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Abstract. Predictive models for the shear viscosity of liquids and
gases along with exact equations of state are of great practical
importance for hydrodynamic modeling of processes occurring
in nature, industrial plants, and machinery. We consider cur-
rently proposed theoretical, including atomistic modeling, and
semi-empirical approaches to predicting the viscosity of liquids,
gases, and their mixtures in a wide range of thermodynamic
conditions. Viscosity models of homogeneous liquids in a ther-
modynamically stable state are described. The dynamics of
supercooled and vitrescent liquids and dispersed systems (col-
loids, emulsions) remain beyond the scope of this review. We
discuss the area of applicability of correlation methods for
predicting viscosity and the accuracy of various methods in the
pressure range up to 1 GPa. Application examples of various
approaches for hydrocarbons — model oil and gas, fuel, and
lubrication systems — are given.
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1. Introduction

An accurate description of the shear viscosity of liquids and
gases along with exact equations of state are of great practical
importance for hydrodynamic modeling of processes occur-
ring in nature, industrial plants, and machinery. Transport
coefficients determine the key properties necessary for multi-
scale modeling of physical processes, complementing the
experimental approach.

The aim of the present review is to consider the currently
proposed approaches to predicting the viscosity of liquids,
gases, and their mixtures in a wide range of thermodynamic
conditions.

The methods of predicting the transport coefficients
proposed in the literature can be divided into several
categories: those based on theoretical correlation models,
empirical correlations, and simulative numerical modeling of
a liquid. A number of models imply a relation between the
thermodynamic and transport properties of a liquid and
extend the thermodynamic similarity method over the
transport coefficients. In other theoretical models (reduction
to a system of hard spheres, free volume theory), the
correlation formulas are derived from assumptions about
the form of intermolecular interactions responsible for the
viscous friction, rather than from a direct relation between
thermodynamics and transport properties.

Purely empirical correlations do not assume rigorous
theoretical substantiation of the functional form, which is
chosen based on the experience of good agreement with a
large array of experimental data. The advantage of such
relationships is that they are not related to a specific form of
the equation of state and express viscosity as a function of
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directly measured quantities— temperature, pressure, and
density. The extension of correlation models over mixtures
is commonly implemented using mixing rules, i.e., by
calculating the correlation parameters for mixtures from the
mixture composition and the parameters of individual
components.

Finally, simulative numerical modeling, most frequently
implemented using the method of molecular dynamics (MD),
allows direct calculation of viscosity and other properties
based on a detailed model of molecular interaction. Among
the methods of calculating the transport properties, it is
possible to distinguish two conceptually different groups,
namely, the equilibrium and nonequilibrium molecular
dynamics. Studies in recent years demonstrate a good
agreement between the calculated viscosity and experimental
data for various liquids. However, there are peculiarities that
limit the applicability of both equilibrium and nonequili-
brium approaches.

The present review analyzes the applicability and accu-
racy of the described methods and approaches for pure
substances and mixtures within the range of viscosity
coefficients up to 1 Pa s. The issue of model accuracy in the
pressure range up to 1 GPa is considered. The review of
methods is restricted to homogeneous thermodynamically
stable liquids. Disperse systems, such as colloids and emul-
sions are beyond the scope of discussion, as are the issues
of viscosity in strongly overcooled liquids approaching a
vitrification state.

2. Viscosity of liquids

Let us consider some semi-theoretical and empirical relation-
ships describing the viscosity of liquids and dense gases. Note
that, in contrast to the gas viscosity theory, no complete
theory has been constructed for the viscosity of liquids;
therefore, models are usually applicable only to a certain
class of substances with limitations imposed on the range of
thermodynamic parameters.

2.1 Batchinski’s relation

One of the first relationships that offered a prediction of
viscosity depending on thermodynamic parameters was the
Batchinski’s equation for fluids [1]:

C

= (1)
where 7 is the viscosity, vy, is the molar volume of the liquid
and C and b are empirical parameters depending on the
substance. Batchinski discovered that » has the meaning of
the excluded volume in the liquid, commonly close to the
excluded volume in the van der Waals equation, equal to v /3,
where v, is the critical volume of the liquid.

In spite of its simple form, Eqn (1) under pressures of the
order of 1 kbar can describe the viscosity behavior of a
number of liquids: hydrocarbons [2, 3], halogenated hydro-
carbons, and mercury [4]. Clearly, the area of applicability of
Eqn (1) is limited. The Batchinski’s relation becomes invalid
at high densities, when v, = b and accurate consideration of
the pressure dependence of the excluded volume is necessary.
For such densities, it is also typical that the isochoric viscosity
substantially depends on temperature, i.e., it is necessary to
introduce the temperature dependence of the coefficient C.
On the other hand, in the low-density limit, Eqn (1) does not
yield an expression for the viscosity of a rarefied gas, i.e.,

cannot be used in the entire range of densities between a liquid
and a gas. Nevertheless, the idea that the viscosity of a liquid
is mainly determined by the free volume turns out to be
fruitful in more advanced theories, too. The free volume
concept also explains the extremely strong sensitivity of
viscosity to the density changes, since the quantity vy, — b in
a liquid is usually small compared to vp,.

2.2 Theory of corresponding states
One of the approaches to a unified description of viscosity in
liquids and dense gases is the theory of corresponding states,
widely used to describe oil and gas mixtures, hydrocarbon
fuels, refrigerants, etc. Finding the unknown viscosity of a
substance or mixture at temperature 7, pressure P, and
density p reduces to finding the viscosity of the substance
chosen for reference at temperature Ti.r, pressure Prer, and
density p., followed by using the scaling relations. The
values of Ty, Prer, and p,.; are determined by the thermo-
dynamic similarity relations.

Usually, the similarity relations are expressed either in the
form

N = Nrer scale (2)

or in the form

n= WO(T) + A”/ref scale ’ (3)

where 5, is the viscosity of the substance at a given
temperature in a rarefied gas state, i, and Ay, are the
total and excess viscosity of the reference substance, and scale
is the scaling factor that depends on density, pressure and
temperature.

2.3 Method of corresponding states

based on density and temperature

The method of corresponding states [5] is based on an
assumption that the intermolecular potentials in both the
studied and the reference substance can be presented in the
form of an effective pair potential with the parameters of
characteristic size ¢ and characteristic energy ¢:

vt =er (%) @)

where [ is a certain function. For example, for the Lennard-
Jones potential, fi;(r*) =4(r* 12 —r*°). The reference
and the studied substance thus differ only in the values of
the parameters, namely, ¢ and o.f for the reference
substance, and ¢, and o4 for the substance of interest.

From the method of dimensions, it is possible to introduce

the reduced viscosity
0 =no(me)”"?, (5)

where m is the mass of a molecule.
Equating the reduced viscosities for the considered
substance and the reference one, we arrive at the expression

3
O'ref Eref
nx[”m TX] = ’7ref|:< (:') Ux, —= TX:|

X €X

. <Mx>”2<@>2(6_x)”2 (6)
Mref Ox CEref ’
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where v is the molar volume, M is the molecular mass of the
compound, 7'is the absolute temperature, the quantities with
the subscript x refer to the considered substance, and the
quantities with the subscript ref indicate to the reference
substance.

Since the critical temperature T, and volume v, are related
to the parameters of the potential as 7, ~ ¢/kg (wWhere kg is
the Boltzmann constant) and v. ~ ¢, the similarity relation
can be presented in the form

Uc, ref T Tc, ref]
— Ix
Ve, x T x

X<Mﬁwcm3”(@y” ™)
Mrcf Ve, x Tc‘ ref ’

Such a scaling, reflecting the principle of the correspond-
ing state, however, will be exact only when the function
f(r/a) is the same in the reference substance and the
substance of interest. For real substances, the two-parameter
representation of the “universal’ potential is insufficient. The
next approximation is the introduction of scaling factors for
temperature and volume:

Nx[vx, Tx] = Nyer [Ux

Te x Uc, x
—  hy=¢, —— 8
Tc, ref d) ( )

X )
Uc, ref

where ¢ and 0 are the ‘shape factors’ [6-8], which transform
the reference substance equation of state into that of the
substance of interest. Exact values of ¢ and 6 are found from
the nonlinear system of equations [6, 7]:

X . <[ U T
FX (v, T) = fiFg (E’ K) — RTIn Ay,
T 9)
v
Z (v, T) = Z,ef(h—x, 7;) ,

where F*(v,T) = F(v,T) — F'4(v, T) is the excess Helm-
holtz energy (the difference in energy between the substance
and the ideal gas at equal densities and temperatures), R is the
universal gas constant, and Z = Pv/(RT) is the supercom-
pressibility coefficient.

Expression (7) for the viscosity coefficient takes the form

o Tl M\ -
nelvx, Tx] = nref[[, T} (M f> hy 2/3fX1/2.
X X re

(10)

Expressing the viscosity in such a form is called the principle
of extended corresponding states (ECS).

Since the solution of the system of Eqns (9) requires an
iteration method and the known equation of state, for
practical use of the ECS method it is more convenient to use
analytical approximations for the factors fy and A as
functions of thermodynamic states. For a number of hydro-
carbons and freons, using the calculated exact solutions, the
approximations for factors 6 and ¢ chosen in an explicit form
as functions of the reduced temperature 7/T., reduces
specific volume v/v, and acentric Pitzer factor w [7, 9, 10].

In the original version of ECS correlation, gaseous
methane was chosen as a reference substance [5, 7], and the
viscosity—density dependence was taken in the form proposed
in [11]. These correlations for methane are valid only at
temperatures beyond the triple point, 7> T, = 0.487¢. In
higher hydrocarbons, the reduced temperature of the triple
point is usually lower than in methane; therefore, they can be

at T/T, < 0.48 even under normal conditions. Thus, in
Ref. [7], the equation of state and the correlation for the
viscosity of methane are reparametrized to correspond to the
data for other hydrocarbons at low reduced temperatures.
The final model with methane as a reference substance, called
TRAPP (TRAnsport Properties Prediction) [8], was used as
an etalon model in the database of the National Institute of
Standards and Technology (NIST, USA) [10]. In subsequent
versions of the ECS model, methane as a reference substance
for the family of hydrocarbons was replaced with propane
[10, 12], which has a minimum reduced temperature of the
triple point in the family of n-alkanes. Empirical corrections
are also introduced, which can take into account the
experimental data on the transport coefficients under the
standard conditions.

A similar approach was later proposed for freons [13, 14]
based on the equation of state and reference data on the
viscosity for 1,1,1,2-tetrafluoroethane (R134a). In Ref. [14], it
was found that, for freons and their mixtures, two scaling
parameters f, and /i, (8) are not sufficient; therefore, an
additional density-dependent shape factor for the viscosity is
introduced. The predictions of freon viscosity based on the
method of corresponding states without the additional shape
factor demonstrate a discrepancy from the experimental data
from 7% to 45% for different substances. The viscosities of
hydrocarbons based on the R134a equation of state without
introducing the additional shape factor are predicted with an
error of 66—-168% [14]. Thus, although the model based on the
principle of corresponding states is a predictive method, it
demonstrates high accuracy only for the family of n-alkanes.
For accurate (within 20%) reproduction of viscosity of a
substance from other families, it is usually required to
introduce substantial empirical corrections into the model.

Mixing rules. Within the ECS, the viscosity of mixtures is
described by Eqn (10), where factors funix and /hpy are
introduced for a mixture. Based on thermodynamic similar-
ity considerations, Ref. [7] proposes the following mixing
rules:

hix = E XiXj hija
iJ

, (i
fmithix = inxjfij h"]'7
iJ

where x; is the molar fraction of the ith component in the
mixture,

(hil/3 i h[1/3)3

S = &)y g =y (12)

and ¢;; and ¢;; are correction coefficients, which by default
are equal to one but can be corrected in the presence of
experimental data on the viscosity of mixtures,

v T Muic\'? o3 100
nmix[v’ T] = nref[m? m:| <MI:::> hmix/ -/mif( .

(13)

The similarity relations employed also lead to the
following mixing rule for the effective molecular mass [7]:
1/2 01/2,4/3 _ 1/2 +1/2, 4/3
Mmixfmix hmix - xiiji.i f’/ hi.f ’
W7 (14)
2M; M;

My =100
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2.4 Method of corresponding states

based on pressure and temperature

The extended principle of corresponding states can also be
applied when there are no data on the viscosity, but the liquid
pressure is known [7]. Then, the unknown density is obtained
from the solution of the equation

vy Ty Pyhy
Pr Ty T = )
of (hx ﬁ( ) fx

(15)

where Py is the pressure of the mixture, and Prer(vrer, Trer) 1S
the state equation for the reference substance. Equation (15)
is solved by the simple iteration method: the values ¢ = 6 = 1
are taken for the first approximation, then, from Eqn (15), the
next approximation for the quantity vy is found, for which
new values of ¢ and 0 are calculated, and the procedure is
repeated until convergence is achieved. In TRAPP models,
the dependence P(v, T') is represented by a multiparametric
equation of state, parameterized for methane in [15] and for
propane in [16].

