
Abstract. We discuss the spatial and spectral properties of
electromagnetic fields in a squeezed vacuum state and consider
photon correlations in such fields. We concentrate on a bright
squeezed vacuum with a large mean number of photons per
mode and both spatial and frequency multimode structures. A
theoretical approach based on the introduction of independent
Schmidt modes and their photon operators is considered, which
allows analytically correctly describing any characteristics of
the squeezed field, including photon correlations, in good agree-
ment with experiment. We present methods for controlling the
mode content, degree of squeezing, and entanglement of
photons of the generated squeezed light, including the scheme
of a nonlinear interferometer; their advantages and applied
prospects are analyzed. We discuss applied problems where
squeezed nonclassical states are realized: the dispersion char-
acteristics of media in the THz frequency range and high-

precision detection of weak phase and angular perturbations
based on correlations between photons.

Keywords: quantum optics, multiphoton squeezed states of
light, nonclassical electromagnetic fields, photon correla-
tions, Schmidt modes, photon entanglement, high-precision
quantum measurements

1. Introduction

Current progress in experimental quantum optics and laser
physics has allowed laboratory generation of nonclassical
light fields of various types. One of the most interesting and
promising states of light is squeezed light fields, which can be
obtained, for example, in the process of parametric light
scattering in media with quadratic nonlinearity, when one
pump photon produces two (signal and idler) photons with
the total energy equal to the energy of the initial pumping
photon [1]. In the case of a low pump intensity and vacuum
states of the signal and idler fields at the entrance of the
crystal, spontaneous parametric scattering produces corre-
lated photon pairs, usually called biphotons [2, 3]. Nonclassi-
cal light generated in such a process can actually be
considered the result of parametric amplification of vacuum
fluctuations of the signal and idler fields [1].

The phenomenon of spontaneous parametric scattering
was first predicted and theoretically substantiated by
Klyshko in 1966 [4] and was soon discovered by several
experimental groups [5±7]. An important point is that
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photons in a biphoton pair are correlated in a number of
parameters: space, frequency, and time. Correlations of the
signal and idler fields in terms of the number of photons were
theoretically predicted by Klyshko and Zel'dovich [8] and
were then first observed experimentally in [9].

It is the presence of correlations between signal and idler
photons that opens up the possibility of a wide use of such
light in various practical applications. Correlated biphoton
pairs are used to create various entangled states of an
electromagnetic field. Based on biphoton states, so-called
qudits, analogs of quantumbits of a higher dimension (3, 4, or
more) have been obtained [10±25]. This is achieved by using
different degrees of freedom of photons, such as polarization,
frequency, and angular momentum projection. These states
have a high degree of photon entanglement, which is of
fundamental importance for the development of quantum
communications and quantum information technologies.
There are many quantitative criteria for entanglement. For
`pure' bipartite states, entanglement occurs if the total wave
function cannot be represented as a product of one-particle
functions of individual subsystems. For a three-body system,
the entanglement among all the components is already quite
difficult to quantify. The degree of entanglement of biphoton
ququarts and qutrits was calculated in [23, 24] in various ways
based on quantitative measures of entanglement, such as the
Schmidt parameter, concurrence, relative entropy, and von
Neumann mutual information. For mixed bipartite systems,
various entanglement characteristics are used, such as
entanglement of formation and negativity [26, 27]. The
simplest example of entangled biphoton states is provided
by the Bell polarization states used for experimental demon-
stration of the properties of nonclassical light, which underlie
the algorithms of quantum teleportation of unknown states of
light [28±32]. Entangled two-photon states are used in
quantum metrology, quantum tomography, quantum mem-
ory, optical quantum communication, and quantum crypto-
graphy [33±40].

At a high pump intensity, which ensures a high parametric
conversion coefficient, parametric superluminescence occurs
[1]. Generated under these conditions are no longer individual
biphoton pairs but multiphoton squeezed states of light, with
a mean number of photons per mode that can be very large.
Such states of light are in fact a macroscopic quantum object.
Of greatest interest is the squeezed vacuumÐmultiphoton
squeezed light obtained in stimulated parametric scattering in
the case where the modes of the signal and idler fields are
initially in the vacuum state [41±44]. In [43], nonclassical light
was experimentally obtained in the squeezed vacuum state
with the mean number of photons of the order of 1013 per
mode. The resulting number of photons corresponds to a very
high brightness of the generated nonclassical light, and this
state is hence called a bright squeezed vacuum. Typically,
such fields are multimode. Generated in the nondegenerate
regime are not single pairs of photons but so-called twin
beams. In this case, correlations among a large number of
photons occur, which is the most important nonclassical
property of such light [44±47]. Moreover, the intensities of
the signal and idler beams are totally correlated. Although the
large number of photons contained in each beam is subject to
strong fluctuations, the change in the number of photons in
conjugate beams occurs synchronously, such that the disper-
sion of the difference between the numbers of photons in the
idler and signal channels is theoretically identically equal to
zero. In experiment, this dispersion is nonzero due to various

losses that strongly affect the squeezed states and can destroy
their unique nonclassical properties, but even then the spread
of values is much smaller than the shot noise. In addition,
such light is characterized by a significant decrease in the
variance of the difference/sum of field quadratures of
correlated field modes compared to that in the vacuum
state. This means the suppression of quantum fluctuations
for the process of measuring the sum or difference field. The
squeezing for such quadratures is determined by phase
relations between the pump field and the generated non-
classical light field. The described properties are called `two-
mode squeezing.'

In the case of parametric scattering in a frequency-
degenerate collinear regime, light can be generated in a
squeezed vacuum state in a single mode. Here, the field state
is a superposition of a large number of even-numbered Fock
states and has a very wide and smoothly decreasing distribu-
tion over the number of photons, with a variance that depends
quadratically on themean number of photons. In such a field,
the probability of detecting a large number of photons is
nonzero, which is important for the excitation ofmultiphoton
processes during the interaction of light with matter. The
variance of one of the field quadratures is suppressed in the
single-mode squeezed vacuum (and the variance of the other
quadrature is simultaneously increased). This property, called
quadrature squeezing, implies a noise level that is significantly
less than the `standard quantum limit.' This opens up new
possibilities for various metrological applications and the
implementation of ultra-precise measurements with reduced
noise.

It also turns out that the generation of multiphoton
states, which are a macroscopic analogue of two-photon
Bell states, is possible at high parametric gain [44]. For one
of these, the `singlet' one, unique polarization properties have
been found, consisting in zero fluctuations of all Stokes
parameters and invariance with respect to polarization
transformations [48±50].

Thus, a multiphoton (bright) squeezed vacuum has a
number of unique properties, which are widely used in
solving problems of quantum metrology [51], quantum
imaging [52±55], optomechanics [56], high-precisionmeasure-
ments [57±62], and transmission and processing of quantum
information [63]. An important advantage of themultiphoton
squeezed vacuum is its multimode structure, which opens up
new possibilities for encoding quantum information.

The multimode squeezed vacuum is a new object that has
been studied insufficiently. Because of the correlations of a
large number of photons with each other and the high mean
values of the number of photons per mode, the theoretical
analysis of their space±time and correlation properties is
extremely difficult, but is at the same in high demand. One
of the most promising theoretical approaches is the Schmidt
mode formalism. A detailed study of the Schmidt formalism
and an analysis of the properties of biphoton states (in the
regime of spontaneous parametric scattering at small values
of the conversion coefficient) were performed in [17, 22, 64±
70]. In [71±73], a similar approach was used to analyze the
spectral properties of the squeezed vacuum, but analytic
results were obtained only in the perturbation theory frame-
work. For the regime of high parametric gain, only numerical
calculations have been carried out. Another theoretical
approach that has been used is based on a generalization of
the wave equation and Maxwell's equations for field
operators, but the results can then only be obtained
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numerically, because a system of integro-differential equa-
tions has to be solved [74±76].

