
Abstract. Bound states in the continuum (BICs) are a striking
example of how a solution to a simple problem of quantum
mechanics, obtained about a century ago, can serve as an
incentive to study a wide range of resonance phenomena in
wave physics. Due to the giant radiative lifetime, BICs have
found multiple applications in various fields of physics studying
wave processes, in particular, in hydrodynamics, atomic phys-
ics, and acoustics. In this review, we present a broad view of the
physics of BICs and related effects, focusing primarily on
photonic dielectric structures. We consider the history of the
development of BIC studies, the main physical mechanisms of
their formation, and specific examples of structures that can
support such states. We also discuss possible practical applica-
tions of BICs in optics, photonics, and radiophysics.

Keywords: bound states in the continuum, metasurfaces, res-
onators, Fano resonance, diffraction structures, nanopho-
tonics

1. Introduction

One of the basic problems in quantummechanics is the energy
eigenvalue for a particle in a spherical quantum well. For
energies below the potential barrier (E < 0), the spectrum is
discrete and the wave functions are bounded, i.e.,�
R 3 jc�r�j2 dr <1. Above the barrier (E > 0), the spectrum
is continuous and the wave functions cannot be normalized in
the classical sense (Fig. 1a). Then, the quantum mechanical
problem solutions can be presented as propagating modes of
the free space surrounding the quantum well. However,
E Wigner and J von Neumann [1] found in 1929 that this
classification can be violated for specific potentials that
asymptotically tend to zero away from the quantum well. As
shown by the authors of Ref. [1], for some potentials, the
bound states can be found embedded in the continuum of
propagating modes (Fig. 1b). At present, such modes are
known as bound states in the continuum (BICs). To all
appearances, this term was first introduced by L Fonda in
1960 [2]. We should mention that the paper by E Wigner and
J von Neumann contains an algebraic error that was noticed
and corrected by Stillenger and Herrick [3]. Later, the theory
of BICs was generalized to describe various atomic, molecu-
lar, and quantum mechanical systems [3±10]; however, the
potential of a rather specific form proposed by EWigner and
J vonNeumann has been never implemented. Ideas on how to
construct potentials supporting BICs in semiconductor
superlattices developed in Refs [11, 12] were not implemen-
ted experimentally either. We should mention that experi-
ment [13] has nothing in common with the observation of
BICs in semiconductor superlattices. The authors of [13]
simply observed a defect state in the band gap spatially
localized by electron Bragg reflectors.

BICs are not a unique feature of quantum mechanical
systems. On the contrary, they are essentially particular
solutions of any wave equations and can exist in acoustics,
hydrodynamics, aerodynamics [14±20], and optics [21, 22]. In
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acoustics and hydrodynamics, BICs have been known for a
long time as trapped modes.

In recent years, BICs were actively studied in the areas of
optics and photonics, as these states open up promising
opportunities for implementing compact high-Q resonators
and metasurfaces required for biosensing, enhancing non-
linear optical effects, and light-matter interaction. During the
last few years, several reviews of the state-of-the-art achieve-
ments in BICs have been published [23±27].

In this review, we focus on BICs in electrodynamic
systems in various spectral ranges, including visible, infra-
red, terahertz, and microwave. History, modern achieve-
ments, and various physical models explaining the nature of
this beautiful phenomenon are presented. In Section 2, the
history of BICs in optics is described, and a selection of
pioneering scientific papers is presented, including those that
were published before the introduction of the term `optical
bound states in the continuum.' Section 3 is devoted to the
description of various mechanisms of BIC formation in
dielectric structures. Their quantum-mechanical nature, the
importance and role of potential periodicity for BIC
implementation, and topological properties are discussed. It
is also shown how the properties of BICs can be explained in
terms of multipole analysis. In Section 4, examples of
photonic structures with BICs are presented, and features of
BICs are described in structures of various dimensionality:
from single nanoparticles to periodic metasurfaces. In this
section, we also briefly talk about quasi-BICs, which are
formed from BICs due to the violation of symmetry in a
photonic structure. In Section 5, applications of BICs are
discussed for detecting biological objects and generating laser
radiation, twisted light beams, and optical harmonics.

2. Historical reference

In the modern literature, it is widely believed that BICs in
optical systems were predicted in 2008 in two papers: by

Marinica, Borisov, and Shabanov [21], and by Bulgakov and
Sadreev [22], and that the first experiment demonstrating
BICs in optics was performed in 2011 and reported in
Ref. [28]. The authors of Ref. [21] considered two examples
of similar periodic photonic structures supporting BICs. One
of these structures is a two-layer dielectric grating periodic
along the x-axis and possessing translation symmetry along
the y-axis (Fig. 2). The authors showed that, at certain
distances between the gratings, the resonances in the reflec-
tion spectrum at oblique incidence become infinitely narrow
and disappear from the spectrum. The authors of [21] also
mentioned that this state corresponds to the ideal propaga-
tion of light along the structure without radiation losses. At
the same time, Bulgakov and Sadreev [22] considered a single-
mode waveguide formed by two identical photonic crystals
and showed that light can be perfectly trapped in defects of a
photonic crystal despite the fact that the frequency of the
trapped mode lies in the transmission band of the waveguide.
Figure 2c shows the spectra of waveguide transmission for
various parameters of the defects (solid and dashed curve).
The solid curve corresponds to the near-BIC case, when the
Fano resonance collapses. The inset in Fig. 2c shows the field
distribution at the minimum of the transmission spectrum.

Plotnik et al. [28] performed an elegant experiment on the
observation of symmetry-protected BICs in a photonic
structure consisting of an array of parallel dielectric single-
mode waveguides fabricated of fused silica by direct laser
writing (Fig. 2d). The near-field coupling between the
waveguides results in the formation of a transmission band.
Two additional waveguides fabricated above and below the
array support the antisymmetric mode with a frequency lying
in the transmission band of the waveguide array. This
antisymmetric mode was excited from one side of the
sample, and the intensity distribution was observed on the
other side. The lower panel in Fig. 2d shows that the energy of
the initial antisymmetric mode does not leak to the waveguide
array. In order to break the vertical symmetry, a gradient of
the refractive index along the vertical axis was created by
heating the top side of the sample with simultaneous cooling
of the bottom. Such heating results in the coupling of the
excited anti-symmetric mode to the modes of the array. Thus,
as the mode propagates through the sample, its energy is
distributed between the waveguides forming the array.

Here, it should be emphasized that it was the above papers
[21, 22, 28] that first demonstrated the explicit relation between
BICs in quantummechanics andBICs in optics.However, there
aremany earlier publications,where electromagnetic BICswere
studied theoretically and experimentally but were not asso-
ciated with quantum mechanics and pioneering study [1].

To the best of our knowledge, the history of BICs in optics
began in 1976 with the work of Kazarinov, Sokolova, and
Suris [29],who considered a corrugated waveguide playing the
role of a distributed-feedback resonator of a semiconductor
laser and noticed that, if the eigenmode in the center of the
Brillouin zone is formed by two counterpropagating waves
with a phase difference of p, then its radiation losses are zero.
Independent of [29], Vincent and Nevi�ere considered theoret-
ically the band structure of a dielectric corrugated waveguide
(Fig. 3) [30]. As shown by the authors of Ref. [30], the
coupling of some resonances with the radiation continuum
can be completely broken at the G point of k space due to the
symmetry mismatch between the mode and the external field,
which leads to an infinite radiative lifetime. The authors of
Refs [29, 30] did not associate the observed resonances with
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BICs, nor did they recognize the relation with earlier studies
in the field of quantum mechanics, but the physics of
nonradiating states were studied thoroughly.

Nonradiative states were also found in a two-dimensional
periodic array of coupled dielectric spheres by M Inoue et al.
[32]. They showed that, at the center of the Brillouin zone,
optically inactive states exist that cannot be excited by a
normally incident wave, regardless of its polarization. How-
ever, such states can be excited at oblique incidence, and, in
this case, extremely narrow peaks appear in the reflection/
transmission spectrum (Fig. 4a). The existence of nonradiat-
ing modes in photonic crystal structures was also discussed by
K Sakoda [33, 34] and later by P Paddon and JYoung [31, 35].
The latter two developed a method based on Green's

functions that allows analyzing a complex photonic band
structure, i.e., the spectral positions of resonances and their
radiative lifetimes (Fig. 3b). Probably, [31] is the first paper
where BICs with a nonzero Bloch wavenumber, so-called
parametric, tunable, or accidental BICs, were theoretically
predicted. The authors explained that the coupling between
the TE and TM modes leads to the anticrossing of their
dispersion curves and the formation of a mode with zero
imaginary part of its eigenfrequency, i.e., the formation of a
BIC. In fact, the described mechanism is identical to that
analyzed in the paper by H Friedrich and D Wintgen [7] for
quantum mechanical systems. Therefore, accidental BICs are
also called Friedrich±Wintgen BICs. In 2003, S Shipman and
S Venakides also observed BICs numerically in the spectra of
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transmission through an array of parallel dielectric cylinders
(Fig. 4b). In the same year, they developed a theory explaining
the formation of bound states and anomalies in the transmis-
sion spectrum corresponding to these states [36]. Figure 4c
shows the numerically obtained transmission spectrum for
various Bloch wave numbers. It is shown that, at normal
incidence, the Fano resonance collapses. The bottom part of
Fig. 4b presents the electric field distribution of the bound state.
In fact, it is antisymmetricwith respect to the plane of symmetry
of the unit cell; however, the authors plotted the distribution
amplitude, which is an even function. In 2003, Bonnet et al. [37]
discovered an ultranarrow-band resonant reflection from a
one-dimensional corrugated waveguide at oblique incidence,
i.e., at a nonzero Blochwave number, and analyzed the effect of
a finite beam size on the reflection spectrum.