Using the pressure as the main variable instead of density
offers some advantages for modeling oil and gas mixtures,
since the cubic equations of state widely used to describe them
do not always reproduce their density well enough.

In Refs[17, 18], an alternative model is proposed, in which
the principle of corresponding states is directly expressed in
terms of temperature and pressure:

Tc mix) -/ (Pc mix>2/3
mix Pa T)= I P 7T : -
1 ( ) 1 ef( 0 0) ( Tciref PC, ref

1/2
(Mmix> Olmix
X b
M et Olref
where onmix and o are ‘shape factors’ for the mixture of

interest and the reference substance. The temperature T and
pressure Py are calculated as

(16)

Olref TC, ref O(rech, ref

T, = T, Py= P. (17)

Olmix Tc, mix Olmix Pc, mix

Therefore, one factor, oyer/omix, instead of the two shape
parameters ¢ and 6 is used to scale both temperature and
pressure.

In Ref. [17], methane is taken as a reference substance. Its
density p,.¢(Po, To) and viscosity n,.¢(po, To) are calculated
from the same equations of state [15] and correlation [11] as in
the TRAPP model. The authors of Ref. [18] extend the
correlations for viscosity to the region of reduced tempera-
tures below the triple point of methane. The explicit form of
the pressure dependence of factor a corresponds to the
solution of Eqn (15) obtained after the first iteration.
Therefore, the model proposed in Refs [17, 18] is a simplifica-
tion of the TRAPP model for practical calculations.

2.5 Reduction to a system of hard spheres

The reference system for the method of corresponding states
should not necessarily be a real substance. Alternatively, an
idealized model system, whose properties can be obtained by
numerical modeling with any desired accuracy, can be taken
for reference.

The authors of Ref. [19] proposed to reduce the transport
coefficients of real liquids to those of a system of hard spheres,
the properties of which are determined with high accuracy
within the frameworks of molecular dynamics (see [20]). For
the viscosity coefficient of a liquid of hard spheres, a universal

relation holds:

n(. T) <>/ "),

no(T) U_o

(18)

where v* = v/v, v is the molar volume of the system, vy =
Nad?/+/2is the molar volume of densely packed hard spheres
with diameter d, N is Avogadro’s number, and 7,(7) is the
system viscosity in the low-density limit (see Section 5.1).
Thus, we may write

«f U 5 MRT 72/3 _1/3
= (=) 2/ 02PN,
= <U0> T A T G

where M is the molar mass of the liquid.

Therefore, to determine the viscosity of a real liquid, the
effective diameter of hard spheres should be known for the
specified thermodynamic conditions. In Refs [19, 21], the
roughness factor R, of the molecules is additionally intro-
duced into Eqn (19) to consider the contribution of inter-
molecular angular momentum transfer to the transport
coefficients. It is assumed that for a given substance the
effective volume vy of hard spheres depends only on
temperature. The equation for the viscosity takes the form

.5 [MRT s

In Ref. [21], the function n*(v*) is proposed in the form

(19)

(20)

aj

o (v)

M-

logyg n= k-

For a number of saturated hydrocarbons, from methane to
hexadecane, correlations for the dependence of vy on
temperature and chain length and for the dependence of R,
on the chain length are proposed.

The correlation proposed in [21] is valid for values of v*
from 1.5 to 5, i.e., only for liquids at moderate degrees of
compression. Therefore, a drawback is that there is no
smooth transition from a dense fluid to a gas, which can
occur in transcritical flows. To remove this drawback, in
Ref. [22] it is proposed to extend the correlation as

5 MRT _
n=ny+ RyAn* 16 T(%éNA) 1/37

(21)
where An*(v*) is a universal function for the excess viscosity,
which possesses the property Ap* — 0 at v* — oo upon
transition to an ideal gas.

By analogy with the original viscosity—density correlation
for a system of hard spheres, Ay*(v*) is introduced in the form

7
* Ak
10g]0(1+A’7):Z :\k’
= (v*)

which demonstrates the correct asymptotic behavior Ay — 0
when moving to an ideal gas. The values of coefficients ay,
presented in Ref. [22], are chosen such that, in the region
1.5 < v* < 2.5, the results of calculations using both the
updated and the initial correlation [21] coincide, the new
correlation being applicable to describe both high-density
states and gases in the supercritical region, with a continuous
transition between the gas-like and liquid-like states. The
authors of Ref. [22] called the updated form of the correlation
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between viscosity and density the extended hard sphere (EHS)
correlation.

The effective values of vy for n-alkanes in [21, 22] are
approximated by polynomials of 7'!/2 and the chain length,
while the values of roughness R, are considered independent
of temperature and are taken in the form of a quadratic
polynomial of the chain length. Reference [23] proposes the
values of parameters vy and R, for alkyl benzenes and
cycloalkanes. The presented correlations are intended for
use in the temperature range from 110 to 400 K. The
proposed values of parameters reproduce experimental data
on the density dependence of viscosity in hydrocarbons in the
pressure range to 75 MPa, with the mean absolute deviation
within 5% and the maximum deviation less than 10%.

A similar model is considered in Ref. [24] for melted salts.
In [24], instead of the effective volume vy of densely packed
spheres, the salt volume v, at the melting line was taken, which
allowed using only one fitting parameter in the model,
namely, the roughness coefficient R,. The constructed
correlation reproduces the viscosity values for a number of
halogenides and nitrates of metals with a mean-root-square
error less than 3%.

Mixing rules. In Refs [21, 22], simple rules of linear mixing of
vo and R, values for components with weights equal to molar
fractions are proposed. Further, these rules, together with
model [22], will be referred to as EHS. The mixing rules
introduced in this way allow a high-accuracy prediction of the
viscosity—density dependence, even for rather asymmetric
mixtures, e.g., methane—n-decane [25].

The authors of [26] proposed another approach (1c-EHS)
for mixtures of homologous compounds: the mean molecular
mass and carbon chain length are calculated for the mixture
and the parameters vy and R, are then determined using the
EHS formulas for one component. The proposed expressions
for the effective molecular mass and chain length take into
account that, for an accurate prediction of the viscosity, the
effective chain length in an asymmetric mixture should be
shifted towards the chain length of the heaviest component.
This approach was checked in Ref. [26] for mixtures of
n-alkanes with a chain length from 1 to 60 at pressures up to
500 MPa. For strongly asymmetric mixtures containing
heavy hydrocarbons (e.g., Cio + Ca + Cgp), the usual EHS
mixing rules lead to an underestimation of viscosity by 30—
40%. In 1c-EHS, thanks to the correction introduced in the
mixing rules shifting the effective molecular mass towards
the heaviest component, the viscosity of such mixtures is
predicted more accurately.

Reference [23] extends the 1c-EHS method over the
mixtures of substances of three classes: n-alkanes and cyclic
and aromatic hydrocarbons, and also compared the 1c-EHS
model with the original EHS version, in which the parameters
vo and R, for the mixture components are linearly mixed. The
presented results demonstrate good agreement of the basic
EHS model with experimental data in mixtures of 2-
4 components, even in cases where the mixture components
belong to different homologous series. The mean deviations
from the experimental data are from < 1% to 12% for
different mixtures, with the maximum deviation of 16.1%
found in a mixture of cyclooctane, benzene, toluene, and
ethylbenzene. Reference [27] checks the accuracy of models
based on the reduction to the viscosity of the liquid of hard
spheres for several synthetic multicomponent hydrocarbon
mixtures with a large number of components. It is noted that,

for mixtures of n-alkanes, the EGS model reproduces
viscosities within the experimental error; for mixtures with
cyclic compounds, the prediction accuracy deteriorates, but
remains within 20%.

Thus, the EHS model is a correlation model for pure
substances (since it requires data on the viscosity to determine
the parameters vy and R, for the substance), but for mixtures
it can be considered a predictive model, since the application
of simple rules yields a rather accurate result for the
dependence of the mixture viscosity on density.

A certain EHS drawback, inherent in all density-based
correlations, is the need to have high-precision data on the
liquid density. An uncertainty in the density values of 0.5-1%
can lead to an uncertainty in viscosity of about 10% [23]. In
practical applications, the dependence of viscosity on pres-
sure and the equations of state used do not always ensure an
acceptable accuracy of reproducing the viscosity.

2.6 Reduction to other model systems

Scaling relationships for reducing to other classical model
systems, such as liquids with Morse or Lennard-Jones
potentials, exist but are less elaborated than the models
considered in Sections 2.3-2.5. Reference [28] considers a
reduction to the viscosity of the Lennard-Jones system. To
calculate the viscosity #,, the formula

x (K « VIMxé
nx(vaT) ZWOX(T)—FA'/’ (,0 7T )%

X

(22)

is proposed, where p and T are the density (in particles per
unit volume) and the temperature, 7,(7) is the rarefied gas
viscosity at temperature 7, my = My/Na is the mass of a
substance molecule, ¢ and o4 are the effective parameters of
the Lennard-Jones potential for the substance considered,
pF= pof/NA, T* =kpT/ex are the reduced density and
temperature, respectively, and An*(p*, T*) is the excess
viscosity of the Lennard-Jones system with the unit para-
meters ¢ and g.

The advantage of Eqn (22) is that, for nonpolar molecules
with a near-spherical shape, it can be considered fully
predictive, since the parameters of the Lennard-Jones
potential are evaluated from the relations of thermodynamic
similarity through the critical temperature and density:

e :kBqu
Y 125937 (23)
<O.302NA> 1/3
Oy = | ——— .
Pe,x

Evaluating the parameters & and o, from the critical
parameters of the substance yields an estimate of the
Lennard-Jones liquid viscosity and an estimate of viscosity
for lower hydrocarbons (methane, ethane, propane) [28] at
temperatures from the triple point to ~ 27, and pressures
from 0.1 to 100 MPa with a mean absolute deviation of less
than 5%. The maximal deviation from experimental data
amounts to 8.8% for methane, 11.3% for ethane, and 15.62%
for propane. For heavier compounds, toluene and n-decane,
it was found in [28] that the estimate of parameter gy through
the critical density is insufficient to accurately reproduce the
density in the liquid phase: for decane, the mean absolute
deviation from the experimental data amounts to 37% and
the maximum to 50.9% in the pressure range from 0.1 to
140 MPa. In this connection, for large molecules, it is
proposed to consider oy to be a fitting parameter.
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For mixtures, Ref. [28] proposes to use the model of quasi-
single-component fluid, for which the parameters ¢ and ¢ are
determined by the Lorentz—Berthelot rules. Such an approach
for mixtures of light hydrocarbons yields nearly the same
accuracy as for pure components. However, for asymmetric
mixtures of methane + toluene with a molar fraction of
methane from 0.25 to 0.95, an average absolute deviation of
19.2% and a maximum deviation of 36% from the experi-
mental data were demonstrated [29].

Reference [30] considers the reduction to systems of Mie-
type potentials

o= -9

with the parameter # from 10 to 20 and of the exp-6 type

ton(-o(;1) (0]

with the parameter n from 12 to 22. For methane, ethane,
argon, oxygen, and nitrogen, the parameters ¢ and ¢ are
chosen for all potentials that minimize the error of viscosity
reproduction for six states: a liquid, two states on the critical
isotherm, and three supercritical states. For all values of n, the
optimal parameters ensure the reproduction of viscosity
through the reduction to the model system within 10-12%
of the reference values. (By reference values, the values
calculated using the formulas recommended by NIST are
meant here.) An interesting result is that the minimum
error in estimating the viscosity has been obtained for the
classical Lennard-Jones potential with n» =12, although
initially such a value of n was proposed exclusively for the
convenience of calculations rather than based on theore-
tical considerations.

Ur)=c¢

2.7 Correlation between transport coefficients

and excess entropy

With the progress in atomistic modeling, it was found in
model systems that the dependence of a number of liquid
properties on the state parameters could be reduced to a
unique dependence on a single parameter, the excess entropy.
Rosenfeld [31] studied the behavior of the viscosity and self-
diffusion coefficients in systems of hard spheres, soft spheres
with the potential U(r) ~ r~!2, the Lennard-Jones system,
and model single-component plasma. It was shown that, in
these systems, upon the appropriate choice of scaling factors
for the transport coefficients, the dependences In D*(s*) and
Inn*(s*) (Where s* = Sies/(Nkg) is the excess entropy reduced
to the dimensionless form) can be presented by straight lines,
i.e., the relation D* = A exp (—fs*) holds.

