of the wave function of
the general form, ¥ | T) + | |), immediately after tunneling,
the spin and coordinate parts of the wave function are mixed,
and information about the initial phase between i, and | is
contained in the total wave function of the system
Yildw(r), 1)+ |pp(r), 1). Here ¢y, p are the spatial compo-
nents of the particle, respectively, remaining at the bound
level in the well and having tunneled into the billiard.
Component ¢ corresponds to some wave packet that begins
to evolve, reflecting off the walls of the billiard. However, if
the quantum dynamics of the system is chaotic, then, after a
sufficient time due to small uncertainties in the position of the
walls, decoherence will occur: we will have to go over from a
single wave function ¢ 5 to some ensemble ¢%. Eventually, the
particle can be detected at any point in the billiard with equal
probability, and all phase relations will be lost. The system as
a whole, in full accordance with the postulate of reduction,
will be a statistical ensemble with two types of states: the spin
directed down, the particle in a localized level; and the spin
directed up, the particle in the billiard. One can see that, in the
example considered, the coordinate part of the particle wave
function plays the role of a measuring device for the spin
component. Therefore, the quantum information associated
with entanglement is destroyed, and the state of the detector is
described by a single classical bit that determines whether the
particle is on the table or not. Fundamentally, quantum
billiards should be large enough: only in this case, quantum
chaos and loss of phase information are possible in the
system. It can be said that the large size and chaotic dynamics
provide a transition to the classical limit for the measuring
device.

We come to the conclusion that measurement in quantum
physics can be described as follows. At the initial point in time
after the measurement, the wave functions of the quantum
object and the device become entangled. In the total
‘object 4+ device’ system, quantum information is not lost, so

von Neumann’s postulate is satisfied only if we artificially
exclude from consideration some of the information about
the wave function of the device. However, a macroscopic
device containing a large number of interacting particles is a
quantum chaotic system. There is no way to completely
isolate it from the surrounding world, and arbitrarily weak
variations in the instrument’s Hamiltonian associated with
such an interaction will be exponentially enhanced. There-
fore, after several ten (or hundred, if the device is isolated very
well) characteristic times 1, for the ‘object + device’ system,
what is relevant (and, in fact, the only thing possible!) is the
description in terms of a random ensemble, in each of the
implementations of which the object is located in one of the
eigenstates of the observable and the device is in a state with
the corresponding integrals of motion and random values of
the remaining quantum numbers. In terms of Schrodinger’s
thought experiment, instead of a nonphysical superposition
of a living and dead cat we, as one would expect, will obtain a
random process, in each of the implementations of which the
cat is either alive or dead.

In our reasoning, we have so far considered the forces
acting from the external world as classical. If we assume that
the degrees of freedom external to the device are quantum,
then the system turns out to be completely linear. It would
seem that in this case its full Hamiltonian is known exactly,
and the description in terms of a single pure state remains
valid. However, the effects of quantum chaotic dynamics in
this case lead to difficulties of a different kind: as can be
verified, the above reasoning for the ‘fully quantum’ picture
of the world means that, even with very weak interaction, the
wave functions of the device will be significantly entangled
with the variables of the external world. Since even a very
weak interaction of the external world with a chaotic system is
significant, the number of variables involved in such
entanglement turns out to be very large (on the order of
Avogadro’s number). We can say that, instead of the accuracy
of measurements and computations necessary for calcula-
tions, the number of task variables ‘explodes.” There is no
physical difference: quantum information ‘dissolves’ without
a trace in the Universe (in contrast to Everett’s interpretation,
in which information leaves the field of view of the observer,
but in principle persists). The meaningful results for the
quantum and classical descriptions of the environment, of
course, coincide: there is a transition of a physically closed
system from a pure to a mixed state.

5. Conclusions

e The randomness and irreversibility of evolution in physi-
cally closed systems emerge as a consequence of chaotic
dynamics and are associated with the fundamental impossi-
bility of absolutely exact determination of both the initial
conditions (for classical systems) and the Hamiltonian
parameters (in both the classical and quantum cases). The
Hamiltonian parameters cannot be considered exactly known
because absolutely closed systems do not exist, and any
arbitrarily small perturbation of a chaotized system from the
outside world will be exponentially enhanced.

e The measurement of the state of a quantum object
can be split into two phases: the formation of an entangled
state of the object and the device and the subsequent
irreversible loss of information associated with entangle-
ment due to the chaotic dynamics of the degrees of freedom
of the device.
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e Since the loss of information and the emergence of
randomness are the same thing, we conclude that the random
nature of the results of measurements of quantum quantities
(and, in general, the phenomenon of wave function collapse)
is associated with a special case of information loss in a
chaotic quantum system, which is an integral part of the
measuring device. The collapse of the wave function in this
case occurs not at some selected point in time but continu-
ously over a time determined by the Lyapunov exponent of
the chaotic system.

The postulates made call for direct verification. The most
obvious is a numerical experiment simulating a physically
closed quantum meter with chaotic dynamics. Known results
[27] indicate that quantum information is indeed lost in such
systems. It is necessary, however, to determine how the loss
rate depends on the size of the system: it must be verified that
a chaotic system of macroscopic size does lose coherence
when there is very weak interaction with the external world.
We hope to carry out a simulation of this kind in the future.

To emphasize the point, the main conclusion can be
formulated as follows. The axiom of measurement is not an
axiomy; it can be deduced by treating the measuring device as a
physically closed chaotic system.

There is no quantum randomness, there is only the
randomness of evolution in the presence of chaos.
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