Probably the first experiment on observing BICs was
carried out in 1985 by Henry et al. [39]. They considered a
distributed-feedback resonatorwith a second-order grating and
showed that the losses of the lasing mode mainly occur at the
ends of the structure, whereas at its center they nearly vanish
due to the destructive interference of the scattered radiation
from counter-propagating waves forming the lasing mode, as
was predicted inRef. [29]. Later on, in 1986, Avrutskii et al. [40]
analyzed the spectra of reflection from a corrugated ZnO
waveguide deposited on a glass substrate in the visible range.
It was found that a peak in the second stop band disappears
from the spectrum at normal incidence, manifesting the bound
state formed by counterpropagating guided modes.

Another experiment was carried out by Robertson et al.
in 1992 [41]. They analyzed the transmission spectra of a two-
dimensional dielectric structure consisting of alumina-cera-
mic cylinders arranged in a square array. The experiment was

performed in the GHz frequency range (10±150 GHz). The
authors noted that one of the bands was not observed in the
experiment because of the symmetry mismatch between the
eigenmode and the exciting field. An experiment on the
observation of BICs in the visible range was performed by
Pacradouni et al. [42], who measured the reflection spectra
with angular resolution from a perforated AlGaAs mem-
brane, confirming the narrowing of lines in the BIC vicinity
both at the G point (upon normal incidence) and off the
G point (upon oblique incidence). However, we should note
that Ref. [42] contains a minor inaccuracy. The issue is that
the existence of BICs with a nonzero Bloch wave vector
requires either a mirror symmetry in the structure plane [43]
or a very fine adjustment of the geometric and material
parameters of the structure [44], which, according to [42],
was not performed. Thus, the authors of Ref. [42] observed
only an increase in the Q factor, rather than a BIC. To
observe an off-GBIC, i.e., a BICwith a nonzero Bloch vector,
in photonic crystal membranes, the structure is usually either
suspended [45] or covered by a liquid whose refractive index
matches that of the substrate [46], thus providing mirror
symmetry in the structure plane. The at-G BICs were also
observed experimentally in polariton systems in 1998 by
Fujita et al. [47]. They analyzed angular-resolved transmis-
sion spectra for a distributed-feedbackmicrocavity consisting
of a quartz grating playing the role of a substrate covered by
an organic-inorganic perovskite-type semiconductor. They
discovered that at normal incidence the resonances disappear.
These experimental results were comprehensively described
by Yablonskii et al. [48].

Above, we tried to review the key studies of BICs in
electromagnetic systems. However, we should note that the
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existence of nonradiating states in photonic structures has
also been discussed in many other papers (see, e.g., [40, 49±
51]. To conclude this historical summary, we would like to
mention that the physics of nonradiating states in periodic
structures is quite clear, and other earlier studies might exist,
where such states were discussed.

3. Bound states in the continuum
in dielectric photonic structures

3.1 From quantum mechanics to photonics
To reveal the relation between quantummechanics and optics,
let us consider the example of a 1D quantum well with a
translational symmetry along the z-direction. For such a
system, we can define the domain of the continuum spectrum
as ~E � Eÿ �h 2k 2

z =�2m� > 0 (Fig. 5a). The optical counterpart
of this system is a parallel-plate dielectric waveguide. By
reducing the Helmholtz equation to the form of the stationary
Schr�odinger equation (Fig. 5b), one can see that the permittiv-
ity e�x� can be associated with quantum mechanical potential
U�x�. The waveguide modes lying under the light lineo < ckz
represent discrete states, and all the modes with o > ckz form
the continuum. Thus, in the system with a translational
symmetry or periodicity along a certain direction, BICs will
be localized only in the orthogonal directions. The analogy
between quantum and optical systems is very illustrative, but it
is not complete. The vector structure of electromagnetic fields
(polarization) makes the electromagnetic systems more
diverse. We should also note that the Helmholtz equation
written in the form of the stationary Schr�odinger equation
(Fig. 5) is a so-called generalized eigenvalue problem, since the
required frequencyo is included both in the eigenvalue (right-
hand side of the equation) and in the potential. However, if we
consider thewave vector kz to be an eigenvalue, thenwe obtain
a classical eigenvalue problem.

One of the general principles that can explain the
appearance of BICs in most electromagnetic systems is the
destructive interference of two interacting leaky waves. This
mechanism was originally proposed by Friedrich and Wint-
gen [7], and it is schematically shown in Fig. 6a. Let an open
system (resonator) have two leaky modes jcsi (s � 1; 2) with
close or even equal eigenfrequencies Os � os � igs. Let us
introduce a perturbation V̂ that makes these states coupled.
In the framework of the perturbation theory, the eigenmodes
in the system, with the interaction taken into account, can be
presented as a linear superposition of the initial states
jci � C1jc1i � C2jc2i. If we can continuously vary the
interaction potential V̂, then, under certain conditions, the
radiative losses can be completely (or substantially) sup-
pressed and a genuine BIC (or a quasi-BIC) arises.

From a formal point of view, an open system within the
two-mode approximation can be described using the coupled-
mode theory in the time domain, where a � �a1�t�; a2�t��T are
the complex amplitudes of states jc1i and jc2i. The complex
amplitudes evolution in time is described by the equation
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Here, k is responsible for the internal coupling of modes,���������
g1g2
p

accounts for coupling through the radiation conti-
nuum, and f is the phase shift between the modes. The
condition of the BIC appearance in the two-mode approx-
imation can be written as [52]

k �g1 ÿ g2� � exp �if� ���������
g1g2
p �o1 ÿ o2� ; �3�

f � pm ; �4�
where m is an integer. Conditions (3), (4) can be fulfilled
through the tuning of the parameters of two coupled
resonances. Figure 6b shows schematically how the radiative
losses of the resonant statesc1 andc2 depend on the coupling
constant k. Note that, exactly at the point where the BIC
appears, the radiative losses for the second mode are exactly
equal to g1 � g2. This is an analog of the Dicke superradiance
for two sources [53, 54].

In the framework of this simple model, the initial resonant
states should radiate to the same radiative continuum
(scattering channel). Only in this case can they interfere
destructively and form a BIC. If the states jc1i and jc2i
radiate to different continua, then the radiative losses of the
`dressed' states will always be between g1 and g2 (Fig. 6c) [55].

For more clarity, let us show how this model explains the
formation of BICs in a corrugated dielectric waveguide. First,
let us consider a periodic potential with amplitude tending to
zero (Fig. 7a). This is the so-called `empty lattice' limit, which
is well known in solid state physics [56]. Then, the second
bandgap width becomes zero, and the eigenstates at the
G point are degenerate counterpropagating leaky waves. A
periodic potential with finite amplitude removes the degen-

eracy and opens the bandgap. If the periodic potential is
symmetric with respect to the z! ÿz transformation, then
the new states at the edges of the second bandgap are a BIC
(antisymmetric combination of the leaky modes) and a
superradiant state (symmetric combination of the leaky
modes) (Fig. 7b). This clear mechanism of BIC formation
was discussed in many papers, e.g., in [29, 57±59].

3.2 Bound states in the continuum and diffraction orders
A leaky mode can transform into a BIC if the amplitudes of
scattering to all the channels turn to zero, i.e., in the case of
decoupling from all the open scattering channels, which can
be achieved by varying the system parameters. In this case,
BIC formation is possible only if the number of adjusted
parameters is greater than the number of scattering channels.
For finite-size structures, the number of scattering channels is
infinite, and the existence of BICs in such systems is
prohibited by the appropriate `nonexistence' theorem [23].
The only exception is structures surrounded by a completely
opaque shell providing the decoupling of the internal
resonances from the outside radiation continuum. In quan-
tum mechanics, this corresponds to an infinite potential
barrier, in acoustics, to hard-wall boundaries, and in optics,
to perfectly conducting walls or barriers with the dielectric
constant close to zero [60, 61]. Thus, BICs are usually formed
in structures with a finite number of scattering channels. A
typical example of such a system is a resonator coupled to one
or several waveguide modes [20, 62, 63] or infinite photonic
structures periodic in one or two directions [21, 43, 46, 64, 65].

Let us consider in more detail the mechanism of BIC
formation in periodic structures using the example of a
dielectric grating with period L (Fig. 8a). The electric field,
being a Bloch function, can be presented in the form

En; kB�x; y; z� � exp �ikBz� ikyy� un; kB�x; z� : �5�

Here, kB is the Bloch wavenumber, ky is the wavenumber
component along the y-axis (the direction of the translational
symmetry), and n is the index of the photonic band. Function
un; kB�x; z� is periodic and can be expanded into the Fourier
series

un; kB�x; z� �
X
s

cn; s; kB�x� exp
�
2pis
L

z

�
; �6�

where s is an integer. Each term in series (6) corresponds to a
diffraction channel, which could be open or closed. Outside
the structure, the expansion coefficients correspond to plane
waves:

cn; s; kB�x� ! cn; s; kB exp �� iKsx� ; �7�

Ks �
���������������������������������������������������
o 2

c 2
ÿ k 2

y ÿ
�
k 2
B �

2ps
L

�2
s

: �8�

If Ks is real, then the diffraction channel is open and cn; s; kB is
the complex amplitude of the wave outgoing via the sth
diffraction channel. If Ks is imaginary, then the diffraction
channel is closed, and cn; s; kB is the complex amplitude of the
near field.

Figure 8b shows schematically the typical dispersion
(dependence of o on kB for ky � 0) for the eigenmodes in a
dielectric grating. The colored areas correspond to the regions
where a certain number (N ) of diffraction channels are open.
Under the light line, N � 0. Therefore, all the diffraction
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channels are closed, and only the waveguide modes exist in
the structure.

