
Abstract. Very high accuracy and sensitivity have become
attainable by modern instruments for experimental measure-
ments of physical quantities in various scientific fields. Yet it is
still impossible to completely eliminate the influence of instru-
mental effects on the result. The measured values of a physical
quantity inevitably differ, sometimes significantly, from the
true ones. The question therefore arises of restoring the true
distributions from the measured ones, taking the specific fea-
tures of the experiment and the characteristics of scientific
instruments into account. Different approaches are in use
based on a mathematical model of the instrument and the
formulation of the deconvolution problem. We describe this
problem, key ideas and methods for its solution, and features
and implementation details using the example of elementary
particle physics and space physics experiments.
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ods, statistical estimates, Bayesian methods, regularization, bin-
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1. Introduction

The precision of modern experiments in various scientific
fields is constantly increasing, the tools of science have
become more sensitive and the results obtained are more
accurate. This allows new discoveries to be made, previously

inaccessible effects and phenomena to be explored, and our
understanding of the laws of nature to be improved. At the
same time, quality requirements for the processing and
analysis of the obtained data have to increase in order to
eliminate the influence of instrumental effects on the result.
The fields of nuclear physics, elementary particles, space
physics, and other related disciplines are no exception in this
regard.

In this paper, we consider an important issue asso-
ciated with the processing of scientific data of modern
experiments in these fields: given the measured values, to
reconstruct the true values of particle characteristics and
their distributions.

The inaccuracies of the measuring instruments and
equipment noise lead to various distortions in the character-
istics of the particles such as speed, magnetic rigidity, energy,
momentum, and the direction of motion. As a result, the
distributions of these characteristics obtained in experiment,
for example, energy spectra and angular and mass distribu-
tions, differ from the true ones, which can lead to incorrect
interpretations of the measurement results and erroneous
physical conclusions.

Such a problem can be solved using so-called deconvolu-
tion methods, which allow reconstructing the true distribu-
tion of a given characteristic from the measured data; more
precisely, an estimate as close as possible to the true but
generally unknown law is to be found. These methods use
information about the expected nature of the distortions
occurring in measurements, obtained by modeling the
response of the instrument by Monte Carlo methods or as a
result of gauging. Such data with the known true and
measured values of a physical quantity are then used to
construct a migration matrix [1, 2]. The convolution of the
migration matrix with the true distribution gives the meas-
ured distribution of this quantity. In processing experimental
data, the solution to the inverse problem is of interest, but the
convolution of the inverse migration matrix with the
measured distribution is an unstable estimate of the true
distribution [3±6]. This is why deconvolution algorithms
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based on various mathematical approaches are used to obtain
a stable solution.

Various statistical methods are employed in particle
physics [5, 7]. The approaches to solving the deconvolution
problem, specific algorithm features, and applications to the
processing of experimental results in high-energy physics
have been actively discussed since the early 1980s. In 1984, a
general review of algorithms for solving this problem was
given by Blobel in the framework of the CERN Summer
School of Computing and was presented in [1]. In 1998, a
detailed description of some of the deconvolution methods
was given in a chapter of Cowan's book [8] devoted to
statistical data analysis, and also in his review article [5]. The
deconvolutionmethods relevant at the time were described in
a subsequent review article by Blobel [9] (2011) and in the
chapter he wrote for a practical guide on the use of statistical
methods in high-energy physics [10].

These review publications describe the general idea of the
problem setup for reconstructing the spectrum of physical
quantities and of possible errors when using the `naive'
approach to solving the problem and also provide a detailed
(idea-to-algorithm) description of some methods for solving
the deconvolution problem. These publications are not
without some drawbacks, including a significant bias toward
the description of regularization methods for reconstructing
the discrete spectrum, resulting in insufficient coverage of
other deconvolution methods. We also note that there are no
descriptions of the practical use of the corresponding
algorithms in these publications. A more extensive review of
deconvolution methods was presented in [11±15]. Also of
great practical importance are studies [16, 17], which, in
addition to reviewing the methods, provide a comparative
analysis of the algorithms implemented in the deconvolution
software packages that are actively used in processing the
results of physical experiments.

Descriptions of deconvolution algorithms can generally
be found in a review section or when listing data processing
methods in published theses. In some of them, the authors
limit themselves tomentioning a particularmethod they select
[18, 19] but occasionally also include a comparative analysis
of deconvolution algorithms [20], including a rather detailed
review [21].

Deconvolution methods currently continue to be devel-
oped: the existing ones are modified and new algorithms are
proposed. In particular, machine learning methods, which
have proven themselves in various applied fields, are actively
used. Such approaches are particularly applicable to con-
structing estimates of the continuous spectrum using so-
called binning-free deconvolution methods, whose prospects
of use in applied problems have been actively discussed in the
last decade [22±25].

In this paper, we give a broad overview of deconvolution
methods for reconstructing discrete and continuous spectra:
the basic and most frequently used deconvolution methods
are considered in detail, their advantages and disadvantages
are discussed, and some general problems important in
processing the experimental results are addressed.

2. Deconvolution problem

In this section, we discuss a general approach to reconstruct-
ing an estimate of the true distribution of a physical quantity,
introduce basic terms and notation, and describe the funda-
mental problem statement and a direct method for solving it.

2.1 Background
The difference between measured and true values of a
physical quantity can be small or large, in the general case
leading to a difference between experimental distributions
and true ones. There are several reasons why values are
measured inaccurately and differ from the true values. Most
often, this occurs due to a finite resolving power of the
measuring equipment or due to noise, and can also be the
result of various physical processes associated with the
passage of particles through the substance of the instrument,
such as scattering or energy loss.

There is therefore a need to reconstruct the true distribu-
tion of a quantity given the measured distribution; this
problem can be formulated in the framework of the so-called
deconvolution approach, also known as unfolding in the
literature.

In some cases, the problem setup can be simplified, for
example, if the general form of the sought distribution is
known and one or several parameters involved in it can be
estimated. But, in the general case, the distribution law is
unknown, except perhaps for its distinct properties such as
continuity or smoothness. This requires the use of nonpara-
metric methods of mathematical statistics. In particular,
histogram methods, which resort to dividing a set of values
of a given quantity into intervals, density approximation
methods based on a system of basis functions, and methods
of local density estimates from a sample are used to estimate
the distribution density.

The distribution law for values of a physical quantity to be
reconstructed can be continuous or discrete. The first option
is frequently encountered in scientific problems, and the
histogram method with discretization of the continuous
spectrum of a physical quantity is then most widely used. In
this case, the following approach is used to evaluate the true
distribution law of the measured quantity:
� the set of values of the measured quantity is divided into

intervals (bins);
� the number of events included in each bin is counted;
� an instrumental histogram is built, which is a discrete

approximation of the continuous distribution of the meas-
ured value;
� the response function of the instrument is found, taking

the difference between the measured and true values into
account (migration matrix);
� a statistical estimate of the true distribution is con-

structed.
We note that the result of reconstructing the true

distribution in this case is not a continuous function but a
discrete statistical estimate, which in any case differs from the
discretization of the true unknown distribution of the relevant
physical quantity. However, the use of the deconvolution
approach allows obtaining a more accurate statistical
estimate that is close to the true law.