Later, the simple scaling proposed by Rosenfeld in the
form D* = Apexp (—fps*), n* = A, exp (B,s*) was refined
in more complex models. Dzugutov [32] proposed a predictive
model

D* = 0.049exp (Sy), (24)

where S, is the contribution to the entropy from pair

interaction, determined from the radial function of pair
distribution g(r) by the expression

o0

Sy = —2TC/)J [g(r)Ing(r) — (g(r) — 1)] rdr. (25)

0

Since in many liquids the diffusion and viscosity coefficients
are related by the Stokes—Einstein expression D =
kpT/(6mnres), the Dzugutov relation can also be used to
estimate viscosity.

Reference [33] shows that, for many organic compounds,
the dependence In n*(s*) can be considered universal, but the
linear approximation is too rough to apply in accurate
predictive models. To construct a model that allows predict-
ing the transport coefficients with an accuracy of 5-10%, a
functional form is proposed taking the nonlinearity of
Inn*(s*) into account. A cubic polynomial is chosen for a
nonlinear function:

Inn; = Ay + Bys™ + Cys*% + Dys™? (26)
where the reduced viscosity #* equals the ratio of the viscosity
to the viscosity of a system of hard spheres in the Chapman—
Enskog theory, s* = sys/(kpmige ) is the reduced entropy,
and mygc x is the number of segments in a molecule in the
perturbed chain polar—statistical associating fluid theory
(PCP-SAFT) model. The coefficients Ay, By, Cx, and Dy are
determined through the contributions of the various func-
tional groups of which the molecule consists. The choice of
viscosity scaling coefficients based on the data for n-alkanes,
from butane to nonane, allowed predicting the data for n-
alkanes with a chain length of 10-36 with the average absolute
deviation from experimental data within 10%. Analogous
results were obtained for amines, for which the optimization
of parameters was performed based on the data on four
compounds. In Ref. [33], the parameters for the contributions
to the coefficients Ay, By, Cx were obtained for a total of
19 functional groups, including the hydroxyl groups of
alcohols and carbonyl groups of aldehydes and ketones, as
well as individual coefficients for methane, methanol, and
water.

Thus, a model is proposed for predicting the viscosity in a
wide class of organic compounds. Within this model, no
difference between the positions of functional groups in
isomers is taken into account, due to which the accuracy of
predicting the viscosity of isomers can differ by a few times
(Ref. [33] presents the data on a mean absolute deviation of
7.21% for 3-methylpentane and 29.81% for 2-methylpen-
tane). Probably, the accuracy of the approach can be
increased by taking into account thermodynamic para-
meters, such as the critical and triple point positions, in
addition to the group contributions, in the expressions for
the coefficients Ay — Dy for Eqn (26).

In Ref. [34], the method of entropy scaling is checked for
describing the viscosity coefficient of metals and alloys based
on ab initio molecular dynamic calculations. The presence of a
universal linear dependence of In #* on S5 is demonstrated for
Al, Cu, Ni, and Zn.

The theoretical substantiation of the universal entropy
scaling is possible for some simple models. In a liquid with the
potential of soft spheres U(r) ~ r~", the lines p"/3T = const
correspond to a dynamic invariant in reduced units, i.e., the
reduced excess entropy should also be constant along these
lines [35]. On the other hand, the invariance of dynamics
implies the constancy of the reduced transport coefficients as
well.

Rosenfeld [31], who used the relationship between the
reduced excess entropy and the density of packing in a liquid
of soft spheres according the Carnahan—Starling equation
[36], proposed another explanation for entropy scaling. From
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this relation, it follows that the density of packing is a single-
valued function of the excess entropy. The reduced transport
coefficients for a system of hard spheres are universal
functions of the packing density (see [19, 21]). Thus, the
reduced excess entropy characterizes the effective packing
density of a liquid in the approximation of hard spheres.

The validity of entropy scaling in real liquids can be
interpreted as a consequence of the fact that the dynamics of
particles in a condensed medium is mainly determined by the
repulsive part of the interaction potential.

Substances are also known in which the universal entropy
scaling of the transport coefficients is not confirmed [35, 37].
For the model systems in Ref. [38], the behavior of the self-
diffusion coefficient is thoroughly studied in liquids with
potentials limited at r — 0 and the potential having a
repulsive shoulder. The dynamics of these systems is
fundamentally different from the dynamics of the liquid of
hard spheres and for them the abnormal behavior of
transport coefficients is known. It is shown that the universal
entropy scaling for such systems holds in the limit of high
temperatures; however, abnormalities in the diffusion coeffi-
cient correspond to different values of the reduced entropy at
different temperatures. Entropy scaling is impossible in
substances possessing a region of negative thermal expan-
sion, such as water, in the zone of abnormal properties
(Osres/Op) 7 > 0 [39]. However, even in this case, the non-
monotonicity of the dependence of the excess entropy on
density is quantitatively reflected in the nonmonotonicity of
the density dependence of transport coefficients in the above
region. At temperatures above the abnormality temperature,
the entropy scaling of the transport coefficients can be applied
to water, too.

The presence of universal scaling allows extrapolating
data on the transport coefficients obtained at moderate
temperatures and pressures to more extreme conditions.
Thus, it becomes possible to estimate the viscosity at high
temperatures or pressures based only on PV'T data, without
the necessity to attract experimental data on the viscosity in
this region. The limitation is only the requirement of the state
equation, for which the excess entropy can be calculated.
From this point of view, the most convenient means are the
equations of state, for which the dependence F(V,T) or
G(P, T) is known in analytical form, where F and G are the
Helmholtz and Gibbs free energies. For organic liquids and
nonpolar gases, the widely used cubic equations of state [40—
42] are reduced to such a form. In this form, the equations of
state are initially formulated in the statistical association fluid
theory (SAFT) [43-45], as are the fundamental multiconstant
equations of state [46, 47]. For liquid metals, the equation of
state based on the model of soft spheres has such a form [48].

Entropy scaling at high pressures. The approach based on
entropy scaling seems promising for constructing predictive
correlations of liquid viscosity at high pressures. Reference
[49] shows that the entropy scaling with the nonlinear
dependence In#*(Sy,) proposed in [33] for hydrocarbons
makes it possible to predict the viscosity with an accuracy of
about 10-20% at pressures up to 350 MPa, which is much
better than the accuracy of other predictive models, e.g.,
TRAPP. Two other methods discussed in Ref. [49] describing
well the experimental data are considered correlation meth-
ods, i.e., the coefficients were chosen to ensure the best
description of each substance, while the entropy scaling
method was tested as predictive, i.e., no additional correc-

tions to correlation [33] were introduced. Nevertheless, for
long branched hydrocarbons and some aromatic compounds,
the mean absolute error of the predicted viscosity exceeds
25%, which is also noted in Ref. [33]. References [50, 51]
develop approaches of applying the entropy scaling method
to liquid mixtures at high pressures. An interesting result of
Ref. [50] is a decrease in the error of predicting the viscosity of
mixtures with the growth of pressure, whereas in most
correlation models, on the contrary, at higher pressures the
agreement with experiment deteriorates.

There are also experimental confirmations of the uni-
versal scaling of the reduced viscosity with the reduced
entropy at higher pressures. References [52-55] present
experimental data on the viscosity of nitrogen, carbon
dioxide, and argon at supercritical temperatures and pres-
sures up to 10 GPa. It is shown that, for these substances, the
linear dependence of the logarithm of the reduced viscosity on
the reduced excess entropy is preserved, even at pressures of
the order of 10 GPa.

In the review by Bell [56], experimental data on the
viscosity of argon, methane, sulfur hexafluoride, carbon
dioxide, methanol, water, and R-134a and R-125 freons are
analyzed. For each of the substances, it is confirmed that the
complex dependence of viscosity on temperature and pressure
practically lies on the same curve in the reduced viscosity—
reduced excess entropy coordinates. However, the curves for
different substances do not necessarily coincide. For argon
and methane, the dependences are closest to the initial
Rosenfeld correlation, since these liquids are close in their
properties to the model Lennard-Jones fluid, for which it has
been derived. For other compounds, except methanol and
water, a practically linear dependence In#x*(s*) is demon-
strated. For methanol and water, liquids to whose properties
hydrogen bonds make a substantial contribution, the depend-
ence strongly differs from linear, but can be presented as
quasi-universal. It was shown that the approximation of
quasi-universal dependence Inn*(s*) describes the viscosity
of six non-associated liquids with an error of less than 10%
and the viscosity of water and methanol with an error of less
than 40% at s* < —0.5 in the entire range of pressures for
which the analysis was performed.

2.8 Friction theory (f-theory)

One of the new approaches is the friction theory or f-theory
[57], in which the viscosity is associated with the friction
between the adjacent layers of the liquid. The friction force
between two layers with thickness 6/ is considered a function
of the normal interaction force and the relative velocity:

F, = f(Fy,v). (27)

Since the friction and normal interaction forces are
expressed as F; = At and F,, = Ao, respectively, where A4 is
the area of layers gliding with respect to each other, and t and
o are the shear and normal stresses, it is possible to write

T =f(0,v). (28)

According to the f-theory, viscosity consists of the
contribution of an ideal gas and the contribution of inter-
particle interaction. In turn, the interaction includes compo-
nents of attraction and repulsion. In the presence of a velocity
gradient, one can distinguish in the shear stress the ideal gas
contribution 1y and the contributions of interparticle attrac-
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tion 7, and repulsion 7,. Since f-theory is based on the
hypothesis that attractive and repulsive forces are independ-
ent of each other, one can establish a one-to-one correspond-
ence between 1, and o,, as well as between 7, and o,:

T =1+ 7(0a) + w(or) . (29)

Since the Newton formula relates the shear stress and the
shear velocity as 1= ndu/dh, the dependence of viscosity on
pressure can be presented as

Ta(0a) + 1:(07)

=Nt T g dn

(30)

In the linear f-theory, it is assumed that
Ta T

dufdh ~ " dujdn "

and the values of x, and x; depend on temperature but not on

the shear velocity. Then, the part of viscosity related to

intermolecular interaction is expressed as

Aﬂ = KaOa + KOy . (31)
However, in the high-pressure limit, the linear model must
yield the dependence 1 = k.0, since in a compressed liquid the
pressure is mainly determined by the repulsive forces. In real
liquids, the viscosity increases with growing pressure faster
than linearly; therefore, at least in the function 7.(o;),
nonlinear terms should be taken into account. References
[57-60] consider only the quadratic approximation:
AN = KaOy + Kaa02 + K 0p + KipG 2. (32)
In Ref. [58], the model is parameterized for pure
hydrocarbons with cubic equations of state [40, 41]. For
these equations of state, it is possible to cope with the linear
approximation with respect to the attraction forces and the
quadratic approximation with respect to the repulsion forces.
Correlations are also proposed for the coefficients of f-theory
with the multiparametric simplified boiling water reactor
(SBWR) equation of state [59] and the equations of state
belonging to the perturbed chain SAFT (PC-SAFT) class [60].
Since the representation of attraction and repulsion forces in
these equations of state differs from that in cubic equations of
state, it is required that the quadratic approximation be
introduced for both the attraction and the repulsion forces.
A limitation of the f-theory is the impossibility of
transferring the introduced coefficients between the equa-
tions of state. In addition, underestimation should probably
be expected in the prediction of viscosity at high pressures,
since the quadratic f-theory (32) in the limit yields the
dependence 5 ~ P2, and the empirical viscosity of liquids
depends on pressure rather as Inn ~ P [61, 62]. The problem
of fluid viscosity underestimation at high pressures in the
f-theory quadratic approximation was noted in the analysis in
[49], where the f-theory is considered a correlation model, and
the coefficients are chosen for several hydrocarbons in order
to best describe the experimental data array. At the same
time, in spite of not very high mean absolute deviation (7%),
an increase in the systematic error with the growth of
temperature and pressure is noted. For most substances, the
functional forms of correlation proposed in Ref. [57] can be
considered reliable only at pressures below 100 MPa.

2.9 Free volume theory

The idea that viscosity is determined by the free volume
fraction in a liquid developed in the theory of free volume. It
is assumed that the excess viscosity of a liquid is expressed as

An = Aexp E, (33)
e

where f, is the free volume fraction, and 4 and B are certain
parameters, possibly depending on temperature.