To form a BIC, all the coefficients cn; s; kB corresponding to
the open diffraction channels should be equal to zero.
However, for subwavelength structures with L < l, there is
only one open diffraction channel (N � 1) corresponding to
s � 0. Therefore, in order to form a BIC, we need to nullify
c0; kB�x�. Hereinafter, we omit the index n for the sake of
simplicity. The function c0; kB�x� is the zeroth Fourier coeffi-
cient in expansion (6). Then, according to the definition,

c0; kB�x� �
� L=2

ÿL=2
ukB�x; z� dz : �9�

For the state in the center of the Brillouin zone (kB � 0), one
can write

c0; 0�x� �
� L=2

ÿL=2
u0; 0�x; z� dz �



u0; 0�x; z�

�
z
: �10�

Therefore, for a BIC at the G point, the z-averaged field
should be equal to zero. If the unit cell of the grating is
symmetric with respect to the z! ÿz transformation, then
the eigenstates in the G point can be even or odd functions of
z. For odd functions, their z-averaged value is zero. There-
fore, all such states are BICs. These BICs are called symmetry
protected, which means that the suppression of radiation is
protected by the symmetry of the structure. Therefore,
symmetry-protected BICs can emerge in both low-contrast
and high-contrast photonic structures [59, 66, 67]. As
opposed to symmetry-protected BICs, there are accidental
BICs (also referred to as Friedrich±Wintgen BICs), in which
c0; kB�x� turns into zero not because of the symmetry, but due
to the tuning of the system parameters [43, 46].

In the general case, the Fourier amplitude c0; kB is a
complex vector function of the grating parameters. There-
fore, for BIC formation, both its real and imaginary parts
should be zero. However, one can show that, for BICs, the
components of c0; kB can be real everywhere in the k-space, if
the structure possesses time-reversal symmetry e��r��e�r�,
inversion symmetry e�ÿr�� e�r�, and mirror symmetry with
respect to the structure plane [43, 46]. In the case of
symmetry-protected BICs, the last condition is unnecessary,
so that they can be implemented in structures with a substrate.
However, to observe accidental (off-G) BICs, this symmetry is
necessary. Therefore, as was mentioned above, in experi-
ments, the samples are usually immersed in a liquid that is
index-matched to the substrate, or suspended structures are
used [46, 68].

To form a BIC, it is not necessary to work in a region with
only one diffraction channel open. If several diffraction
channels are open, one has to tune a number of parameters
of the system, which is hard to implement in practice, but
there are theoretical studies showing that it is possible [69, 70].

3.3 Bound states in the continuum
and multipole expansion
The appearance of BICs in periodic photonic structures can
be explained in terms of the multipole expansion method.
Multipole expansion is based on the formalism of the vector
spherical harmonics (multipoles) representing a complete
basis set of orthogonal vector functions that are solutions of
the vector Helmholtz equation [71]. Usually, these functions,
used in the Mie theory to describe independent scattering
channels, make it possible to relate the directional pattern of
the outgoing radiation and the polarization currents induced
inside a scatterer by the incident wave [72]. Using the
multipole expansion, a number of phenomena in the area of
electromagnetic waves scattering were explained, including
the anapole states [73, 74], the Kerker effect [75±77], and
superscattering [78±81]. The multipole approach can also
enable a deeper understanding of the physics of BICs in
periodic structures.

Following the book by Bohren and Huffman [82], we
define the vector spherical harmonicsMp`m and Np`m as

Mp`m � H� �rcp`m� ; p � o �odd�; e �even� ; �11�

Np`m � 1

k
H� H� �rcp`m� ; p � o; e ; �12�

c
e
o

� �
`m

� z` �kr�Pm
` �cos y�

cos �mj�
sin �mj�

� �
: �13�

Here, fr; y;jg are spherical coordinates, Pm
` is an associated

Legendre polynomial, z`�kr� is a spherical Bessel function
describing the incoming, outgoing, or standing wave,
` � 1; 2; 3; . . . is the total angular momentum, m � 0; 1; . . . ; `
is the absolute value of the projection of the angular
momentum (magnetic quantum number), and k is the
wavenumber in a vacuum or medium depending on the
considered domain of the space. For brevity, we introduce
Wj � fMp`m;Np`mg, where j � fp; `;mg. Let us consider an
eigenmode of a photonic crystal waveguide or a metasurface
(Fig. 9a). The electric field of the mode outside the structure
can be represented as

E �r� �
X
Ks; j

Dj

� � �1
ÿ1

dkk
exp �ikr�

kz
Yj

�
k

jkj
�
d �kBÿKs ÿ kk� :

�14�

Here, Yj is the Fourier transform ofWj, kB is the Bloch wave
vector, Ks is the reciprocal lattice vector, Dj is the amplitude
corresponding to Yj. The coefficient Dj of the far field
expansion is directly related to the coefficient of the polariza-
tion expansion in vector spherical harmonics inside the unit
cell [83].

Expression (14) shows that the far field of the structure is
defined not only by the multipole content of the unit cell but
also by the open diffraction channels. The BICs are formed
under the condition that the directions of all the open
diffraction channels coincide with the nodal lines of the unit
cell field.
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The simplest example is the subwavelength lattice of
identical in-phase point dipoles oriented perpendicular to
the lattice plane. Such a configuration corresponds to the
mode with kB � 0, i.e., to the G point of the reciprocal space.
The only allowed direction of the diffraction is normal to the
metasurface; however, dipoles do not radiate in the direction
of their axis. Therefore, this mode is nonradiative and
represents a symmetry-protected BIC [84]. It is shown in
Ref. [83] that there are two scenarios of the appearance of
BICs in subwavelength structures (Fig. 9b). In the first case,
none of the multipoles contributing to the eigenmode radiate
in the direction orthogonal to the structure. This corresponds
to symmetry-protected BICs. It can be shown that the
multipoles Mp`m and Np`m do not radiate upward or down-
ward if m 6� 1 [83]. Thus, all the modes at the G point not
containing multipoles with m � 1 are symmetry-protected
BICs. In the second case, the interference of all the multipoles
entering into the composition of the mode suppresses
radiation in the direction of the open diffraction channel.
This corresponds to accidental BICs.

To find all the multipoles that can enter into the
composition of a certain mode, the group theory can be
addressed. The eigenmodes are transformed by irreducible
representations of the symmetry group of the structure [85±
87]. In this case, the unit cell determines the point group
symmetry and the Bloch functions form a basis of irreducible
representation of the translation group. The symmetry group
of a particular wave vector kB is defined as a subgroup of the
whole point group that keeps kB invariant. Thus, to
determine the multipole composition of the mode, we should
first find the irreducible representation of the mode for the
given kB. The set of multipoles in the decomposition is
determined directly by the irreducible representation of the
mode. Figure 9c shows the multipole composition of the
mode supported by an array of dielectric spheres with a

square unit cell. The parameters of the structure are
indicated in the figure caption. At the G point, the kB group
coincides with the symmetry point group of the unit cell. Out
of theG point, the irreducible representation changes. The left
part of Fig. 9c shows three main multipoles contributing to
the symmetry-protected BIC in the considered example. As
was mentioned above, for accidental BICs, the sum of the
vector spherical harmonics Eqn (14) is zero in the direction of
the open diffraction channel. The multipole composition of
the tunable BIC is shown in the right part of Fig. 9c.

It can be shown that in a square lattice (D4h, C4v) all singlet
states at the G point with the frequency o < 2pc=d are
symmetry-protected BICs, whereas the bright modes are
doubly degenerate [83]. However, in a triangular lattice (D6h,
C6v), there are two two-dimensional representations. One of
them does not contain multipoles withm � 1. Therefore, such
structures can host doubly-degenerate symmetry-protected
BICs [88]. Recently, Overvig et al [89] presented a detailed set
of the selection rules for symmetry-protected BICs in two-
dimensional photonic crystal structures.

If ametasurface consists ofmeta-atoms characterized by a
single multipole (dipole, quadrupole, octupole, etc.), then the
position of the accidental BIC in the k-space is determined by
the direction of the nodal line of the multipole. Of course, the
multipole approach is natural for metasurfaces consisting of
resonant meta-atoms, but, generally speaking, it can also be
applied to photonic crystal structures in the case of low-
contrast materials or when the filling factor is low. For
example, Fig. 9d shows the field distribution for two modes
of similar symmetry in a metasurface and a photonic crystal
slab with D4h symmetry.

3.4 Bound states in the continuum and topological charges
Usually, BICs are robust to a change of some parameters of
the systemÐthey shift in the configuration space, rather than
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disappear. Such robustness may have a topological origin
and, thus, can be characterized by topological invariants
(topological charges). In this section, we consider three
illustrative examples of topological robustness of BICs in
the configuration space. As we have shown in Section 3.3,
BICs appear in periodic structures when the vector Fourier
amplitude corresponding to the radiation to the open
diffraction channel becomes zero. It was demonstrated in
Ref. [43] that the polarization structure of the Fourier
amplitude in the vicinity of a BIC forms a vortex that can be
characterized by a topological charge showing the number of
2p rotations of the polarization vector while going around the
BIC point in the reciprocal space.

According to the Bloch theorem, the electric field of a
mode in a photonic crystal waveguide (Fig. 10a) can be
written (by analogy with the case of 1D grating considered
above) as

Ek�q; z� � exp �ikq� uk �q; z� : �15�

Here, k � �kx; ky; 0� is the two-dimensional Bloch wave
vector, q � �x; y; 0� is the radius vector lying in the plane of
the structure, and z is the coordinate directed normally to the
waveguide. Function uk�q; z� is periodic in q. The zero-order
Fourier amplitude c�k� � huki determines the amplitude and
polarization of the outgoing wave. The spatial average is
taken over the unit cell in any horizontal plane outside the
waveguide. Since the BIC radiates neither x nor y polariza-
tion, it appears in k-space at the crossings of the lines
corresponding to cx�kx; ky� � 0 and cy�kx; ky� � 0
(Fig. 10b, d). The topological charge q characterizing the

BIC can be introduced as

Here, f�k� � arg �cx�k� � icy�k��, and C is a path in k-space
that goes around the BIC in the counter-clockwise direction.
The polarization vector has to come back to itself after
passing the closed loop, so the overall angle change must be
an integer multiple of 2p, and, thus, q must be an integer.
For the considered structure, the symmetry-protected BIC
has a charge of q � 1 (Fig. 10c). The topological charge of
the BIC hosted by the silicon nitride grating was measured
experimentally using angle- and wavelength-resolved polari-
metric reflectometry [90]. It was shown in Ref. [43] that the
topological charge of BICs in one-dimensional gratings can
take only the values q � 0;�1. The topological charge in
structures periodic in two dimensions can be arbitrarily
large. However, in all known photonic structures proposed
to date, the maximum value of the BIC topological charge
amounts to jqj � 2 [43, 91]. The observation of a BIC with a
higher topological charge is a complex problem not yet
solved.