This review is devoted to a discussion of the spatial and
spectral properties of the bright squeezed vacuum. We
describe a theoretical approach based on the introduction of
new collective independent Schmidt modes and the corre-
sponding photon creation/annihilation operators, which
allows analytically obtaining the evolution of these operators
in the case of a bright squeezed vacuum and hence
theoretically describing any characteristics of such squeezed
light, including photon correlations. We discuss the spatial
and frequency modes of such light fields in detail and analyze
the methods for controlling the mode content, squeezing, and
entanglement of photons of the generated squeezed light. In
particular, the scheme of a nonlinear Mach±Zehnder inter-
ferometer, made of two consecutive nonlinear crystals, is
discussed, and its advantages and application options are
considered. We focus especially on the features of the THz-
range squeezed vacuum generated in a highly nondegenerate
parametric scattering regime. In conclusion, we discuss
applied problems implemented on the basis of nonclassical
fields in a squeezed vacuum state: high-precision measure-
ments of the dispersion characteristics of media in the THz
range and high-precision detection of small perturbations
based on correlations between photons.

2. Parametric generation of light
in a squeezed vacuum state
and its theoretical description
in the Schmidt mode formalism

2.1 Parametric light scattering in a nonlinear crystal
We consider the simplest scheme of parametric light
generation in a nonlinear crystal (Fig. 1). When a pump
photon interacts with a nonlinear medium, two photons
are produced, the signal and idler, whose frequencies and
wave vectors satisfy the energy and momentum conserva-
tion laws [1]

os � oi ÿ op � 0 ; �1�

ks � ki ÿ kp � 0 ; �2�

where os; i; p and ks; i; p are the frequencies and wave vectors of
the signal, idler, and pumping photons.Due to the presence of
dispersion in nonlinear media, relations (1) and (2), which are
in fact the phase-matching conditions for the process of
parametric scattering, can be satisfied most easily in aniso-
tropic nonlinear crystals, for example, in b-barium borate
(BBO) or potassium titanyl phosphate (KTP) crystals. The
phase matching conditions restrict only the sum of frequen-
cies and wave vectors of the generated photons, and therefore
the generation of signal and idler photons occurs in a wide
range of spectrum and emission-angle distributions. But the
simultaneous satisfaction of phase matching conditions is
possible only at certain frequencies and wave vector direc-
tions. In the case of a weak violation of the phase matching
conditions, the process of parametric scattering can also
occur, but with a lower probability. The probability distribu-
tion of parametric scattering depending on the frequency and
direction of the photon wave vectors forms the so-called
frequency-angle spectrum of parametric scattering. We note
that the generated photons can have coincident or different

polarizations, which means phase matching of respective
types I or II, with significantly different frequency±angle
spectra [77]. If the signal and idler photons with exact phase
matching have the same frequencies equal to half the pump
frequency, os � oi � op=2, then the parametric scattering is
called degenerate in frequency. In a strongly nondegenerate
regime, the photon energies differ significantly from each
other, such that one of the photons can even correspond to the
THz frequency range. This regime shows a number of features
to be discussed in Section 4.

TheHamiltonian of parametric light scattering in a crystal
with a quadratic nonlinearity for both spontaneous and
stimulated regimes can be represented as [1]

H �
�
d3r w �2��r�E�p �r; t�Eÿs �r; t�Eÿi �r; t� � h:c: ; �3�

where w �2� is the second-order nonlinear susceptibility, the
subscripts s; i, and p denote the signal, idler, and pump fields,
and the superscripts ��ÿ� correspond to positive- and
negative-frequency parts of the field operators (respectively
to photon absorption and emission). We note that squeezed
states can also be obtained in the process of four-wave mixing
that occurs in media with cubic nonlinearity. In this case, the
Hamiltonian is similar to Hamiltonian (3), with w �2� replaced
with a third-order nonlinear susceptibility and the second
power of the pump field [78]. We analyze the process of
parametric scattering in one nonlinear BBO crystal in the
frequency-degenerate regime under the condition of small-
ness or compensation of anisotropy [79, 80]. Assuming
monochromatic waves and zero frequency detuning, the
Hamiltonian of the system can be written as

H � i�hG
�
dqsdqi F �qs; qi�a yqsa yqi � h:c: ; �4�

where G is a parameter that characterizes the nonlinear
interaction strength and depends on the nonlinearity of the
crystal, and F �qs; qi� is the biphoton amplitude, which in the
case of identical frequencies and polarizations of the signal
and idler photons depends on the transverse photon wave
vectors qs and qi as [81±84]

F �qs; qi� � C exp

�
ÿ s 2�qs � qi�2

2

�
sinc

�
L�qs ÿ qi�2

4kp

�
� exp

�
ÿ i

�
L�qs ÿ qi�2

4kp

��
: �5�

Here, L is the crystal length, 2
��������
ln 2
p

s is the full width at half
maximum (FWHM) of the Gaussian spatial pump profile,
and kp is the pump wave vector.

L

Pump

Nonlinear
crystal

Signal

Idler

ys

yi

qs

qi
fs ÿ fi

ks
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Figure 1. Parametric generation of light in a nonlinear crystal.
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We note that biphoton amplitude (5) does not factor into
the degrees of freedom of the signal and idler photons, which
means that they are highly entangled. This significantly
complicates the theoretical analysis of the properties of the
generated squeezed fields.

One of the methods to analyze such fields theoretically is
the perturbative approach. It is valid under conditions of
weak pumping and allows obtaining the state vector of the
spontaneous parametric scattering field in the first order with
respect to the interaction operator [2, 85]:

jC i / j0i �
�
dqs

�
dqi F �qs; qi� a yqs a yqi j0i : �6�

Such a field characterizes the creation of biphotons or pairs of
correlated photons with different distributions over trans-
verse wave vectors. However, at a high pumping intensity, in
the regime of parametric superluminescence [1], photons are
generated not only in pairs: four, eight, or more photons
correlated with each other can be produced. A multimode
bright state of a squeezed vacuum formed in this process has a
large number of photons that exhibit multiple spatial-
frequency correlations with each other. Unlike biphoton
pairs, such bright squeezed states cannot be described
perturbatively, while the analysis of strong entanglement
between photons in different modes is a separate difficult
problem. Hence, there is a need to develop new nonperturba-
tive theoretical methods and approaches to properly take the
correlations among a large number of photons into account.

One such theoretical approach, developed in [81, 86],
allows describing both spatial [81] and spectral [86] proper-
ties of the squeezed vacuum as well as photon correlations,
and also allows obtaining analytic expressions for any
measurable characteristic of such light. This approach is
based on the introduction of new independent `broadband'
modes in terms of angle or frequency variables and the
corresponding photon creation/annihilation operators in a
given mode.

2.2 Spatial Schmidt modes
and the evolution of their photon operators
As shown in Section 2.1, the photon field can be described in
the formalism of plane waves having fixed frequency and
direction of the photon wave vector. But in the case of the
bright squeezed vacuum, such modes are strongly entangled,
which fundamentally complicates the theoretical description
of the properties of light. One of the possible ways to solve this
problem is the introduction of new spatial±frequency modes,
which are independent and actually diagonalize Hamilto-
nian (4). Such modes, called Schmidt modes, characterize the
creation/annihilation of a photon in a continuous range of
frequencies and emission angles. The formalism of Schmidt
modes, originally introduced by Schmidt [87], is widely used
in the study of bipartite systems of various natures [64, 88±91].