According to the theory of [63], the free volume vy is
determined by the interaction of a molecule with a quasi-
homogeneous medium and is expressed as vy = (4kp T/ka)3/ 2
according to the fluctuation—dissipation theorem. Assuming
that the medium hardness k, is related to the energy E of
interaction of the molecule with neighbors as k, oc E/v?/3
(where v is the volume per molecule),

oot (RT 3
‘vaoc z .

The value of E = Ey + Puv is taken as the interaction energy,
where Ej is the diffusion activation energy, and Pv is
considered the energy necessary to form a free volume in a
liquid for molecule diffusion.

The ultimate expression for the viscosity takes the form

(34)

_ pl(ap+ PM/p) ap + PM/p\
nf—m exp | B —RT . (35

Therefore, the viscosity dependence on thermodynamic
parameters for each substance is determined by three
adjustable parameters, /, o, and B. Parameter o charac-
terizes the dependence of the diffusion activation energy on
the density, / is the characteristic length scale, and B is the
overlap degree of free volumes of different molecules.
Formula (35) can be applied both for direct approxima-
tion of experimental data [63] and together with the
equations of state [64-66]. In Refs [64, 66], correlations
of parameters /, o, and B with the molecular mass of a
substance are proposed for the family of n-alkanes. There-
fore, for n-alkanes, the theory of free volume can be
considered a predictive model.

Reference [66] analyzes the applicability of the free
volume theory to hydrocarbons, ionic liquids, phthalates,
haloid substituted hydrocarbons, and liquid mixtures of
substances belonging either to one class or to different
classes. The presented results testify to the best prediction of
the viscosity of mixtures when using the following mixing
rules for the parameters of the free volume theory:

Omix = E Xili
i
lmix = E xili7
i
-1 _ p-1
B .= E xiB .
i

The free volume theory is noted to yield satisfactory
viscosity predictions for mixtures of n-alkanes; however, as
to mixtures of substances belonging to different families
(n-alkanes and aromatic compounds, n-alkanes and branch-
ed hydrocarbons, etc.), the accuracy of predicting viscosity is
unstable.

(36)
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2.10 Expanded fluid model

The expanded fluid (EF) correlation model proposed in
Ref. [67] develops the ideas of Batchinski [1] and Hildebrand
[4, 68] about the dependence of liquid fluidity on free volume.
The functional form of this dependence, in contrast to that in
the free volume theory [63], is considered exclusively to be a
correlation, without theoretical substantiation. The viscosity
of liquids and gases is described in a unique way:

n=mny+An(p, P),

where 7,(T) is the viscosity of a rarefied gas at the given
temperature, and the excess viscosity An(p, P) is proposed to
be expressed as

A = ¢ [exp (e2ff) — 1],

ol )

where p is the liquid density, and p} is the pressure-dependent
compressed state density, p¥ = p? exp (¢3 P). Due to the sharp
dependence p}(P), the authors of Ref. [63] recommend not to
use the EF model at pressures above 10 MPa. Indeed, at a
constant coefficient c3, at high pressures, the ‘compressed’
state has a compressibility higher than the fluid as such with
the additional free volume, which makes no physical sense.

For a complete description of the dependence of viscosity
on density and pressure in the expanded fluid model, it is
necessary to specify the parameters ¢y, ¢, ¢3, the exponent n,
and the density of the compressed state at normal pressure p.

In Ref. [69], the described approach has been completed
by the mixing rules for the coefficients ¢y, ¢, ¢3 in multi-
component systems, based on the mass fractions of the
components, whereas, in most other models, the mixing
rules are based on molar fractions. The use of mass fractions
in the mixing rules allows applying them to mixtures whose
components themselves are mixtures with not exactly known
compositions and molar masses. Such a situation often arises
in the analysis of natural and technical liquid mixtures.

The expanded fluid model was further developed by
Polishuk [66, 70, 71] to be applied with the state equations
of the SAFT family [44, 45]. Reference [70] introduces the
extended form of the correlation. In particular, in the
improved modified Yarranton—Satyro (MYS) model, the
‘compressibility’ of the liquid dense state is not constant, but
is related to the compressibility of the liquid. In Ref. [71],
within the critical point-based revision of PC-SAFT (CP-PC-
SAFT), parameters ¢, and p; are related to the equation of
state parameters, namely, the effective chain length, and the
width and depth of the potential well for monomers. In the
final version of correlation [66], the following relation is
introduced:

M4 T
= In(1 |
€2 =71V +1n ( +yzv“m3> n Ty + 120"

v P
o/ knn/— (0P 30) /o

where v} = M/p} is the molar volume corresponding to the
density of the extremely compressed state in the EF model, m,
¢, and ¢ are the number of segments and the segment
parameters in the CP-PC-SAFT model, T, is the triple point
temperature of the substance [K], v is the molar volume
[l mol~'], T is the temperature [K], P is the pressure [atm],

(37)

(38)

(39)
)(NAmo*3)_1,

1
— = 1.04exp (
v

S

and M is the molar mass of the substance [g mol~!]. The
viscosity is calculated as

ol ] e

For hydrocarbons, Ref. [71] proposes universal values of the
constants: y; = 0.27,y, = 2.5 x 10!, y; = 2.1. Parameters m,
¢, and o for the CP-PC-SAFT equation of state, in turn, are
obtained by solving a system of equations, for which only the
parameters of the critical and triple points of the substance
should be known [45]. The CP-PC-SAFT+MYS model with
the fixed coefficients y, — 73, is, therefore, predictive, since it
does not require data on the viscosity at some point.

The MYS model with the PC-SAFT+-cubic equation of
state was compared to the free volume theory in a number of
pure substances and mixtures [66]. It was demonstrated that,
although the free volume theory in many cases yields more
accurate results, the maximum deviations from the known
experimental data are smaller in the MYS model, because the
result of the latter is more stable. In particular, a good
predictive capability is shown for the MYS model applied to
hydrocarbons and their mixtures, inert gases and nitrogen,
carbon dioxide, acetone, and ionic liquids. In Ref. [72], the
testing of the free volume theory, f-theory, and the MYS
model was carried out for the viscosity of ionic liquids based
on imidazole at pressures up to 1 kbar. It was demonstrated
that, of these three models, MYS most accurately predicts the
dependence of viscosity of ionic liquids on pressure and
temperature, while the predictions of f-theory are the most
inaccurate. In Ref. [73], the predictions of the CP-PC-SAFT
+ MYS model are compared with the recent experimental
data for I-iodoalkanes. Good agreement is obtained for
iodoethane and 1-iodopropane. For the rest of the sequence
of 1-iodoalkanes, agreement between the prediction and the
experimental data is obtained with the fact taken into account
that, as of the writing of this paper, the values of critical
parameters for iodoalkanes were not known accurately
enough and probably require correction.

3. Comparison of some models
for hydrocarbon liquids

The properties of hydrocarbons in a wide range of states are
important for optimizing their production, transportation,
and application. In this connection, a large amount of
experimental data has been obtained for hydrocarbons to
construct and test correlation models.

Figure 1 presents the results of predicting the viscosity
using various models and experimental data on the viscosity
of n-pentane and n-decane at pressures up to 250 MPa. The
results of the TRAPP model are seen to diverge from those of
experiments at high pressures, the discrepancy beginning at
lower pressures for a longer hydrocarbon (decane). This is
probably due to the fact that the correlations of viscosity and
density for methane are constructed using the data for
p/p. <3 [7], while for decane, under the conditions pre-
sented in Fig. 1, p/p. = 5. The propane-based TRAPP
model shows better results; however, a systematic under-
estimation of viscosity upon an increase in pressure is
characteristic of it, too.

The best agreement with the experimental data for
pentane and decane are shown by the expanded fluid model
[67] and the EHS model [22]. In this case, the coefficients for
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Figure 1. Calculated and experimental values of the viscosity of n-pentane
and n-decane. Experimental data are taken from Refs [74, 75]. In the
viscosity calculations, values of liquid densities from Refs [74, 75] are
used.

0 100 200 300 400
Pressure, MPa

Figure 2. Calculated and experimental values of the viscosity of binary
mixtures 0.5n-CgHjg + 0.5n-C2Hye and 0.6n-CHy + 0.4n-CoHj,. Ex-
perimental data are taken from Refs [76, 77]. Viscosity calculations use
the values of liquid densities from these papers. Viscosity of the methane—
decane mixture in the figure is increased 10-fold.

the expanded fluid model were chosen individually for each
substance, whereas for the model of a system of hard spheres a
universal reduced viscosity function is used. At high pres-
sures, both these models are extremely sensitive to the
accuracy of density determination. For example, if the
density of decane at a pressure of 230 MPa is underestimated
by only 1%, the deviation from the experimental viscosity
values is increased from 6% to 20% for the EHS model and
from 8% to 30 % for the model of expanded fluid.

Figure 2 shows the results of predicting the viscosity
within the same models for a mixture of octane and dodecane
(moderately asymmetric mixture) and a mixture of methane
and decane (asymmetric mixture). These examples demon-
strate that, to predict the viscosity of hydrocarbon mixtures
depending on the density, the reduction to a system of hard
spheres shows much better results than in the remaining cases.
The discrepancy between the predictions and the experiment
for the methane-based TRAPP model reaches 20% at a
pressure of about 90 MPa, and for the propane-based
TRAPP model, at a pressure of 200 MPa. The EF model for
these systems yields accurate (within 6%) predictions at
pressures up to 250 MPa, but further it predicts an inflection
in the viscosity—density dependence not observed in experi-
ment. As noted in Section 2.10, such an inflection is due to the
choice of the functional form for the density of the
compressed state p? = pYexp (c3P). As is seen from the
example, due to this fact, the correlation possesses poor
extrapolation capabilities, namely, if the coefficients have
been chosen for the description at pressures up to 250 MPa,
then beyond this range the correlation results may be
incorrect, even at a qualitative level. For the methane-
decane mixture, both modifications of the TRAPP method
underestimate the viscosity values, and the EF model greatly
overestimates them. This is explained by the fact that the
mixing rules for methane-containing mixtures yield a small
coefficient ¢3, and the effective density of the compressed state

turns out to be overestimated. As is seen from Fig. 2, the EHS
model predicts for both mixtures viscosities coinciding with
the experimental values within 7%, in spite of using simple
mixing rules and the absence of special coefficients of pair
interaction.

4. Viscosity of metallic melts

Melts of metals, on the one hand, can be considered simple
liquids, since they consist of individual atoms rather than
molecules. On the other hand, in metals, especially in alloys,
at temperatures close to the solidus temperature, the forma-
tion of associates is possible, which affect the transport
properties. Experimental studies of the properties of liquid
metals are also complicated by the necessity of high-
temperature measurements, in connection with which the
data on metals are fewer than for organic liquids. Thus, the
accuracy of predictions using various models can be esti-
mated only rather roughly.

The widely used model for metals is the Andrade theory
predicting the following relation for liquid viscosity at the
melting temperature:

VMT

r]m:CAW> (41)

where #,, is the metal viscosity at temperature 7 on the
melting line, Cx is the empirically determined coefficient, M
is the metal atomic mass, and v is the molar volume of the
liquid phase.

Upon exceeding the melting temperature, for most metals
and alloys, an Arrhenius-type equation is satisfactory [78]:

E,
— el b}
1 = 1o exp ( RT> , (42)
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where E, is the viscous flow activation energy. It is known
empirically that the activation energy is proportional to the
melting temperature Ty, of metals. Kaptay [79] proposed that
the Andrade equation be combined with the Arrhenius
dependence in the form

vMT T,
n:AWexp (B%), (43)

where A and B are semiempirical coefficients. Kaptay has
shown in [79] that a similar functional form can be obtained
from Eqn (41) based on the free volume concept.

Based on 101 points for 15 ‘simple’ metals, Kaptay
obtained the values of the parameters 4 = (1,80 £ 0,39) x
10-8 JK~"mol'/3)/2, B = 2.34 + 0.20. Correlation (43) with
these values of the parameters has been checked for 14 metals
not used in the correlation, and, for nine of them, Eqn (43)
reproduced the viscosity at the melting temperature with an
accuracy within 20%. Large differences were observed for Hf,
Mn, Pd, Pu, and V.