Being robust against changes in some geometrical para-
meters of the structures, the polarization vortex can migrate
over the dispersion surface within the Brillouin zone. For a
particular photonic branch, the total topological charge is
conserved, which imposes restrictions on the behavior of
BICs. For example, a BIC can be destroyed through
annihilation when two or several topological charges with
total zero charge collide. A BIC with an integer topological
charge can decay into several BICs with integer topological
charges or into circularly polarized states with half-integer
charges [43, 91, 94, 95]. Some examples of the topological
charge migration and decay will be considered in Section 4.1.
The topological charge carried by a BIC can be used to
generate optical vortex beams [96±98].

In Ref. [92], a general approach for determining the
topological charge of a BIC in a wide class of systems is
developed and applied to linear periodic chains of coupled
resonators (Fig. 11a). The authors of Ref. [92] introduced a
complex function W�o; kz� (quasimode coupling strength)
characterizing the efficiency of coupling between the
scattering channel and the resonant states of the system.
Here, kz is the wavenumber of the incident wave with
frequency o. Function W�o; kz� can be considered a
projection of the incident wave onto the eigenmode or the
projection of the resonant state onto the wave outgoing
through the scattering channel which is the same thing.
Obviously, W�o; kz� � 0 for the BIC, because the BIC arises
in the oÿkz space exactly at the crossing of lines correspond-
ing to ReW�o; kz� � f �o; kz� � 0 and ImW�o; kz� �
g �o; kz� � 0. Then, the topological charge q can be intro-
duced as

q � sgn

�
qf
qo

qg
qkz
ÿ qg

qo
qf
qkz

�����
BIC

: �17�

Figure 11b shows the phase y � argW�o; kz�. One can see
that the gradient of the phase j � Hy forms a vortex around
the BIC. Therefore, a BIC in a linear periodic chain can also
be characterized by a topological charge. However, it is still
an open question as to how to measure such a charge
experimentally.
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Another elegant example of a BIC was observed in the
dielectric ridged waveguide forming an on-chip analog of the
Gires±Tournois interferometer (Fig. 11c) [93]. The authors of
[93] showed that such a waveguide can support a BICÐthe
mode that couples neither to waveguide modes in region A
nor to the propagating waves in the substrate and in free
space. This type of BIC was predicted and experimentally
observed in Refs [99±101]. A rigorous theory proving that
these states are BICs was developed by Bezus, Bykov, and
Doskolovich [102]. By analogy with Ref. [92], the authors of
[102] introduced a complex quasimode coupling P �w; y�
between the modes of the ridge and waveguide modes in
region A. If the frequency is fixed, then the BIC in the
considered system can be observed at specific values of angle
y and ridge width w. Exactly at the BIC, the function
P �w; y�jBIC � 0, and its phase is singular (i.e., indefinite).
The topological charge introduced as

q � 1

2p

�
g
d argP �w; y� �18�

can be equal to �1. By variation of the guiding layer
thickness in region B, the authors of Ref. [102] showed
that BICs can move in wÿy space and even annihilate, if
two BICs with opposite charges collide (Fig. 11d). We
should note that, instead of varying the ridge width w at a
fixed frequency o, one can vary o at a fixed ridge width w:
the result will be completely the same. To conclude, we
should add that the topological charge can be introduced in
many ways, but not all of the introduced charges will have a
clear physical meaning, and therefore they cannot be
measured.

3.5 Losses and the Q factor of quasi-bound states
in the continuum
Losses limit the total Q factor Qtot of a BIC. In general, Qtot

can be decomposed into partial contributions:

Qÿ1tot � Qÿ1rad �Qÿ1surf �Qÿ1str �Qÿ1size �Qÿ1subs|�������������������������������{z�������������������������������}
radiative

� Qÿ1abs|�{z�}
nonradiative

: �19�

In Eqn (19), in addition to the radiative part Qrad proper, the
radiative losses allow for surface roughness (Qsurf), structural
disorder (Qstr), diffraction losses due to finite size of the
sample (Qsize), and diffraction into a high-index substrate
(Qsubs). The nonradiative losses Qabs include all types of
absorption (fundamental absorption, free-carrier absorp-
tion, multiphoton absorption, etc). The loss mechanisms in
periodic photonic structures are shown schematically in
Fig. 12a. However, the statement that BICs have a infinite Q
factor, quite common in the literature, is not correct. When
the BIC is completely decoupled from the radiative con-
tinuum, only the radiative Q factor diverges (Qrad!1), but
the total Q factor can remain finite. For example, BICs with
finite Qtot can be observed in plasmonic structures, where the
level of losses is rather high [103±105].

Strictly speaking, BICs are a mathematical idealization,
and unavoidable radiative losses turn them into quasi-BICs,
which manifest themselves in the scattering spectra as narrow
Fano resonances [106]. Quasi-BICs are important from a
practical point of view, as they are still strongly localized and
provide a significant enhancement of the incident field; in
addition, they can be excited by an external incident wave.
Usually, the efficient performance of photonic structures
requires a critical coupling of the eigenmode to the incident
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field, which is achieved under the conditionQabs � Qrad [107±
111]. For example, the absorption rate in semiconductors can
be controlled in the visible, infrared, and terahertz ranges via
free electrons induced by an external optical pulse [112±114].
The radiative losses of quasi-BICs in periodic photonic
structures can be controlled by changing the size of the
sample [64, 115, 116], angle of incidence [46], or asymmetry
of the unit cell [106]. The last method seems to be the most
precise and suitable for practical application to systems
excited at normal incidence. The optical properties of
photonic structures with quasi-BICs and their applications
are discussed in Sections 4 and 5. Another mechanism of
dynamic all-optical control over the radiative losses of BICs
was proposed in Ref. [117]. It was shown that Kerr
nonlinearity can result in radiative losses, which appear due
to the coupling between a symmetry-protected BIC and a
brightmode of the system, in which case the radiative losses of
BICs can be controlled by changing the intensity of the
incident light. A similar mechanism of radiative loss control
was also proposed for the implementation of optical memory
based on BICs [118,119]. One of the loss mechanisms is the
diffraction into the substrate with a high refractive index. This
mechanism is crucial, for example, for photonic structures
fabricated from a silicon-on-insulator wafer [120], where the
refractive index of the substrate is higher than the effective
refractive index of the BIC and, therefore, a diffraction into
the substrate occurs (Fig. 12b). It is important that, despite the
presence of a substrate with a high refractive index, zero-order
diffraction into the substrate is closed for symmetry-protected
BICs, as the substrate does not break C2 symmetry with
respect to the vertical axis. The intensity of the diffraction
into the substrate strongly (exponentially) depends on the

thickness of the SiO2 buffer layer that isolates the photonic
structure from the substrate. Thus, Qtot increases with the
thickness of SiO2 exponentially until reaching saturation. The
saturation plateau is defined by other loss mechanisms.
Therefore, the higher the quality of fabrication, the thicker
the layer of SiO2 required.

The radiative loss of BICs in periodic structures is
suppressed due to collective destructive interference from all
the unit cells of the structure. Therefore, quasi-BICs in the
experimental structures have radiative losses that depend on
the number of periods N (unit cells) [64, 121±124]. The
asymptotic behavior of such losses (Qsize) for large N can be
estimated from the known dependence of radiative losses in
the infinite structure on the Bloch wavenumber, i.e.,
Qrad � Qrad�kB�. The transition from the infinite structure,
which can be easily analyzed numerically or even analytically,
to a finite one is based on the Fabry±Perot quantization of the
Bloch wavenumber. Thus, for an in-G BIC, Qsize is approxi-
mately equal to Qrad�jkB;minj�, where jkB;minj � p=L, and L is
the linear size of the structure. Such an approximation has
proven to be useful for linear chains [64, 125]. Nevertheless,
one should keep inmind that, in some cases, the eigenmodes in
an infinite lattice can substantially differ from those in finite
structures, even if their size is large [126]. Practically, thewidth
of high-Q Fano resonances ceases to depend on the sample
size if it exceeds a few hundred periods. However, recently a
configuration was proposed that consists of 27� 27 silicon
blocks of a dielectric structure hosting a quasi-BIC with
experimentally measured Qtot � 18;500 in the telecommuni-
cation frequency range [115]. However, there is no clear recipe
for how to fabricate high-Q metasurfaces with a small
footprint, and today it remains a highly relevant challenge.

The total Q factor of BICs in periodic dielectric structures
in the visible and near-IR ranges is about 103±104 [46, 64, 88,
116, 125, 127, 128] and it highly depends on the fabrication
quality. The radiative Q factor can reach values of 106±107

[46]. Recently, a symmetry-protected BIC in a photonic
crystal slab with a total Q factor of about 106 was
demonstrated experimentally [129]. The radiation from the
edges of the structure was suppressed by surrounding the
sample with a photonic crystal with a different lattice
constant. In this case, the frequency of the BIC found itself
in the bandgap of the surrounding photonic crystal.

Another source of radiative losses is the radiation induced
by fabrication defects or structural disorder. Such losses are a
common problem for high-Q photonic structures [130±132].
Structural fluctuations are much more difficult to control
than, for instance, the sample size. For this reason, the
radiation losses due to structural fluctuation and fabrication
imperfections usually determine the main loss mechanism
limiting the Q factor of BICs. It is known that the structural
disorder in periodic photonic structures drastically affects
their optical properties, resulting in nontrivial Fano reso-
nance evolution, light localization, coherent back-scattering,
etc. [133±137]. The disorder effects are most essential in self-
assembled and natural photonic structures [138±140].

