
Abstract. An alternative concept of the formation of the defect
structure and properties of metallic glassesÐ the interstitialcy
theory (IT), which has been actively developed recentlyÐ is
systematically laid out. The premises and basic hypotheses of
the IT are presented, and the experimental data pertaining to
the assessment of its adequacy are considered. The multifaceted
relation between the relaxation of the shear elasticity and heat
phenomena upon various types of thermal processing of metallic
glasses is analyzed in detail. A simple mathematical IT formal-
ism is shown to provide a good description of experimental data.
The most important result of the IT is an adequate description
of the excess thermodynamic potentials of metallic glasses.
Problems surrounding the IT and approaches to its further
development are considered.

Keywords: metallic glasses, structural relaxation, crystallization,
defects, interstitialcy theory

1. Introduction

Intensive studies of metallic glasses (MGs), which began in
the 1980s, continue to the present. Interest inMGs is due both
to the apparent potential and success of their application, and
to a number of still unsolved purely academic problems
related to the nature of the structural state of MG, its
relationship with their physical properties, glass transition
kinetics, relaxation phenomena, and the response to external
factors. It was initially expected that, since nondirectional
metallic bonding dominates in MG, describing various
physical phenomena would be a simpler task than, for
example, in the case of oxide glasses with directional covalent
bonds. This expectation, however, was not justified, and no
generally accepted theoretical approach to these problems
has been developed so far. This situation, on the one hand, is a
strong motivation for further research, and, on the other
hand, imposes certain restrictions on the solution to problems
of an applied nature.

Metallic glasses are primarily prepared by quenching a
melt, which in turn is the result of crystal melting. Therefore, a
relationship should be expected between the properties of
solid glass (i.e., frozenmelt) and the original (parent) crystal.1

Such a relationship should be reflected in an adequate
theoretical/model approach to describing the properties of
MG. On the other hand, the noncrystalline nature of the MG
structure causes its spontaneous evolution towards a lower
Gibbs potential, which is generally called `structural relaxa-
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1 More precisely, here and below, the parent crystal means a polycrystal-

line structure that arises as a result of the complete crystallization of glass

and does not undergo any subsequent phase transformations.
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tion.' It is usually assumed that structural relaxation is
realized through atomic rearrangements in some nano-
regions, conventionally called `defects.' Consequently, this
approach should involve ideas about the evolution of a
defective subsystem at all stages, from melting of the parent
crystal and quenching of the melt to changes in glass
properties during heat treatment and the effect of external
factors.

At present, a large number of theoretical models have
been proposed to describe the structure, its defects, and
various properties of MGs (see, for example, [1±11]), which
are used with varying degrees of success. A common problem
of thesemodels is the artificial definition of defects not related
to the thermal history of glass, including its origin from the
crystalline state, which is, moreover, the end point of its
evolution [12]. This question is usually not even mentioned.
Therefore, a connection of glass and its defects with the
parent crystal cannot be established. However, attempts to
establish a relationship between the dominant structural
elements of glass and crystal have been made [13].

Perhaps the only theoretical model which is not typically
plagued with this shortcoming is Granato's interstitialcy
theory (IT) [14, 15]. The IT suggests that the melting of the
parent crystal is associated with the generation of interstitial
defects in the dumbbell configuration, which in the melt do
not retain the geometric structure inherent in the crystal but
are identifiable structural units that inherit the main proper-
ties of dumbbell interstitials. Defects such as interstitial
dumbbells are `frozen' into the structure of a solid MGs as a
result of melt quenching. Various relaxation phenomena in
MGs can then be interpreted as the result of changes in the
defect subsystem of the interstitial dumbbells. These ideas
have developed significantly in the last few years. It is shown,
in particular, that exo- and endothermal phenomena during
structural relaxation and crystallization of MGs can be
described almost exactly on the basis of measurements of
macroscopic shear elasticity, which, it would seem at first
glance, has nothing in common with thermal phenomena at
all. It has also been established that excess thermodynamic
potentials (i.e., those due to the actual noncrystallinity of the
structure), primarily excess internal energy and excess
entropy, are at least by 85±90% related to the elastic energy
of interstitial-type defects frozen in from the melt and its
dissipation in heat under heating. On the whole, in terms of
the quality, consistency, and breadth of interpretation of the
experiments, the results obtained definitely distinguish IT
from a number of other model concepts, owing to which, in
our opinion, it is one of the most promising approaches to a
holistic understanding of the nature of the formation,
structural relaxation, and crystallization of MGs. These
ideas are outlined in the present review.

2. Prerequisites for the emergence
and main provisions of the interstitialcy theory

The basic component of the IT is the concept of interstitial
atoms in a dumbbell configuration or interstitial dumbbells.
Therefore, it is natural to begin a consistent presentation of
the IT with some general remarks about interstitial defects.

Until the early 1970s, it was assumed that interstitial
atoms occupy an octahedral cavity at the center of a face-
centered cubic (fcc) cell (Fig. 1a). In the mid-1970s, it became
clear that interstitial atoms in simple metals have a dumbbell
(split) configuration (Fig. 1b). At present, it is generally

accepted that interstitial dumbbells exist in all main crystal
structures and, moreover, usually have the lowest possible
formation enthalpy [17±20].

However, the difference between interstitial atoms in the
octahedral and dumbbell configurations is fundamental. An
octahedral interstitial site, like a vacancy, has the same point
symmetry group as the atoms of the lattice, as a result of
which it does not interact with external shear stress. On the
contrary, the point symmetry of the interstitial dumbbell
atoms is lower than the symmetry of the lattice atoms; the
dumbbell has a certain orientation (a dumbbell with the [001]
orientation is shown in Fig. 1b) and is an elastic dipole, which
therefore effectively interacts with the field of the external
shear stress [21].

A significant contribution to the study of the properties of
interstitial atoms was made by Granato et al. [22, 23], who
irradiated Cu single crystals with thermal neutrons at a
temperature T � 4 K with simultaneous measurements of all
elastic moduli. Irradiation caused the formation of isolated
Frenkel pairs, while the liquid-helium temperature ensured
low mobility of interstitial atoms and prevented their
annihilation with vacancies. It has been established, first,
that all elastic moduli decrease during irradiation (with
increasing defect concentration), but the shear modulus
decreases much faster, as shown in Fig. 2. It was also found
that interstitial defects are formed in a dumbbell configura-
tion [22]. It is with the latter circumstance that a strong
decrease in the shear modulus is associated (the so-called
diaelastic effect). Granato also emphasized that the extra-
polation of the shear modulus in Fig. 2 towards higher
concentrations c gives a zero shear modulus at c � 2ÿ3%
[24]. As is known, a zero (or very small) shear modulus is a
characteristic feature of a liquid [25]. The result obtained in
[24] showed that, if 2±3% of interstitial dumbbells are
somehow introduced into the crystal, the crystal should turn
into a liquid.

Research carried out in the 1970s also established two
other important properties of interstitial dumbbells. First, the
unstable position of two atoms of the dumbbell core (Fig. 1b)
causes the appearance of characteristic low-frequency (at
frequencies several times lower than the Debye one) and
high-frequency (above the Debye frequency) vibrational
modes associated with in-phase and out-of-phase vibrations

a b

Figure 1. Interstitial atoms in (a) octahedral and (b) dumbbell (split)

configurations in a computer model of an fcc lattice [16].
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of dumbbell atoms [26]. The low-frequency vibrational modes
directly determine the high vibrational entropy component,
the entropy of formation, which, according to estimates for
copper, was 24Si=kB 4 15 (kB is the Boltzmann constant)
[15, 27], exceeding severalfold or even by an order of
magnitude the corresponding value for vacancies [28]
(according to [29], the entropy of vacancy formation can
even be negative). The high formation entropy plays a crucial
role in assessing the concentration of interstitial dumbbells. It
is usually believed that, since the dumbbell formation
enthalpy Hi is much greater than that for vacancies, the
concentration of interstitial dumbbells should be negligible,
and the this assertion can be found even in modern textbooks
[30]. However, this argument does not take into account that
the concentration of interstitial dumbbells is determined not
by their formation enthalpy but by the Gibbs formation
potential Fi � Hi ÿ TSi, which decreases with temperature
and, at a high formation entropy, can become comparable to
or even less than that for vacancies. Consequently, the
concentration of dumbbells can be very large and even
exceed that of vacancies. This is all the more true since the
formation enthalpy can decrease at high concentrations of
dumbbells and, as a result, their concentration can increase
like an avalanche, causing loss of shear stability and melting
[15]. We return to the discussion of this situation in Section 3.