Other approaches to solving the problem of recon-
structing the distribution laws of a physical quantity, not
relying on a system of bins, can be conventionally classified
as binning-free methods. In this case, the spectrum
reconstruction algorithm is based on a particular idea for
estimating the unknown distribution density. The follow-
ing main approaches can be selected:
� kernel smoothing [26]: an estimate of the unknown

continuous distribution density is constructed as the arith-
metic mean of the values of a function of a special form
(kernel function) at the sampling points;
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� projection method [27]: the continuous distribution
density is estimated as a linear combination of some system
(basis) of functions;
� spline approach [28]: the distribution density is esti-

mated as a piecewise-defined function whose components in
each interval are estimated from a sample;
� local method: the distribution density is estimated only

in the vicinity of a specific selected point (the method of
k-nearest neighbors [29], the method of potential functions
[30], and other approaches are used).

We also note that somemethods are used in both cases, for
constructing discrete estimates (histograms) of the density in
a selected system of intervals and for a smoothed estimate of
the distribution density. They are described, for example, in
[24] and the references therein.

2.2 Notation and problem statement
in the case of discretization
We consider a physical quantity whose values are distributed
in accordance with an unknown law. As noted in Section 2.1,
the most common strategy to estimate the distribution law is
to construct estimates of the probabilities that the values of a
random variable fall into a certain finite set of intervals. In
this case, the range of possible true values can be partitioned
into a set of bins D � �D1;D2; . . . ;Dn�, each of which is
associated with the probability of finding the true value
inside it. This partitioning procedure is called binning, and
the resulting set of probabilities p � �p1; p2; . . . ; pn� is called
the discretization of the continuous distribution, or of the true
spectrum, whose estimate is to be found.

Partitioning can be arbitrary and nonuniform in general,
but the reconstruction quality of the true distribution
significantly depends on the choice of binning (this problem
is discussed in more detail below).

LetN particles be registered in the experiment, for each of
which the value of a chosen quantity is measured; such a
single fact is called an event. The expectation value of the true
number of events in the bins, denoted by t � �t1; t2; . . . ; tn�, is
calculated as t � Np.

The range of measured values is also binned, D0 �
�D01;D02; . . . ;D0k�. We note that it is acceptable to use different
binnings for true and measured values, possibly with n 6� k.
The number of detected particles in the corresponding bins is
denoted by m � �m1;m2; . . . ;mk� and is called the measured
spectrum. In some cases, the term is also used for the
corresponding frequenciesm=N � �m1=N;m2=N; . . . ;mk=N�.

In Fig. 1, we illustrate the true and measured spectra of
some quantity. The difference between them, due to the above
reasons, can be significant for some bins or a sequence of bins.

The difference between the spectra can be described using
the migration matrix RwhoseRi j entry is the probability that
the true value of the quantity from the jth bin is registered in
the ith bin. Then, the expectation values n � �n1; n2; . . . ; nk� of
the number of events with characteristic values lying in the
considered bins are given by n � Rt.

In Fig. 2, we show an example of the migration matrix
with different partitions into bins along the axes of the true
and measured values of a physical quantity; color coding
shows the values of the migration matrix entries Ri j.

The main task is therefore to develop methods for a
consistent statistical evaluation of the unknowns p or the
expectation values t proportional to them, given the meas-
ured spectrummwith a known nature of distortions described
with a migration matrix R.

2.3 Direct method for solving the deconvolution problem
To solve the problem, it is natural to assume that events
cannot occur simultaneously (the ordinariness condition).
The probability of registering a fixed number of events mi

in the interval Di during the observation time must be
independent of the occurrence of events at preceding
instants (no aftereffect) and of the chosen zero of
observation time (stationarity condition). Under these
assumptions, all the necessary conditions are satisfied
that allow considering the sequence of events to be the
simplest, Poisson, flow [2].

The number of events that fall into the interval Di is
then a Poisson-distributed random variable with the
expectation value ni. The probability of the occurrence of
mi such events is

P�mi; ni� � exp �ÿni� n
mi

i

mi!
:

We thus consider a set of Poisson-distributed random
variables with unknown expectation values n, which in
turn depend on the unknown t (n � Rt). To construct a
consistent statistical estimate of t for a sample m, the
maximum likelihood method can be used. For this, the
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Figure 1. Illustration of the true (solid line) and measured (dashed line)
distributions of a physical quantity.
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Figure 2. Illustrative representation of the migration matrix.
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likelihood function is constructed and maximized with
respect to t:

L�t� �
Y
i

P�mi; ni� �
Y
i

exp �ÿni� n
mi

i

mi!
! max

t
:

The constructed likelihood function L�t� reaches a
maximum at ni � mi, and t can be estimated as t̂ � Rÿ1m [3,
5]. This corresponds to the `naive' approach to solving the
deconvolution problem: the measured and true distributions
are assumed to be related by a linearmatrix equation, which is
solved by applying the inverse migration matrix to the
measured spectrum.

The constructed point estimate t̂ is consistent and
unbiased [5, 31±33]. In practice, however, the use of the
direct method is only possible for a large sample size and a
very high resolution of the measuring instruments, which
corresponds to a nearly diagonal matrix R [3, 5]. Otherwise,
the estimate is sensitive to small perturbations of the
measured distribution (i.e., the direct estimate is unstable),
which leads to an unacceptably large error (uncertainty) in the
estimate of t [3±6]. At the same time, it is impossible to exactly
draw the applicability bound of the direct method that would
ensure its stability, because in general it depends on a large
number of factors unique to each experiment, and each case
requires a separate study.

In addition to the noted instability, the described
approach in its original form does not allow taking the
features of the true distribution into account, such as its
smoothness or entropy [8, 34].

The combination of these shortcomings does not allow
the direct method to be widely used to estimate the true
distribution, because it does not guarantee a well-defined
stable result. A possible solution is to artificially introduce a
bias into the statistical estimate, which can be done following
the two most common strategies [35]:

(1) adding a `penalty' term to the likelihood function
(on which the methods using Tikhonov's regularization are
based, to be discussed below) [36, 37];

(2) early stopping of iterative algorithms for constructing
statistical estimates [38].

In Section 3, special methods for solving this problem
are discussed in detail, based on various mathematical
algorithms for deconvolution and the ideas involving
biased estimates.

3. Methods for solving
the deconvolution problem

To reduce statistical errors and smooth the estimate of the
true distribution, certain modifications of the direct method
as well as fundamentally different approaches to deconvolu-
tion are used, including the following ones:

(1) Bayesian approaches to solving the inverse convolu-
tion problem [39] (D'Agostini methods [38, 40], modifications
of Kuusela, Panaretos [41, 42]), the FBU (fully Bayesian
unfolding) algorithm [43];

(2) Tikhonov's regularization and its modifications (sin-
gular value decomposition, SVD: Kartvelishvili, H�ocker [36,
44], entropy-based regularization [5], and the TUnfoldmethod
implemented in the ROOT software package [12, 37]);

(3) introduction of correction factors and systematic
shifts (model dependence) [5];

(4) machine learning methods.

3.1 Bayesian methods
A common approach to solving the deconvolution problem is
the idea of using the Bayes formula to estimate the
probabilities of particles falling into bins according to the
frequencies of observed events and the available migration
matrix. We describe how this approach can be applied to the
problem of reconstructing the spectrum of a physical
quantity.

We let C1;C2; . . . ;Cn denote events associated with the
actual occurrence of a physical quantity in the corresponding
bin D1;D2; . . . ;Dn. Events associated with event detection in
the same bins are denoted by E1;E2; . . . ;En. We note that the
probabilities P�C1�;P�C2�; . . . ;P�Cn� are unknown: they are
the components of the sought true spectrum �pi � P�Ci��, and
the probabilities of the particles being detected in the bins can
be estimated from the experimental results as P̂�Ej� � mj=N.
Also, using gauging data or numerical simulation, we can
estimate the conditional probabilities of detecting a char-
acteristic in a jth bin if the value actually falls into an ith bin.
In the foregoing, these conditional probabilities were inter-
preted as entries of the migration matrix Ri j � P�EjjCi�.