According to the generalized theory, the Q factor of a BIC
due to structural fluctuations can be presented as Qÿ1str / s 2,
where s is the disorder amplitude [141]. Reference [142]
analyzes the radiative losses of symmetry-protected BICs in
dielectric gratings using the coupled-mode theory, finite
element methods, and the supercell formalism. It is shown
that radiation is mainly induced by fractional-order Bloch
waves, particularly near the zero-order diffraction channel.
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Thus, we can say that fluctuations result in BIC rescattering
to the neighboring (in k-space) states that are leaky. It is noted
that, when the size of the unit cell becomes sufficiently large,
the influence of the boundary conditions becomes vanishingly
small. This can be explained by the spatial localization of the
mode, but the authors of [142] did not analyze this effect. The
spatial localization of the BICs was demonstrated numeri-
cally in Ref. [143], where a one-dimensional periodic structure
composed of two layers of dielectric wires was considered. In
the same paper, the effect of uncorrelated structural disorder
was analyzed for both symmetry-protected and accidental
BICs. It was shown that the symmetry-protected BICs are
more resistant to the fluctuation of the wire positions in the
direction perpendicular to the layers than to fluctuation of the
wire position along the layers, and, vice versa, the accidental
BICs are more robust against fluctuation along the direction
of periodicity. The Anderson localization effect in structures
with BICs was discussed in Ref. [144], where a structure
similar to that considered by Plotnik et al. (Fig. 2c) [28] was
considered. The authors of [144] thoroughly analyzed the
stability of the BIC against disorder and showed that, due to
the nontrivial interplay between the BIC and disorder-
induced localized states, the entanglement of a biphoton
survives after averaging over all the disorder configurations.

The authors of Ref. [45] proposed an idea of how to
increase the resistance of BICs to structural disorder. They
experimentally demonstrated a BIC with a total Q factor of
about 5� 105. The main idea is to merge several BICs in the
k-space in the vicinity of the G point. Later, the merged BICs,
or super-BICs, in photonic crystal slabs were used to achieve a
record-low lasing threshold [116]. As we mentioned above,
the radiation from BICs due to structural disorder occurs via
fractional-order Bloch waves near the G point. Thus, in the
proposed system, the rescattering takes place mainly between
the extremely high-Q states, making the BIC immune against
structural disorder.

4. Bound states in the continuum
in photonic structures of various dimensions

4.1 Dielectric gratings
In this section, we will consider BICs in 1D dielectric
gratingsÐphotonic structures of finite thickness periodic in
one direction and having a translational symmetry in the other
direction. The study of such structures has a long history,
which began in 1887 from Lord Rayleigh's work [145].
Waveguide gratings have been intensively studied since the
middle of the 20th century, and they have found numerous
applications in distributed-feedback lasers, laser mirrors,
bandpass filters, wavelength demultiplexers, polarizers, che-
mical and bio-sensors, and many other optic and optoelec-
tronic systems. The interested reader may consult reviews
[146±150]. Pronounced progress in the physics of optical
gratings was related to the development of nanotechnologies,
namely, photonic crystals, metasurfaces, flat optics, and high-
contrast gratings [151].

Due to simple geometry, BICs in dielectric gratings can be
described easily using the Fourier modes method (FMM),
also referred to as the rigorous coupled-wave analysis
(RCWA) [152] or the true modes method (TMM) [153]
specially designed for a high-efficiency description of grat-
ings, as well as resonant state expansion [154, 155], guided
mode expansion [156], multiple scattering theory (Korringa±

Kohn±Rostoker method) [157], and other methods. The
FMM and TMM supplemented with the S-matrix technique
provide a powerful tool for analyzing complex multilayer and
photonic crystal structures [50, 158].

Along with the symmetry-protected BICs discussed
above, the gratings allow implementing another type of
BIC, usually called a Fabry±Perot BIC. It is well known
that, in the vicinity of optical resonances of nonabsorbing
gratings, the transmission coefficient becomes zero (Fig. 4b)
[36], i.e., the structure behaves as a perfect mirror. Using two
such structures separated by a suitable distance, one can
completely trap the light between the gratings. This was the
mechanism of BIC formation analyzed in Ref. [21] (Fig. 2a).
The Fabry±Perot BIC is a particular case of a tunable
(Friedrich±Wintgen) BIC, and it also can be described within
coupled-mode theory by Eqns (1) and (2), assuming that
o1 � o2 and g1 � g2. Fabry±Perot BICs can appear at both
normal kB � 0 and oblique incidence, when kB 6� 0.

Actually, there is no need to use a double-layer structure to
obtain a Fabry±Perot BIC. It can also appear in gratings with
varying thickness, which is described well by modal methods
developed in Refs [159±162]. Within these approaches, Bloch
modes are used that are propagating eigenmodes of an
infinitely thick grating, similar to plane waves in free space
[161]. A plane interface between a homogeneous medium and
a photonic crystal couples the modes to each other (upon
reflection) and to plane waves of the surrounding space or
substrate (upon transmission), as illustrated inFig. 13a.As the
slab is bounded by two interfaces, multiple Fabry±Perot-like
resonances appear in the reflection spectra (Fig. 13b). In this
case, the linewidth of the resonances strongly depends on the
thickness of the grating tg, and at particular values of tg, the
resonances disappear from the spectra (collapse), turning into
BICs. The formation of Fabry±Perot BICs requires the
presence of at least two Bloch modes in the spectrum of the
infinitely thick grating. Indeed, as one can see from Fig. 13b,
regardless of the slab thickness, BICs can exist only for
l < lc2. This condition defines the cutoff frequency of the
second-order Bloch mode. This approach was used by
Ovcharenko et al. [163], who applied the multimode Fabry±
Perotmodel developed byTishchenko [161] andLalanne [159]
and showed that this model predicts the existence of BICs and
their positions in the parameter space with high accuracy.
Using the same formalism, Bykov et al. [164] obtained a
simple closed-form expression describing BIC positions in the
dispersion diagram. Similar results were obtained by Parriaux
and Lyndin [165], but without any reference to BICs.

A further description of BICs in 1D gratings is possible in
terms of the scattering matrix (S-matrix) poles [50, 166±168].
The collapse of the Fano resonance for BICs means the
merging of the S-matrix zeros and poles [169]. This condition
can be used to find the particular parameters at which the BIC
appears [93]. Blanchard et al. [170] proposed a phenomen-
ological approach based on the S-matrix pole-zero approx-
imation to describe Fano resonances in the vicinity of BICs.
Combining the pole and coupled-wave formalisms for
waveguide resonances of a grating was carried out by Pietroy
et al. [171]. The authors of [37] explained the ultra-narrow
resonance corresponding to an accidental BIC by the strong
coupling between the guided modes. By means of expansion
in resonant states, using the analytically known modes of
planar waveguides as a basis, one can describe the entire
diversity of resonances in a photonic crystal slab [155], in
particular, BICs [172].
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Above, we considered gratings with up-down mirror
symmetry. However, BICs can exist in gratings without such
a symmetry. This problem was considered by Ndangali and
Shabanov [69] and Bulgakov et al. [44]. In the latter paper,
the authors considered a grating consisting of a slab with
ridges periodically arranged either on top or on both sides
of the slab (Fig. 14a). In the case of two gratings, it was
assumed that they have the same period, but different
permittivities, and can be shifted with respect to each
other by distance a. The authors of [44] demonstrated
that, if a two-sided grating possesses either mirror symme-
try with respect to the xy plane or glide symmetry, i.e., a
composition of mirror reflection in the xy plane and a half-
period translation along the x-axis, then the BICs are stable
against variation of parameters as long as these symmetries
are preserved. In this case, only a shift of the BIC along the
dispersion curve occurs. If the up-down symmetry is broken
due to the different geometries or material parameters of the
lattices, the existence of the accidental off-G BIC requires a
fine adjustment of the system parameters. Therefore, such
BICs are not robust against variation of the material or
geometrical parameters of the structure. The obtained results
are in complete accordance with those obtained earlier by
Ndangali and Shabanov [69], who considered double arrays
of thin dielectric rods shifted with respect to each other as
shown in Fig. 14b. The authors of [69] established that an
arbitrary shift of one grating with respect to the other one
results in the symmetry-protected BIC turning into an
accidental BIC, and the accidental BIC turning into a high-
Q quasi-BIC. In addition, they showed that BICs can exist if
two or three diffraction channels are open, but the formation

of these BICs requires an adjustment of the radius and
permittivity of the rods.

Ndangali and Shabanov [69] considered BICs in an array
of very thin rods, the Rayleigh approximation being applic-
able to each of them, i.e.,

��
e
p

k0R5 1, where k0 is the
wavenumber in a vacuum, R is the radius of the rods, and e
is their permittivity. Bulgakov and Sadreev [70] generalized
the considered problem to the case of arbitrary radius R and
permittivity e using the multiple scattering theory in the
T-matrix formalism [173±175]. They considered an array of
GaAs rods with e � 12 and the size parameter

��
e
p

k0R in the
range from 1 to 10. They showed that such a system supports
three types of BICs: (i) symmetry-protected BICs with a zero
Bloch vector, (ii) BICs embedded in one open diffraction
channel with a nonzero Bloch vector, (iii) BICs embedded in
two and three open diffraction channels. The first and second
BIC types exist for a wide range of material parameters of the
rods, whereas the third one occurs only at specifically chosen
values of the rod radius or permittivity. Yuan and Lu [176]
considered a similar system numerically and determined the
domains of BIC existence in the parametric space �R; e�.
Bulgakov and Maksimov [121] studied finite arrays consist-
ing of N parallel dielectric rods and analyzed the dependence
of quasi-BICs and resonances below the light cone (guided-
mode resonance) onN. They identified two types of BICswith
radiative Q factors scaled as Qrad � N 2 and Qrad � N 3.