The foregoing enabled Granato to formulate the inter-
stitialcy theory, published initially in [14] and later in a
simplified version in [15]. An equation was derived for the
excess Gibbs potential (with respect to a defect-free crystal)
DF depending on the concentration of interstitial dumbbells
ci and temperature, the material parameters being chosen for
copper. It is shown that at temperatures below 0:85Tm (Tm is
the melting point) there is only oneDFminimum correspond-
ing to a low equilibrium concentration of dumbbells. In the
interval 0:85Tm 4T4Tm, there are two DF minima: a deep
minimum at small ci and a shallow minimum at large ones.
The former is due to dumbbells in an equilibrium crystal,
while the latter corresponds to interstitial-type defects, which
remain identifiable objects in a metastable supercooled liquid
[31]. At the melting point T � Tm, there are two equally deep
DF minima corresponding to thermodynamic equilibrium
between a crystal with a low concentration ci and a liquid with

a high concentration ci. In the interval Tm 4T4 1:15Tm, a
metastable superheated crystal and an equilibrium liquid
can coexist at small and large ci, respectively. Finally, at
T > 1:15Tm, only an equilibrium liquid with a concentration
ci of several percent is thermodynamically stable. Thus,
depending on the temperature and defect concentration ci,
the IT predicts the equilibrium and metastable states of the
liquid and crystal. Recently performed similar calculations
for aluminum yielded the same results [32].

Granato has shown that the enthalpy of formation of
interstitial dumbbells Hi is proportional to the unrelaxed
(high-frequency) shear modulus G and can be represented as

qHi

qc
� aGO ; �1�

where a is a dimensionless parameter of the order of unity,
which, as it turned out later, is the second invariant of the
elastic deformation field of the defect [33], andO is the volume
per atom. Shear modulus G depends exponentially on the
defect concentration ci � c:

G � m exp �ÿBc� ; �2�

where m is the shear modulus of the defect-free parent crystal,
B � ab, and parameter b is the dimensionless `shear suscept-
ibility.' According to Granato, b � ÿ3C4444=C44 � 40, where
C44 � m is the shear modulus of the crystal and C4444 is its
fourth-order shear modulus (due to the anharmonicity of the
interatomic interaction). On the other hand, the shear
susceptibility is related to internal energy U of the crystal as
b � �1=16m��q4U=qe 4�, where e is the shear deformation.
Thus, the shear susceptibility is proportional to the ratio of
the shear modulus of the fourth rank to the `ordinary' shear
modulus and, in essence, is a fundamental parameter
connecting the diaelastic effect (decrease in the shear
modulus due to defects), the defect structure, and the
anharmonicity of the interatomic interaction potential. As
was established later, the shear susceptibility also determines
thermal effects upon heating and varies for various MGs in a
rather narrow range of 164b4 21 [34], which is in principle
consistent with the quoted Granato's estimate.

Simple equations (1) and (2) form the basis of the IT
formalism. Although the IT contains a number of assump-
tions and approximations, and numerical calculations were
performed for the case of simple metals, it gives a number of
predictions that can be verified experimentally.Moreover, the
consistent application of IT has made it possible to quantita-
tively interpret a number of phenomena in multicomponent
MGs, as shown in Sections 3±12 (see also review [28] and the
literature cited there).

3. Assessment of the adequacy
of the basic hypotheses of the interstitialcy theory

The cornerstone of the IT is the concept of a rapid increase in
the concentration of interstitial dumbbells when approaching
the melting temperature Tm and the high entropy of their
formation. These issues have been specifically investigated by
means of precision measurements of the shear modulus of
aluminum and indium at high temperatures, including pre-
melting ones [35, 36]. A significant diaelastic effect was
observed, which enhances with increasing temperature and
indicates a rapid increase in the concentration of interstitial
dumbbells. In approaching Tm, the dumbbell concentration
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modulus and bulk modulus of a Cu single crystal [23].
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becomes comparable to the vacancy concentration in the case
of Al and even significantly exceeds it for In. For Al, an
estimate of the formation entropy Si=kB � 22 was obtained,
in agreement with Granato's results [37]. However, as shown
by a recent analysis, the formation entropy of point defects
should be estimated taking into account the temperature
dependence of the formation enthalpy, which in the case of
Al leads to a decrease in the estimate of the formation entropy
to Si=kB � 7 [29]. Nevertheless, even with such an estimate of
Si, it turns out that about 70% of the melting entropy Al
observed in the experiment can be interpreted as the result of
an avalanche-like generation of interstitial dumbbells at
T � Tm [32]. On the other hand, the high total entropy of
dumbbells (including the vibrational and concentration
parts), according to Granato, provides an explanation for
the Richards rule asserting that the melting entropy of most
elements of the periodic system is close to 1:2kB per atom [38,
39]. We also note that simple metals exhibit a significant
nonlinear increase in heat capacity in the region of pre-
melting temperatures, for which there is currently no
generally accepted explanation. As shown by the analysis
performed on the example of aluminum, this increase can be
due to the intense generation of interstitial dumbbells at
temperatures close to Tm [40].

Another basic IT hypothesis is the assertion about the
dominance of the shear energyUshear in the total elastic energy
of crystal and glass defects, which is directly reflected in
Eqn (2). This statement goes back to studies of the 1950s±
1960s, in which it was assumed that the change in the Gibbs
potential of a defective crystal is proportional to the shear
modulus G [41, 42]. On the other hand, according to [43],

Udil

Ushear
� 2B=G

9�B=G�2 � 8B=G� 4
4 0:1 ; �3�

where B is the bulk modulus and Udil is the dilatation
component of the shear energy. However, formula (3),
obtained in the linear theory of elasticity, does not take into
account the energy of the defect core. To circumvent this
difficulty, a molecular dynamics simulation of interstitial
dumbbells in four fcc metals was carried out, which showed
that in all cases the ratioUdil=Ushear is approximately twice as
large as that determined by Eqn (3), due to taking into
account the elastic energy of the defect core [16]. Equation
(3) with such a correction introduced was applied to
interstitial dumbbells in 63 polycrystalline metals. The
results obtained are shown in Fig. 3. As can be seen, the
ratio Udil=Ushear does not exceed 0.15 for more than 90% of
themetals. Assuming thatmetallic glasses, in accordance with
the IT, contain similar defects such as dumbbell interstitials,
the same calculations were carried out for 189 MGs. Figure 3
shows that the result is very similar to that for the case of
polycrystals, i.e., shear elastic energy dominates in all cases.
The shear modulus should therefore be interpreted as the
main macroscopic parameter for assessing the evolution
kinetics of a defective subsystem.

Thus, the basic IT hypotheses, although they have been
tested to a large extent only on simple metals, nevertheless
correspond to experimental data.

4. Identification of `interstitial defects' in glass

It is assumed in the IT that `interstitial atoms' in a noncrystal-
line state behave in the same way as interstitial dumbbells in a

crystal lattice. However, it is clear that the geometric
definition of an interstitial defect as two atoms tending to
occupy the same place in the crystal lattice (Fig. 1b) does not
make sense for a noncrystalline structure. Granato proposed
that the interstitial dumbbell by interpreted in this case as two
atoms tending to occupy the same minimum of potential
energy [44]. However, an appropriate algorithm to identify
defects is difficult, if not impossible, to implement. Therefore,
one of the methods for identifying an `interstitial defect' is a
comparison of its characteristics with the properties of an
interstitial dumbbell in a crystal. This method was first
implemented by the authors of [31], who showed that
interstitials at their high concentration in a crystal demon-
strate a cooperative string-like motion similar to that in a
liquid. The string-like character of motion is one of the
properties of atoms in an interstitial dumbbell in a crystal
[46]. String-like motions of atoms in supercooled glasses and
melts have been repeatedly described in the literature [9, 47±
49]. It has been noted that such vibrational modes, similar to
the motion of atoms in an interstitial dumbbell in a crystal
[49±51], indirectly indicate their existence in supercooled
liquids and glasses.

As mentioned in Section 2, the introduction of interstitial
dumbbells into a crystal results in the appearance of
characteristic low-frequency and high-frequency modes in
the vibrational spectrum. This circumstance can be used to
indirectly identify the presence of such defects in the
noncrystalline state. Figure 4 shows, as an example, the
vibrational density of states (VDOS) of an fcc crystal of a
high-entropy FeNiCrCoCu alloy, atoms of an interstitial
dumbbell in it, and glasses of the same chemical composition
[45]. Of greatest interest is the VDOS peak that arises for
dumbbell atoms in the low-frequency region of 2 THz, which
is absent in an ideal crystal. A comparison of the VDOS of a
crystal and glass shows that the density of vibrational states of
the noncrystalline structure is increased in the low-frequency
region, which may be indirect confirmation of the presence of
defects such as dumbbell interstitials in the glass. Detailed
studies on noncrystalline aluminum confirm this assumption
[45, 52]. It should be emphasized that the excess density of
vibrational states in the low-frequency region is a universal
feature of MGs [53].
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Thus, the assumption about the presence in the glass
structure of formations with properties similar to those of
interstitial dumbbells seems to be quite justified. However,
questions arise: in what specific way can localized defects of
this type be isolated and identified in the glass structure and
how can their size and structure be determined? One of the
elements of a solution to this problem is the observation that,
by its nature, an interstitial dumbbell is an elastic dipole, i.e.,
an atomic configuration with local symmetry lower than the
symmetry of the surrounding matrix [21]. Such defects create
local internal deformations, leading to an increase in internal
stresses, interaction with the field of applied shear stresses,
and a decrease in the effective shear modulus. It turns out
that, using the expansion of the internal energy of a material
with defects such as elastic dipoles in terms of the invariants of
the elastic deformation fields ei j created by them, expressions
can be derived that relate the accumulated internal energy and
the change in elastic properties with the concentration of such
defects [33, 54]. The structure of the formulas for the internal
energy and the change in the shear modulus with the
introduction of defects are highly similar to that of the basic
formulas (1) and (2) of the IT. The physical meaning of the
parameter a in Eqns (1) and (2) was also determined; it turned
out to be related to the second invariant of the defect
deformation field:

a � q
�
ei j eji dV
V qc

;

where V is the volume of the material.
Based on the foregoing, an attempt can be made to

identify defects in glass using the fact that they are elastic
dipoles. A universal characteristic of elastic dipoles is the
dipole tensor Pi j, which is defined as the derivative of the
mechanical stress tensor si j with respect to the number of
defects per unit volume at constant strain [21]. In the case of a
computer model of a crystal, dipole tensors can be calculated
using an approximate formula as the difference between
mechanical stresses in a crystal with defects and in an ideal
crystal lattice. For a noncrystalline structure, the situation is
muchmore complicated, since there is no correct definition of
the `ideal' (defect-free) state of glass. To circumvent this
complexity, it was proposed to assign to each mth atom of

the model a dipole tensor

Pm
i j � V�sNg

i j ÿ sm
i j � ; �4�

whereN is the number of atoms in themodel structure,V is its
volume, sNg

i j is the stress tensor in the initial glass, and sm
i j is

the stress tensor after removal of the mth atom in the
unchanged V [55]. Thus, the initial state itself was used as
the `ideal' structure. The tensors Pi j calculated in this way
were reduced to a diagonal form for further analysis and
presented as the sum of the spherical and deviatoric
components. An assessment of the adequacy of Eqn (4)
showed that the dipole tensor of the interstitial dumbbell in
a crystal, calculated using this formula, coincides with the
estimate based on the standard relation [55]. The distribution
of the spherical and deviatoric components of the dipole
tensors of all atoms in noncrystalline FeNiCrCoCu is
displayed in Fig. 5, which shows that for spherical compo-
nents this distribution is close to normal, while the deviatoric
component features a pronounced `tail' in the region of large
values of the dipole components. It is natural to assume that it
is the atoms with large values of the deviatoric components
that form the `defect' glass subsystem. Figure 6 shows the
vibrational densities of states in noncrystalline FeNiCrCoCu
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for the entire model and its defect subsystem, which includes
atoms with deviatoric components exceeding those at the end
of the distribution of spherical components (see Fig. 5). As
can be seen, atoms with large values of the deviatoric
components are characterized by an increased density of
states in the low-frequency region, which is typical of
interstitial dumbbells. Moreover, the estimated concentra-
tion of such atoms almost coincided with the concentration of
defects estimated using the Granato formula (2), i.e.,
c � �1=b� ln �m=G�.

It is important to note that the application of shear
deformation and the change of its sign alter the axes of the
dipole tensors of most atoms of the defect subsystem. Such a
reaction of a defective subsystem indicates that it can be
considered a distributed network of elastic dipoles. The
proposed method thus makes it possible to identify defect
atoms in a model glass, and it can be considered a tool for a
detailed analysis of the structure of MGs.

5. Thermal effects. Enthalpy relaxation kinetics

We now consider the application of the mathematical IT
formalism for the analysis of various relaxation phenomena
occurring during structural relaxation and crystallization of
MGs.

Basic formula (2) of the IT shows that shear modulus G
depends on concentration of defects c (both during structural
relaxation and crystallization of MGs). In turn, formation
enthalpy Hi, according to Eqn (1), depends on the shear
modulus. Thus, a variation in the concentration of defects
causes a change in the enthalpy of a substance as a result of a
change in both the concentration of defects per se and the
enthalpy of formation of a single defect. Therefore, a change
in the concentration of defects, which can be tracked by
measuring the shear moduli, leads to the appearance of
thermal effects that can be detected calorimetrically. The
concentration of defects can be excluded from the system of
equations (1) and (2) and an expression for the heat flux
W � �1=m��dQ=dt� can be derived, whereQ is the heat of the
process, m is the mass, t is time, in the form [28]

W �
_T

rb

�
G

m
qm
qT
ÿ qG

qT

�
; �5�

where r is the density and _T is the heating rate. As can be seen,
the heat flux for a given MG at _T � const is determined by
shear moduli of the glassG and the parent crystal m, as well as
their derivatives with respect to temperature. Should high-
precision data on the temperature dependences of G�T � and
m�T � be available, Eqn (5) could be used to calculate heat flux
W, which at the same time can be directly measured by
differential scanning calorimetry (DSC) and compared with
the calculation results.

A typical example of corresponding experimental data is
presented in Figs 7 and 8. Figure 7 shows the temperature
dependences of high-frequency shear modulus G, character-
istic of Zr-based MG, in the initial state and after heating to
900 K, which causes complete crystallization. The initial state
is characterized by an anharmonic decrease in G as the
temperature is lowered to � 500 K (dashed line), after which
structural relaxation begins, causing some slowdown in the
decrease in the modulus. 2 When the calorimetric glass

transition temperature Tg � 670 K is reached, G starts to
decrease significantly up to the moment of the onset of
crystallization at Tcr � 726 K. The shear modulus in the
crystalline state m smoothly, without any kinks, diminishes
with decreasing temperature.

Figure 8 shows an experimental DSC (differential scan-
ning calorimetry) thermogram of the same MG obtained at
the same heating rate. It can be seen that structural relaxation
at temperatures above � 500 K is accompanied by an
exothermic reaction, which, at a temperature close to 670 K,
is replaced by a significant endothermal reaction, and this
temperature, by definition, is taken as the calorimetric glass
transition temperature Tg. The interval Tg 4T4Tcr corre-
sponds to the state of a supercooled liquid, while, at T > Tcr,
strong heat release due to crystallization begins.

The temperature dependences of shear moduli G�T � and
m�T � shown in Fig. 7 were used to calculate the DSC

2 Isothermal relaxation of theMG at T < Tg causes a logarithmic increase

in the shear modulus after a certain transition period, which is naturally

explained in the IT [57].
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thermogram using formula (5), the result of which is shown by
blue circles in Fig. 8. As can be seen, the calculation very well
reproduces all thermal effects observed during MG heating:
exothermic structural relaxation at T < Tg, endothermal
reaction in the supercooled liquid state, and the exothermic
crystallization reaction. The last circumstance is of particular
interest, and we return to its discussion in Section 8.

In calculating temperature dependenceW�T � in Fig. 8, we
used the values of shear susceptibility b obtained in other
experiments from a comparison of the temperature depend-
ences of the shear modulus and the heat flux in the initial and
relaxed samples [28]. Moreover, it turns out that b can also be
determined from completely independent experiments. As
mentioned in Section 2, shear susceptibility b is equal to the
ratio of the fourth-order shear modulus to the `ordinary'
shear modulus (i.e., the second-order shear modulus) [14].
The calculations of fourth-order moduli based on ultrasonic
measurements for three MGs showed that the b values
determined in this way range from 16 to 21, exactly the same
as for the b values obtained using measurements of the shear
modulus and heat flux [58]. We also note that the shear
susceptibility b for a specific MG is usually determined with
an accuracy of no worse than 10±15% [28]. It should be
especially emphasized that Eqn (5) contains no fitting
parameters. We also note that the use of formula (5), due to
the presence of derivatives in it and their difference, requires
high-quality of data on shearmoduliG and m, and a very good
result of calculation of heat flux W made with such data
available (see Fig. 8 ) quite definitely testifies to its adequacy.

Experiments and calculations similar to those presented in
Fig. 8 were repeated many times for various MGs with the
same result: Eqn (5) in all cases very well describes the
experimental calorimetric data [28]. This implies an impor-
tant (paradoxical at first glance) conclusion that the relaxa-
tion of shear elasticity uniquely determines the thermal
phenomena during heating of the MG, in full accordance
with IT.

A question arises: is it possible to solve the inverse
problem, i.e., to calculate the kinetics of the change in the
shear modulus based on the known DSC thermogram?
Simple transformations of Eqn (5) yield a formula for the
temperature dependence of the shear modulus of MG [59],

G�T � � Grt

mrt
m�T � ÿ rb

_T

� Tx

Trt

W�T � dT ; �6�

where Grt and mrt are the shear moduli of glass and crystal at
room temperature Trt, respectively, and Tx is the temperature
of complete crystallization. An example of calculating the
shear modulus based on the measured DSC thermogram
using Eqn (6) is compared with the measurement in Fig. 9.
As can be seen, the calculation reproduces fairly well the
measured temperature dependence of the shear modulus. It
should be noted again that this calculation yields the correct
crystallization kinetics. Similar results were obtained for a
number of other MGs [59, 60].