The deconvolution procedure is thus reformulated in
terms of events and their probabilities as a problem of
reconstructing unknown probabilities P�Ci� or expectation
values proportional to them for the true number of events in
the corresponding bins given the conditional probabilities
P�EjjCi� and the probabilities P�Ej� �experimentally esti-
mated as P̂�Ej��. To solve this problem, we must estimate
the conditional probability of actually finding a physical
quantity in the jth bin if it is detected in the ith bin. This is
done in accordance with the Bayes formula

Mji � P�CijEj� � P�EjjCi�P�Ci�
P�Ej� � P�EjjCi�P�Ci�P n

k�1 P�Ck�P�EjjCk� :

Then, the expectation value of the number of events
detected in the jth bin (the total number of such events being
mj) if the true value lies in the ith bin is estimated as
mjP�CijEj� �Mjimj. Accordingly, the expectation value of
the true number of events in the ith bin is obtained by
summing over all bins in which events are detected:
t̂i �

P n
j�1 Mji mj. The resultant matrix M � �Mji� is called

the deconvolution matrix; in general, it is not the inverse of
the migration matrix R.

In practice, it should be taken into account that a physical
quantity from the jth bin can be detected outside the
considered range. The probability of registration in at least
one of the considered bins is called the efficiency and is
defined as ej �

P n
k�1 P�EjjCk�. If ej 6� 1, the expected true

number of events in the jth bin is calculated as
t̂i � �1=ei�

P n
j�1 Mji mj. We assume in what follows that the

correction for the efficiency is absorbed into the matrix M,
and also call the resultant matrix the deconvolution matrix.

The deconvolution problem (estimating the true spec-
trum) reduces to constructing the matrix M. However, the
Bayes formula for estimating the entries Mji involves the
probabilities P�Ci� that are the unknowns. In other words, to
estimate the true spectrumwith this approach, the probability
distribution of the occurrence of a physical quantity over the
corresponding bins (i.e., the true spectrum itself) should
already be known, which makes the deconvolution problem
ill posed. It is impossible to estimate the probabilities P�Ci�
�unlike P�Ej�� directly from experimental data. To recon-
struct the true spectrum, the method described by D'Agostini
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[38] is therefore used, which is based on the approach known
in other fields as theRichardson±Lucy algorithm [45±48]. The
method is based on the idea that some initial approximation
of the true spectrum can be chosen and then successively
refined. To construct the required matrix M, the current
estimate of the true spectrum is used as an estimate of the
probabilities P�Ci� in the Bayes formula. Assuming that such
a procedure for successively improving the estimate con-
verges, the limit distribution is taken as the solution to the
deconvolution problem.

In the ROOT [49] and RooUnfold [50] packages, this idea
is implemented as an iterative algorithm as follows.

(1) As the initial approximation of the unknown prob-
abilities P�Ci�, take an arbitrary probability distribution
P0�Ci�. It is better to choose a distribution that is close to
the true one (such an a priori distribution is typically selected
based on known physical concepts). When that is impossible,
the discrete uniform distributionP0�Cj� � 1=k can be selected
as the first approximation.

(2) Using the Bayes formula, build an estimate of the true
distribution

Mji � Ri jP0�Ci�P n
k�1
�
P�EjjCk�

P n
l�1 RklP0�Cl�

� ;
t̂i �

Xn
j�1

Mji mj ; P̂�Ci� � t̂iP n
k�1 t̂k

:

(3) Estimate the differences between the distribution
found in step 2 and the initializing distribution of a true
random variable (by the w 2 or another goodness-of-fit
criterion).

(4) Choose the constructed estimate P̂�Ci� as a new
initializing distribution P0�Ci� and repeat steps 2±4 until the
discrepancies between the next estimate and the initializing
distribution become sufficiently small (less than a critical
value).

The most significant drawback of this implementation is
the open question about the convergence of the iterative
process. We also note that the convergence of an iterative
process does not imply the construction of a sufficiently
accurate estimate: with a large number of iterations, statis-
tical errors can accumulate, which leads to large deviations of
the reconstructed spectrum from the true one [31]. On the
contrary, an early stop of the iterative process with small
changes in distributions at neighboring iterations, as noted, is
considered a possible way to construct biased estimates, albeit
with a lower variance [31, 32, 38]. Therefore, the number of
iterations required for an acceptable solution to the spectrum
reconstruction problem has to be found in the course of a
series of numerical experiments with model distributions.

For example, the version of the algorithm implemented in
the RooUnfold package uses the following basic idea of
stopping the iterative process. At the end of each iteration,
two distributions of the random variable of interest are
considered: the current distribution and a new distribution
built from it as indicated above. The hypothesis about the
homogeneity of the distribution laws is analyzed: if the
hypothesis is true, then the step of the iterative process has
not made a significant impact on the distribution law of the
random variable, and hence further iterations are impractical.
Alternatively, the rejected homogeneity hypothesis can be
interpreted as a noticeable change in the distribution law
(spectrum) at the current step, indicating the divergence of the

iterative process. In [38, 40], it is proposed that Pearson's w 2

criterion (and the corresponding metric for the difference
between the current and new distributions) be used to test this
hypothesis. The number of iterations required to reach the
specified stopping criterion is not known in advance.We note
that the implementation in the RooUnfold package allows
specifying the number of iterations explicitly, thereby allow-
ing more flexible control over the stopping of the iteration
process. In particular, the authors of the package use four
iterations to illustrate the operation of the algorithm; similar
results were obtained when processing data in ALICE (A
Large Ion Collider Experiment) [51] at the Large Hadron
Collider (LHC).

The described algorithm is based on the idea of iteratively
adjusting the occurrence probabilities for each considered bin
separately using the Bayes formula. Later, the author of [40]
proposed a modified method based on the key idea to
reconstruct the distribution of the number of events in bins
under the assumption that the distribution is multinomial.
The distribution parameters are also iteratively adjusted
based on the Bayesian approach. For the stopping criterion
of the iterative process, the same procedure is used as in the
original method. An important task is therefore to analyze the
conditions under which this stopping criterion leads to a
correct reconstruction of the distribution and conditions for
the convergence of iterations.

3.2 Regularization-based methods
We describe the approach to solving the deconvolution
problem based on regularization.

Let us recall that the direct solution to the deconvolution
problem is unstable (sensitive to small perturbations). A
regularization consists in imposing additional constraints on
the functional of the original optimization problem [52] so as
to prevent significantly different solutions from being con-
structed for small variations in the data.

The proposal is therefore to maximize not the original
likelihood function �or its logarithm lnL�t�� but a function
that includes an additional term or multiplier. The extra term
may be characteristic of some features of the original
distribution (for example, its smoothness). The problem
amounts to finding a distribution such that the optimal
value of the likelihood function is not reached, but the
resulting estimate is stable with respect to perturbations of
the measured distributions.

The deconvolution problem can thus be written as the
optimization problem

F�t� � lnL�t� � aS�t� ! max
t
;

where a is a numerical indicator (regularization parameter)
describing the contribution of the function S�t� (for example,
reflecting the expected features of the reconstructed distribu-
tion).