As we discussed in Section 3.4, BICs in periodic structures
can be considered polarization vortices with a certain topolo-
gical charge. With a variation in the system parameters, these
vortices manifest nontrivial dynamics in k-space, including
annihilation, merging, and decay. All these effects were
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clearly demonstrated numerically in Ref. [177] by the example
ofBICs inaperiodicarrayofparallel dielectric rods.Figure14c
shows the evolution of topological charges for two families of
BICs belonging to different dispersion branches (photonic
bands). Following the direction of the yellow arrow indicating
an increase in the radius of the rod, one can see that the
symmetry-protected BIC (BIC 3) with q � 1 decays into two
accidental BICs with q � 1 (BIC 5) and one symmetry-
protected BIC with q � ÿ1 (BIC 1). A further increase in the
radius results in the merging of two accidental BICs (BIC 9) at
the G point with the symmetry-protected BIC (BIC 1). It is
worth mentioning that, due to o �ÿk� � o �k� symmetry, off-
G BICs emerge and disappear in pairs. The annihilation of
topological charges at the G point may lead to the creation of
both accidental and symmetry-protected BICs. The type of the
forming BIC is determined by the total topological charge
conservation law. Figure 14c (evolution along the blue arrow)
illustrates the creation of the accidental in-G BIC with q � 0,
when twoBICs labelled BIC 6with q � 1merge with twoBICs
labelled BIC 10 with q � ÿ1.

The value of topological charge determines the asymptotic
dependence of the radiative Q factor on the Bloch wavenum-
ber. Due to C2 symmetry, one-dimensional periodic structures
can support BICs with q � 0 or q � �1 [43]. The Q factor of
an isolated BIC with jqj � 1 scales as Q � 1=�k� kBIC�2 [45,
177, 178]. For example, the Q factor of the symmetry-
protected BIC decreases as kÿ2. Upon approaching the
point of the annihilation, the dependence changes to Q �
1=�kÿ kBIC�2�k� kBIC�2 for both accidental in-G BICs and
symmetry-protected BICs. The inverse fourth-power depen-
dence indicates that the Q factor can be very large, even when
jkÿ kBICj is not small [178]. However, if the system para-
meters are greatly detuned from this regime, the Q factor of
the symmetry-protected BICs decreases as Q � 1=k 2 again.
These asymptotic dependences are extremely important, as
they determine the radiative losses of quasi-BICs in finite-size
structures and their robustness to disorder [45, 64, 125].

4.2 1D periodicity with axial symmetry
One-dimensional periodic structures with axial symmetry
(corrugated cylindrical waveguides and chains of spheres or
disks (see the inset in Fig. 15a below)) can also support
different types of BICs. The theory of BICs in such structures

was formulated by Bulgakov and Sadreev [124] and further
developed in Refs [66, 92, 95]. Owing to the axial symmetry
and periodicity of the structure along the z-axis, the solution
can be written in the following form:

E �r;j; z; t� � um; kz�r; z� exp �ÿiot� ikzz� imj� ; �20�

where j is the azimuthal angle, m is the azimuthal quantum
number, kz is the Bloch wavenumber, and um; kz is a periodic
function of z. In the case ofm � 0, the solutions of Maxwell's
equations in cylindrical coordinates can always be divided into
TE and TM polarizations [179]. It is worth noting that, in
contrast to uncorrugated waveguides, in the considered
problem the solutions with kz � 0 do not split into two
independent polarizations, since kz is a quasi-wavenumber,
which is defined up to the reciprocal lattice vector. Thus, for
kz � 0 and m 6� 0, all the modes have hybrid TE±TM
polarization, as do the modes with m � 0 and kz 6� 0. There-
fore, in subwavelength chains, the modes with kz � 0 and
m � 0 have only one open diffraction channel. For the modes
odd with respect to reflection in the xy plane (Fig. 15a), the
coupling to this diffraction channel vanishes because of
symmetry, as happens in dielectric gratings. Therefore,
subwavelength structures with a symmetric potential,
e�ÿz� � e�z�, support the symmetry-protected BICs at the
G point. For themodeswithm 6� 0 at theG point, the radiative
losses to one channel (TE or TM) can vanish due to the
symmetry of the mode itself. The losses to the second channel
can be suppressed by fine tuning the system parameters.
Bulgakov and Sadreev in Ref. [180] referred to such states as
partially symmetry-protected BICs and demonstrated that
BICs with m 6� 0 and kz 6� 0 can be produced by fine tuning
the chain parameters. As we mentioned above, BICs in
periodic chains can be characterized by a topological charge,
similar to BICs in 2D periodic structures [92]. However, it is
still unclear how to measure this charge.

BICs in periodic chains were first observed experimentally
in the GHz frequency range, in a one-dimensional array of
coupled ceramic disks (Fig. 15a) [64]. To observe a symmetry-
protected BIC, two identical loop antennas playing the role of
magnetic dipoles were used; they were placed coaxially with a
chain and connected to ports of a vector network analyzer.
The measured and calculated transmission spectra are shown
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in Fig. 15a. The last peak in the spectrum corresponds to a
quasi-BIC, which transforms into a genuine BIC in an infinite
chain. It was shown that the total Q factor of the quasi-BIC
Qtot first grows quadratically with the increase in the number
of periods and then saturates at the level of Q � 4000 due to
material absorption. An accidental BIC (m � 0, kB � 0) was
also observed experimentally in a similar system in Ref. [125].
The linear growth of the Q factor with the number of disks
was demonstrated for an observed accidental off-GBIC. Such
a behavior of the Q factor in this state substantially differs
from that of an accidental BIC in the center of the Brillouin
zone, for which the radiative Q factor grows as Q � N 3 with
an increase in the number of scatterers in the array [121].

The first experimental observation of a BIC in structures
with axial symmetry in the optical range was reported in 2019
[181]. The authors of Ref. [181] fabricated a silicon nanowire
with a periodic grating on the surface (Fig. 15b). The surface
grating forms a structure similar to a periodic array of disks
placed coaxially on a common core. The nanowire was
illuminated by a normally incident plane wave; as a result,
quasi-BICs with different m were excited. The authors
analyzed both theoretically and experimentally how the
appearance of a BIC depends on illumination and the
geometry of the cylindrical nanowire. Light confinement in
such structures can be used to significantly enhance the
absorption, which finds applications in photodetector or
photovoltaic devices based on the p±i±n diode design and
implemented in nanowires with superlattices [182].

Nanowires with periodic superlattices and arrays of disks
have a number of advantages over an array of spheres due to a
larger number of degrees of freedom. So, by independent
adjustment of the period, height, and radius of the disks, one
can provide high-precision engineering of mode composition,
and obtain several BICs with different angular numbers and
Bloch vectors. Such linear chains supporting BICs can be
used as a compact source of optical beams with given angular
momentum.

4.3 2D periodicity and photonic crystal structures
In this section, we consider the main properties of BICs in
photonic crystal slabs (waveguides)Ð 2D periodical dielec-
tric photonic structures that have a band gap for waves

propagating in the waveguide plane. Confining light in the
direction orthogonal to the structure plane is implemented
at the expense of the refractive index difference. Since the
1990s, such structures have been considered simpler to
fabricate than photonic crystals with full three-dimen-
sional band gaps; in addition, they possess many useful
properties of gratings [183, 184]. Compared to 1D struc-
tures, photonic crystal waveguides offer a broader variety
of designs for unit cells with different types of arrangements
and, consequently, more degrees of freedom for flexible
control of their optical properties [156, 185]. Due to this
fact, in the 2D case, BICs are much more diverse than in the
case of 1D gratings or chains. In particular, in photonic-
crystal waveguides, it is possible to obtain BICs with high
(5 2) topological charges [43] and to form BICs robust to
structural disorder [45].

The first systematic study of BICs in photonic crystal
waveguides was carried out in 2013 [46] for a Si3N4 waveguide
with a periodic array of circular holes (Fig. 16a). The
waveguide was grown on an SiO2=Si substrate and immersed
in a liquid index-matched to silica to keep the up-down
reflection symmetry required to observe accidental BICs.
The band structure for TM-type modes along the G±X
direction is shown in Fig. 16b. From Fig. 16c, it is seen that
the structure supports a symmetry-protected BIC at the G
point and an accidental BIC on a nonzero Bloch vector
corresponding to an incidence angle of about 35�. The
oblique red crosses show the values of the radiative Q factor
calculated from the total Q factor, which was extracted from
the measured reflection spectrum assuming the value of the
nonradiative Q factor equal to 104. The achieved value of the
radiative Q factor for the accidental BIC is of the order of 106;
however, because of parasitic and nonradiative losses, the
value of the total Q factor remains limited to 104. As far as we
know, the results of Ref. [48] were the first direct experimental
evidence of the existence of true accidental BICs.

The physics and origins of accidental BICs were analyti-
cally described in Ref. [186] within the framework of the
coupled-wave theory (CWT), adapted to describe the
response of 2D photonic crystal waveguides [187]. According
to the analytical model, the electromagnetic fields of
eigenmodes of a photonic system can be expanded in guided
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modes and leaky modes of a uniform waveguide, which are
used as basis functions. Due to the interaction with the lattice,
the guided modes also have radiative losses. Thus, both the
guided and leaky modes can contribute to the same radiation
channels (channels of diffraction) due to the interaction with
the periodic potential of the structure. In Ref. [186], it was
shown that accidental BICs appear due to the destructive
interference of all the basis functions, both guided and leaky
ones. Two reasons for destructive interference were indicated.
First, the contributions from equivalent directions in the
reciprocal space can result in the spontaneous appearance of
an additional symmetry and, therefore, to the formation of an
accidental BIC. An example of such a BIC is presented in
Ref. [46]. Second, it was shown that accidental BICs do not
necessarily occur exactly at a high-symmetry point in the
reciprocal space. The reason is that, for accidental BICs, the
guided basis modes contribute to the open radiation channels
of the photonic structure with different weights and, there-
fore, after blocking the radiation at the symmetry point, some
residual radiation can still remain. In other words, the point
corresponding to a BIC in the reciprocal space does not
always have a high symmetry, but is close to it. This is typical
of the Friedrich±Wintgen mechanism [7, 188]. Moreover, it
was shown analytically that the positions of accidental BICs
can be shifted by changing various parameters, such as the
waveguide cladding permittivity or geometrical sizes. It is
worth mentioning that, in other papers, analytical considera-
tions demonstrate that the energy of symmetry-protected
BICs is mainly concentrated in the closed diffraction
channels of the �1 orders.