The change in molar enthalpy DHsr during structural
relaxation of the MG in the IT is determined by the change
in the number of defects DNsr per mol, i.e.,

DHsr � HiDNsr � HiDcsrNA ; �7�

where NA is the Avogadro number, Hi is the enthalpy of
formation of a single defect, according to (1) Hi � aOG, and

the change in concentrationDcsr is associated with a change in
the shear modulus, which can be calculated taking into
account Eqn (2) as

Dcsr�T � � c�T � ÿ crt � 1

ab
ln

Grt

G�T �
m�T �
mrt

; �8�

where the subscript `rt' again corresponds to room tempera-
ture, and the other quantities are defined earlier. On the other
hand, the heat fluxWgl from theMG sample and the heat flux
Wcr from the same sample after complete crystallization can
be calorimetrically measured, which will make it possible to
calculate the change in molar enthalpy as

DHsr�T � � 1

_T

�ÿ
Wgl�T � ÿWcr�T �

�
dT : �9�

If the above reasoning is correct, then an unambiguous
correlation should exist between the calorimetrically deter-
mined change in molar enthalpy according to Eqn (9) and the
change in the number of defects calculated from the
relaxation of the shear modulus according to Eqn (8). An
example of the corresponding results for a Zr-based glass is
shown in Fig. 10, from which one can see that DHsr�T � and
HiDNsr�T � are virtually equal at all temperatures, indicating
the adequacy of relation (7), similar to other MGs [61].

We now provide another interesting example indicating a
close relationship between thermal effects and shear modulus
relaxation, which, according to the basic IT hypothesis
(Eqn (2)), reflects a change in the concentration of defects.
According to the IT, the heat Q absorbed when the MG is
heated from room temperature Trt to a certain temperature
Tsql in the supercooled liquid state (i.e., in the temperature
rangeTg 4Tsql 4Tcr (see Figs 7 and 8)) can be defined as [62]

Q � 1

br

ÿ
GTrt
ÿ GTsql

ÿ mTrt
� mTsql

�
; �10�

where GTrt
, GTsql

, mTrt
, and mTsql

are the shear moduli of glass
and crystal at room temperature Trt and temperature Tsql in
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based on theDSC thermogram using Eqn (6). Dependence m�T �measured

after complete crystallization is also shown [60].
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the supercooled liquid state, respectively. In this case, the
moduli GTsql

, mTrt
, and mTsql

do not depend on the thermal
prehistory, but are only determined by temperatures Trt and
Tsql. Then, according to Eqn (10), heat Q should depend
linearly on shear modulusGTrt

at room temperature, which in
turn can be changed by preliminary heat treatment. The slope
of this dependence should be dQ=dGrt � 1=�br�. The results
of experimental verification of Eqn (10) for a Pd-based glass
are presented in Fig. 11, which shows heat Q as a function of
shear modulus Grt at room temperature varied by the
indicated heat treatment procedures. As can be seen, the
Q�Grt� dependence is indeed linear, and its slope coincides
with its theoretical value quoted above with an accuracy of
several percent [62]. These and similar results [63] confirm the
conclusion about the relationship between thermal phenom-
ena during heating of MG and the relaxation of their shear
elasticity.

6. Volume relaxation kinetics.
Dimensionless relaxation parameter

Heat treatment ofMG is known to cause relaxational volume
changes [64]. These changes can be interpreted in terms of the
IT on the basis of the expected changes in the MG volume
when defects with properties of interstitial dumbbells are
introduced.

The introduction of interstitial dumbbells and vacancies
into a crystal are known to cause a comparable increaseDV in
the volume, which can be represented as [19, 65]

DV
O
� r� 1 ; �11�

where O is the volume per atom, the minus sign corresponds
to interstitial dumbbells, and the plus sign, to vacancies.
Dimensionless parameter r is called the relaxation volume,
which is different for vacancies and interstitial dumbbells (i.e.,
r � rv and r � ri, respectively). Formula (11) has a simple
interpretation: ÿ1 corresponds to a change in volume when
an atom moves from the surface into the crystal, and �1
corresponds to an increase in volume when an atom is
transferred from the inner part of the crystal to its surface.
The relaxation volume (r � rv or r � ri) reflects the sub-
sequent relaxation of the volume. We emphasize that the
relaxation volumes for vacancies and interstitial atoms are
very different, for example, for aluminum ri � 1:9 [65], while
rv � ÿ0:38 [19].

If a concentration of interstitial defects c is created, the
relative volume change is represented as

DV
V
� �ri ÿ 1�c : �12�

Equation (12) in the IT can be applied to relaxation changes
in the MG volume. Then, taking into account basic hypoth-
esis (2), it is easy to derive a change in the density during
structural relaxation of the MG in the form

Dr
r0
� �ri ÿ 1�Dc � ri ÿ 1

ab
ln

G

G0
; �13�

where density r0 corresponds to the state with shear modulus
G0. With an appropriate choice of parameters, formula (13)
correctly describes the increase in theMG density, depending
on the increase in the shear modulus during structural
relaxation of the MG [66].

Similarly, one can calculate the relative change in
density during heating up to the state of complete crystal-
lization [67]:

Dr�T �
rrt

� ri ÿ 1

b
ln

�
mrt
Grt

G�T �
m�T �

�
; �14�

where subscript `rt' corresponds to room temperature.
Results of calculations (red curves) based on Eqn (14) and

experiments (blue symbols) are compared in Fig. 12. As can
be seen, the calculation reproduces fairly well the relaxation
(i.e., after subtracting the anharmonic component) changes in
density, during both structural relaxation and crystallization,
both for the initial sample (Fig. 12a) and for the sample
preliminarily relaxed by heating to T > Tg (Fig. 12b). We
emphasize that the values of the relaxation volume ri in
studies [66, 67] were chosen to be equal to those for
interstitial atoms in the corresponding crystalline metals,
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which in a certain way indicates the nature of the considered
relaxations of the MG volume.

The above difference in the values of the relaxation
volume for interstitial atoms and vacancies, taking into
account the fact that the latter cause a much weaker
diaelastic effect (decrease in the shear modulus with the
introduction of defects), makes it possible to formulate a
new interesting approach to the analysis of the nature of
relaxation volume changes both in crystals and inMG. In the
presence of interstitial atoms and vacancies, the decrease in
the shear modulus can be represented as [68]

DG
G
� DGi � DGv

G
� ÿbici ÿ bvcv ; �15�

where DGi and DGv are the changes in the shear modulus in
the presence of interstitial atoms and vacancies with concen-
trations ci and cv, respectively, and bi and bv are the shear
susceptibilities for these defects. The influence of interstitial
defects on the shear modulus is much stronger: for example,
bi � 31 for copper and bi � 27 for aluminum, while bv � 2
for vacancies [17, 37]. Taking into account Eqns (12) and (15)
for interstitial atoms, we can write

d lnVi � �ri ÿ 1� dci ;
�
dG

G

�
i

� �d lnG�i � ÿbi dci : �16�

Similarly, for vacancies we have

d lnVv � �rv � 1� dcv ;
�
dG

G

�
v

� �d lnG�v � ÿbv dcv : �17�

Eliminating dci and dcv from Eqns (16) and (17), one can
determine the dimensionless relaxation parameters for inter-

stitial atoms and vacancies, respectively [68]:

Ki �
�
d lnG

d lnV

�
i

� ÿ bi
ri ÿ 1

; Kv �
�
d lnG

d lnV

�
v

� ÿ bv
rv � 1

:

�18�

To estimate the values ofKi andKv, we can take the above
estimates of bi, bv, ri, and rv for aluminum, from which we
obtain Ki � ÿ30 and Kv � ÿ3 for interstitial atoms and
vacancies, respectively. Thus, Ki exceeds Kv by an order of
magnitude, thereby reflecting a much greater influence of
interstitial atoms on the shear modulus, despite the compar-
ability of volume effects upon the insertion of interstitial
atoms and vacancies. Therefore, the value of parameterK can
be used to make a conclusion regarding the nature of
relaxation processes, not only in crystals but also in MG,
taking into account the main IT hypothesis about the role of
interstitial atoms in the formation and evolution of metallic
noncrystalline materials [68].

Computer modeling of Al and FeNiCrCoCu crystals has
shown that the inequalityKi 5Kv is indeed satisfied [68]. The
results of determining the parameter K � d lnG=d lnV for
MG can be illustrated as follows.

Figure 13 shows the kinetics of relative changes in shear
modulus and volume during structural relaxation of two
MGs, reflecting the standard increase in modulus and
decrease in volume. The curves in Fig. 13 at the presented
time scales exhibit a logarithmic time dependence [69]. At very
long exposures, the nature of the kinetic dependences can
change, showing the presence of two scales of temporal
relaxation, which also finds an explanation in the IT [69].