The regularization function S�t� should be understood as
a penalty for violation of the necessary properties of the
solution, which are established on the basis of physical
considerations, or empirical or theoretical information
about the general properties of the measured quantity.
Therefore, S�t� is chosen such that its maximum value is
achieved for distributions t that have the specified properties.
For example, if the expected continuous distribution is
characterized by the absence of large fluctuations when
passing to a neighboring bin, then it is natural to choose a
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regularization function that takes large values for small
deviations of the distribution in neighboring bins. An
example of such a function corresponding to the distribution
smoothness property is

S1�t� � ÿ
Xnÿ1
i�1
�ti�1 ÿ ti�2

(an analogue of the first-order derivative). When using the
second-order difference, the regularization term has the form

S2�t� � ÿ
Xnÿ1
i�2
�ti�1 ÿ 2ti � tiÿ1�2 ;

which corresponds to Tikhonov's regularization. Similarly,
we can consider functions that reflect higher orders of
smoothness. It is also possible to take the nonuniformity of
binning into account, which, on the one hand, complicates the
form of the regularization term, but, on the other hand,
improves the estimate of distribution fluctuations. Some
methods use regularization terms corresponding to the
entropy of the sought distribution, for example,

Se�t� � ÿ
Xn
i�1

ti ln ti :

We note that a combination of several regularization terms
can be used.

For a � 0, the solution to the maximization problem
coincides with the previously obtained direct solution to the
problem (with all its inherent shortcomings). For large a, a
distribution is obtained that has the specified properties, but
is practically independent of the sample (model-independent).

Methods based on the idea of regularization differ in the
following features.

(1) the choice of the type of likelihood function and
regularization function:
� the SVD unfolding method (Kartvelishvili, H�ocker [36,

44]): a regularization function reflecting the continuity of the
distribution;
� the TUnfold method of the ROOT package (Schmitt

[16, 37, 53]): a combination of two regularization functions
that reflect the continuity or smoothness of the distribution
and also limit the estimate bias;
� entropy-based methods: the MRX (method of reduced

cross-entropy) (Schmelling [54]), the image reconstruction
method (Narayan, Nityananda [55]), the ARU (Automatic
Regularized Unfolding) method (Dembinski, Roth [56]);

(2) the choice of the regularization parameter for which
the necessary balance is to be achieved between the bias of the
distribution estimate and the spread (statistical error) in
constructing a point estimate of the distribution.

3.2.1 SVD unfolding method. This method is based on
Tikhonov's regularization and the solution of the corre-
sponding system of equations by the SVD of matrices,
which allows finding approximate solutions of flawed (for
example, overdetermined) systems of linear equations [36,
44]. The problem reduces to minimizing the following
function based on the previously described likelihood func-
tion:

F�t� � �Rtÿm�T�Rtÿm� � a
Xnÿ1
i�2
�tiÿ1 ÿ 2ti � ti�1�2 :

Let us briefly describe this approach. The SVDof amatrix
A is its representation in the form

A � USVT ;

where a real-valued matrix A has size l� k, U and V are
orthogonalmatrices of the respective sizes l� l and k� k, and
S is a diagonal l� k matrix (the diagonal entries sii are
nonnegative and are called singular values, and S is called
the singular matrix). By choosing the matrices U and V, the
singular values can be arranged in descending order. In the
case k � l, matrices U, S, and V are square �k� k�.

The system of linear equations At � m is exactly solved
using the SVD as follows. We write the system as

USVTt � m ;

and make the change of variables

z � VTt ; d � UTm :

As a result, the system takes the form

Sz � d ;

with the solution

zi � di
sii
:

This yields the solution of the original system of equations

t � Vz :

For ill-conditioned matrices A, the following pattern is
typical: when the system is solved as described, the di and
the corresponding sii are small, and hence their small
perturbations lead to significant errors in the solutions zi
and the corresponding solutions of the original system t.

The direct method for spectrum reconstruction is by
explicitly solving the system Rt � m, which is equivalent to
solving the minimization problem

�Rtÿm�T�Rtÿm� ! min
t

:

The authors of the SVD-based deconvolution method
suggest using an approach based on Tikhonov's regulariza-
tion to find the true spectrum, which allows posing the
corresponding minimization problem

F�t� � �Rtÿm�T�Rtÿm� � a�Ct�T�Ct� ! min
t
;

where a is a regularization coefficient (to be defined below)
and the matrix C satisfies the equality

�Ct�T�Ct� �
Xnÿ1
i�2
�tiÿ1 ÿ 2ti � ti�1�2 :

The solution to the described minimization problem is
obtained as a solution of the overdetermined extended system
of equations

ACÿ1���
a
p

I

� �
Ct � m

0

� �
:
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We note that the matrixC is degenerate, and therefore has
no inverse. To solve this problem, it is recommended to
consider a modified matrix ~C � C� xI, where the parameter
x is chosen such that constructing the inverse matrix is
possible.

To reduce errors, the authors of the method [36, 44] also
recommend renormalizing [36] the equations of the original
linear system Rt � m (such that each equation makes the
same `contribution') so as to have a unit covariance matrix
corresponding to the right-hand side of the original system
(the measured values). This is achieved by the following
algorithm.

(1) Representing the right-hand side of the original system
in matrix form, such that the system is written asRt � B. For
the current implementation, B � diagm, and in general B is
the covariance matrix of a vector of measured values.

(2) Using the SVD on the right-hand side of the resulting
system,

B � QLQT ;

where l 2i � Lii > 0, Li j � 0 for i 6� j, and

Bÿ1 � QLÿ1QT :

(3) Normalizing the left- and right-hand sides of the
equation:

~Ri j � 1

li

X
k

QikRkj ; ~mi � 1

li

X
k

Qikmk :

The result is a renormalized system of equations ~Rt � ~m,
to which all the operations described previously (introducing
a regularization term and solving the extended system) are
applied. The new system is solved in the manner described
above, but with the intermediate solutions zi now given by

zi � di
sii

s 2ii
s 2ii � a

:

Note that, in the case s 2ii >> a, the solutions are practically
coincident with the considered direct solution to the original
problem. For small singular values sii, the effect of the
additional regularization term already becomes more pro-
nounced. To find the `effective value' of the regularization
parameter, it is recommended to visually analyze the singular
values on a logarithmic scale: plot log sii, select its linear
section, and choose the value i � k at which the monotonic
linear decrease in log sii is replaced with a sharp drop. The
value a � s 2ii (the `last large' singular value skk) is then chosen
as the regularization coefficient [36]. We note that this
spectrum reconstruction algorithm can also be used at other
values of the regularization coefficient.

3.2.2 TUnfold method. The algorithm implemented in the
ROOT and RooUnfold packages as the TUnfold procedure
[16, 37, 53] is also based on the idea of a regularization. It
involves minimizing the likelihood function of the form

F�t� � L1�t� � aL2�t� � lL3�t� :

Here, the term L1 � �Rtÿm�T�Rtÿm� corresponds to the
original likelihood function in the direct spectrum reconstruc-
tion method: if the coefficients of the remaining terms are set

to zero, the estimate of the true distribution as the minimum
point of the likelihood function coincides with that con-
structed with the direct method, which in practice leads to
large errors. The L2 term ensures the expected characteristics
of the original distribution (for example, its continuity or
smoothness). As such a term, the functions S1 or S2,
previously introduced in the general description of regular-
ization-based methods, can be chosen. Finally, the function
L3�t� �

P
i mi ÿ eTt is used in the last term, where the

components of the vector e are ej �
P

i Ri j. This term is
needed to limit an excessively large bias in the resulting
distribution estimate [37].