The relatively moderate value of the total Q factor of 104,
obtained in Ref. [46], is related to the losses at the sample
edges arising due to the finite size of samples and fabrication
imperfections. Recently, a new approach was suggested,
which allows a suppression of such losses using the topologi-
cal nature of BICs, namely, by merging several BICs at the
G point in the k-space [45, 189]. Reference [45] considered a
2D dielectric photonic crystal membrane suspended in air.
The fundamental TE band of the membrane supported one
symmetry-protected BIC at the G point and eight accidental
BICs located symmetrically around the G point. The tun-

ability of accidental BICs allows moving them away from an
off-G position to the center of the Brillouin zone. The
experimentally measured value of 5� 105 was demonstrated
for the total Q factor in the merging regime. For a single
isolated BIC with a charge of �1, the Q factor of a standard
symmetry-protected BIC decays quadratically, Q � 1=k 2,
with distance from the G point. When all nine BICs merge, it
turns out that Q � 1=k 6. Later, it was shown that, for finite-
size samples, the highest Q factor can be achieved not under
the condition of complete merging but in the pre-merging
regime, when the accidental BICs lie on a small-radius circle
in the k-space [116].

One of the distinctive features of 2D periodic photonic
structures is that a BIC can exist even in chiral samples without
the in-plane inversion symmetry [190]. In general, a BIC in the
sub-diffractive regime can be achieved by zeroing the ampli-
tudes of radiation into both polarization channels. The authors
of Ref. [190] showed that, by using a periodic photonic
structure with cross-shaped elements and possessing no
second-order symmetry axis, it is possible to zero the radiation
amplitudes for both polarizations: one polarization channel is
suppressed due to the vertical mirror plane, and the other one,
parametrically, by tuning the unit cell geometry. This mechan-
ism of BIC formation is very similar to the one considered by
Bulgakov and Sadreev for obtaining partially symmetry-
protected BICs in a chain of dielectric spheres [180]. It was
later shown that such an approach allows combining the strong
linear and nonlinear circular dichroism, accompanied by a
significant field enhancement caused by the BIC [191].

4.4 Individual subwavelength resonators
For individual subwavelength resonators, genuine nonradia-
tive states require extreme values of permittivity, tending
toward infinity or zero at the resonance frequency [60, 194,
195] or imitating periodic boundary conditions by means of
metallic waveguides [62, 196, 197]. In realistic individual
resonators, there is always an infinite number of radiation
channels, which limits the Q factor substantially. However,
the concept of quasi-BICs allows approaching virtually
nonradiative states in individual dielectric resonators. Using
the parameter-tuning approach originally developed by

y

a

Liquid

Si3N4

SiO2

Si

0.6

0.4

106

105

104

103

BIC BIC

Continuum

BIC

Resonance state

Guided mode

Theory
Experiment

0.2

0.5
Wave vector kxa=2p

F
re
q
u
en
cy

o
a
=
2
pc

0 20 40 60
Angle of incidence y, deg

R
ad

ia
ti
ve

Q
fa
ct
o
r

c
ba

0

Figure 16. (a) Schematic layout of the experimental structure, immersed in a liquid, index-matched to silicon oxide at a wavelength of 740 nm.

(b) Band diagram for TM polarization along the G±X direction. BICs are marked by red dots. (c) Normalized radiative lifetime extracted from the

experimentally measured reflectivity spectrum (X's). Curve shows the result of modeling by the finite-difference method. (Adapted from [46].)

May 2023 Bound states in the continuum in photonic structures 509



Friedrich and Wintgen [7] and later used for some other
geometries [198], one can create high-Q quasi-BICs in
geometrically compact resonators at subwavelength scales.
In recent paper [199], it was proposed to implement quasi-
BICs, referred to there as supercavity modes, in individual
dielectric resonators by continuously changing the geometric
shape of the resonator. Such parameter tuning enables
destructive interference and strong coupling of two leaky
modes (radial and axial) when their frequencies come close. It
is of importance that the modes forming a quasi-BIC possess
the same symmetry.

The mentioned concept of a supercavity mode is
illustrated in Fig. 17a. Figure 17b demonstrates the con-
tribution of modes with a zero azimuthal index to the
scattering cross section of a high-index dielectric cylinder
depending on the dimensionless frequency and aspect ratio.
The radial and axial modes interact strongly in the vicinity of
the avoided crossing point, which results in a sharp
narrowing of the linewidth for one of the modesÐ the
supercavity mode. The second mode linewidth increases
according to the general properties of open non-Hermitian
systems [55] (Fig. 6b). The hybrid mode profiles shown in
Fig. 17a are a combination of radial and axial oscillations in

the vertical cross section and a uniform azimuthally
symmetric distribution in the horizontal cross section. The
formation of quasi-BICs can be detected by the special
features of the lineshape in the scattering spectrum. For a
cylinder with high permittivity (e � 80), the lineshape
changes from an asymmetric Fano profile to a symmetric
Lorentzian in the vicinity of supercavity mode formation, as
shown in Fig. 17b. The transformation of the Fano profile
into a Lorentzian corresponds to the diverging Fano
asymmetry parameter q. Such a behavior was later
explained by the interference of different modes with close
far-field profiles [200, 201]. In the considered case (Fig. 17b),
both interacting modes are dominated by magnetic dipolar
contribution. Upon interference of the mode, the dipole
contributions can cancel each other, thus making dominant
the next allowed multipole (in this case, magnetic octupole)
contribution . The formation of quasi-BICs with nonzero
azimuthal indices is also possible, but it leads to lower Q
factors because of the lower symmetry of the field profile.

The first experimental observation of quasi-BICs was
carried out quite recently in the microwave [192] and near-
IR [193, 202] ranges. Figure 17c shows the experimental map
of the reflection coefficient 1ÿjS11j for a single ceramic disk
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with a permittivity of 44:8 [192]. The excitationwas performed
in the near field with a loop antenna, which selectively excites
the modes with a zero azimuthal index. Four avoided
resonance crossings corresponding to the formation of quasi-
BICs are marked in the spectra. The radiative Q factor of
quasi-BICs reaches 200;000. However, due to the absorption
in the ceramic material, the maximal measured unloaded total
Q factor is restricted to a value of 12;500. The observation of
supercavity modes in the near-IR range was carried out for
isolated AlGaAs nanodisks on a three-layer substrate with a
reflective layer of indium-tin oxide (ITO) in the middle [193,
202]. The SEM image of individual nanodisks is shown in the
inset to Fig. 17d. The measured spectra and extracted Q factor
for a range of disk diameters are shown in the lower part of
Fig. 17d. The maximum measured Q factor is about 180 for a
disk 930 nm in diameter. The spectra show (Fig. 17e) that the
line has a Fano resonance shape and changes its asymmetry in
the vicinity of the quasi-BIC, as was predicted theoretically for
a single disk in a vacuum. To match the mode and excitation
symmetry, a tightly focused azimuthally polarized Gaussian
beam was used.

Later, several generalizations were suggested for quasi-
BICs in nonperiodic finite-size resonators. For example, two
coaxial disks were shown to support quasi-BICs with much
higher Q-factor values than those of each disk separately [203].
Additionally, itwas proposed to useBragg reflectors to increase
further the Q factor of a single disk [204]. Subsequently, the
multipolar classification of eigenmodes in single resonators of
different shapes was suggested, based on the symmetry group
theory [205]. These results lead to a prediction of quasi-BICs in
dielectric spheroids [206], triangular [205] and rectangular
prisms [207], and resonators of arbitrary shapes [208].

4.5 Asymmetric metasurfaces and quasi-bound states
in the continuum
As was recently demonstrated, the transmission spectra of
dielectric metasurfaces with broken unit cell symmetry,

recorded under normal incidence, demonstrate very narrow
peaks, which are associated with quasi-BIC excitation [106].
It was established that in-plane asymmetry induces an
imbalance of the interference between counterpropagating
leaky waves, resulting in the formation of a quasi-BIC.
Hence, it is possible to control the radiative losses in quasi-
BICs with high accuracy. This effect was experimentally
observed in a variety of metasurfaces in various frequency
ranges and was discussed in connection with electromagnetic
field-induced transparency [209], tunable high-Q resonances
[210], trapped-mode resonances [211], broken-symmetry
Fano metasurfaces [212, 213], and dark modes [214].