Based on the concept of viscous flow activation energy,
Kaptay proposed an equation taking into account the
enthalpy of mixing and the alloy composition:

_ hNA
= > xiv; + Avpmix

X AGF — (0.155 4 0.015)AH ™™
xexp(z’x Gr—(0 RS; 0.015) )7 (44)

where / is the Planck constant, Av™* and AH™* are the
volume excess and the mixing enthalpy, and AG; is the
viscous flow activation energy in pure components,
expressed in terms of the viscosities of pure elements 7, as

nivi
. 45
hNA ( )

AG! = RT In

In Refs [80, 81], where various forms of correlations for
binary alloys were tested, it was shown that Eqn (44)
corresponds to the known experimental data with an
accuracy of 20-30%. However, for nonideal alloys with a
eutectic, this correlation incorrectly reproduces the qualita-
tive behavior of the viscosity concentration dependence — the
positions and in many cases even the presence of extrema are
not reproduced. As is shown in Refs [8§1-83], many more
correct qualitative results for the viscosity of alloys can be
obtained from the Kozlov—Romanov—Petrov correlation [84]

AHmix
Iny = mel-f— .

3RT (46)

5. Viscosity of rarefied gases

In this section, we consider some approaches to calculating
the viscosity of a rarefied gas, since it enters expressions for
some of the correlations for liquids considered in Section 2. It
should be noted that, for most liquids far from the critical
point, the contribution to viscosity caused by the rarefied gas
amounts to only a few percent, whereas the main contribution
is due to interparticle interaction in a liquid. Therefore, in
practice, it is sufficient to predict the value of the viscosity of a
rarefied gas in order to apply in a liquid viscosity models with
an accuracy of a few tens of percent. For high-viscosity
liquids, the contribution of the rarefied gas viscosity is often
less than 1%, i.e., it can be merely ignored.

5.1 Chapman—Enskog theory

In the Chapman—Enskog theory, the viscosity is found from
the exact solution of the Boltzmann kinetic equation for a
rarefied gas. For a system of hard elastic spheres with
diameter d in this case, the result is the following (see, e.g.,
[85, Ch. 1.2]):

5 WlkBT
n=1.016 1y [ ==

The dependence of real gas viscosity on the temperature,
strictly speaking, differs from dependence (47). For a gas of
particles interacting via the Lennard-Jones potential, the
relation [86]

_ 5/8f,7 /WlkBT
n _029(22)(7"*) T

is obtained, where 9(272)(T*) is the collision integral,
T* =kgT/e, and f, is a function weakly depending on
temperature (it is practically always possible to assume that
Jfy = 1[87]). The parameters ¢ and ¢ for the Lennard-Jones
potential can be determined from the experimental values of
gas viscosity at two temperatures. For function Q> (T*),
Hirschfelder, Curtiss, and Bird [86] published the tabulated
values and proposed analytical approximations [88]. Para-
meters ¢ and ¢ for a number of gases can be found in the
literature [85] or evaluated through the critical parameters of
the substance using Eqns (23). For polyatomic molecules,
corrections to Eqn (48) are proposed to allow for the
asphericity parameter, dipole moment, and hydrogen bonds
[89]:

5(1 —0.2756w + 0.059035.** + ) [ mkpT
n= %) - ) (49)
852Q22)(T*) T

(47)

(48)

where o is the Pitzer acentric factor, u* = u/ Vea3 is the
dipole moment reduced to a dimensionless form, and « is the
correction for molecular association for compounds forming
hydrogen bonds (first of all, water and alcohols).

5.2 Gas mixture viscosity
To calculate the viscosity of a mixture of gases, it is common
to use mixing formulas. The Wilke rule is widely used [90]:

N

Xin;
Mo = et (50)
" I:ZI Zjlil Xj @i j
where
2
[1 RaRVARY, M;/(nyv M,)}
bij= )

[8(1+ M/ M)

and x; and M; are the molar fraction and molecular mass of
the ith component of the mixture.

Other mixing rules are also possible [91]. For not too high
temperatures (within 1000 K), different mixing rules yield
close results. Therefore, in practice, instead of the Wilke rule,
itis possible to take the simpler Herning—Zipperer mixing rule
92]

_ :Ziﬁlxi’/li\/Mi (51)

mix Zijll X /—Mi
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Reference [93] proposes the following mixing rule:

. XN: Yi)j (2\/ M,]V[]) /2
nmlx - Pt ,—rlinj Mi + Mj )

where y; = x;v/M;/ > /]i | (xj4/M;) is the momentum fraction
transferred by the ith component.

Equation (52) was tested for 40 pairs of nonpolar gases; a
root-mean-square error from 0.11% (methane—ethane sys-
tem) to 5.82% (neon—carbon dioxide system) was obtained,
smaller than when using Eqns (50) and (51).

(32)

6. Atomistic modeling

As was mentioned in Sections 25, there are systems for which
the description of transport coefficients by theoretical models
faces difficulties. These are highly nonideal mixtures and
alloys, liquids at high densities, and associating liquids (e.g.,
water and alcohols). The authors of this review are unaware
of purely theoretical methods capable of satisfactorily
predicting the transport coefficients in all the cases men-
tioned. Sometimes, it is possible to introduce an ad hoc
correction for particular mixtures; however, a general theory
should, apparently, take into account numerous factors
related to the structure of liquid molecules and the details of
interaction between particles, which determines the complex-
ity of its creation.

As the most general approach, which automatically takes
into account all the details of the interaction in a liquid, one
can consider modeling by the method of molecular dynamics
(MD), i.e., the numerical solution of the equations of motion
of a system of atoms [94-96]. At present, due to the relatively
high availability of computing resources, the role of MD
modeling as a universal method of predicting a wide range of
thermophysical properties of matter increases. The predictive
ability of the MD method is largely determined by the choice
of the interatomic interaction potential [97-102].

Methods for calculating viscosity in dense gases and
liquids up to 10> MPa can be divided into two conceptually
different classes: equilibrium methods, in which the simulated
substance is not subjected to external perturbations, and
nonequilibrium methods, in which the viscosity coefficient is
obtained from the reaction of the substance to shear stress.

Section 6.1 presents a review of models for describing
interactions in liquids in classical MD and Section 6.2 briefly
discusses ab initio approaches. Section 6.3 thoroughly
presents information on equilibrium methods, as well as
examples of their applications. Nonequilibrium approaches
are described in Section 6.4. The dependence of viscosity on
shear velocity is considered in Section 6.5.

6.1 Interatomic interaction potentials

Interatomic interaction potentials for classical MD differ in
form and complexity, depending on the substance under
consideration. In this review, we consider several models of
interparticle interaction. A detailed comparison of MD
potentials in terms of their predictive ability is presented,
e.g., in [97-100, 102].

6.1.1 Pair potentials. To model the properties of noble gases,
liquids of nonpolar diatomic molecules (nitrogen, oxygen),
and some substances with relatively simple quasispherical
molecules (methane), spherically symmetric pair potentials of
interaction are widely used, among which the most popular

are the Lennard-Jones and Buckingham potentials, respec-
tively:

N R
U(r) = Aexp (—:—0> —r% (54)

In the potentials (53), (54), the term ~ 1/r, responsible for
the attraction, is determined by the dipole—dipole interaction
(~1/r31/r3), the form of repulsion in the Lennard-Jones
potential is chosen for convenience (it is obtained by squaring
the dipole—dipole part), and, in the Buckingham potential, it
is chosen for general physical considerations.

Since information on the internal degrees of freedom and
the energy and momentum exchange between them is lost
when describing a molecule by a single unstructured particle,
the effective pair potential parameters for molecular com-
pounds, ensuring the best agreement of the model and real
substance thermodynamic properties, usually lead to inaccu-
rate predictions of transport coefficients. In this regard, the
prediction of a liquid viscosity with an accuracy of 10-20% in
a model with pair potential is possible only for liquids of small
nonpolar molecules. Reference [103] shows that, when
deriving the effective parameters ¢ and ¢ of the Lennard-
Jones model from the critical temperature and pressure of a
substance, the mean deviation from the experimental data in
the liquid viscosity is less than 10% only for methane and
oxygen. For heavier hydrocarbons, it reaches 30%, and even
for noble gases, it amounts to about 20%. According to the
data in Ref. [28], the predicted viscosity substantially declines
from the experimental values at densities p = 0.7 7.
Apparently, at higher densities, the influence of the repulsive
branch of the interaction potential is too strong, and in the
Lennard-Jones potential just this branch poorly corresponds
to repulsion in real substances. Also, with increasing density,
the influence of the molecule nonsphericity and the transfer of
not only momentum but also the angular momentum during
collisions should increase. Due to these factors, at high
densities, the viscosity predictions via the reduction to the
Lennard-Jones system underestimate the real values of
viscosity. As noted by Brazhkin in review [104], the Len-
nard-Jones model satisfactorily describes the viscosity of
glycerol at near-critical temperatures and densities, but the
use of the same parameters of a Lennard-Jones fluid ¢ and ¢ to
estimate the viscosity at the triple point predicts a viscosity
value a few orders of magnitude lower than the real one.

An important class of substances, to which it is possible to
apply pair potentials, is melts of salts. For them, long-range
electrostatic interactions are added to the short-range forces:

Ui(r) = L+ Use ), (55)

where Uj; is the energy of interaction between atoms i and j,
ris the distance between these atoms, ¢; and g; are the effective
charges of the atoms, and Usg ;; is the short-range part of the
interaction.

In Ref. [105], using the MD method, the viscosity and heat
conductivity are calculated for NaF + AlF; melts of various
concentrations. The Buckingham potential is taken for short-
range interactions. The partial charges on atoms and the
parameters of the Buckingham potential for atoms of
different sorts were chosen based on quantum mechanical
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calculations of forces in a crystal system and did not rely on
the experimental data on the transport coefficients. Good
agreement is demonstrated between MD calculations and
experimental dependences of the melt viscosity on the fraction
of NaF at a temperature of 1305 K.

References [106, 107] study the viscosity of NaCl and KClI
melts. Using in Eqn (55) the short-range potential in the form
Usw, ij(r) = Aijexp [B(ro,ij — )] — % - % ) (56)
agreement within 10-15% with the etalon NIST correlations
is obtained for the viscosity of salt melts [108] in the range of
temperatures of 1050-1300 K.

Models based on pair potentials seem to be applicable for
estimating the viscosity of salt solutions and its qualitative
behavior in a wide range of conditions. Judging by the
available comparison with experimental data, models that
are more sophisticated are required for accurate prediction of
the viscosity of salts. At the same time, due to the high melting
temperature of salts, there is much less experimental data on
their viscosity than for substances liquid under normal
conditions. Therefore, even estimates with an accuracy of up
to an order of magnitude based on relatively simple MD
models are valuable.

6.1.2 Potentials for modeling metals. The approximation of a
pair potential independent of the external conditions is good
for noble gases and some simple molecular compounds:
nitrogen, oxygen, methane, in which van der Waals and
electrostatic forces play the main role in the intermolecular
interaction. Since the interatomic coupling in metals is
implemented via common electrons and the interaction
essentially depends on the electronic density, to model
metals, effective density-dependent pair potentials (for a
review of methods for constructing such potentials, see
[109]) or multiparticle potentials, in which the metallic bond
specific features are allowed for by multiparticle terms, are
needed. The most popular ones are multiparticle potentials
for metals and alloys within the framework of the embedded
atom model (EAM) [110, 111] and its extensions.

For a number of metals, the viscosity is calculated based
on the model of a density-dependent pair potential or the
EAM model. For alkali metals lithium, sodium, and
rubidium, good agreement is shown between the viscosity
calculated by MD modeling with an effective pair potential
and the experimental data on the viscosity [112-114]. For
sodium and aluminum, good agreement of viscosity within
the EAM models with the experimental data is also obtained
[115, 116]. For some EAM models, in particular, for lithium
[115] and nickel [117], the published results of MD modeling
differ from the experimental ones by nearly two times.
However, review [118] shows that different models of
potential for one substance yield substantially different
values of viscosity, and in Ref. [119] it is noted that the
EAM potentials parameterized relying only on the crystal
phase properties often describe the liquid phase with a large
error. Therefore, the viscosity prediction is not a principle
limitation of EAM. The prediction of transport coefficients in
melts will be more accurate, when using potentials parameter-
ized to reproduce thermodynamic and structural properties
of the liquid [119] or based on so-called force matching to
quantum mechanical calculations [120].

It is difficult to describe the concentration dependence of
viscosity in melts, even when using the embedded atom

Egihedral
Coul

0.06¢

Figure 3. n-Triacontane molecule (C3 Hgy) with examples of all inter-
molecular interactions. Covalent bonds are shown in red, angular ones in
blue, torsion ones in green, Lennard-Jones and Coulomb ones in violet
and black, respectively. 1, 4, 6 are the numbers of atoms, 1.0 and 0.5 are the
scaling coefficients to calculate forces between the appropriate pairs of
atoms. Partial charges on the hydrogen and carbon atoms are also
presented.

potential; therefore, at present, more sophisticated models
are under development based on quantum mechanical
calculations and machine learning (see Section 6.2).