In regularization-based methods, an important step in
solving the problem is the choice of the coefficients at the
regularization terms. For example, in the SVD method
described in Section 3.2.1, the regularization coefficient was
chosen based on the analysis of singular values, but this is
highly dependent on the method for solving the distribution
reconstruction problem itself. In the TUnfold algorithm [37],
the regularization coefficients are not specified, but are
automatically selected by one of two methods:

(1) The L-curve method. This method is based on solving
the maximization problem F�t� � lnL�t� � aS�t� ! maxt.
Such a problem is successively solved for different values of a
in a certain range with a certain step. The values of the L�t�
and S�t� terms for which the objective function attains a
maximum at the current value of a are denoted as La and Sa.
We take the logarithms of these values, Lx�a� � logLa and
Ly�a� � logSa, and then construct a parametric curve given
the points �Lx�a�;Ly�a�� (to ensure sufficient smoothness, the
constructed curve is approximated by a cubic spline). As the
sought value of a in the regularization term, we choose the one
for which the curvature of the constructed curve is maximum
at the corresponding point [12, 13, 37].

(2) The method of minimizing correlation coefficients. The
values of ti can be considered a set of random variables for
which the covariance matrix Vtt is to be estimated. To
construct this estimate for a chosen value of the regulariza-
tion coefficient a, a series of computational experiments to
reconstruct the spectrum is carried out; as a result, a sample
�t k1 ; . . . ; t kn � is formed, where k � 1; . . . ;K. Based on this
sample, an estimate of the covariance matrix Vtt is con-
structed. The values of the global correlation coefficient ri
for the ith bin are found for different values of a as

ri�a� �
�����������������������������������
1ÿ 1

�Vÿ1tt �ii�Vtt�ii

s
:

As the optimal value of the regularization coefficient, we
choose a, which ensures the minimum value of the arithmetic
mean ri�a� or the maximum value of all the ri�a� [2, 12, 37].

Note that these methods proposed for TUnfold for
selecting the regularization parameter are universal and can
be used in other algorithms. In the same problem, other
approaches are also being used, including the modified
maximum likelihood estimator (MMLE) method [41], the
generalized (weighted) cross-validation method [57], the
Akaike information criterion [58, 59], and stopping accord-
ing to a goodness-of-fit criterion [60].

The idea of using Tikhonov's regularization for deconvo-
lution has long been employed. In elementary particle
physics, its wide use started after the development of a
regularization algorithm implemented in the RUN package
[1, 61].
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There are other methods for solving the deconvolution
problem based on the same idea. In particular, we note
approaches where the form of the regularization term is
based on the entropy of a random variable distribution
(regularization by the maximum entropy method) [55, 62].
In this case, the regularization term can have the form

Se�t� � ÿ
Xn
i�1

ti log ti or Sent�t� � ÿ
Xn
i�1

ti
N

log
ti
N
:

In the second case, the authors of the method propose using
a � 1=N as the regularization coefficient, but in practice this
leads to an overly smoothed distribution [11] (the entropy
maximum corresponds to the uniform discrete distribution),
and it is therefore advisable to use smaller values of the
regularization coefficient.

In addition, amethod based onminimizing the variance of
the true distribution and combining regularization terms of
different types was proposed in [63]. The choice of a specific
regularization method is typically determined by a priori
information characterizing the features of the initial distribu-
tion and its distortion during the measurement.

The idea of using the SVD approach was also devel-
oped in the Wiener±SVD method [64]. In addition to the
previously described SVD algorithm, the authors use a
Wiener filter to reduce the effect of noise. At the same time,
the construction of the Wiener filter requires a fairly good
estimate of the true spectrum, which is a complication in
using the algorithm.

The regularization-based approach is also used in iterative
deconvolution algorithms. In particular, the IDS method
(iterative, dynamically stabilized method of data unfolding)
[65, 66] involves a dynamically changing regularization term,
which allows reducing the fluctuations of the reconstructed
spectrum in successive iterations.

3.3 Bin-by-bin correction method
There are other approaches to reconstructing the true
spectrum in addition to those described in Sections 3.1 and
3.2. One of the simplest is the so-called bin-by-bin correction
method. In its simple implementation, numerical simulation
is used to obtain the true and measured (distorted) distribu-
tions of the considered physical quantity. For each bin, the
correction coefficient Ci is calculated as an estimate of how
many times themeasured number of particles that fall into the
bin differs from the true one. The true spectrum estimate is
calculated by dividing the measured spectrum by the correc-
tion coefficient in each of the bins, t̂i � mi=Ci.

In this form, the approach has a number of disadvantages
that limit its use in practice [12, 67, 68]. In order to find the
correct values of the correction coefficients, the true distribu-
tion of particles over the bins has to be known, but estimating
this distribution is the original problem. It is worth noting
that the procedure for calculating the correction coefficients
differs from finding the migration matrix: in the first case, it is
crucial to determine the true distribution or its good estimate,
and, in the second, this does not play such an important role:
it suffices to estimate the probabilities with which a particle is
detected in other bins (moreover, to construct an estimate, it
is important to have a sufficiently large number of events, but
information about how these events should be distributed
over the bins is of no principal importance). Finally, the
described simple approach does not take migration between
bins (even the neighboring ones) into account, and therefore

the implementation does not include a reverse redistribution
of events between bins; only a mechanistic adjustment is used
(as a result, the total number of events may change).

There are also modifications of the bin-by-bin method
that somewhat mitigate these shortcomings. For example, an
iterative process can be used to reconstruct the spectrum such
that the above procedure for calculating the correction
coefficients is only a first step [69, 70]. This approach
involves refining the correction coefficients at the next step
of the algorithm using the preceding spectrum estimate and
adjusting the parameters of the Monte Carlo method, which
simulates instrumental spectrum distortions [69].

Nevertheless, the use of the bin-by-bin method (including
in the simple form) is acceptable if migration between bins is
low (the migration matrix is nearly diagonal) [8, 11, 32].
Under this condition, the method is used in the processing of
experimental data in modern particle physics [43, 71, 72].

3.4 Other spectrum reconstruction methods
Other deconvolution methods involve both the already noted
approaches (iterative methods for constructing estimates,
regularization, bin-by-bin correction of distributions) and
other mathematical ideas and principles. In particular,
algorithms based on an iterative construction of statistical
estimates of the distribution of an unknown quantity have
been used for a long time. In the early 1930s, van Cittert
proposed an iterative method for reconstructing distorted
spectra [73, 74], in which the current spectrum estimate is
corrected by an amount depending on how much the
distortion of the current estimate deviates from the measure-
ment results:

t�k�1� � t�k� � a
ÿ
mÿ Rt�k�

�
:

An extension of this approach is manifested in the algorithm
proposed by Gold in 1964 [75] and subsequently used in
particle physics [18, 21, 76]. A characteristic feature of this
method is the use of the coefficients

a �k�i � t�k�iP n
j�1 Ri jt

�k�
j

for different bins [75, 77], with the spectrum estimate
constructed at the next iteration as

t�k�1�i � t�k�i � ai

�
mi ÿ

Xn
j�1

Ri jt
�k�
j

�
:

The iterative procedure of Gold's algorithm can also be
written as a successive refinement of the current estimate in
the current bin by multiplying by some correction coefficient.
A similar approach is used in the previously mentioned
Richardson±Lucy algorithm [45, 46], which was originally
designed for processing astronomical images [78] and later
adapted, among other things, for problems of spectrum
reconstruction in particle physics experiments [79, 80].