Figure 14 shows the same data as the dependence of
DG=G on DV=V. As can be seen, the dependences almost
perfectly coincide with a straight line with the parameter
K � d lnG=d lnV � ÿ44 [68]. Similar studies for five MGs
confirmed the linearity of the dependences DG=G �
f �DV=V�, and the corresponding values of the parameter K
turned out to lie in a rather narrow range �ÿ454K4ÿ 38�
[68]. Note that the relaxation of the shear modulus and
volume of single-crystal Al due to a change in the concentra-
tion of interstitial atoms corresponds to K � ÿ36 [68]. The
following conclusion can be drawn: the experimentally
observed values of K � ÿ42 confirm the IT hypothesis that
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the relaxation phenomena inMGs are due to the evolution of
defects such as dumbbell interstitials.

7. Fragility and heat capacity jump

It is generally accepted that the most important kinetic
parameter of supercooled liquids and glasses is shear
viscosity Z. Of particular interest is the temperature depend-
ence of Z in the vicinity of glass transition temperature Tg. As
noted by S V Nemilov [70], this interest arose from the
production experience of the early 1920s, namely, the
accepted division of glasses into `short' and `long.' These
terms are related to the length of the interval between the
lower temperature of the processing of the supercooled melt
and the temperature at which a sharp decrease in its viscosity
begins. The width of this interval, which reflects the rate of
change in viscosity with temperature in the supercooled liquid
state, is an important technological parameter. In the 1980s±
1990s, this property was characterized by the introduction of
a dimensionless fragility index (more often called fragility),
defined as [71±73]

mZ � d log Z
d�Tg=T �

����
T�Tg

; �19�

where Tg is the temperature at which the viscosity Z of the
supercooled liquid is 1012 Pa s. This definition of glass
transition temperature Tg is considered to be its standard
definition, and fragility mZ characterizes the rapidity of melt
freezing upon cooling to a temperature close to Tg. Super-
cooled melts with a higher mZ (i.e., `short' melts) feature a
relatively narrow supercooled liquid temperature range, while
lowmZ melts (`long' melts) exhibit a relatively wide interval, in
which supercooled liquid exists. It is also important that
fragility determines the degree of deviation of the tempera-
ture dependence of viscosity from the Arrhenius one. In the
case of purely Arrhenius behavior, mZ � 16, the supercooled
liquid is considered `strong,' and its structure does not change
with temperature. Usually, MGs with a fragility of less than
50 are considered strong. An increase inmZ corresponds to an
increasingly large change in structure with temperature, and
glasses with mZ above 50±60 are considered `fragile.'

It is of importance to emphasize that fragility correlates
with various properties of MGs: critical cooling rate, glass-

forming ability, excess entropy, Poisson's ratio, shear mod-
ulus, low-temperature vibrational properties, yield strength,
hardness, etc. [74]. The nature of such correlations remains
unclear. On the whole, it can be asserted that fragilitymZ is an
important physical parameter associated with the properties
of supercooled liquids and glasses. However, the specific
mechanisms of this connection remain unclear.

Fragility mZ can be calculated in the IT. To do so, the
widely used assumption of `elastic models' of glass transition
can be accepted, according to which the activation of
elementary rearrangements is controlled by the elastic
resistance of the medium, which is determined by instanta-
neous shear modulus G [75]. Moreover, the shear viscosity
can be represented as [76, 77]

Z�T � � Z0 exp
�
Gsql�T �Vc

kBT

�
; �20�

where Gsql is the shear modulus in the supercooled liquid
state, Vc is the characteristic volume of the elementary
rearrangement, and pre-exponential Z0 � NAh=Vm �
10ÿ4 Pa s (h is Planck's constant and Vm is the molar
volume) [78].3 Using further the main equation of the IT (2),
one can calculate the fragility as [74]

mG �
�
1ÿ Tg

d lnGsql

dT

�
log10

Zg
Z0
; �21�

where Tg is the glass transition temperature for the chosen
heating rate, and Zg � 1012 Pa s. Equation (21) makes it
possible to determine the fragility if the temperature depend-
ence of the shear modulus Gsql in the supercooled liquid state
is known.

To assess the adequacy of Eqn (21), dedicated experi-
ments were carried out to measure the high-frequency shear
modulus and shear viscosity of seven MGs [74]. Based on
measurements of the shear modulus, fragility mG was
calculated using Eqn (21), and the measurements of shear
viscosity were used to calculate fragilitymZ based onEqn (19).
It is shown that mG � mZ with an accuracy of no worse than
9±10%, thereby confirming the correctness of the IT calcula-
tion of mG. Thus, it can be argued that the fragility of MG is
determined by the rate of change in the shear modulus in the
state of a supercooled liquid. Moreover, the temperature
derivative of the defect concentration dc=dT is constant in
this state and, correspondingly, the concentration of defects
increases at a constant rate. Consequently, as it turns out, the
fragility becomes greater as the defect generation rate rises.

On the other hand, it is well known that fragility mZ is
associated with a jump in heat capacity DCsql upon transition
through the state of a supercooled liquid, and the larger
mZ � mG � m, the stronger this jump is [70, 80]. The specific
mechanism of this relation is not discussed in the literature.
However, an IT-based analysis gives an expression for the
heat capacity jump in the form [74]

DCsql � Gsql

rbTg

�
m

log �Zg=Z0�
ÿ 1

�
; �22�

i.e., the jump in heat capacity DCsql actually increases with
increasing fragility m. In addition, the value of DCsql is
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proportional to the shear modulus Gsql of the supercooled
liquid and inversely proportional to density r, shear suscept-
ibility b, and glass transition temperature Tg. For metallic
glasses, the estimates of DCsql based on Eqn (22) agree with
the experimental data [74].

8. Excess thermodynamic potentials

One of the ways to study MGs is related to the determination
of MGs' thermodynamic potentials and calculation of the
properties on this basis. This approach, first implemented in
the 1990s [81, 82], is still used today [83, 84]. The general
scheme of these studies is to employ data on heat capacity at
temperatures above and below Tg in combination with data
on the heat and/or entropy of melting to calculate excess
enthalpy DH, entropy DS, and the Gibbs potential DF of a
supercooled liquid and/or glassy states with respect to the
corresponding values of the crystalline state. The results
obtained are primarily used to estimate the glass-forming
ability of supercooled melts and the kinetics of their crystal-
lization. The physical nature of excess thermodynamic
potentials remains largely outside the field of vision.

However, the excess thermodynamic potentials of MGs
with respect to the thermodynamic potential of the parent
crystal can be determined on the basis of calorimetric data,
for which DSC data on the heat flux for the initial glass
sample Wgl and the same sample after complete crystal-
lization Wcr are required. Then, the temperature dependence
of the excess enthalpy can be calculated from the formula [85,
86]

DHQ�T � � 1

_T

� Tx

T

DW�T � dT ; �23�

where DW �Wgl ÿWcr is the difference heat flux and Tx is
the temperature of complete crystallization. The excess
entropy can then be defined as

DSQ�T � � 1

_T

� Tx

T

DW�T �
T

dT ; �24�

and the Gibbs potential is calculated using the standard
formula DFQ � DHQ ÿ TDSQ. The subscript Q emphasizes
that the values are determined from calorimetry data. Note
that excess entropy DSQ here includes vibrational and
concentration components. We also emphasize that, accord-
ing to definitions (23) and (24), the quantities DHQ and DSQ

vanish when the value of T reaches the temperature of
complete crystallization Tx. In other words, quantities DHQ,
DSQ, and DFQ only reflect the contribution of the structural
state of the MG (i.e., their noncrystallinity per se) to the
thermodynamic potentials and, in this sense, are indeed
excessive with respect to the parent crystalline state. By the
way, despite the obvious simplicity of definitions (23) and
(24), the corresponding calculations were first performed
quite recently [85, 86].

Figure 15 shows as an example calculation of DHQ, DSQ,
and DFQ for the Cu49Hf42Al9 MG. As can be seen, DHQ and
DSQ remain almost constant at T < Tg, increase by about a
quarter at T between Tg and the crystallization onset
temperature, and then rapidly decrease to zero as a result of
complete crystallization at Tx. At the same time, the excess
Gibbs potential DFQ decreases almost linearly to zero at
T � Tx. Similar results were also obtained for otherMGs [85].

On the other hand, the excess enthalpy can be independ-
ently determined in the IT based on the measurements of the
shear modulus [28, 87] as

DHG�T � � NAO
b

ÿ
m�T � ÿ G�T �� : �25�

The results of the calculation of DHG by Eqn (25) using the
experimentally determined dependences G�T � and m�T � for
the Cu49Hf42Al9 MG are also shown in Fig. 15. As can be
seen, DHG is very close to the calorimetrically determined
DHQ at T < Tg and virtually coincides with it at higher
temperatures. A similar situation occurs for other MGs: the
deviation ofDHG fromDHQ does not exceed 10±15% [85, 86].