6.1.3 Molecular models (‘force fields’). For molecular com-
pounds, more detailed models are introduced that take into
account the structure of molecules. The most advanced
approach consists in specifying molecules with a fixed
topology of valence bonds and separating the interactions
into intra- and intermolecular. The intermolecular part
describes the interactions among atoms in one molecule
(Fig. 3):

E= Ebond + Eanglc + Edihcdral + Eimpropcr + EvdW + ECoul )
(57)

where Eyond, Eangles Edihedrals Eimproper are the valence interac-
tions (nearest neighbor coupling, angular, torsional), and
E.qsw and Eco, are the nonvalence interactions (van der
Waals and Coulomb). The intermolecular part describing
the forces that act between the atoms of different molecules
consists of van der Waals and Coulomb forces. The Coulomb
interaction is presented in the form Ecoy = Zi<j q:iq; /i,
where ¢; and ¢; are the effective charges of atoms of ions,
and r;; is the distance between particles. Van der Waals forces
in MD are considered to include short-range nonvalence
interactions between both charged and uncharged atoms.

The most widespread models are those in which the
effective charges of atoms are constant and coincide with
their centers of mass, while the van der Waals interaction has
the form of the Lennard-Jones potential (53). There are also
other approaches to the description of Coulomb and van der
Waals interactions of atoms in the system. In relatively recent
paper [121], the necessity of using softer forms of repulsion to
satisfy the equation of state of liquids at high pressures is
demonstrated. In the widespread family of TIP4P models for
water [122—124], the partial charge is shifted from the oxygen
atom. For ionic compounds, core—shell-type potentials [125]
are also used to describe polarizability.

The set of functional forms for the contributions Epond,
Eanglc: Eginedral, Eimpropcra Evaw, and Ecoul, when describing a
certain class of substances (usually a wide range of organic
compounds) and the set of coefficients for particular types of
atoms, valence bonds, functional groups, etc., is often
referred to as the force field in the literature.
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The form of equations characterizing intramolecular
interactions determines the complexity of the model. Sec-
tions 6.1.4 and 6.1.5 contain a brief review of the main
features of model potentials and two subclasses of these
models. A thorough review can be found, for example, in
Ref. [126] and references therein.

6.1.4 Class I models. Class I models include potentials in
which the vibrational energy of bond lengths and bond angles
is described by the potential of a harmonic oscillator

1

Ebond - Kbond(r - req)2 5

(58)

Ezmgle = Kangle(e - Heq)z s

2
1
2
where r and 0 are the current values of the bond length and
valence angle, roq and 0.q are the appropriate equilibrium
values, and Kyong and Kyngle are the energy constants. The
torsion energy is usually considered in the form of variations
in the Fourier series expansion. The Lennard-Jones potential
most often describes nonvalence interactions.

Models of class I, in turn, can be divided into all-atom,
united atom, and coarse-grained models.

The widely used all-atom models are Amber (also General
Amber Force Field, GAFF) [127], CHARMM (Chemistry at
HARvard using Molecular Mechanics) [128], and OPLS-AA
(Optimized Potential for Liquid Simulations—All Atom)
[129]. The first two potentials are mainly aimed at modeling
biological molecules and, therefore, are optimized to
reproduce the properties of macromolecules under condi-
tions close to normal. The last potential was intended to
model the properties of various organic liquids in a wide
range of temperatures and thus is the most interesting from
the point of view of predicting the viscosity under various
conditions.

Soon after the presentation of the OPLS-AA potential,
Allen carried out calculations of the etalon lubricant liquid
[130]. In Ref. [131], with a potential similar to OPLS-AA buta
different parameterization, the diffusion, viscosity, and heat
conduction coefficient are calculated for ionic liquids. A
detailed comparison of OPLS-AA with other models by
predictive ability can be found in Ref. [97].

In 2012, a modification of the OPLS-AA potential for
long-chain hydrocarbons (L-OPLS-AA) was proposed [132],
which reproduces the properties of alkanes and alkenes with a
chain length of five and more with higher accuracy than the
original OPLS-AA model. In Ref. [133] of 2017, the
possibility of abandoning similar particle charges for atoms
of each type in the OPLS-AA was studied, using instead the
CMIA technique to determine the partial charge for each
atom in the molecule individually, based on quantum
mechanical calculations. The use of the CM1A technique
improves the density of liquid reproduction in the OPLS-AA
model. A more accurate reproduction of the pressure
dependence of density should also improve the prediction of
density-sensitive properties of liquids, such as diffusion and
viscosity coefficients.

In the united atom models (sometimes the term ‘extended
atoms’ is also used), for the simplicity of calculations,
functional groups are considered to be single particles.
Usually, one or a few hydrogen atoms are joined to the
heavy atom, to which they are attached, since the hydrogen
atoms are the lightest and the R—H bonds have a maximum

frequency of vibration in a molecule. The vibration frequen-
cies determine the acceptable time step in the MD method;
therefore, uniting a hydrogen atom with other atoms not only
reduces the number of particles but also allows modeling with
a longer time step. One of the popular potentials in this class is
the TraPPE-UA (Transferable Potential for Phase Equili-
bria—United Atom) model [134]. Although TraPPE-UA was
developed for calculating mainly the phase equilibrium, it and
its modifications are also being applied to calculate the
transport coefficients for isomers of C3y hydrocarbons [135].

Many of the widely used united atom models predict an
overestimated diffusion coefficient and underestimated coef-
ficient of viscosity [136]. Although, as it seems from general
considerations, the overestimation of mobility occurs due to
‘smoothing’ the molecular shape upon roughened considera-
tion of interactions, the authors of [137] substantiate an
alternative assumption. In the parameterization of most
models, no transport properties are considered, and the
attention is focused on the energy of conformations and
thermodynamic properties: evaporation curves, thermal
expansion coefficients, etc. These properties are rather
insensitive to intramolecular interactions, whereas the trans-
port coefficients are sensitive to the energy parameters of
rotation about bonds [136]. Based on this observation, the
authors of [137] proposed an optimized form of the rotation
barrier in n-alkanes for the AUA4 potential [138], which does
not really change the calculated thermodynamic properties,
but considerably improves the prediction of transport proper-
ties: the deviation from experimental data on viscosity
decreases from 30% with the initial AUA4 to 10-15% after
the modification. In Ref. [139], such an optimized model
applied to a synthetic petrol mixture demonstrated agreement
with the experimental density and viscosity values.

6.1.5 Class II models. In contrast to models of class I,
described in Section 6.1.4, class II models consider the
anharmonicity of vibrations of valence bonds and angles.
For example, the vibrational energy of a bond is presented in
the form

Evond = Ka(r — req)” + Ks(r — req)” + Ka(r — reg)* . (59)

In addition, in class IT models, there is an exchange of
energy between different degrees of freedom. For example,
the bonds react to the angle change as follows:

Ebond—angle == M(V - req)(9 - Qeq) . (60)

Considering the anharmonicity and cross terms allows a
better description of molecular structure, conformation
properties, vibrational spectra, and heat of formation than
in class I models.

One of the class II models is that of condensed-phase
optimized molecular potentials for atomistic simulation
studies (COMPASS) [140]— the result of combining several
potentials used in industry, which was carried out in 1998.
One more difference from class I models is the representation
of van der Waals forces by the 6-9 Mie potential

v = () ()]

The softer form of repulsion allows a realistic description of
the behavior of liquids at high pressures. COMPASS has

(61)
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complex parameterization, since it takes more constants to
specify all types of interaction than in class I models.

We use this potential to calculate equations of state and
transport coefficients in alkanes [62, 141, 142], aromatic
compounds [62, 142, 143], as well as binary mixtures of
hydrocarbons [62].

6.2 Ab initio calculations

Under extreme conditions (superhigh temperatures, high
compression ratios), classical approaches to the parameter-
ization of interaction potentials go beyond the scope of their
applicability. For example, the assumption of a fixed
molecular composition and geometry of valence bonds is
valid only in the limit of high (compared to kg 7) barriers for
the occurrence of chemical reactions. A partial solution to this
problem for modeling at high temperatures is given by the
reaction potentials of interaction based on the empirical bond
order [144]. However, this approach becomes inapplicable at
high pressures, when the electrons of the inner shells begin to
participate in the formation of a chemical bond.

The most general approach for MD modeling is to find the
effective interaction potential based on quantum mechanical
calculations (so-called ab initio calculations) and the
dynamics of atoms in the Born—Oppenheimer approxima-
tion or combining the dynamics of electronic and nuclear
motion within the framework of the Car—Parrinello approach
[145] (ab initio molecular dynamics). At present, the most
widespread approach is based on the theory of the electron
density functional and the Kohn—Sham formalism [146].
Even approximate quantum mechanical calculations are
much more complicated than calculations with effective
interatomic potentials. Therefore, the inner electrons are
usually replaced with an effective pseudopotential, and
direct calculations are carried out only for the density of
outer (‘valence’) electrons, the number of which can be chosen
so as to be different, depending on the complexity of the
model. In particular, modeling at superhigh pressures
requires increasing the number of valence electrons, when
the inner electron shells of atoms begin to overlap [147]. Even
with these approximations, the complexity of ab initio
modeling is 5-6 orders of magnitude higher than for
modeling with empirical analytically expressed potentials;
therefore, the size of modeled systems amounts to 100—
1000 atoms.

In spite of the computational complexity of quantum
mechanical calculations, there are examples of ab initio
calculations of viscosity in the literature [148—151]. In such
studies, the method of evaluating through diffusion is most
frequently used (see Section 6.3.2), and the values of viscosity
are restricted to an order of 1 mPa s due to the impossibility of
going beyond the limit modeling time of a few tens of
picoseconds. It is important that ab initio MD calculations
are practically the only theoretical way to predict the
anomalous behavior of the transfer coefficients in melts of
compounds with covalent bonds, e.g., the change in the
diffusion coefficient with pressure in liquid carbon during
the liquid-liquid transition [152], or an increase in the
diffusion coefficient and a decrease in viscosity coefficient
with increasing pressure in boron oxide [153], arsenic sulfide
[154], zinc chloride [155], and selenium during metallization
[156].

Also noted should be the rapidly progressing field of
developing potentials for single-component (nickel [157])
and multicomponent (Al-Cu-Ni melt [158], potential [159])

systems using deep learning methods (see, e.g., [160, 161]).
According to complexity, calculations with such potentials
are between those with classical potentials and ab initio
calculations; however, they allow predicting the transport
coefficients with an accuracy comparable to that of ab initio
modeling.

6.3 Equilibrium methods of viscosity calculation
Equilibrium methods of viscosity calculation are based on the
interrelation of the dimensional effect in the diffusion
coefficient with the viscosity under periodic boundary
conditions [162], the Stokes—Einstein formula, and the
Green—Kubo [163, 164] and Einstein—Helfand [165]
approaches. The advantage of these methods is that they
allow obtaining the ‘zero shear’ viscosity, observed experi-
mentally.

6.3.1 Dimensional effect for the self-diffusion coefficient. The
Einstein—-Smoluchowski (ES) formula relates the root-mean-
square displacement of particles (Ar?) with time :

(Ar?)(r) = 6Dt + const, (62)
where D is the self-diffusion coefficient, and the angular
brackets mean averaging over both the time and the
ensemble. Formula (62) is valid at consideration times
deliberately greater than the characteristic travel times in a
gas or liquid. Therefore, by calculating the time dependence
of the mean-square displacement of molecular centers of mass
in MD, it is possible to find the self-diffusion coefficient as
D = (Ar?)/(61), t — .

The presence of the dimensional effect for the diffusion
coefficient is based on the presence of collective flows
reported in the pioneering paper by Alder and Wainwright
[166] for a system of hard spheres. Because of the finite size of
the computational cell in the MD method, the collective flows
are reproduced incorrectly (see, e.g., [167, 168]). For the
periodic boundary conditions used in the MD, Yeh and
Hummer theoretically derived a correction taking into
account the finite cell size for the self-diffusion coefficient
[162] of spherical particles and demonstrated the applicability
of the formula for a liquid with the Lennard-Jones potential
and water:

kpT¢

D =D L —
o pBC( )+61tnL’

(63)

where D, and Dppc(L) are the self-diffusion coefficients in
the thermodynamic limit and for the finite size L of a
computation cell, respectively, # is the shear viscosity of the
system, and & is a dimensionless constant approximately
equal to 2.837297. System size correction for diffusion
coefficients is used in Refs [98, 169-171].