Some deconvolution algorithms are being developed to
solve highly specialized physical problems or to analyze the
features of specific measuring instruments. For example, in
studying neutron fluxes, deconvolutionmethods are used that
are specific to the problem of reconstructing spectra obtained
using Bonner spheres. Among such methods, we mention the
SPUNIT [81], BON [82], SAND-II [83, 84], MAXED [85],
and GRAVEL [86] algorithms.
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The previously described deconvolution methods were
used to reconstruct the distributions of a physical quantity
based on a preliminary partition of the working range of its
values into bins. The estimates obtained were discretized
estimates of the true distribution. However, this approach
has some drawbacks or features that make it difficult to use in
practice [24]. First, the working range has to be partitioned
into bins in advance, a procedure that is performed manually
inmost cases [61, 87±90]. Second, the grouping of data by bins
amounts to coarse-graining [61], which precludes the flex-
ibility needed to take all additional factors that affect the
instrumental response into account, which leads to nonopti-
mum spectrum estimates. Finally, histogram methods are
difficult to adapt when reconstructing distributions of multi-
variate random quantities. These features motivate focusing
attention on approaches in which the true spectrum is
estimated without preliminary binning.

To construct distribution density estimates without
discretization, approaches based on machine learning meth-
ods [91±94] can be used (which are suitable for estimating
discretized distributions as well). The main idea is to use the
results of numerical simulation as a training sample for
designing a prediction system (for example, the modeled
true distribution given a modeled measured one) or a
classifier. A neural network [92] or a regression model [93]
can be chosen as a tool for solving the deconvolution
problem, with the input given by the measured values of the
considered quantity or the fully measured spectrum and the
output being the true value of the considered quantity or the
true bin into which this value falls, or the reconstructed true
spectrum.

An approach based on the generative adversarial network
(GAN) model [95] is also in use: a generative network
iteratively generates samples corresponding to the assumed
true distribution of the quantity under consideration, and a
discriminative network evaluates their fit with the measured
distribution, given the known character of distortions (the
procedure is similar to the construction of the migration
matrix based on numerical simulation) [91, 96]. Difficulties
in applying the described approaches in practice are similar to
those associated with the use of the bin-by-bin correction
method described above.

Another possible approach to describing the estimated
distribution density is its representation as a spline function.
This method is implemented, in particular, in the ARU
algorithm [23, 56, 97], whose development was largely
influenced by the ideas proposed in [1, 54]. Here, the sought
continuous distribution density f �x� is represented as a cubic
B-spline [98] f �x� �P cjbj�x� with the unknown (estimated)
coefficients cj and arbitrarily chosen nodes. The intervals
between nodes should be narrow enough to properly reflect
all the features of the sought distribution density, but their
number and location are not critical. The distortion of this
distribution density is described by the convolution

g�y� �
�
K�y; x� f �x� dx �

X
j

cjgj�y� ;

where the distorted basis functions

gj�y� �
�
K�y; x�bj�x� dx

are estimated numerically in the proposed algorithm. The
convolution kernel K�y; x� is estimated when calibrating or

simulating the instrumental response by Monte Carlo
methods, similarly to what is done when constructing the
migration matrix in the methods described above. The
estimate of the coefficients cj corresponds to the minimum
of the negative likelihood function L�c� � L1�c� � lL2�c�.
The first term has the form

L1�c� �
X
j

cjGj ÿ
X

ln g�yi� ;

where Gj �
�
gj�y� dy and yi are the measured values of a

physical quantity. The second term is the regularization
function taken with a coefficient l,

L2�c� �
�
f �x� ln f �x�

h�x� dxÿ
X
j

cjFj ;

where the first term is the Kullback±Leibler distance from the
sought distribution density f to some estimated density h, and
Fj �

�
fj�x� dx. A separate section of paper [56] is devoted to

the choice of the expected density h�x�; the authors recom-
mend taking h�x� to be a function closest to the sought
distribution density if such information is available a priori.
As a rough approximation for h�x�, one can take a uniform
distribution over the range of values under consideration or
perform the first reconstruction of the spectrum using the
uniform distribution h0�x� �yielding an estimate of the
reconstructed spectrum f0�x��, and then take h�x� to be the
convolution of f0�x�with the kernelK�y; x� and, based on the
function obtained, perform the final spectrum reconstruction
procedure.

Some of the approaches used in histogram deconvolution
methods can be adapted for the continuous (binning-free)
case. For example, the iterative construction of a discretized
spectrum estimate served as the main idea for the develop-
ment of the OmniFold algorithm [24].

As we have noted, the iterative Bayesian spectrum
reconstruction algorithm is based on successive refinement
of the spectrum estimate in individual bins. The idea
proposed in the OmniFold algorithm is to extend this
approach to binning-free estimates of the distribution
density. The key point is to calculate the likelihood ratio
estimate

L�w;X�; �w 0;X 0��x� �
p�w;X��x�
p�w 0;X 0��x� ;

where p�w;X��x� is understood as an estimate of the distribu-
tion density of a random variable obtained from a sample X
with parameters (weights) w. This estimate is built using a
preferred machine-learning model; in particular, the authors
use the PFNs (particle flow networks) neural network
algorithm [99, 100].

The main approach used in OmniFold is to consider
events at the level of the detector and at the level of particles
simulated by Monte Carlo methods. For training (determin-
ing the parameters), a set of pairs �t;m� is used with an event t
at the particle level corresponding to an event m at the
detector level, obtained (generated) by simulating the opera-
tion of the detector. The generated detector events (denoted
as Sim) are transformed, with some parameters, to fit the
experimental data (Data). The transformed data is used to
refine the estimate of parameters and particle-level values
(Gen), which are again passed to the detector level at the next
step of the iterative procedure.
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The considered iterative algorithm can be formally
described as follows.

Initialization. Initial values of the parameters (weights)
n0�t� are set at the particle level. When simulating the
operation of a detector that transforms events t into m, they
become parameters at the detector level: n push0 �m� � n0�t�.

Next, the following two steps are executed iteratively.
Step 1. Estimate the parameters at the detector level,

on�m� � npushnÿ1 �m�L�1;Data�; �n push
nÿ1 ; Sim�

�m� ;

and pass these parameters to the particle level:
opull

n �t� � on�m�.
Step 2. Estimate the particle-level parameters:

nn�t� � nnÿ1�t�L�o pull
n ;Gen�; �nnÿ1;Gen��t� :

After n iterations, the reconstructed quantity distribution
is calculated as p

�n�
unf�t� � nn�t� pGen�t�. The result of the

algorithm can be either a set of generated events t with
weights nn�t� or just the generated function nn�t�, which can
be applied to the measured density distribution estimated
from an arbitrary data set.

Besides the main algorithm, the authors of [24] proposed
versions of it that use a simpler three-layer neural network
model to generate the function L�w;X�; �w 0;X 0��x�. These
versions can be used both for reconstructing one-dimen-
sional distributions (the UniFold algorithm) and in the
multidimensional case (the MultiFold algorithm). The
authors of [24] also note that the proposed method can be
used in the bin-by-bin case (to construct histogram density
estimates) and can be adapted for use in other likelihood ratio
generation schemes [101, 102].

3.5 Software implementations
The importance of the deconvolution problem in applied
tasks, the large volumes of data to be processed, and the wide
scope of application of the corresponding methods require
the development of software implementations of the algo-
rithms described in Sections 3.1±3.4.

The first widespread software product for solving such
problems in elementary particle physics was the RUN
package coded in FORTRAN 77 [1, 61], implementing the
regularization algorithm for deconvolution and the smooth-
ing of distributions with B-splines [2].