However, the main implication of Eqn (25) is that it
determines the elastic energy of the system of interstitial-
type defects frozen in from themelt as a result of its quenching
[28, 86, 87]. Thus, we come to an important conclusion: all
excess thermodynamic potentials of the MG with respect to
the parent crystalline state (including excess internal energy
DUQ, which actually coincides with DHQ) are almost
completely determined by the elastic energy of the defect
subsystem DUel; therefore, in particular, DUel � DHG �
DHQ � DUQ. In the process of heating, the elastic energy
dissipates into heat, which determines the above-described
relationship between the thermal effects and the relaxation of
the shear elasticity of the MG. Notably, the crystallization
heat (i.e., the exothermic effect of the transformation of a
supercooled liquid into a crystal) is mainly the result of the
dissipation of the elastic energy of the defect subsystem at
T > Tg, which was confirmed by dedicated experiments [28,
86, 87]. We also note that, as an analysis of data on excess
enthalpy and excess entropy showed, the enthalpy Hi of the
formation of a single defect is determined by the shear
modulus, while the entropy of formation Si is very large
�10ÿ30 kB�, in accordance with the basic IT hypotheses [85,
86].

It is of interest to find out how elastic energy DUel and
excess entropyDSQ of the defect subsystem change depending
on excess internal energy DUQ when the chemical composi-
tion of the MG is varied. The corresponding results for ten
MGs are shown in Fig. 16 [86]. It can be seen, first, that
DUel � DUQ (the slope for this dependence is equal to unity),
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as noted above (see Fig. 15). Second, excess entropy DSQ

increases linearly with the increase in excess internal energy
DUQ. Finally, even small variations in the chemical composi-
tion of MGs can result in very significant changes in both the
elastic energy of defects and the excess internal energy and
entropy (see, for example, compositions 1 and 3). It can be
assumed thatMGswithmaximum values ofDUel andDSQ (in
particular, compositions 1, 2, 5, and 9 in Fig. 16) exhibit the
maximum tendency to relaxation of physical properties,
which can manifest itself, for example, in the magnitude of
thermal effects, relaxation of the shear modulus, and changes
in shear viscosity during heating. In this connection, it can be
noted that the difference mÿ G � mabc entering Eqn (25) is
proportional to the concentration of defects. Therefore, as
can be expected, MGs with the maximum concentration
of frozen-in defects will show the maximum tendency to
relaxation.

9. Boson peak of heat capacity

The boson peak of heat capacity is a low-temperature (5±
15 K) heat capacity anomaly Cp, which manifests itself as a
peak in the temperature dependence of the Cp=T

3 value. It is
generally accepted that this anomaly is associated with an
excess (above Debye) vibrational density of states, which is
observed in the terahertz range in measuring neutron and
Raman scattering. Such universal features are observed for all
noncrystalline materials [88, 89], including MGs [90]. The
physical mechanism of the boson peak of heat capacity,
despite many years of research and numerous interpretations
of its physical nature, remains largely unclear [53, 91, 92].

Figure 17 shows, as a typical example, the boson peak of
heat capacity in the MG in the initial state and after the
specified heat treatments [93]. As always, as a result of
annealing, the peak height decreases, and the shear modulus
increases significantly [92±94].

However, the boson peak can be naturally interpreted in
terms of the IT. Granato suggested that interstitial defects
behave like Einstein oscillators, and their low-frequency

vibrational modes (mentioned in Sections 2 and 4) contribute
to the heat capacity [95], boson peak height HB being
proportional to defect concentration c. After some refine-
ments, the expression for HB takes the form [92, 96]

HB � Ci

T 3
B

� 234R

Y 3
D

�
0:09 f

�
oD

or

�3

� 3

2
b
�
c � Gc ; �26�

where TB is the peak temperature, Ci is the heat capacity
associated with interstitial defects,YD and oD are the Debye
temperature and frequency, respectively, or is the character-
istic frequency of resonant oscillations of defects, f is the
number of resonant modes per defect, R is the universal gas
constant, and defect concentration c can be estimated from
measurements of the shear modulus using Eqn (2). Figure 18
compares the value ofHB determined using formula (26) with
its experimental value. The calculation was carried out with
the characteristic number of modes for an interstitial dumb-
bell f � 5 and the ratio oD=or � 5 (which, according to
Granato's estimate, is equal to seven [95]). As can be seen,
the calculation results are in good agreement with the
experimental data, and HB actually increases linearly with
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an increase in the defect concentration, both in the completely
amorphous [93] and in the partially crystallized state [96].

On the other hand, calorimetric measurements make it
possible to calculate the change in enthalpy during heat
treatment as DH � _T ÿ1

�
DW dT, where DW is the differen-

tial heat flux (see Eqn (23)), and the integral is calculated in a
temperature range from the onset of structural relaxation to
complete crystallization of the MG. The same enthalpy
change can be determined from formula (25) by assuming
that the shearmoduli of glassG and crystal m are equal to their
values at room temperature. Then, expressing the concentra-
tion of defects fromEqn (2) and expanding it into a series, it is
easy to obtain the relation DH � mNAO=c. Hence, taking into
account formula (26), we find for the height of the boson peak

HB � Gc � G
mNAO

DH ; �27�

where the quantity G is determined by Eqn (26). It can be seen
that the height of the boson peak should be proportional to
the value of DH, which, in essence, is the excess enthalpy of
the MC. It is this dependence that is observed experimentally
[93].

Thus, the IT provides an adequate description of the
boson peak of the heat capacity based on the concept of
low-frequency resonant vibrational modes of defects such as
dumbbell interstitials. In this connection, a recent molecular
dynamics study should be noted [53], whose authors showed
that the boson peak of heat capacity emerges when interstitial
dumbbells are introduced into a CuNiCoFe crystal, and its
height is proportional to their concentration. Moreover, the
boson peak in a crystal is quite similar to that observed in
glass of the same composition.

10. Clustering of defects
as a probable mechanism
for the evolution of a defect subsystem

IT-based estimates show that the concentration of interstitial
defects in MG is at least 2±3%. It is clear that, at such a high
concentration, interstitial defects should effectively interact

with each other. In Granato's original theory [14, 15], an
interstitial defect was modeled in the form of a string, and the
interaction among defects was qualitatively described in
terms of `crossings' of strings with each other, and the final
result was expressed as a phenomenological dependence of
the parameters of `strings' on their concentration. However,
the representation of a dumbbell interstitial as an elastic
dipole (see Sections 2 and 4) makes it possible to construct a
more specific mechanism for changing the properties of a
system of interstitial defects with a change in concentration.
Back in the 1980s, it was established that dumbbell (split)
interstitials (elastic dipoles) can form clusters consisting of
two ormore (up to 7±10) individual interstitials [97]. A cluster
of seven interstitial atoms in an fcc structure forms a regular
icosahedron, as shown in Fig. 19. Such clustering is
energetically favorable, in connection with which a possible
connection between the features of the structural relaxation
of the MG and the clustering processes of elastic dipoles was
hypothesized [69]. The emergence of such a hypothesis was
preceded by numerous studies indicating the presence and
important role of icosahedral ordering in metallic glasses [5,
98±100].

The clustering of elastic dipoles was examined in detail by
means ofmolecular dynamics simulation using the example of
aluminum as a convenient model subject [101]. Primarily, the
specific (per interstitial atom) characteristics of dipoles in
single-crystal Al during their clustering were studied. As
expected, the specific formation enthalpy (normalized to the
number of interstitials in a cluster) decreases fairly rapidly
with decreasing cluster size, but for large clusters (containing
six or more interstitials) it reaches an approximately constant
value close to 1=2 of the enthalpy of formation of a single
dumbbell. The vibrational density of states sharply changes
its character starting from clusters of four interstitials, as
shown in Fig. 20. As can be seen, while a single dumbbell and
clusters consisting of two and three dipoles exhibit a clearly
pronounced low-frequency anomaly in the spectrum, for
large clusters it virtually disappears. This phenomenon is
also manifested in the vibrational spectrum. Indeed, Fig. 21
shows that the atoms of an ideal icosahedron do not
contribute to the low-frequency part of the spectrum, while

a b

Figure 19. Formation of an ideal icosahedron by creating interstitial dumbbells on opposite faces of an fcc cell. (a) Elementary fcc cell; arrows show how

two atoms should be placed instead of one. (b) Ideal icosahedronwithVoronoi indices h0; 0; 12; 0i formed by six interstitial dumbbells on the cell faces and

one interstitial atom in an octahedral position, i.e., in the center of the cell [28, 97].
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the averaged spectrum of the entire model glass, including its
low-frequency part, is quite close to the spectrum of
interstitial atoms in a crystal corresponding to the Voronoi
indices h0; 2; 8; 0i and h0; 3; 6; 4i.