The shear viscosity can be obtained from the linear slope
coefficient in Eqn (63) by calculating the dependence of the
self-diffusion coefficient Dppc (L) on the reciprocal cell size L
[171]. Reference [172] demonstrates agreement between the
values of the viscosity coefficient obtained using the dimen-
sion effect and by the Green—Kubo method for liquid water.
The authors of Ref. [171] extended this method and analyzed
the optimal cell dimension L and the number of statistically
independent runs of MD trajectories for Lennard-Jones
liquids, water, and the [Bmim][Tf,N] ionic liquid. In recent
paper [157], using this method, the temperature dependence
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Figure 4. Example of a computation cell containing ~ 1300 molecules for
the liquid n-pentane at a temperature of 330 K and density of 0.601 gcm 3.
Carbon atoms are shown in blue, hydrogen atoms in red. Visualization
was performed in the Visual Molecular Dynamics (VMD) software
package [173].
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Figure 5. Dependence of the self-diffusion coefficient of liquid n-pentane
on the reciprocal computational cell size 1/L at a temperature of 330 K
and a density of 0.601 g cm™3.

of the viscosity coefficient of a nickel melt is calculated for a
model trained on ab initio calculations.

For clarity, in this review we present the calculation of the
viscosity coefficient of n-pentane by the considered method at
a temperature of 330 K and density of 0.601 g cm™3. An
example of the computation cell is shown in Fig. 4. Under the
specified conditions, according to the experimental results
[174], n-pentane is in a liquid state, which is also confirmed by
MD modeling. The self-diffusion coefficient was calculated
using the ES method (see Eqn (62)) with the OPLS-AA
potential for 125, 512, 1300, and 35,000 molecules in a
computation cell [129]. Figure 5 illustrates the dependence
of self-diffusion coefficient Dppc(L) on the reciprocal finite
size L of the system.

The shear viscosity of n-pentane is determined from the
slope coefficient of dependence (63) to be equal to
(220 + 10) x 1073 cP (mPa s), the experimental value being
190 x 10=3 cP [174].

6.3.2 Stokes—Einstein formula. For the steady-state motion of
a particle in a medium, the magnitude of the acting force is
equal to the medium drag force. Assuming that the shape of
the particles is close to spherical and the drag force is
determined by viscous friction, we arrive at the Stokes—
Einstein formula relating the coefficients of viscosity and
diffusion

kT
"= SnDr

(64)

If the diffusion coefficient is known, then by estimating the
particle hydrodynamic radius we can get the viscosity
coefficient. Since in practice the diffusion coefficient is
simpler to calculate than the viscosity, Eqn (64) has been
used in ab initio MD calculations to estimate the viscosity of
AlgyCuyy melt [149], chalcogenide GeTe in a liquid state [150],
and NaCl—CaCl, salt melt [151]. The characteristic values of
viscosity in the mentioned papers are of the order of 1 mPa s
(1 cP). In Ref. [175], the viscosity coefficient is evaluated from
the diffusion of atoms in an iron crystal both using the ab

initio MD and within the classical MD using the EAM
potential. According to Ref. [176], in an Mg,SiO4 melt, the
Stokes—Einstein formula is valid for magnesium atoms at
pressures up to 35 GPa and temperatures of 2500-3000 K.

Gordon demonstrated in [177] the validity of the Stokes—
Einstein relation for classical MD calculations of diffusion
and viscosity coefficients in isoparaffins, from Cq to Cyg, at
various temperatures and pressures up to 10,000 atm with the
molecule nonsphericity taken into account by means of the
radius of inertia of molecules. This approach sometimes
allows performing MD calculations of the diffusion coeffi-
cient with lower computational costs, and then using them to
determine the values of viscosity of a liquid. Such estimates
are carried out in Ref. [178] for the liquid n-pentane.

In Ref. [142], the relation between the coefficients of
diffusion D and viscosity n for model lubricant liquids
(isooctane CgH g and 1,1-diphenyletane C4H14) at pressures
up to 4 kbar is studied. The gyration radius is used as a
molecule’s characteristic size. Figure 6 presents the results of
calculating D and 1/5 with potentials of interatomic interac-
tion possessing different degrees of detailing: TraPPE-UA,
OPLS-AA, and COMPASS. The lower the points, the higher
the pressure. A remarkable fact is that the results for
isooctane lie on a universal curve corresponding to the
Stokes—Einstein equation for all models. At higher pres-
sures, the deviation from the Stokes—Einstein relation for
isooctane in the COMPASS and OPLS-AA models is due to
the heterogeneous nature of diffusion upon reaching a high
viscosity [179]. The universal curve D(1/n) for several force
field models allows a more efficient estimation of the pressure
dependence of viscosity in complex COMPASS-type force
fields. Since the MD calculation of the diffusion coefficient is
computationally cheaper than the viscosity calculation, such
an approach ultimately reduces the cost of calculation for the
curve of the viscosity dependence on pressure.

Recent paper [180] shows a correlation similar to (64)
between viscosity and thermal conductivity for the Lennard-
Jones and Coulomb potential models, hard spheres, and
simple molecular liquids.
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6.3.3 Einstein—Helfand formula. In 1960, in the theoretical
paper [165], Eugene Helfand derived analogs of the Einstein—
Smoluchowski relation (62) for the expression of shear
viscosity and heat conductivity coefficients as limit values of
the time dependence slope of a square of some microscopic
properties (‘moments’). For the viscosity, the Helfand
formula has the form

. 1 )
= S i — g
1= g (670 6O,

where G (1) = 3=V | pa(t)ya(?) is the Helfand moment, and
summation is performed over the appropriate projection of
the coordinates and momenta of particles.

Subsequent studies provide evidence in favor of updating
this approach for systems considered under periodic bound-
ary conditions [181, 182]. To avoid an incorrect growth of the
discrepancy (65) under periodic boundary conditions, the
authors of [181] reasonably introduce additional terms in the
expressions for G (), which ensures the convergence of the
results obtained by the Einstein—Helfand and Green—-Kubo
methods for a Lennard-Jones liquid. However, the form of
corrections is derived only for the case of pair potential of
interparticle interaction, and, even in this case, the use of the
Helfand formula turns out to be less practically convenient
than the use of the Green—Kubo formula, which will be
considered in Section 6.3.4.

(65)

6.3.4 Green—Kubo formula. The Green—-Kubo (GK) formula
for calculating shear viscosity 7, in plane af has the
following form [163, 164]:

Cy(t)de, (66)

Vo
— lim —
’7(1[3 l’l—rvlgo kBTJO

where Cy(t) = (0,4(0)0,4(2)) is the autocorrelation function
of nondiagonal elements of the viscous stress tensor g,4, and

V and T are the volume and temperature of the system.
Practically, the integral in (66) is calculated to a certain
temporal limit ¢/, so that C, tends to zero with an accuracy
to the computation error. The viscosity # of a homogeneous
liquid is calculated as an average of n,,,, .., and n,., since the
three shear planes are equivalent.

In the case of atomic and simple molecular liquids, in the
classical MD it is possible to reach the convergence of the GK
integral within the computational error [172, 183-188]. Using
the GK method, the authors of Ref. [148] managed to
calculate the viscosity of a helium—hydrogen mixture for the
Jupiter adiabat (y ~ 1 mPa s) even using the ab initio MD.

In the case of liquids with higher viscosity coefficients
(n > 10 mPa s), the convergence of integral (66) becomes a
serious problem because of long-term correlations in the
autocorrelation function C,(z). Maginn’s team [189, 190]
proposed a method of temporal decomposition that allows
extrapolating the integral at t — oo. The essence of the
method is approximating the GK integral by a function of
the form [191, 192]

n(t) = Aoty [1 — exp (— iﬂ
+ A(1 — o)1 [1 — exp (—é)] ;

where 4, a, 11, and 1, are the approximation parameters. The
values of the autocorrelator integral C, () at long times are
taken into account with the weight 1/¢%° during the
procedure of choosing the approximation parameters
(because of computing errors). An attempt to relate the
approximation parameters t; and 1, to the characteristic
times of correlation decay in liquid n-alkanes was recently
made by Kondratyuk in [193].

The authors of the method successfully use the temporal
decomposition method to calculate the viscosity of ionic
liquids [189, 194]. This approach is also used in other papers
for n-alkanes [169], branched alkanes [141, 195, 196],
aromatic compounds [62, 143], linear ethers [197], as well as
binary mixtures of hydrocarbons [62].

A new method based on the probabilistic distributions of
fluctuations for the Green—Kubo method is proposed in
Refs [198, 199]. For a Lennard-Jones liquid, the possibility
of calculating the transport coefficients along one MD
trajectory is demonstrated.

We also present an example of viscosity calculation for n-
pentane at a temperature of 330 K and density of 0.601 gcm 3
by the Green—Kubo method. For 30 statistically independent
MD trajectories, calculated in a canonical ensemble, the
autocorrelators of nondiagonal elements o, were obtained.
The Green—Kubo integrals were calculated for each data set
and then averaged. The mean values of the Green—Kubo
integral and their errors are shown in Fig. 7. Since the
divergence of the integral is observed in the considered time
window, there is no need to use function (67) for approxima-
tion. The ultimate viscosity value of (220 £ 10) x 10~ cP
agrees with the value obtained from the dimension effect of
the diffusion coefficient (see Section 6.3.1).

(67)

6.4 Nonequilibrium calculation methods

The family of nonequilibrium MD (NEMD) methods allows
avoiding the convergence problems inherent in equilibrium
methods in the case of viscous liquids. The setting of the
computational problem is maximally close to the conditions
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of real experiments: the viscosity coefficient appears as a
reaction of the substance to a shear stress. In the applied
sense, in the MD the artificial creation of both a momentum
flux (Miiller-Plathe method) and a shear stress (SLLOD
method) is possible.

6.4.1 Miiller-Plathe method. In the Miiller-Plathe implemen-
tation [200, 201], so-called reverse nonequilibrium molecular
dynamics (RNEMD), a momentum flux is created in the
computing cell. First, the cell is divided into a certain number
of layers. The momentum flux is implemented through the
exchange of velocities differing by directions between iden-
tical atoms in the bottom and the middle layers of the cell
(Fig. 8). The magnitude of the momentum flux density is
proportional to the velocity gradient dv,/0z with the shear
viscosity coefficient

AN
dvy [0z’

n= (68)
where j.(py) is the density of the momentum x-component
flux along the z-axis.

This method was applied in Ref. [141] to calculate the
viscosity of isooctane and isononane in a wide range of
pressures. The agreement of viscosities obtained at small
shear velocities with the equilibrium values from the Green—
Kubo method is also demonstrated (see Section 6.3.4).

For clarity, we present the results of the viscosity calcula-
tion using the Miiller-Plathe method for the liquid n-pentane at
T =330 K and p = 0.601 g cm™>. The computation cell is
divided into 50 layers in the z direction. Velocity exchanges
between atoms of hydrogen of n-pentane molecules in layers 1
and 25 are executed every 10 fs, which creates an artificial flux
of momentum along the z-axis. The velocities for exchange are
chosen close to 100 m s~'. Such a procedure creates a
momentum flux density of the order of 10® Pa.

Velocity profiles for various momentum flux densities are
shown in Fig. 9. The viscosity is calculated as the ratio of the
momentum flux density to the slope of the velocity profile.
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Figure 9. Velocity profiles for the liquid n-pentane at 7= 330 K and
p =0.601 g cm™3, produced along the x-axis at various values of the
momentum flux density j.(p,). Symbols show the mean values of velocity
in layers. Trajectory length required for one dependence is 5 ns with an
integration step of 1 fs.

The error in the viscosity, corresponding to the error in
determining the profile slope, is not greater than 5%.

The values of viscosity coefficients depending on the
created momentum flux density j.(py), as well as the corre-
sponding values of velocity gradients 0v,/0z, are presented in
the table. The presented data allow the conclusion that the

Table. Values of shear viscosity # obtained by the Miiller-Plathe method
for various values of the momentum flux density j.(p) in the computing
cell.

J:(py), 108 Pa vy 0z, 1012 57 7, 1073 cP
4.36 2.13 205
10.60 5.25 202
21.75 115 189
33.0 189 174
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viscosity tends to the value of 220 x 1073 cP, which corre-
sponds to the Newton flow.