The most detailed analysis of Schmidt decomposition for
bipartite systems was carried out in [67]. Schmidt decomposi-
tion can be defined as follows. For bipartite function
C�x1; x2� a unique decomposition exists in the form

C�x1; x2� �
X
n

l 1=2
n cn�x1� fn�x2� : �7�

The functions appearing in the decomposition are the
Schmidt modes, and the decomposition coefficients deter-
mine the weights ln of these modes, which satisfy the

normalization conditionX
n

ln � 1 : �8�

A decomposition analogous to Schmidt decomposition
(7) was also obtained byMercer, but several years later [92]. It
follows from Schmidt decomposition (7) that, for bipartite
state C�x1; x2�, the Schmidt-mode basis diagonalizes the
reduced density matrices for each individual subsystem. In
the most systematic way, the Schmidt modes, including
phases, can be deduced from the integral equations [67]�

dx2 C�x1; x2� f �n �x2� � l 1=2
n cn�x1� ;

�9��
dx1 c

�
n �x1�C�x1; x2� � l 1=2

n fn�x2� :

If the variables x1 and x2 take a discrete set of values, then the
Schmidt decomposition is directly related to the singular
value decomposition procedure known in linear matrix
algebra [67]. The main advantage of using the Schmidt
decomposition is the possibility of diagonalizing the problem
and analyzing the entanglement and correlations that arise in
a bipartite system.

To quantify entanglement in such a bipartite system, the
Schmidt parameter is introduced as

K � 1P
n l

2
n

: �10�

The minimum value of the Schmidt parameter is equal to
unity, which means that the individual subsystems are then
independent of each other and the total wave function can be
factored into a product of one-particle states. The maximum
entanglement in pure state (7) can be achieved if each
subsystem is described by a reduced density matrix corre-
sponding to a diagonal-type maximum-mixed state with
diagonal elements of the same magnitude. The maximum
value of the Schmidt parameter is therefore determined by the
dimension of the basis of states of an individual subsystem.

Finding the Schmidtmodes of the signal and idler photons
from biphoton amplitude (5), which depends on four
variables, is formally a difficult mathematical problem,
because the Schmidt decomposition is unique only in the
case of a two-variate function. However, the periodicity
property of a function with respect to the difference between
the azimuthal angles of photons allows obtaining its decom-
position in azimuthal channels analytically:

F �qs; qi;fs ÿ fi��
X
n

wn �qs; qi� exp
�
in �fs ÿ fi�

�
: �11�

Given this decomposition, it is already possible to use the
Schmidt formalism [67, 84, 87±89] and represent each
azimuthal channel function wn�qs; qi� with the number n as a
decomposition with respect to the `radial' modes of the signal
and idler photons, depending only on the absolute value of
the transverse wave vector of each photon:

wn�qs; qi� �
X
n; p

��������
ln; p

p un; p�qs�����
qs
p vn; p�qi�����

qi
p : �12�

The decomposition coefficients are determined by the mode
weights ln; p, which satisfy the obvious normalization condi-
tion

P
ln; p � 1.
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Thus, the following set of Schmidt modes, orthonormal in
two-dimensional space, arises for the signal and idler photons
[81±84]:

Un; p�qs� �
un; p�qs�����

qs
p exp �infs� ;

�13�
Vn; p�qi� �

un; p�qi�����
qi
p exp �ÿinfi� :

It is easy to see that the azimuthal modes exp �infs�
correspond to photon states with a certain projection of the
orbital angular momentum (OAM) on the z-axis, because
they are eigenfunctions of the z-projection angular momen-
tum operator with the eigenvalue n�h. Such light has a
wavefront rotating about the z-axis in one direction or
another, and is called `twisted light.' Depending on the
OAM, going around a circle in the xy plane gives rise to a
phase shift equal to 2pn. Moreover, in each azimuthal
channel, the projections of the orbital momentum of the
signal and idler photons are opposite. The `radial' modes are
the Laguerre±Gaussian functions in the simplest case of a
single crystal [82, 83].

We note that spatial modes can be obtained not only in a
polar but also in a Cartesian coordinate system. However,
this is only possible if the sinc function in (5) is approximately
replaced with a Gaussian profile [83]. The modes obtained in
this way are approximate, although they factor into the
product of Hermite±Gauss functions associated with the
perpendicular directions of two-dimensional space.

Usingmodes (13), we can introduce new photon operators
that describe the creation or annihilation of a signal or idler
photon in a particular spatial Schmidt mode:

A yn; p �
�
dqsUn; p�qs� a yqs ; B yn; p �

�
dqiVn; p�qi� a yqi : �14�

These operators satisfy the standard commutation relations�
Am; n;A

y
k; l

� � dm; k dn; l
�
Am; n; B

y
k; l

� � dm; k dn;ÿl �15�

and describe the creation of photons with a certain projection
of the orbital momentum on the z-axis, but only in a certain
range of transverse wave vectors or polar angles correspond-
ing to the `radial' mode profile. The last commutation
relation expresses the correlation of photons in conjugate
beams with opposite OAM projections.

In terms of the introduced operators, the Hamiltonian of
the parametric interaction can be expressed as

H � i�hG
X
n; p

��������
ln; p

p �A yn; pB yn; p ÿ An; pBn; p� ; �16�

and the operators themselves follow the Heisenberg-repre-
sentation evolution [81, 93]

A out
n; p � A in

n; p cosh
ÿ ��������

ln; p
p

G
�� �B in

n; p

�y
sinh

ÿ ��������
ln; p

p
G
�
;

B out
n; p � B in

n; p cosh
ÿ ��������

ln; p
p

G
���A in

n; p

�y
sinh

ÿ ��������
ln; p

p
G
�
;

�17�

whereG � �G�t� dt is the parametric gain coefficient, which is
proportional to the pump amplitude. In the case of exact
frequency matching, this approach involves no approxima-
tions, because the Hamiltonian is then independent of time.

The advantage of this approach is that the different
Schmidt modes are independent, which allows diagonalizing
the Hamiltonian and solving the problem even for an infinite
number of modes. From a mathematical standpoint, this
procedure allows passing from continuous spatial-angular
variables to discrete characteristics, i.e., to the probability
amplitudes and populations of various Schmidt modes.

The solutions obtained are in fact the Bogoliubov
transformations for the Schmidt-mode photon operators. If
the evolution of Schmidt operators (17) and the mode
structure are known, we can obtain analytic expressions for
any physical observables and the squeezed light character-
istics of interest. For example, the intensity distribution in a
signal beam has the form



Ns�qs�

� �X
n; p

jun; p�qs�j2
qs

sinh2
ÿ
G

��������
ln; p

p �
: �18�

The result obtained is an incoherent sum of distributions of
individual Schmidt modes with new weights that depend on
the parametric gain efficiency, and in fact on the pump field
amplitude, the nonlinear susceptibility, and the crystal length.
We note that G

��������
l0; 0

p
corresponds to the parametric gain

coefficient commonly used in experiment [93].
The normalized effective weights of the Schmidt modes in

(18) can be expressed as

Ln; p �
sinh2

ÿ
G

��������
ln; p

p �P
n; p sinh

2
ÿ
G

��������
ln; p

p � : �19�

We can introduce the effective weight of a single only-
azimuthal or only-radial mode as

Ln �
X
p

Ln; p ; �20�

Lp �
X
n

Ln; p : �21�

The values of the respective Schmidt parameters [67, 87±89]
characterizing the entanglement of signal and idler photons in
terms of azimuthal and radial variables can be calculated as
[81, 93]

Kaz � 1P
n L

2
n

; Krad � 1P
p L

2
p

: �22�

The degree of photon entanglement in all spatial variables is
determined by the value of the total Schmidt parameter

Ktot � 1P
n; p L

2
n; p

: �23�

As in (8), the sum of all weights of the Schmidt modes is equal
to unity. Hence, the more effective weights make sizeable
contributions to sums (22) and (23), the smaller the denomi-
nator in (22), (23) and the larger the Schmidt parameter.
Therefore, the greater the number of spatial Schmidt modes,
the higher the degree of spatial entanglement of photons. It
hence follows that, with a fairly good accuracy, the Schmidt
parameter can be interpreted not only as a quantitative
measure of photon entanglement but also as an estimate of
the effective number of spatial modes.