At present, the ROOT software package [49] developed at
CERN is actively used to process experimental data in
elementary particle physics. In ROOT, in particular, the
TUnfold algorithm [37] is implemented based on the idea of
regularization. In addition to the deconvolution algorithm
itself, the package provides tools for binning the data and the
option to combine data for analysis from various sources.

Also, the RooUnfold package [50] developed in the
ROOT environment is distinguished by a variety of deconvo-
lution algorithms implemented: the iterative Bayesian
D'Agostini algorithm [38, 40], the SVD-Unfold method [36],
an interface to the TUnfold algorithm implemented in
ROOT, the IDS algorithm [66], and the bin-by-bin correc-
tion method. Subsequently, these methods were included in
the RooFitUnfold software package [103]. Based on the
ROOT libraries, the TRUEE (Time-dependent Regularized
Unfolding for Economics and Engineering problems) [104]
package was also developed, which is a C�� version of the
RUN package adapted for wider use.

The bulk of the developed software is an implementation
of a single algorithm or a class of methods. For example, the
PyUnfold package [105] contains an implementation of the
iterative Bayesian algorithm [40] modified by including a
wider set of metrics to be used for stopping the iterative
procedure. The algorithm based on the SVD approach [36]
was originally implemented within the GURU software
package [44]. In the same category of software products are
the already mentionedRUN and TRUEE packages, in which
one of the regularization methods is implemented and which
had been widely used before the appearance of more efficient
algorithms available in ROOT and RooUnfold. The Omni-
Fold algorithm uses the EnergyFlow package developed by
the authors of [106], which includes software tools for particle
physics problems, and is also available as a Python open
source [107].

Some collaborations create their own implementations of
the methods, which are still based on the same approaches.
For example, the PAMELA (Payload for Antimatter Matter
Exploration and Light-nuclei Astrophysics) collaboration
uses a PamUnfold software package that implements both
(basic and modified) versions of D'Agostini's Bayesian
algorithm. In some areas, highly specialized software imple-
mentations of algorithms are used, originally designed to
solve specific experimental problems. For example, the
already mentioned SPUNIT and BON neutron spectrum
reconstruction algorithms are implemented in the BUNKI
software package [108] and its modification [109], while the
MAXED algorithm uses a software module of the same
name. In addition, these algorithms and the SAND-II
method are implemented in the BUMS package [110]
featuring a web interface that allows access to the program
through a browser. At the same time, the methods created for
solving local problems and the software packages that
implement them can also be widely used. For example, the
implementation of the sPlot algorithm [112] for processing
experimental results of the BaBar collaboration [111] is
included in the ROOT framework (as the TSPlot class) and
is currently used to solve various problems in particle physics
[113±116].

4. Use of deconvolution methods
in particle physics experiments

Experiments in various fields of elementary particle physics
are currently the main areas where various deconvolution
methods are actively used. The most vivid example of their
use and the main driver of development are accelerator
experiments, where various approaches and algorithms can
be encountered as an integral part of the analysis of scientific
data.

Many publications describe deconvolution methods used
to solve problems in experiments at the DESY (Deutsches
Elektronen-Synchrotron) [117], Tevatron [118±121], SPS
(Super Proton Synchrotron) [122], and LHC [1, 123] facil-
ities. As examples, we note data analyses from the ATLAS (A
Toroidal LHC ApparatuS) [124, 125] and CMS (Compact
Muon Solenoid) [126, 127] detectors. There are detailed
reviews devoted to the use of deconvolution methods in
these experiments [41, 128].

The deconvolution methods are used in one way or
another in the analysis of most of the phenomena studied at
accelerators. Of particular interest in recent years is the study
of processes associated with decays of the Higgs boson and
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reactions involving t quarks [129, 130], since information
about the true distributions of physical quantities in LHC
data is important in searching for signals from the so-called
New PhysicsÐhypothetical processes that do not fit into the
Standard Model framework. Because the effects of such
processes are expected to be minuscule, even the most
insignificant instrumental distortions must be eliminated.
For example, an exotic decay of the Higgs boson with the
final production of hadrons after a chain of decays is modeled
in [131]. The signal from such a process could be seen as a
bump on the distribution of the invariant mass of the Z-boson
plus hadron jet system, and the deconvolution algorithm
(specifically, OmniFold) is to be applied to it.

Neural networks based on the GANmodel are used in the
analysis of instrumental effects in detectors at the LHC in the
study of the production of a pair of Z and W bosons and
quantum chromodynamics processes [132]. The applicability
of deconvolution methods to data from the ATLAS detector
at the LHC was studied in detail in thesis [133].

The use of deconvolution methods is also envisaged in
experiments at future accelerator complexes, for example,
when processing data from the multi-purpose detector MPD
that will be located at the NICA (Nuclotron-based Ion
Collider fAcility) accelerator under construction in Dubna
[134±136]. In this case, unfolding methods are already used at
the stage of numerical simulation of the characteristics of the
MPD detector to obtain the most detailed and realistic
description of its characteristics [137, 138].

Another important scientific area where deconvolution
methods are often used in data analysis is cosmic-ray physics.
Two categories of experiments must be considered here: in
space (on spacecraft and the ISS) and at ground facilities.

Operation in outer space imposes numerous restrictions
on the design of the instrument (physical dimensions, power
consumption, etc.), which affects both the energy resolution
of the instruments and the particle detection efficiency, which
can be influenced by various factors, for example, leading to
an incorrect measurement of the spectrum index. In modern
experiments based on magnetic spectrometry, such as BESS
(Balloon-borne Experiment with Superconducting Spectro-
meter), PAMELA, and AMS-02 (Alpha Magnetic Spectro-
meter-02), deconvolution methods have been used in the
analysis of the published cosmic-ray energy spectra (see,
e.g., [139±146]).

For particle energies above several tens of TeV, measure-
ments based on magnetic analysis become impossible.
Instruments that determine the characteristics of particles by
calorimetric methods are capable of providing measurements
of cosmic-ray energies up to several PeV. In space, the main
factor is the size of the calorimeter, the energy beingmeasured
by the total energy release in a cascade caused by a cosmic-ray
particle. As the energy of the primary particle increases, the
spatial extent of the cascade no longer fits within the
calorimeter. This leads to a deteriorating resolution of the
instrument and increasing error in energy measurements. As
in the preceding case, a more reliable determination of the
spectrum index requires the use of deconvolution methods.
Examples of their use in such measurements are given in [72,
147] for the respective DAMPE (DArk Matter Particle
Explorer) and CALET (CALorimetric Electron Telescope)
experiments.

With a further increase in energy, particle detection in
space experiments becomes impossible, and the characteris-
tics of super- and ultrahigh-energy cosmic rays are studied by

ground-based facilities whose operation is based on the
registration of extensive atmospheric showers (ASs). There
are two independent techniques for detecting ASs: using an
array of so-called surface detectors (SDs), which register the
charged component of an AS that has reached Earth's
surface, and using optical systems that observe fluorescence
during the development of a cascade in the atmosphere (FDs).
Techniques can be combined, which increases the accuracy of
the data obtained. Still, the distortion of measured character-
istics can be significant due to factors such as light coming
from other natural phenomena, atmospheric effects, large
sizes of ultra-high-energy AS particles, and the need to place
detectors at a distance from each other to cover a large area.
As in calorimetric measurements, it is not possible to register
ASs with the same efficiency from the point of its initiation to
complete absorption.

Examples of the use of deconvolution methods in such
cases can be found in publications on the results of
measurements of the spectra of ultrahigh-energy cosmic rays
by observatories such as the Pierre Auger Observatory (PAO)
[148] or the Telescope Array [149].