6.4.2 SLLOD method. The shear stress in the MD method can
be produced by adding special terms to the equations of
particle motion. This method was called SLLOD [202]. Later,
Tuckerman et al. proposed a modification of the approach
called g-SLLOD [203], describing the process of stretching the
liquid by introducing an additional term —m;,r;VuVu in the
equation for the particle momentum:
P

ri_%qtriVu, (69)

P = F;p —p;Vu — m;r; VuVu,

where F;’5 are the forces of interatomic interaction deter-
mined by the potential, and Vu is the flow velocity
gradient. This algorithm requires a thermostat, since, due
to the friction, heating of the system occurs. Daivis and
Todd [204] have theoretically shown the equivalence of
SLLOD and g-SLLOD methods.

The algorithm produces a Couette flow with the shear
velocity 7 = Ou, /Oy in the calculation cell. By analogy with
the Miiller-Plathe method, the shear viscosity coefficient is
found from the relation

n=- M ; (70)

"

’

where (0., is the mean shear stress.

Review [205] from 2021 includes examples of using the
SLLOD for calculating the viscosities of model lubricant
liquids. Worth mentioning is the paper by McCabe et al. [206]
from 2001, devoted to calculating the viscosity in 9-oxyhep-
tadecane at high pressures using the nonequilibrium MD,
which qualitatively described the experimental dependence of
viscosity on pressure. In 2002, Bair et al. calculated the
viscosity of the liquid squalane (C3Hg;) and compared the
result with the experimental data. Robbins et al. have studied
the flow regimes and the lubricate morphology under shear,
and calculated the viscosity coefficients of squalane in a wide
range of pressures [207, 208]. In the paper by Liu et al. [209],
the viscosity coefficients are found using NEMD at shear
velocities 7 =~ 103—10'° s~!, and then the viscosity coefficient
is extrapolated to the region of experimental values j using the
Carreau model [210]. Worth noting is the recent study carried
out together with British Petroleum, in which both experi-
mental and theoretical investigations of squalane were
performed at pressures up to 50 thousand atmospheres
[211]. The viscosity was calculated by the SLLOD method,
while the extrapolation of the values to the Newton domain
was carried out.

6.5 Dependence of viscosity on shear velocity

As was mentions in Section 6.3.4, one of the problems of using
the Green—Kubo formula is the convergence of integral (66).
The problem is particularly urgent in molecular liquids due to
the slow decay of correlations and the numerical ‘noise’ at the
tails of autocorrelation functions in real calculations. In this
regard, it seems attractive to use NEMD methods, which are
in some sense more direct (the relationship between shear
stress and shear velocity is directly studied) and usually
converge faster. However, worth attention is the fact that
the shear velocities in the NEMD can reach values of

230+
220 ¢« Equilibrium MD value
210+
200 ~

190 %

\
180 |~ \
170

160 L1l L1l L1l [
101 10" 10" 10
Shear velocity 7, s~!

Shear viscosity 5, 1073 cP

Figure 10. Values of the viscosity coefficient for liquid n-pentane at
T=330K and p = 0.601 g cm~3, obtained by the Miiller-Plathe method
at various shear velocities j. Highlighted in red is the viscosity obtained by
the equilibrium Green—Kubo method.

10°—10'? s~'. At such velocities, the viscous friction regime
is often non-Newtonian, i.e., the viscosity depends on the
shear velocity (Fig. 10). For non-associated liquids, ‘shear
thinning’ most often manifests itself, i.e., the viscosity
decreases with a decrease in the shear velocity.

In the coupled mode theory (CMT), the dependence of
viscosity # on shear velocity 7 in the limit y — 0 has the form

n=rno— 47" (71)
Formula (71) has been widely used for extrapolating the
dependence #n(}) to zero in the early ages of nonequilibrium
MD development [212, 213]. In [213], it was shown that the
dependence of the form #(7'/?) in a wide range of shear
velocities looks like a combination of crossing straight lines
rather than a single straight line, and the coefficient 4 of the
linear approximation for low velocities is a few times greater
than for high velocities. As a consequence, the extrapolation
using Eqn (71) with the data at shear velocities above the
crossover will overestimate the values of 1, compared to the
true value of the Newton viscosity. At present, the approx-
imation using the Carreau model [210],

n=mn[1+(49)°] ", (72)
is considered more accurate. Equation (72) automatically
predicts an increase in the shear thinning effect with an
increase in the shear velocity. In Ref. [107], the extrapolation
by the Carreau formula is directly compared with the CMT
extrapolation and the conclusion of Ref. [213] that the CMT
extrapolation overestimates the Newtonian viscosity is
confirmed.

While the aim of MD modeling is to obtain the Newton
viscosity, the use of nonequilibrium methods requires either
modeling with small share velocities, at which the shear
thinning effect is insignificant, or carrying out a series of
calculations with different shear velocities and extrapolation.
As shown by the practical experience of the authors of the
present review, an accurate approximation of the dependence
11(7) with the Carreau formula is possible only in the presence
of several points in the region of small shear velocity (see our
paper [141] and the dependences #(}) in Refs [107, 214, 215],
used to carry out the approximation). The shear velocity can
be considered small if the condition 7 ~ 7! is satisfied, where
7 is determined by the maximum time of rotational relaxation
in the studied liquid [216]. Chen et al. in the 2009 paper [217],
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appropriately titled “Are pressure fluctuation-based equili-
brium methods really worse than nonequilibrium methods for
calculating viscosities?”’, show that, regarding computation
expenses, the statistical set of MD trajectories sufficient to
ensure GK integral convergence is nearly equal to that of
nonequilibrium MD calculations to average the velocity
profiles at low velocities and to extrapolate the function
(7). The experience of the authors of the present review
confirms this conclusion. However, NEMD turns out to be an
indispensable method if the purpose of modeling is to reveal
the dependence of viscosity on shear rate. GK formulas are
also inapplicable for calculating the viscosity of constrained
liquids, since they are derived assuming the molecules of the
liquid interact only with other molecules of the liquid. To
introduce interaction with a wall, one has to apply other
methods of viscosity calculations, using either the NEMD or
self-diffusion coefficient scaling, in correspondence with the
size of the calculation cell [218].

7. Predictive atomistic modeling

Below are examples of problems for which theoretical and
empirical approaches do not allow accurate prediction of the
viscosity of liquids in the range of 10'—10° mPa s, and
atomistic modeling can be a full-fledged alternative to
experiment. For the molecular liquids mentioned below, we
are not aware of papers on the experimental studies of phase
diagrams. Based on the measured viscosity coefficients, it is
possible to conclude that the molecular liquids are in a liquid
phase.

When compressing a liquid, on approaching the melting
line, the viscosity can increase faster than exponentially with
the growth of pressure (see, e.g.,[219-221]). The nature of this
phenomenon is related to the transition of the liquid to the
supercooled state and further amorphization by pressure
[179, 222]. The dependence of liquid viscosity on pressure
n(P) for these regimes is of practical significance, since the
pressures produced in diesel engines upon fuel injection can
reach 3 thousand atmospheres, and the pressure acting on the
lubricant liquid in the transmission elements can be greater
than 10 thousand atmospheres.

The experimental measurement of viscosity at such high
pressures is a rather complex and labor-consuming process.
Therefore, to assess the practical significance of molecular
modeling, industry leaders in the USA (Army Research Lab,
Dow Chemical, NIST, etc.) have for 20 years been conducting
the Industrial Fluid Properties Simulation Challenge [223].
Within the competition, the possibility of predicting the
properties of liquids using molecular modeling methods is
evaluated. In 2018 and 2019, the competitions were aimed at
predicting the shear viscosity of model lubricant liquids:
isononane (2,2,4-trimethylhexane) (CoHy) and 1,1-diphenyl-
ethane (C14H4). Of additional interest is the construction of
interrelations between the microscopic structure of matter
and the liquid properties [224] at high pressures.

Within the framework of the competitions of 2018 [141]
and 2019 [143], the authors of the present review carried out
shear viscosity calculations in the region of high pressures. As
an interaction model, the COMPASS potential [140] was
chosen. To verify the model for 2,2,4-trimethylhexane, both
the equilibrium Green—-Kubo method [163, 164] and the
nonequilibrium Miiller-Plathe method [200, 201] were used.
For 1,1-diphenylethane, only the calculations using the
equilibrium method were performed. Figure 11 presents the
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Figure 11. Dependence of shear viscosity of 2,2,4-trimethylhexane
(CyHy) and 1,1-diphenylethane (Cj4H4) on pressure at 7'= 298 and
311 K, respectively. Colored circles show the result of MD calculations;
black squares show the experimental data.

results of predicting the viscosity by the MD method, as well
as the experimental results [226] by S Bair published later.

The dependence 5(P) predicted in MD for 2,2,4-tri-
methylhexane (red circles in Fig. 11) agrees with Bair’s
experimental results (black circles) at pressures up to
5 thousand atmospheres and a temperature of 298 K. As the
pressure increases, the MD results sink lower and lower
compared to the experimental ones. This deviation of the
calculated points from the experimental ones, in our opinion,
is associated with insufficient sampling of the phase space of
the system in the MD calculations. For 1,1-diphenylethane,
the calculation technique was improved, which ensured
agreement with experiment up to pressures of 2500 atm at
high viscosities and qualitatively reproduced the transition to
the superexponential regime in #(P).

8. Conclusion

The analysis of theoretical models has shown that, at present,
the theory of the viscosity in liquids is far from complete.
Models based on thermodynamic similarity, ideally, allow
predicting viscosity and other transport coefficients based
only on the data on thermodynamics: the critical parameters,
the evaporation curve shape, or, possibly, the parameters of
the state equation. In the practically used models, the
similarity method works well enough only within a homo-
logous series. Such models are most advanced for the series of
n-alkanes. However, applying such models even to substances
from close families, e.g., to branched or cyclic hydrocarbons,
yields predictions that strongly differ from the experimental
data. This applies to both early models such as TRAPP [7]
and newer models based on excess entropy scaling [49].
Among the thermodynamic similarity methods, the
correlations between the viscosity and the excess entropy
seem promising, because, using a small number of adjustable
parameters that can be determined from the equation of state,
it turns out to be possible to describe rather well the viscosity
of a number of organic liquids at pressures up to 300 MPa.
However, this scaling is not applicable to all substances;
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moreover, it seems to fail at high compression ratios or low
temperatures due to association effects.

Theoretical models with empirically determined coeffi-
cients, such as the reduction to a system of hard spheres [21,
22] or the free volume theory [63], allow a more accurate
description of the viscosity than do completely predictive
models, due to the presence of free parameters, determined
based on the experimental viscosity data. In this case, a
theoretically substantiated functional form allows extrapolat-
ing the dependence to a wider domain of pressures and
temperatures than used for the initial choice of parameters.

Finally, purely correlation models are the least substan-
tiated theoretically, but can yield the most reliable results
upon interpolation of experimental data. For some correla-
tion models, a relation of adjustable parameters with the
thermodynamics is also proposed [66, 71, 79], in which case
the model becomes predictive.

Calculating the viscosity of liquid mixtures and alloys is a
more complex problem. Simple mixing rules for the para-
meters of theoretical and correlation models for various
substances yield satisfactory results in mixtures of substances
close in structure, but for asymmetric mixtures the viscosity
can be predicted with significant errors [25, 83].

The complexity of constructing and applying theoretical
models for the viscosity consists in the extremely high
sensitivity of viscosity to density. A difference in density of
less than 1% in different equations of state can lead to a
difference of 10% in viscosity values [26]. An accurate
prediction of viscosity at high pressures requires either a
general model of viscosity and a high-accuracy equation of
state or the initial fitting of the correlation parameters to a
particular equation of state. In the latter case, the chosen
viscosity—density correlations may not appear to be transfer-
able between different equations of state.

A reliable method of predicting the viscosity in liquids up
to 1 Pa s, as well as a wide range of other properties, is
modeling by the method of molecular dynamics, which
requires substantial computation resources [227, 228]. The
range of temperatures and pressures in which MD predictions
can be considered reliable is determined by the choice of
interaction potential for the substance. When using potentials
that correctly describe the interaction features, the MD
method reproduces the effects of association, such as the
transition to a superexponential dependence of viscosity on
pressure [62, 215]. For organic compounds, so-called force
fields of class I and class II are widely used. The former are
less costly computationally, but have a narrower field of
application for a fixed set of parameters. Class II potentials
can be used to predict the viscosity with an accuracy of the
order of 10-20% at pressures of at least 0.5-1 GPa, as shown
in Refs [62, 141, 143]. The advantage of the MD method is
also the possibility of studying the dependence of viscosity on
the shear stress, which is relevant for predicting friction in
machinery.
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