In this approach, therefore, the field in the signal and idler
beams can be represented in terms of Schmidt modes with
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weights that are essentially dependent on the parametric gain
coefficient. This allows varying the properties, including
entanglement, of the photons of the detected squeezed
vacuum, depending on the parametric conversion efficiency.

2.3 Frequency Schmidt modes
An approach similar to that described in Section 2.2 can also
be developed in the spectral representation. In the case of one
spatial mode, assuming a Gaussian temporal pumping
profile, we can obtain an expression for a Hamiltonian
similar to Hamiltonian (4) in the spatial case, but now in
frequency variables [86]:

H � i�hG
�
dos doi F �os;oi�a yos

a yoi
� h:c: �24�

The biphoton spectral amplitude has the form

F �os;oi� � C exp

�
ÿ �os � oi ÿ op�2

2O 2

�
sinc

�
DkL
2

�
� exp

�
ÿ i

DkL
2

�
; �25�

where Dk � kp�o� ÿ ks�os� ÿ ki�oi� is the longitudinal mis-
match of the wave vectors of the signal, idler, and pump
photons, andO is the spectral width of the Gaussian profile of
the pump amplitude.

The spectral amplitude of a biphoton, in contrast to that
in the spatial case, can be immediately expanded in terms of
one-dimensional frequency Schmidt modes [86]:

F �os;oi� �
X
n

�����
ln

p
un�os� vn�oi� : �26�

Furthermore, by analogy with the spatial case, photon
creation/annihilation operators in the Schmidt modes can be
introduced. The Hamiltonian and the evolution of photon
operators in the Heisenberg representation have a form
similar to (16) and (17). The spectral Schmidt modes, unlike
those in the spatial case, are one-dimensional (bear a single
index), and in the case of a single nonlinear crystal their
profiles are close to one-dimensional Hermite±Gauss func-
tions [65].

Thus, within this approach, it is possible to analytically
obtain any spectral characteristic of the squeezed vacuum in a
wide range of parametric gain, up to high values (ignoring
pump depletion), which can then be compared with those
measured in experiment. Broadband Schmidt frequency
modes were also introduced in [72, 73, 94], but finite
numerical values of the relevant parameters characterizing
squeezed light turned out to be difficult to obtain.

2.4 Photon number correlation of twin beams
From the analysis of Hamiltonian (16) and the evolution of
photon operators in the Schmidt modes, we can immediately
see the main property of the generated squeezed vacuum:
photon number correlation in the signal and idler channels.
Indeed, for each specific Schmidt mode number, the operator
of the difference between the numbers of signal and idler
photons is an integral of motion. Therefore, the variance of
the difference between the numbers of photons is the same at
the input and output of the a nonlinear crystal. For a squeezed
vacuum, therefore, given vacuum states at the entrance to the

crystal, the theoretical value of the variance of the difference
in the numbers of photons is identically zero. Because the
Schmidt modes are independent, the same holds for all
modes. This result implies strong correlations in the number
of photons in the signal and idler twin beams, often referred to
as two-mode squeezing. To characterize correlations in this
case, it is convenient to use the noise reduction factor (NRF)
proportional to the variance of the difference between the
numbers of photons in the signal and idler beams, DNsÿNi

,
normalized to the total mean number of photons in the
beams:

NRF � DNsÿNi

hNs �Nii : �27�

The NRF values recorded in experiments, although
nonzero, were much less than unity [37, 41, 44, 51, 52, 95±
98]. The NRF values obtained experimentally in [95] were
much lower than the shot noise level. An analysis of the NRF
dependence on the size of the angular aperture limiting the
output beams was also performed there. It turned out that the
degree of two-mode squeezing increases with an increase in
the aperture diameter. Thus, the greater the number of spatial
`plane-wave' modes that can be distinguished, the better the
correlations and the smaller the NRF. The selection of one
`broadband' spatial±frequencymode of a two-mode squeezed
vacuum with a mean number of photons of about 20 was
implemented in [98]. Direct measurement of correlations in
the number of photons showed significant suppression of the
difference fluctuations, to a level below the shot noise. From
the standpoint of quantum information encoding, the
selected state has a high `dimension,' comprising about
6400 elements.

2.5 Quadrature squeezing and entanglement
in quadrature variables
In Section 2.2, we discussed spatial correlations of photons in
the signal and idler beams. The degree of photon entangle-
ment in azimuthal or `radial' variables is then determined by
the value of the corresponding Schmidt parameter (22). In the
case where generation occurs in one spatial mode for each of
the conjugate beams, the biphoton amplitude factors with
respect to spatial variables of the signal and idler photons, the
Schmidt parameter is identically equal to unity, and there is
no spatial entanglement. However, two-mode squeezing, i.e.,
the correlation between the numbers of photons in the signal
and idler channels discussed in Section 2.4 is preserved, as
quantified by NRF factor (27). Another important nonclassi-
cal property of a squeezed vacuum is quadrature squeezing.
For a more detailed understanding of this effect, we first
consider the single-mode squeezed vacuum corresponding to
the degenerate case of coincident frequencies and wave
vectors of signal and idler photons. The parametric genera-
tion of such light is described by the Hamiltonian [99]

H � i�h
G
2

�
exp �ij��a y�2 ÿ exp �ÿij�a 2

�
; �28�

where j is the phase of the pump field at the entrance to the
crystal and a y is the photon creation operator in a single
mode, whose evolution in the Heisenberg representation
corresponds to the solution

a
y
out � a

y
in coshG� exp �ÿij� ain sinhG : �29�
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Under these conditions, only an even number of photons can
be produced, and the field state is a superposition of a large
number of eigenstates of the field oscillator jniwith only even
numbers and is characterized by a very wide smoothly
decreasing distribution over the number of photons [99, 100]:

jCsi � 1��������������
coshG
p

X1
n�0

exp �inj� tanh n G

�����������2n�!p
2 nn!

j2ni : �30�

After the introduction of field quadratures

bX � a� a y���
2
p ; bP � aÿ a y

i
���
2
p ; �31�

state (30), depending on the coordinate quadrature at j � 0,
takes the form

cs�X � �
1

p 1=4
����
R
p exp

�
ÿ 1

2

�
X

R

�2�
; �32�

with the parameter R � exp G. It follows from (32) that, for
large G, the variance of the coordinate field quadrature Dx,
which can be represented as

Dx � R 2

2
� 1

2
exp �2G� ; �33�

is much greater than the variance of the vacuum state, which
is equal to 1=2.