Figure 18a illustrates the scattering of light by an
asymmetric metasurface. The radiative Q factor of quasi-
BICs in asymmetric metasurfaces is described by the typical
inverse quadratic dependence on the meta-atom asymmetry
parameter a [106], as shown in the left panel of Fig. 18b. In the
regime of transmission (or reflection), quasi-BICs manifest
themselves as sharp asymmetric Fano resonances, whose
width and depth decreases with the decrease in a, as shown
in the right part of Fig. 18b. The total Q factor of the quasi-
BIC mode is limited by other losses (see Section 3.5). Due to
the parasitic effect of other losses, the maximum field
enhancement can be achieved not for minimum radiative
losses but in the regime of optimal (critical) coupling, when
the rates of radiative and parasitic losses are equal,
Qabs � Qrad [110, 111]. Recently, quasi-BICs with huge
values of the Q factor have been experimentally demon-
strated in silicon metasurfaces with different designs of
meta-atoms. Figures 18c, d show SEM images of two
metasurfaces hosting quasi-BICs with Q factors of about
18,500 [115] and 750, [215], achieved by smart engineering of
radiative losses using advanced electron-beam tomography
techniques. Later, it was shown that even a true BIC can exist
in an asymmetric metasurface under specific conditions [190].
In addition, metasurfaces with strong asymmetry were used
to create a strong chiral response [216±218].
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5. Applications of bound states in the continuum

BICs and quasi-BICs are widely used for various applications
in photonic crystal slabs, waveguides, single subwavelength
particles, and other platforms. BIC-based applications
include filtering [221±224], lasing [68, 88, 96, 116, 225±231],
magnetophotonics [232, 233], detection of biological objects
[215, 219, 220, 234±242], nonlinear generation and self-action
[22, 26, 111, 117, 118, 178, 243±254], vortex generation [90, 98,
225], on-chip photonic devices [93, 224, 256±258], switches
driven by external voltage [259], active THz devices [260],
optical tuning of halcogenide metasurfaces [261], enhance-
ment of chiral nonlinear response [191], and harmonic
generation in hybrid structures with monolayers of transi-
tion metal dichalcogenides [262, 263]. Moreover, BICs in
single nanoparticles were used to achieve a record-high
efficiency of second-harmonic and higher harmonic genera-
tion [202, 264±266], the generation of quantum-entangled
photons [267], and low-threshold lasing [84].

Let us consider some applications in more detail. Passive
photonic structures supporting BICs have recently been used
to increase the efficiency of detecting biological objects. Tittl
et al. [219] implemented a nanophotonic sensor of biomole-
cules in the mid-IR range, based on the reflection from a
dielectric matrix ofmetasurfaces supporting BICs. Figure 19a
shows SEM images of an asymmetric silicon metasurface and
its meta-atoms. The proposed structure supports quasi-BICs
in the mid-IR range with a Q factor of approximately 200.
Figure 19b presents reflection images of a pixel metasurface
obtained for four given wavelengths and normalized reflec-
tion spectra for 21 out of 100 metapixels. Due to the narrow

quasi-BIC resonance in the reflection spectrum and its
tunability with changes in the geometric dimensions of the
metasurface, amethod based on this structure for distinguish-
ing the absorption spectra of various molecules was demon-
strated. Leitis et al. [220] used an asymmetric silicon metasur-
face with BICs for angle multiplexing of spectra, which also
allowed a convenient distinguishing of absorption spectra of
various biomolecules. Figure 19c shows a metasurface multi-
plexing scheme and Fig. 19d presents the spectra of reflection
from the structure. In a series of papers byRomano et al. [127,
238, 268], the sensitivity of sensors based on photonic crystal
waveguides with BICs to changes in the refractive index of the
external medium was studied, and it was experimentally
shown that, due to the BICs, a high sensitivity can be
achieved. In a recent paper by Jahani et al. [242], silicon
metasurfaces with a complex unit cell were developed using
BICs to detect extracellular vesicles of cancer cells.

Photonic structures with BICs are widely used in active
photonics, in particular, to generate laser radiation.
Figure 20a shows output power spectra depending on the
wavelength and pump power for a 16� 16 metasurface
supporting BICs in the near-IR range from [68]. In this
paper, the authors used a tunable accidental BIC with a
wavelength of 1550 nm. The right part of Fig. 20a shows
the dependence of the output power on the pump power at
resonance. As the pump power is increased to 60 mW, a
distinct peak is observed in the emitted power spectra at
the BIC wavelength. The inset shows a SEM image of the
structure. In recent paper [116], lasing from a so-called
super-BIC, i.e., several BICs coincident in the phase space
and having the same frequency, was studied. A distinctive
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feature of a super-BIC is the higher mode resistance
against deviations from periodicity and imperfections in
the structure surface. Figure 20b shows a SEM image of
an InGaAsP photonic crystal waveguide and the measured
far-field profile for a mode of the super-BIC laser. Laser
oscillation in the structure is achieved through the use of
quantum dots in the layer. As shown in Fig. 20b, the spot
in the Fourier space has a small angular divergence, which
is a hallmark of strongly localized modes. The right part
of Fig. 20b shows the lasing threshold normalized to the
pumping area (5:4 mm in size) as a function of the lattice
parameter of the structure. The super-BIC state is realized
at a lattice parameter of about 573 nm; in this regime, the
lasing threshold is minimum and has a record-low value
among all BIC lasers and lasers based on topologically
protected states [116]. Huang et al. [96] studied vortex
microlasers based on perovskite photonic crystal wave-
guides supporting BICs in the visible range for ultrafast
optical switching at room temperature. Switching between
generating a vortex beam and a linearly polarized beam,
with a characteristic switching time from 1 to 1.5 pico-
seconds and a record-low power consumption, is experi-
mentally demonstrated. Figure 20c shows a schematic
diagram of the experiment on two-beam pumping of a
perovskite photonic structure. The insets show far-field
radiation diagrams for symmetric and asymmetric pump
beam profiles. Figure 20d shows the transition from vortex
to linearly polarized lasing and the reverse process on the
scale of several picoseconds.

SHa et al. [227] studied a laser based on a gallium arsenide
metasurface supporting a BIC at a wavelength of about
825 nm. Azzam et al. [229] studied single-mode and multi-
mode lasing in the visible range based on a similar titanium
dioxide metasurface coated with a thin layer of an organic
dye. It was experimentally shown that, due to the BIC
properties, directed radiation can be obtained by adjusting
the period of the metasurface. In the recent paper by Yang

et al. [231], lasing based on an asymmetric Si3N4 metasurface
coated with a strongly fluorescent rhodamine 6G dye was
studied. Lasing at a wavelength of approximately 600 nm due
to the excitation of a quasi-BIC was experimentally demon-
strated. S Dyakov et al. [88] showed a significant increase in
photoluminescence from a silicon photonic-crystal wave-
guide with germanium nanoislets, which supports BICs in
the near-IR range.

BICs and quasi-BICs are studied most actively in non-
linear optics and photonics applications, mainly in order to
enhance nonlinear generation and to observe the self-action
of an exciting pulse. In a series of papers by K Koshelev et al.
[111, 269], optical second and third harmonic generation was
studied in nonlinear dielectric metasurfaces with an asym-
metric unit cell, supporting quasi-BICs with the Q factor
depending on the asymmetry. In particular, in [111], the
fabricated metasurface had a low Q factor of approximately
160 due to the presence of strong surface roughness. It was
shown theoretically and experimentally that, for such
nonperfect photonic structures, the highest efficiency of
harmonic generation is achieved not at the highest Q factor
but in the critical coupling regime, when the radiative Q
factor is equal to the Q factor related to all the other types of
losses. It was also shown that the critical coupling regime can
be achieved by changing the asymmetry parameter of the
meta-atom, which should be taken into account in the design
of resonant nonlinear metasurfaces. G Zograf et al. [253]
studied the generation of higher-order odd harmonics (3, 5,
7, 9, 11) from an asymmetric silicon metasurface, shown
schematically in the left part of Fig. 21a. The right part of
Fig. 21a shows the spectra of optical harmonics in the regime
of excitation with 100-fs pulses and the dependence of the
output power on the pump power for an optimized metasur-
face, using the critical coupling criterion.The dependence of
the output power on pump power in the range of 0.03±
0.3 TW cmÿ2 is determined by the same law, regardless of
the harmonic number, which allows a conclusion that the
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structure operates in a nonperturbative regime. The authors
explain the transition to the nonperturbative regime through
the mechanism of free-carrier generation in silicon due to
multiphoton absorption. J Liu et al. [115] studied asym-
metric silicon metasurfaces with T-shaped meta-atoms
(Fig. 21b). A record-high Q factor of over 20,000 was
achieved for a BIC in a structure with 26�26 periods due
to the high quality of nanolithography and special features
of the structure design. The measured spectra of the second
and third optical harmonic signals are shown in the right
panel of Fig. 21b; at the BIC wavelength, the harmonic
signal increases by several times. I Sinev et al. [254] studied
an asymmetric silicon metasurface for third harmonic
generation at high pump intensities of the order of
0:3 TW cmÿ2. It was demonstrated that, at a pump intensity
higher than 240 GW cmÿ2, self-action of a pulse occurs due
to the generation of free charge carriers through the multi-
photon absorption mechanism, schematically shown in the
left part of Fig. 21c. The calculated induced field amplitude
and charge carrier concentration at a peak intensity of
240 GW cmÿ2 reached 3 GW mÿ1 and 1018 cmÿ3, respec-
tively, as shown in the right part of Fig. 21c.

6. Conclusion

Bound states in the continuum have a long history in optics
and radiophysics. However, today, research in this field is

taking a new turn due to rapid progress in the physics of
metasurfaces, 2D materials, nonlinear nanophotonics, flat
optics, and related areas. BICs can be observed in a wide
variety of photonic structures, including metasurfaces,
photonic crystal slabs, high-contrast gratings, corrugated
planar waveguides and fibers, ridge waveguides, linear
chains, and many other systems. A relatively recent discov-
ery is a new class of BICs in Bragg resonators with an
anisotropic defect layer [270±273]. Today, the study of BICs
is developing in acoustics [20, 274±276]. BICs are an
illustrative example of how an idea suggested in one area of
physics a century ago today affects many other areas and is
already being used in a number of practical applications.
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Figure 21. (a) Spectrum of the signal of the 3rd to 11th harmonic from an asymmetric silicon metasurface with BICs and dependence of the power of the

harmonics on the pump pulse power. (Adapted from [253].) (b) Statistics of themeasuredQ factors of the BICs for all fabricated siliconmetasurfaces with

different sizes. Spectra of the second and third harmonics for a metasurface and an unstructured film. (Adapted from [115].) (c) Ultrafast self-action of a

pulse through a BIC. Spectrum of the third harmonic depending on the pump power. Carrier concentration and induced field amplitude inside the

nanostructure at a pump intensity of 240 GW cmÿ2. (Adapted from [254].)
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