No less interesting is the behavior of the local vibrational
entropy per atom for crystalline and glass-like Al depending
on the number of interstitials in the cluster (Fig. 22). It can be
seen that, with an increase in the number of atoms in a cluster,
the vibrational entropy sharply decreases: for N > 4, it is

actually close to the vibrational entropy of an ideal lattice.
This observation implies that clustering of dipoles cannot
continue indefinitely, since the Gibbs formation potential
ceases to decrease with an increase in the number of
interstitials in a cluster from a certain moment, while, at a
high temperature, it even begins to increase. This in turn
indicates that each specific temperature corresponds to its
own equilibrium ratio among the sizes of clusters in the
system. In addition, as Fig. 22 shows, the clusters can be
conditionally divided into two groups, withN < 4 andN > 4.
Small clusters and single dipoles can be considered `defects'
that actively interact with an external stress and can quickly
change their state, grouping into larger clusters or breaking
up into separate dipoles. Large clusters turn out to be more
stable, since, with a change in the number of atoms they
contain, the specific enthalpy and entropy change muchmore
weakly, and they can be conditionally attributed to an
amorphous `matrix' with a dominant icosahedral ordering,
which, as noted above, is characteristic of MGs.

From this perspective, the evolution of the glass structure
and its defect subsystemwith temperature can be qualitatively
represented as follows. Crystal melting occurs due to the
rapid avalanche-like generation of split interstitials. With an
increase in their concentration, the process of clustering
begins, leading to a gradual increase in the size of clusters.
However, upon reaching a certain concentration of inter-
stitials, the process of their clustering slows down, and an
ensemble is formed in the material, consisting of individual
interstitials and clusters of various sizes. The ratio between
their relative concentrations depends on temperature (the
higher the temperature, the greater the relative concentration
of small clusters). It should be noted that the equilibrium
between the concentration of clusters of different sizes and
individual interstitials is dynamic, i.e., clusters grow and
decay concurrently. Rapid quenching of the glass `freezes'
the ratios between the concentrations of clusters of different
sizes, which are characteristic of the melt. When such glass is
heated, at the moment when a certain temperature is reached,
the clusterization of the `excess' part of individual dipoles and
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their small clusters begins, so that, at temperatures exceeding
Tg, the distribution between clusters becomes close to
equilibrium for these temperatures. If the temperature
increases further, the size distribution of clusters again
becomes nonequilibrium, and the process of `evaporation'
(thermal decomposition) of clusters into smaller formations
begins. Upon reaching temperatures close to the temperature
at which crystallization begins, the size distribution between
clusters becomes similar to that in the melt. Upon quenching,
an unrelaxed (or weakly relaxed) glass is again formed from
this state, and, upon slow cooling, repeated clustering occurs,
and a relaxed state is formed. The degree of relaxation
strongly depends on the cooling rate, since the clustering
process is thermally activated, and already at temperatures
far enough from room temperature it stops completely at the
cooling rates realized in the experiment.

The presented scenario of glass evolution qualitatively
describes the important features of the behavior of its
properties during heat treatment. In particular, this refers to
mechanisms for the nonmonotonic behavior of the shear
modulus in the initial state of the glass upon heating, the
increase in the shear modulus compared to that of the initial
state upon slow cooling of the preheated glass, the effect of
restoring the elastic characteristics to the values close to those
characteristic of the initial state during quenching of glass
from temperatures higher than the glass transition tempera-
ture, and the features and nature of the thermal effects that
appear in this case.

11. Relation between the properties of glass
and the parent crystal

As noted in the Introduction, it seems quite apparent that the
properties of MG should be related to the characteristics of
the parent crystal, i.e., the crystalline state that arises as a
result of glass crystallization and, at the same time, is the
starting material for the melt from which glass is made.
Therefore, their physical characteristics must correlate with
each other. However, in most models and theories of the
amorphous state, this issue is not considered at all and is not
even raised. The IT is the only theory in which this correlation
is not only analyzed but also `genetically' embedded in the
initial hypotheses, an assertion directly following from
Eqn (2), which is one of the main components of the
mathematical formalism of the IT and directly shows that
the shear modulus of glass G is proportional to that of the
parent crystal m. As has been repeatedly noted in this review,
the shear modulus is the most important characteristic that
determines the properties of the MG. First of all, it should be
noted that relationship G�m�, which directly determines the
thermal effects during heating of the MG, follows directly
from Eqns (5), (6), and (10). This relationship sets the
dependence of the MG density on temperature, which is
determined by formula (14). Finally, this relationship
manifests itself in the most important way in the enthalpy of
the defect subsystem (25), which, as noted, is virtually equal to
the elastic energy of the defect subsystem and, in essence,
determines all excess thermodynamic potentials of the MG.
Consequently, the parent crystal in the energy sense is the
ground state of the glass, i.e., its state with the minimum
energy [102].

On the other hand, the relationship between shear moduli
of glass and the parent crystal is reflected in the concentration
of defects, a decrease in which during relaxation or crystal-

lization causes partial or complete release of the elastic energy
of defects in the form of heat. When the defect concentration
does not change (i.e., at temperatures at which there is no
relaxation whatsoever), Eqn (2) can be represented as
d lnG=dT � d lnm=dT, or

d lnG

d ln m
� 1 : �28�

Formula (28) implies that, in the temperature range where
there is no structural relaxation, the temperature derivatives
of the relative changes in the shear modulus of glass and the
shear modulus of the parent crystal should be the same.
Measurements of the moduli G and m for MGs of
24 chemical compositions have shown that relation (28) is
indeed satisfied with an accuracy of about 10% or even better
[103]. This, on the one hand, is an experimental confirmation
of the relationship between the properties of glass and the
parent crystal, and, on the other hand, is another confirma-
tion of the adequacy of the IT.

In the Introduction, we gave a definition of the parent
crystal, which is quite suitable when glass crystallization
occurs in one stage, even if a multiphase polycrystalline
structure is formed. However, the crystallization process
often occurs in several stages, sometimes with very different
temperatures, and the resulting phases can bemetastable. The
IT in its original version does not involve consideration of
phase transformations in the crystallized state. Therefore, the
concept of the parent crystal becomes not quite unambig-
uous. In this case, the simplest solution seems to take as such
the high-temperature state from which the melt is obtained.
However, in Eqns (1) and (2), it is necessary then to add elastic
and thermal effects that occur in a crystallized state, which
complicates the description. It should be emphasized that in
most cases the main elastic and thermal effects occur at the
very first stage of crystallization, and then the definition of the
maternal state given in the Introduction is quite adequate.

On the other hand, the relationship among the properties
of glass, melt, and parent crystal manifests itself in a very
interesting way in the ratio among the enthalpies of structural
relaxation, crystallization, and melting. As noted, the IT
assumes the inheritance of defects such as interstitial dumb-
bells from themelt. If the rate of melt quenching is sufficiently
large, one can expect that the concentrations of defects in the
glass and melt will be approximately the same, cglass � cmelt.
The value of cglass in the IT determines the total heat content
(enthalpy) of glass. Structural relaxation of the glass at
T < Tg leads to a decrease in cglass by a certain amount Dcrel,
thereby causing an increase in the shear modulus from G to
Grel � G exp �abDcrel� and a corresponding decrease in the
enthalpy by DHrel. The residual concentration of defects
cmelt ÿ Dcrel � ccryst decreases to zero as a result of crystal-
lization, and the shear modulus increases to its value m in the
crystalline state with concurrent release of enthalpy DHcryst.
The total heat release of the initial glass as a result of
crystallization is then described by Eqn (25), where
DHG � DHcryst. Since the concentration of defects frozen
in from the melt is cmelt � Dcrel � ccryst, the total heat
absorbed during melting should approximately equal
the total heat released during structural relaxation and
crystallization, i.e., in terms of the corresponding
enthalpy changes, the relation

DHmelt � ÿ�DHcryst � DHrel� �29�
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should hold. The result of an experiment carried out to test
relation (29) is presented in Fig. 23, which shows the enthalpy
of melting of the parent melt DHmelt as a function of the
absolute value of the sum of the enthalpy of structural
relaxation DHrel and the enthalpy of crystallization DHcryst

for 11MGs based on Zr, Pd, and La [28, 104]. As can be seen,
this dependence fits well into a straight line, the slope of which
is close to unity, so that Eqn (29) is fulfilled with an accuracy
of no worse than 10%. This fact directly confirms the IT
concept that the number of defects formed during the melting
of the parent crystal is approximately equal to the number of
defects disappearing during the structural relaxation and
crystallization of the MG, and thus the properties of the
parent crystal and glass are indeed interrelated.

12. Alternative thermodynamic approach

Studies have shown that an alternative approach to describ-
ing the relationship between thermal phenomena and relaxa-
tion of shear elasticity during the structural relaxation ofMG
is possible, which is actually not related to the IT but leads to
practically the same result.