Similarly, in themomentum representation, it follows that
the variance of the momentum field quadrature is much less
than in the vacuum state,

Dp � 1

2
exp �ÿ2G� : �34�

Thus, a single-mode squeezed vacuum has suppressed
variance along one of the field quadratures, which means
that the level of fluctuations of this quadrature is much lower
than the `standard quantum limit,' and hence so-called
quadrature squeezing occurs. Expressions for the variances
of field quadratures can be obtained directly using the
evolution of photon operators (29) in the Heisenberg
representation. Depending on the phase difference j, one or
the other field quadrature is squeezed. In the general case, the
quadrature `rotated' through the angle b � p=2� j=2 is

squeezed:

bXb � bX cos b� bP sin b � exp �ÿib� a� exp �ib� a y���
2
p :

�35�
The distribution with respect to the number of photons

and the Wigner function for state (30) are shown in Fig. 2 for
the mean number of photons hni � 3. It can be seen that, at a
phase equal to p, the coordinate quadrature is squeezed,
which is accompanied by a strong increase in the variance of
the momentum quadrature.

The regime of parametric generation of a two-mode
squeezed vacuum, with each of the conjugate beams char-
acterized by its unique mode, can be described by the
Hamiltonian

H � i�hG�a yb y ÿ ab� ; �36�

where a y and b y are the photon creation operators in the
signal and idler modes. The state vector of such a field can
be written as a decomposition with respect to Fock states
jnia and jnib with exact numbers of signal and idler photons
[99, 100]:

jCti �
X1
n�0

tanh n G

coshG
jniajnib : �37�

In terms of the respective field quadratures Xa and Xb of the
signal and idler fields, this state becomes

CR�Xa;Xb� � 1���
p
p exp

�
ÿ �Xa ÿ Xb�2

4R 2

�
� exp

�
ÿ R 2�Xa � Xb�2

4

�
: �38�

By analogy with the conclusion deduced from the analysis of
state (32), it follows from the form of function (38) that the
sum of coordinate quadratures and the difference between the
momentum quadratures of the signal and idler fields have
suppressed variances. Moreover, their squeezing is character-
ized by the same factor:

Rÿ2 � exp �ÿ2G� : �39�
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Figure 2. (a) Distribution over the number of photons and (b) Wigner function profile at half-height for two values of phase j for state (30) with mean

number of photons hni � 3.
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An important feature of the squeezed vacuum state (37) is
that it cannot be represented as a product of individual wave
functions of the signal and idler modes. This property, which
means strong entanglement of twin beams, is often called
entanglement in terms of the number of photons [44, 47, 101,
102]. This property should be distinguished from the above-
described terminologically close concept of `photon number
correlation,' which refers to the synchronization of intensity
fluctuations in both channels. We note that entanglement in
the number of photons is directly related to entanglement in
quadrature variables [102]. Indeed, wave function (38)
cannot be factored with respect to the quadrature variables
Xa and Xb of individual photons [102]. To quantify the
photon entanglement in this state, it is convenient to use
the fact that state (37) is also a Schmidt decomposition, but
with the role of Schmidt modes played by the Fock states of
the signal and idler modes, which depend on the quadrature
variables of photons with the characteristic weights
�n � tanh2n G=cosh2 G. In this case, it is therefore more
convenient to use the Schmidt parameter as a measure of
entanglement, although the negativity and other quantifiers
also lead to correct results [44, 47, 101]. It follows from (37)
that, the larger the mean number of photons, the more terms
that appear in sum (37) and the higher the degree of
entanglement. Indeed, with the weights found, the Schmidt
parameter can be calculated by a formula similar to (10), and
can be expressed in terms of themean number of photons hN i
in the signal or idler mode as [44, 102]

K � 2hN i � 1 : �40�

In the case of a multiphoton squeezed vacuum, with
hN i4 1, the degree of quadrature entanglement is actually
determined by the aggregate number of photons in the signal
and idler modes [102]. The direct relation between the noted
entanglement in terms of the number of photons and the
squeezing of the sum and difference quadratures of the field
can be traced as follows. State (38) is entangled in the
variables Xa and Xb and is factored with respect to the sum
and difference quadratures with characteristic widths deter-
mined by their variances in this state. The degree of photon
entanglement with respect to the field quadratures can be
estimated based on the Fedorov parameter discussed in detail
in Section 3.1, which is equal to the ratio of the widths of the
single-particle unconditional and conditional distributions,
which can easily be calculated from function (38) and lead to
the result in (40). It can also be shown that Schmidt parameter
(40) is equal to the arithmetic mean of the variances of the
difference and sum quadratures in state (38). Thus, the
entanglement of twin beams in terms of the number of
photons or quadrature variables is directly related to the
quadrature squeezing effect.

For a (space- or frequency-) multimode squeezed vacuum,
entanglement in terms of the number of photons (quadrature
variables) can also be calculated. In the case of independent
Schmidt modes, the total entanglement is determined by the
product of the Schmidt parameters (40) for each pair of
conjugate modes. In the limit of a small mean number of
photons per mode and a large number of modes, the product
of Schmidt parameters (40) is proportional to the degree of
entanglement in one mode and the effective number of modes
[44]. For a bright multimode squeezed vacuum, in the limit of
high parametric gain, the situation is more complicated,
because the mean numbers of photons in different spatial

modes differ greatly. Ignoring the contribution of spatial
modes with the number of photons less than unity, we can
obtain the following estimate for the logarithm of the Schmidt
parameter, which in this case characterizes the entanglement
in terms of the number of photons:

lnK � 2G
X ��������

ln; p
p

: �41�

Here, the summation takes into account only spatial modes
that are abundantly populated by photons. The resulting
degree of entanglement significantly exceeds the degree of
entanglement in the case of a single-mode bright squeezed
vacuum and, unlike the latter, increases not linearly but as the
square root of the effective number of modes due to the
difference in their weights [101].

Let us discuss the possibility of measuring quadrature
squeezing. In experiments, quadrature squeezing is often
measured using the homodyne detection method, which is
based on the fact that the investigated input field at the beam
splitter is summed with the field of a local oscillator, which
usually represents a coherent state with a large number of
photons and a variable phase. As a result, the intensity in one
of the output channels of the beam splitter, in addition to the
noise of the local oscillator, contains an interference term
proportional to the quadrature of the field under study. A
more advanced method is balanced homodyne detection, in
which the difference between the readings of photodetectors
at the output of two channels of the beam splitter is measured.
In that case, the noise of the local oscillator is entirely
excluded, and fluctuations of the difference intensity are
proportional to the fluctuations of the input field quadra-
ture. Thus, when recording fluctuations of the output
difference signal depending on the phase of the local
oscillator, one can observe noise suppression to a level
below the shot noise due to the squeezing effect for those
phase values that correspond to the squeezed quadrature.

In [103], quadrature squeezing in various space-time
modes of a generated multimode squeezed vacuum was
measured by direct homodyne detection, and significant
noise suppression, down to a level below shot noise, was
obtained. Based on the results of experimental measurements
for two selected spatial modes, the entries of the covariance
matrix could be deduced.

In the experiment in [104], on the basis of quadrature
squeezing in the spatial modes of the generated squeezed
vacuum, noise suppression of the difference signal between
two selected spatial pixels by about 2.5 dB was obtained. The
detected spatial correlations were used to increase the
accuracy of optical measurements of the position and spatial
displacement of objects with an accuracy exceeding the
standard quantum limit.

A similar idea was realized in the experiment in [105],
where, for a spatial-multimode squeezed vacuum, quadrature
squeezing was detected in 75 independent spatial regions with
a size much smaller than the width of the transverse profile of
the generated nonclassical light.