Similar methods of space and ground-based measure-
ments are used in the registration of gamma radiation in
gamma astronomy. The distortions mentioned are preserved
there and also require correction. The deconvolutionmethods
used in theMAGIC experiment (MajorAtmosphericGamma
Imaging Cherenkov telescopes) are described in detail in [150,
151], and those used the H.E.S.S. (High Energy Stereoscopic
System) experiment, in [152]. An extensive review of such
methods in gamma spectrometry can be found in [153].
Papers [154±156] describe the use of deconvolution methods
in processing the energy spectra of point-like sources of
gamma radiation; in [157], they are applied to the total
differential energy spectrum of electrons and positrons
measured by the Fermi gamma-ray space observatory.

Spectrum reconstruction methods are also widely used in
neutrino physics. Due to the extremely small cross section of
their interaction with matter, neutrinos are very difficult to
detect. A significant amount of detector material is required
for the passing high-energy neutrinos to interact with nuclei
forming secondary charged particles, such as an electron or a
muon. Secondary particles are registered by detectors and
their characteristics are determined, which allows recon-
structing information about the energy and direction of
neutrino arrival. The size of the installation, the need to
locate the detectors sufficiently far from each other, the
quality of the target material (especially if they are natural
reservoirs of ice or water), and other factors lead to a
deterioration in the resolution of the installation. Therefore,
taking instrumental effects into account becomes an extreme-
ly important task in reconstructing the energy spectra and
spatial distributions of neutrinos of various origins.

For example, in the IceCube experiment at the South Pole,
the true spectrum of atmospheric muon neutrinos is recon-
structed by a procedure applied to the distributions of the
number of detected muons and their energy losses [158, 159].
Similar methods are used in the ANTARES (Astronomywith
a Neutrino Telescope and Abyss environmental RESearch)
experiment in the Adriatic Sea and in the Baikal-GVD
(Baikal Gigaton Volume Detector) experiments in Lake
Baikal [160].

In addition to scientific issues, deconvolutionmethods are
also used for practical purposes: measuring the hadron
collider luminosity via elastic scattering of protons on each
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other, with the true distribution over the scattering angle
being reconstructed [161]; neutron spectroscopy problems
[162, 163]; studies of the reactor antineutrino spectrum [164];
monitoring, detection, and identification of radioactive
materials by the shape of the ionizing radiation spectrum
[153]; etc.

It is important to note that the reconstruction of true
distributions is required not only in the analysis of final
results, such as particle spectra. With the use of deconvolu-
tion methods, the amplitudes of signals from photomultiplier
tubes [19, 165±167], signal distributions in clusters of
position-sensitive detectors, for example, at ALICE/LHC
[168] or MPD/NICA [134±138], and other similar problems
are being solved [169]. This allows obtaining more accurate
information about the time of flight and velocity of particles
and better reconstructing their coordinates and trajectory.

Deconvolution methods are used in the physics of not
only high but also low energies, for example, in neutron
spectrometry and gamma spectrometry, nuclear medicine,
and biomedicine [170±172].

In the table, we list some of the best-known experiments in
particle physics, space physics, and gamma-ray astronomy
that use deconvolution methods to reconstruct the true

characteristics of measured quantities. Examples of specific
publications, a brief formulation of the physical problems
being solved, and the deconvolution methods used are also
indicated.

5. Prospects for the development
of deconvolution methods. Conclusions

The deconvolution methods to reconstruct the true distribu-
tions of physical quantities are now widely used in various
scientific fields, are actively discussed at scientific conferences
and dedicated schools (Terascale Statistics School, Pan-
European Advanced School on Statistics in High Energy
Physics, etc.), and are part of training courses on statistical
methods and their applications [8, 187±189]. However, there
is no general universal approach that has been successfully
used in different experiments, and additional research is
required in each case. In this regard, it is important to
develop all possible approaches and propose new methods
for solving the deconvolution problem.

At the same time, a detailed comparative analysis of
various methods is needed in order to see their limitations
and specificity of use, for example, to reveal the dependence

Table. Examples of the use of deconvolution methods to reconstruct true distributions of measured physical quantities.

Experiment Physical problem References Method

Accelerator experiments

ATLAS/LHC Measurement of the four-lepton decay cross section of the Higgs boson [71] Bin-by-bin correction
method

CMS/LHC Measurement of charge asymmetry in top-quark pair production in protonë
proton collisions

[126] TUnfold

ALFA/LHC Measurement of the elastic scattering cross section in proton collisions for
measuring the LHC luminosity

[161] Iterative methods

Tevatron/Fermilab Study of the production and decay properties of a top quarkëantiquark pair [118] Regularization

HERA/DESY Study of correlations in lepton and hadron jet production in deep inelastic
proton scatterings

[117] OmniFold

KLOE/DAFNE* Measurement of the pion form factor in electronëpositron collisions to study the
anomalous magnetic moment of the muon

[173] Bayesian

BEPC/BES III** Study ofC-meson production and decay processes [174] Other methods

CBM/FAIR*** Study of possible deviations from the charge conservation law in goldëgold
collisions

[175] Bayesian

Cosmic rays

AMS-02 Magnetospectrometric measurements of the energy spectra of galactic cosmic
ray (GCR) protons

[176] Bayesian

FERMI Calorimetric measurements of the energy spectrum of GCR protons [177] TUnfold

PAMELA Magnetospectrometric measurements of the spectra of antiprotons, positrons,
and nuclei

[140, 141, 178] Bayesian

DAMPE Calorimetric measurements of the spectra of GCR protons and helium nuclei [147, 179] Bayesian

CALET Calorimetric measurements of the spectra of the GCR nuclear component [72, 180] RooUnfold

PAO Measurement of the spectrum of cosmic rays with energies above 2:5� 1018 eV [181] Bin-by-bin correction
method

Gamma astronomy

MAGIC Measurement of the gamma-radiation spectrum from pulsars [182, 183] Regularization, `naive'
approach

H.E.S.S. Measurement of gamma-radiation spectra from astrophysical sources in the
Crab Nebula and PKS 2155-304

[152] Bayesian
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of the result on the range of values of a physical quantity,
binning methods, the spectral features of a physical quantity,
and other parameters. It is also necessary to propose a
strategy for the optimal selection of the parameters of the
methods themselves and for estimating the error in recon-
structing the true distribution by different algorithms [190],
which will allow drawing conclusions regarding the best
suitability of the methods in various scientific problems.

Based on such an analysis, it is possible to develop new
algorithms for solving the problem, including those relying on
mathematical approaches that have not yet been used in
deconvolution methods. Such studies are appearing in print
(see, e.g., [24, 32, 42, 64, 191±193]).

Other important tasks include the design of new and
development of existing reconstruction methods for multi-
dimensional distributions [67, 194, 195]. For algorithms
based on the Bayesian approach (the iterative D'Agostini
algorithm and the IDS and FBU methods), it is critical to
reduce the average number of events in a bin (for a fixed
average size, the number of bins increases sharply with
increasing spatial dimension). We also note that Tikhonov's
regularization used in the one-dimensional case requires
assigning adjacent bins the adjacent numbers (those differing
by unity). In the multidimensional case, in general, there is no
numbering of multidimensional bins that assigns close
numbers to spatially close bins. For this reason, directly
carrying over regularization methods to the multidimen-
sional case is difficult and requires their adaptation. Never-
theless, the previously described applied problems of analyz-
ing the effectiveness of various spectrum reconstruction
algorithms by no means lose their relevance and complexity
in the multidimensional case.

This paper was supported by a grant from the Russian
Science Foundation (project 19-72-10161).
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