We now consider glass as a thermodynamic system
consisting of a certain matrix and a defect subsystem. Heat
treatment causes the evolution of a defect subsystem, which
can be interpreted as a change in the concentration of certain
defects. Relaxation of the defect subsystem causes a change in
the macroscopic entropy of glass by some value DSd. This
change in entropy can be calculated using the general
thermodynamic relation [105]

DSd � ÿRmin

T
; �30�

where Rmin is the minimum work that must be done to
transfer the defect subsystem to a state of metastable
equilibrium with the matrix, and T is the absolute tempera-
ture. Formula (30) determines to what extent the entropy of a
nonequilibrium glass differs from its maximum value at a
given temperature [106]. The minimumworkRmin in Eqn (30)
is determined by the Gibbs potential barrier DFd for
elementary atomic rearrangements leading either to annihila-
tion of defects or to their transition to other energy states. In
the `elastic models' of glass transition mentioned in Section 3,
the energy barrier of elementary rearrangements is controlled

by the instantaneous shear modulus G [75] and, following
Eqn (20), this barrier can be represented as DFd � GVc,
where Vc is some characteristic volume of the rearrangement.

Let the total concentration of defects c0 include a certain
concentration of defects ctr that can change the structural
(energy) state during heat treatment. Then, a change in the
structural state of defects requires work dR � NAV0G dctr to
be done and causes a change in the shear modulus [106]:

dGrel

G
� B dctr ; �31�

where B is the shear susceptibility characterizing the decrease
in the shear modulus in the presence of defects (diaelastic
effect). In the thermodynamic approach considered in this
section, Eqn (31) is the only assumption about the properties
of defects responsible for the structural relaxation of theMG.
Combining Eqn (31) and the above formula for work, it is
easy to calculate thework to be done for the relaxation change
in the shear modulus given by Eqn (31):

dR � NAV0

B
dGrel : �32�

Assuming that dR in Eqn (32) is the differential of the
minimum work Rmin in formula (30), it is possible to
calculate the thermal effect with an infinitely small change in
the concentration of defects and the corresponding change in
the relaxation component of the shear modulus as
dQ � T dSd � ÿ�NAV0=B� dGrel. Then, the heat flux takes
the form [106]

W � 1

mm

dQ
dt
�

_T

mm

dQ
dT
� ÿNAV0

_T

mmB

d�DGrel�
dT

; �33�

wheremm is the molar mass. The result of calculatingW using
Eqn (33) can be compared with the experimental results if the
relaxation component of the shear modulus DGrel is known.

To determine DGrel, a special procedure was developed
[106], which was used to calculate the heat flux by formula
(33) and compare it with experimental DSC thermograms for
three MGs. The characteristic volume of an elementary
transformation was taken equal to Vc � gO, where g is a
numerical coefficient and O is the volume per atom. The
dimensionless ratio B=g was interpreted as a fitting para-
meter. The corresponding example is shown in Fig. 24, which
compares the results of calculations and experiments for
samples of the Zr46Cu45Al7Ti2 MG in the original and
relaxed (by means of preheating to T > Tg) states. As can be
seen, the calculation reproduces the experimental data very
well, testifying to the adequacy of the described thermo-
dynamic approach. In particular, the disappearance of the
exothermic reaction in relaxed samples is reproduced well.
Similar results were also obtained for other MGs [106]. Since
it can be expected that Vc � O, the results obtained yield
values of the shear susceptibility B � 20, which are very close
to those mentioned in Section 5, found in the analysis in the
IT.

It should be noted that the structure of formula (33) for
the heat flux is similar to that of the corresponding expression
(5) derived in the IT. In both cases, the kinetics of the thermal
effect is determined by the derivatives of the shear modulus
with respect to temperature. The difference between the forms
of these derivatives is partly due to the fact that formula (5) is
more general, since it describes not only structural relaxation
but also crystallization, while formula (33) is only applicable

4
3 7 6

10

11

1

5

2

9 8

10

D
H

m
el
t,
k
J
m
o
lÿ

1

jDHcryst � DHrelj, kJ molÿ1

8

6

5 6 7 8 9 10

Figure 23.Melting enthalpy as a function of the absolute value of the sum

of enthalpies of structural relaxation and crystallization. Numbers

correspond to different MCs based on Zr, Pd, and La [28, 104]. Slope of

the dependence is close to unity, which confirms the validity of Eqn (29).

688 N P Kobelev, V A Khonik Physics ±Uspekhi 66 (7)



for structural relaxation. In the latter case, Eqns (5) and (33)
yield virtually the same results.

We emphasize once again that the described approach to
the kinetics of thermal phenomena based on general thermo-
dynamic relation (30) is not connected in any way to the IT.
However, the similarity of the obtained results indirectly
confirms the adequacy of the analysis of thermal phenomena
in the IT.

13. Problems and prospects

The consideration presented in this review shows that the IT
makes it possible to describe, at least qualitatively, and in
most cases, quantitatively, the main features of the relaxation
behavior of MGs, in particular, the nature of the change in
elastic and thermal properties during their heat treatment in
various temperature regimes, including during crystalliza-
tion. Despite the simplicity of the basic IT formulas that
describe the physical properties of glass, it turns out that the
dependences obtained on their basis reproduce the experi-
mental observations well. This suggests that the concepts
underlying the IT are universal. Moreover, although the IT
was originally intended to describe glasses made of simple
metals, it also quite adequately describes the behavior of
multicomponent glasses. Thus, the IT is, on the one hand,
relatively simple, and, on the other hand, a fairly effective tool
for studying metallic glasses.

However, the IT itself requires further refinement and
development. Granato's original version of the IT considered
glass to be a comparatively homogeneous structure. How-
ever, the experimental and theoretical data presented in this
review testify to the strong heterogeneity of the structure of
metallic glasses, the properties of which, nevertheless, can be
described using simple dependences. This poses some pro-
blems in IT refinement, as the complex nature of the structure
is not apparently exhibited in the properties and behavior of
the MG. One of the important areas in the further develop-
ment of the IT should be the elucidation of the structure of
glass based on simple metals. One of the problems is that the
processes of clustering of interstitial dipoles and the resulting
structures are relatively simply described only in the initial
crystal structure. However, it is clear that the processes of
dipole interaction highly depend on the nearest environment.

So far, there is no adequate understanding of how the
structure of a material evolves (even on the basis of simple
crystal lattices) as the concentration of dipoles increases or
how the nature and types of cluster formation change.
Answering these questions may be one of the goals of
computer modeling. Such studies can make a significant
contribution to understanding the structure of glass.

Another area is connected with the study of multi-
component structures. As shown in Sections 4 and 10, one
of the IT options is the representation of defects using the
dipole model. However, examination based on the dipole
model leads to virtually the same results as in the `classical' IT.
This is an important point that can be of great importance for
understanding and studying multicomponent MGs. While in
simple metals, in fact, the only variant of an effective elastic
dipole is a split interstitial, in multicomponent crystalline
materials, the number of variants of elastic dipoles is very
large [21]. However, the role of such elastic dipoles both in the
melting of multicomponent crystalline materials and in the
formation of glasses based on them is still completely unclear.
These two areas of studies may turn out to be key for the
further development of the IT, on the one hand, and
understanding the structure of glass, on the other.

It should also be noted that, as shown in this review, the IT
well describes and predicts the behavior of the elastic and
thermal characteristics of metallic glasses. However, so far,
there are virtually no studies in which the IT would be used to
describe other properties of MG, such as strength, plasticity,
thermal conductivity, diffusion, or internal friction, with few
exceptions [77, 107, 108]. The use of the IT to elucidate these
properties will not only provide material for improving the
theory itself and evaluating its adequacy but also deepen the
understanding of structural features and relaxation phenom-
ena in metallic glasses.

It also seems very important and interesting to use the IT
to describe relaxation processes in nonmetallic (for example,
oxide) glasses. The melting of the corresponding crystal
structures differs significantly from that of metallic systems,
and the existence of single interstitial dumbbells is far from
apparent, although a wide variety of elastic dipoles can be
expected. It is also of interest to use the IT to describe the
properties of these materials. On the other hand, the
structural diversity of nonmetallic glasses is inherent in
systems that barely crystallize under standard heat treatment
conditions, so the concept of a parent crystal loses its meaning
for them. In general, the extent to which the IT can be applied
to the description of nonmetallic noncrystalline systems is a
matter for future research.

14. Conclusion

This review is devoted to an alternative view of the nature and
properties of metallic glasses, the interstitialcy theory. This
theory, first proposed about 30 years ago, has significantly
developed only in recent years, taking its rightful place among
the most promising approaches to the study of the nature,
defect structure, and relaxation properties of metallic glasses.
The fundamental feature of the interstitialcy theory is the
presence of an organic connection between the properties of
glass and the parent crystal from which the glass is made.
Such a connection is embedded in the interstitialcy theory
starting from the very first stage of formulating its basic
hypotheses. In principle, it is this relationship that makes it
possible to successfully interpret a fairly large range of
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tions and experiments is seen.

July 2023 A novel view of the nature of formation of metallic glasses, their structural relaxation, and crystallization 689



physical phenomena in metallic glasses, as shown in this
review. In the opinion of the authors, with further develop-
ment, this connection, along with the IT itself and the ideas
embodied in it, may turn out to be useful for elucidating the
structure and properties of nonmetallic noncrystalline sys-
tems.
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