In [106], a wide-angle nonlinear Mach±Zehnder inter-
ferometer (often also called an SU(1,1) interferometer) was
experimentally implemented, with a focusing lens placed
between two nonlinear crystals. Because the bright squeezed
vacuum coming out of the first nonlinear crystal and entering
the second nonlinear crystal was focused by the lens, non-
linear amplification could be ensured in a wide range of the
wave vector angles of squeezed light photons. Moreover, for
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all the mentioned directions, the magnitude of the phase shift
that occurs in the interferometer between the pump and the
signal and idler channel fields was the same, which allows
simultaneously controlling many spatial modes in a wide
angular range. The distribution of quadrature squeezing for
various plane-wave modes at the output from the interferom-
eter was obtained, and its value was recorded at the level of
ÿ4:3 dB.

The unique experiments that have been carried out testify
to ample opportunities for using a squeezed vacuum to reduce
the level of quantum noise in quantum measurements and
quantum image recording problems.

3. Spatial properties of squeezed light

3.1 Properties of the squeezed vacuum generated
in one nonlinear crystal
We consider spatial properties of a squeezed vacuum
generated in one nonlinear crystal in the degenerate
regime of parametric scattering with a biphoton amplitude
in form (5).

In the case of weak pumping, in the formalism of the field
state vector obtained in the perturbative framework, Eqn (6),
the two-photon amplitude squared determines the joint
probability distribution with respect to the signal and idler
photon variables:

Wpt �qs; qi� �
��F �qs; qi;fs;fi�

��2 : �42�

The distribution with respect to the absolute values of the
transverse wave vectors can be calculated by averaging over
the azimuthal angles:

W �qs; qi� �
�
dfs dfi

��F �qs; qi���2 : �43�

It is more convenient to change from transverse wave vectors
to polar angles of photons in a crystal. The corresponding
bipartite probability density as a function of the polar angles
of the signal and idler photons is shown in Fig. 3a. The
presented distribution demonstrates a strong correlation of
photons: they have the same transverse wave vectors and,
due to the frequency degeneracy, the same polar emission
angles. The possible spread of the signal photon polar angles
dys, measured experimentally or calculated from (43) at a

fixed idler photon escape angle, is the radiation correlation
width in the signal channel [85] (Fig. 3a). The correlation
width of the idler channel radiation is determined similarly.
Because the signal and idler photon frequencies coincide, the
indicated correlation widths coincide in magnitude and are
of the order of the width of the Gaussian function in (5). The
total angular intensity distribution in each channel at the exit
from the crystal can be calculated by averaging over all
photon directions in the conjugate channel. The large
angular width Dys; i of this distribution, approximately
corresponding to the width of the sinc function in (5), can
be estimated as 1=

��������
ksL
p

[85]. Thus, the signal width and the
correlation width correspond to the widths of the uncondi-
tional and conditional distributions, respectively, obtained
from bipartite distribution (43) by integrating over one of the
variables and by fixing its value, as was discussed in detail in
[44, 64, 65].

The parameter equal to the ratio of the signal width to the
correlation width was first introduced by M V Fedorov to
characterize entanglement in a bipartite system and bears his
name. Fedorov also showed that this parameter is very close
in magnitude to the Schmidt parameter [64, 65] and is
therefore a good estimate of the characteristic number of
Schmidt modes and photon entanglement. Indeed, the
Schmidt parameter equal to unity corresponds to the
distribution of both signal and idler photons in one spatial
mode. Under these conditions, the correlation width is of the
order of the total signal width. On the other hand, a small
correlation width, i.e., a narrow conditional distribution at a
fixed coordinate of the conjugate photon, can only be
achieved for a large number of modes. The correlation
width in Fig. 3a is much smaller than the total width of the
spectrum, which, in accordance with the Fedorov parameter,
allows predicting the presence of many modes. This result is
confirmed by direct decomposition with respect to Schmidt
modes, which is valid in both stimulated and spontaneous
parametric scattering regimes, i.e., under conditions of weak
pumping. Calculations in the limit of a small parametric gain
G5 1 in Eqns (19)±(22) for the distribution shown in Fig. 3a
give about 20 `radial' modes.

In the weak pumping regime, the distribution of photons
over azimuthal angles can be calculated from the formula

W �fs;fi� �
�
qs dqsqi dqi

��F �qs; qi���2 : �44�
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Figure 3. Bipartite probability density distribution for photons in (a) polar and (b) azimuthal angles of wave vectors in the limit of small parametric gain.

FWHM spatial profile width is FWHM � 170 mm, crystal length L � 2 mm, ls � li � 800 nm, lp � 400 nm.
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The data presented in Fig. 3b demonstrate a strong
correlation between the signal and idler photons in the
azimuthal angles of their wave vectors shown in Fig. 1, in
accordance with the condition fs ÿ fi � p. The physical
cause of this effect is easy to understand within the Schmidt
mode formalism. The Schmidtmode phases involve the factor
�ÿ1�n � exp �ÿinp� in each azimuthal channel in decomposi-
tion (12), and hence biphoton amplitude (11) is independent
of the azimuthal angles of the signal and idler photons
separately, but depends on the total argument fs ÿ �fi � p�.
This leads to the peaks at fs ÿ fi � p shown in the figure.
Moreover, the peak width is inversely proportional to the
characteristic number of azimuthal modes. Thus, it is most
likely that the signal and idler photons have azimuthal angles
differing by p, which means that photons with opposite
transverse components of the wave vectors are correlated.

As mentioned above, the spatial distributions of photons
obtained from the biphoton amplitude are only applicable in
the perturbative regime. It is of interest to find how they
change at a high pump intensity. This can be done using the
formalism of Schmidt modes and the obtained solutions (17).
According to a theoretical analysis, in the case of squeezed
vacuum generation in a single crystal, as the parametric gain
increases, the correlation width increases in both polar and
azimuthal angles [101]. Hence, the photons remain correlated
over an increasing range of angles. On the other hand, the
effective number of spatial modes decreases, and therefore
the contribution of the lowest, zeroth Schmidt mode
increases, while the value of the Schmidt parameter char-
acterizing the effective number of modes decreases. It thus
follows that, as the pump intensity increases, the correlation
width increases, which is accompanied by a decrease in the
total signal width until one lowest Schmidt mode becomes
dominant [81]. These effects are confirmed by experimental
data [81]. However, in the experiment, to compensate for the
anisotropy effects, two thinner closely spaced crystals were
used instead of one nonlinear crystal. In a subsequent
experiment with one nonlinear crystal, an increase in the
total width of the angular spectrum by about 30% was
detected [107]. The noted discrepancy with the theory occurs
because the applicability of solutions (17) is limited by the
exact frequency matching condition. In the experiment, there
was entanglement, and the spatial and frequency degrees of
freedom influenced each other. This effect was taken into
account theoretically in [107] (see the discussion at the end of
Section 6).

3.2 Control of the spatial properties
in the scheme with a nonlinear interferometer
Controlling the spatial properties of a squeezed vacuum is
important in various practical applications. This is realized by
controlled changes in the weights and profiles of Schmidt
modes. From this standpoint, the most promising and
interesting system for study is the nonlinear Mach±Zehnder
interferometer (Fig. 4), which is made of two sequentially
arranged nonlinear crystals separated by some medium or
just air [57, 81, 86, 106, 108±110]. In the literature, such an
interferometer is often referred to as an SU(1,1) interferom-
eter to emphasize the nonlinear nature of the parametric
process, the possibility of using Lie algebra to describe it, and
the connection between the photon operators at the entrance
to and exit from the crystal via a Bogoliubov transformation.
As shown below, the mode composition, shape, and number
of Schmidt modes can be controlled in that system.

A feature of the scheme involving an interferometer is that
the nonlinear signal generated in the first crystal can be
amplified or attenuated in the second crystal, depending on
the acquired relative phases of the pumpand signal/idler beams.
An additional factor then occurs in the two-photon amplitude,
a cosine that characterizes the phase interference effects, which
depend on the distance d between crystals [81, 101, 111]:

F �qs; qi� � C exp

�
ÿ s 2�qs � qi�2

2

�
sinc

�
L �qs ÿ qi�2

4kp

�
� cos

�
L �qs ÿ qi�2

4kp
� dnksd

ns
� d �q air

s ÿ q air
i �2

4k air
p

�

� exp

�
ÿ i

�
L �qsÿqi�2

2kp
� dnksd

ns
� d �q air

s ÿq air
i �2

4k air
p

��
;

�45�

where ks; i;p are the signal, idler, and pump wave vectors,
qs; i; p�q air

s; i;p� are their transverse components in the crystal (air
gap), ns; i; p are the refractive indices of these waves in the
crystal, and dn � n air

p ÿ �n air
s � n air

i �=2 is the difference
between the refractive index of the pump and half the sum
of the refractive indices of the signal and idler photons in air.
We note that, for small photon polar angles,

�q air
s ÿ q air

i �2
4k air

p

� ns
�qs ÿ qi�2

4kp
:

Figure 5 shows the modulus squared of the two-photon
amplitude as a function of the external polar angles of the
photons and the intensity distribution in the far zone for two
different separations between the crystals.

Interference results in the appearance of additional
maxima and minima in the biphoton amplitude distribution
compared to the distribution shown in Fig. 3a. Moreover, for
different values of the photon polar angles, different phase
conditions are realized, leading to radiation attenuation or
amplification in the second crystal. As a result, parametric
generation is suppressed at certain polar angles of the wave
vectors of the signal and idler photons, and the spatial
distribution of the squeezed vacuum intensity in the far zone
is then characterized by a set of `rings' with a maximum or
minimum at the beam center. It is important that the period of
spatial oscillations of the biphoton amplitude and the relative
phase between the pump and the signal and idler radiation,
acquired in the inter-crystal air gap, change with distance
between the crystals. As a consequence, at a large separation of
the crystals, the number of `rings' in the intensity distribution in
the far zone increases significantly, and the intensity at the

L d

Figure 4. Nonlinear Mach±Zehnder interferometer made of two sequen-

tially located nonlinear crystals of length L, separated by a distance d.

Nonlinear transformation in the second crystal occurs only for radiation

spatially overlapping with the pump.
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center of the beam is enhanced or suppressed, depending on
constructive or destructive interference. Similar intensity
distributions were also observed experimentally in [93, 108].
In the general case, in the scheme involving an interferometer,
the Schmidt modes can differ significantly from the Laguerre±
Gauss modes corresponding to the case of a single crystal, and
searching for them is a separate problem.

For a small angular width of the spatial Gaussian pump
profile compared with the longitudinal phase-matching
width, a simplified expression for the biphoton amplitude
depending on the polar and azimuthal angles was obtained in
[101] in the form

F �ys; yi;fsÿfi� � C exp

�
ÿ y 2

s � y 2
i � 2ysyi cos �fsÿfi�

2a 2

�
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�
y 2
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b 2
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�
y 2
s � y 2

i

b 2
1

� a
�
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�
ÿ i

�
y 2
s � y 2

i

b 2
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� a
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p ;

and a � dnksd=ns is the phase difference between the pump
and the signal and idler radiation at the entrance to the second
crystal, which, if necessary, can be additionally tuned in the
experiment. The validity of the adopted approximations is
ensured by the sharp maximum of the biphoton amplitude at
fs ÿ fi � p and the small width of the Gaussian function in
(46): a5 b.

It follows from an analysis in (46) that the azimuthal
modes of a squeezed vacuum are the same as in the case of a
single crystal, and photons in conjugate beams are corre-
lated for those azimuthal angles that differ by p. But the
functions characterizing the azimuthal channels differ
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significantly,
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where In�x � is the Infeld function.
The Schmidt decomposition of the bipartite function (47)

gives a set of `radial' modes for each azimuthal channel. Due
to the smoothness of the Infeld function, the spatial distribu-
tions of photons in different azimuthal channels are very close
to each other, which leads to a weak dependence of the `radial'
modes on the azimuthal channel number. Hence, channels
with different OAM projections onto the z-axis have similar
sets of radial modes. A noticeable difference arises for large
numbers n, when the weight of a given channel is already
negligible. An important feature of `radial' Schmidt modes is
their immense difference from the Laguerre±Gaussian modes
that arise in the case of a single crystal, as is most pronounced
in the case of interference suppression of the intensity at the
beam center (a � p=2), when all radial modes, including the
zeroth-order one, are equal to zero at the specified point.

Let us discuss the behavior of weights and profiles of
modes depending on the parametric gain and the distance
between interferometer crystals. The characteristic distribu-
tion over azimuthal modes for a sufficiently small separation
of the crystals is shown in Fig. 6a for two phase values, a � 0
and p=2. It can be seen that, for interference suppression of
the intensity at the beam center, the distribution over small-
number azimuthal modes is flatter and smoother than for the
zero phase. This difference might seem insignificant. How-
ever, as the parametric gain increases, for example, with
increasing pump intensity, the mode distribution becomes
sharper in both cases, and the effective number of modes
decreases. In the zero-phase case, only one azimuthal mode
with n � 0 survives at sufficiently strong pumping. At the
same time, at a � p=2, due to the initially flatter mode
distribution, not one but several modes survive at high
parametric gain, as shown in Fig. 6b. As regards the radial

modes, their number also decreases as the pump intensity
increases.

We analyze what happens as the separation of the crystals
in the interferometer increases. The relative phase a of
pumping and of the signal and idler radiation, occurring in
(46) and (47), increases linearly upon increasing the crystal
separation d, which leads to a periodically changing regime of
constructive and destructive interference in the second
crystal. In the degenerate case, the difference between the
refractive indices in air for the pump and signal/idler photons
is very small (of the order of 10ÿ5), but this is sufficient for a
significant phase increase over an air gap several centimeters
in length. As a consequence, as the crystal separation
increases, the output intensity profiles change quasiperiodi-
cally from a localized beamwith amaximum at the center to a
broadened distribution with a central minimum. Accord-
ingly, depending on the separation, the effective number of
modes also changes, as is shown in Fig. 7 for azimuthal modes
in the low and high parametric gain regimes.

As can be seen from Fig. 7, the initial number of modes is
much smaller in the case of stronger pumping, and is of the
order of unity when constructive interference is attained.
Moreover, with a further increase in the distance between
the crystals, the radiation of parametric scattering from the
first crystal, entering the second crystal where it can be
amplified, has a progressively smaller angular distribution
width s=d (where s is the pumping diameter and d is the width
of the air gap between the crystals). As soon as this value
becomes of the order of the correlation width, only one mode
is to be registered at the exit from the second crystal according
to the Fedorov relation [64, 65].

The generation of a single spatial mode has been
demonstrated experimentally, and good agreement with
theoretical predictions was observed [108].

Figure 8 shows the angle-integrated intensity of the
detected squeezed light and the magnitude of the second-
order correlation function g �2� varying quasiperiodically with
the separation of the crystals. For some separations, two-
dimensional intensity distributions in the far zone are shown,
demonstrating a significant change in the angular spectrum of
the signal with increasing separation. Because a multimode
spatially squeezed vacuum was generated in the experiment,
the theoretical value of g �2� for the total signal can be
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calculated in terms of the correlation function of an
individual mode g

�2�
1 and the number of modes m according

to the formula [112]

g �2� ÿ 1 � g
�2�
1 ÿ 1

m
: �48�

A second-order autocorrelation function used in experiment
can be calculated for each twin beam generated in one spatial
Schmidt mode as g

�2�
1 � hN 2

s i=hNsi 2. Using the solutions
found in (17), it can be shown that g

�2�
1 � 2. It hence follows

from (48) that g �2� reaches a maximum, equal to 2, in the case
of one mode. With the 1.25 frequency modes observed in the
experiment, the theoretical estimate of g �2� becomes less than
2 and nearly coincides with the maximum measured value of
g �2� in Fig. 8b. Using the maximum value of g �2� obtained in
the experiment and taking the correction for the number of
frequency modes into account, the estimate of the number of
spatial modes by formula (48) gives the value m � 1:1. Thus,
the generation of a squeezed vacuum in the 1:1 spatial mode
was implemented experimentally.

However, one mode is not always selected. It has been
found that, at large distances between crystals, the mode
structure changes due to the strong interference-induced
`roughness' of the two-photon amplitude [101].

In this regime, radial modes can be found analytically as
the product of a single crystal mode and an oscillating factor

represented as a sine or cosine [101],

u �1�n; p�ys; i� � u �0�n; p�ys; i� cos
�
y 2
s; i

2b 2
2

� a
2

�
;

�49�

u �2�n; p�ys; i� � u �0�n; p�ys; i� sin
�
y 2
s; i

2b 2
2

� a
2

�
;

where the parameter b2, defined in (46), bears an essential
dependence on the distance between the crystals.

In the limit of a large distance between crystals, these
modes have the same weights. Figure 9 shows the radial mode
distribution for the zero azimuthal channel when weight
`doubling' is just starting.

Due to the presence of `double' modes, even in the limit of
strong pumping, at least two radial modes remain at long
distances between the crystals; singling out one mode is not
possible. This effect also manifested itself in the experiment in
[108] as a decrease in the measured second-order correlation
function in the limit of large separations of the crystals.

Thus, the scheme involving a nonlinear interferometer
allows controlling the mode composition and the type of
Schmidt modes. The approach outlined above opens up the
possibility of creating a spatially single-mode field source in a
squeezed vacuum state with all the properties of such a field
preserved, which is an urgent task for various practical
applications but is extremely difficult to implement by
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standard filtering methods due to the significant destruction
of nonclassical properties and photon correlations of
squeezed light.

3.3 Spatial photon correlations
As discussed in Section 3.2, the squared modulus of the
biphoton amplitude characterizes the mutual spatial distribu-
tions and correlations of photons in the case of weak pumping
(low parametric gain). Photon correlations, which are the
most important property of a squeezed vacuum, manifest
themselves in terms of spatial, frequency, and quadrature
variables. One of the quantitative characteristics of the spatial
correlations of photons in the case of an arbitrary parametric
gain is the covariance of the spatial intensity distributions,
which can be measured experimentally. Although this
quantity does not carry information about phase correla-
tions, it allows finding correlations of the intensities of the
generated squeezed vacuum at different spatial points. The
general expression for the covariance of the angular intensity
distributions measured in the far zone for the angles �y1;f1�
and �y2;f2� or the transverse wave vector components q1 and
q2 has the form

cov �q1; q2� � cov
�
I �q1�; I �q2�

�
� 
I �q1� I �q2��ÿ 
I �q1��
I �q2�� : �50�

Because both signal and idler photons can contribute to the
intensity of the output field for each direction q, expression
(50) can be divided into several terms [93, 113]:

cov �q1; q2� � cov
�
Is�q1�; Is�q2�

�� cov
�
Ii�q1�; Ii�q2�

�
� 2 cov

�
Is�q1�; Ii�q2�

�
: �51�

The first two terms on the right-hand side of (51) correspond
to so-called autocovariance, i.e., covariance of the field
intensity of only signal or only idler photons at different
points, while the second term describes twice the cross-
covariance of the field intensities of signal and idler

photons. Using the introduced Schmidt modes, we can
obtain the following expressions for auto- and cross-covar-
iance [101, 113]:

cov �q1; q2�auto �
����X

n; p

un; p�q1� u �n; p�q2����������
q1q2
p sinh2

ÿ
G

��������
ln; p

p �
� exp

�
in �f1 ÿ f2�

�����2 ; �52�
cov �q1; q2�cross �

����X
n; p

un; p�q1� vn; p�q2����������
q1q2
p sinh

ÿ
G

��������
ln; p

p �
� cosh

ÿ
G

��������
ln; p

p �
exp

�
in �f1 ÿ f2�

�����2 :
For low parametric gain, the spatial distribution of the cross-
covariance coincides with the distribution of the squared
biphoton amplitude modulus (Fig. 5a, c). For high para-
metric gain, the form of the covariance changes. Because the
lowest radial mode starts dominating in that case, the
distribution corresponding to the covariance is localized,
taking the form of a small circle located at the center in the
case of constructive interference (a � 0) or away from the
center for a � p=2 (destructive interference regime). This is
true for the covariance of both signal and idler photons
(cross-covariance) and photons in one beam (autocovar-
iance).

Thus, for any values of the parametric gain coefficient, the
cross-covariance reaches a maximum when the azimuthal
angles of the photon wave vectors differ by p, and hence the
distribution shown in Fig. 3b is also valid for arbitrary values
of the parametric gain. However, it was found that, as the
pump intensity increases, the width of the distribution
increases and its maximum height decreases [101]. There-
fore, as the parametric gain increases, the characteristic width
of the correlations increases. A feature of autocovariance is
that it attains a maximum when the azimuthal angles of the
photon wave vectors coincide.

In Fig. 10a, we show the measured covariance as a
function of the external polar angles of photons [93]. Almost
completely symmetric distributions along the main diagonal
correspond to the cross-covariance; the autocovariance
distributions are rotated by 90�.

Thus, when there is intense pumping into essentially a
single spatial mode due to the generation of a squeezed
vacuum, photon correlation occurs for a specific value of
the polar angle and opposite azimuthal angles, i.e., for certain
directions of photon wave vectors.

We note that covariance can be used not only to extract
information about photon correlations but also to obtain
Schmidt mode profiles.

In experiment, it is difficult to measure the shape of the
modes directly, but their reconstruction from the covariances
can be attempted. It was shown in [101] that, in the far zone,
the dependence of the phases on qs; i is the same for all un; p
modes. This allows reconstructing the far-field modes by
taking the square root of the covariance and performing the
Schmidt decomposition for the resulting function; the true
mode weights must then be adjusted using formulas (52).

The spatial modes reconstructed theoretically from covar-
iance in the framework of this approach are identical to the
Schmidt modes for the biphoton amplitude at any parametric
gain (although the shape of the covariance changes with the
gain). A similar procedure was implemented in an experiment
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where the reconstruction accuracy turned out to also be quite
high [93, 113]. The reconstructed profiles for the two
dominant modes are shown in Fig. 10b [93].

Thus, covariances allow theoretically predicting and
experimentally measuring the spatial correlations of
photons, as well as obtaining information about the profiles
and weights of Schmidt modes.

3.4 Photon correlations
in the angular momentum projection
As shown in Section 3.1 (and in discussing Fig. 3), signal and
idler photons are strongly correlated in the azimuthal angle
and therefore have opposite transverse wave vectors. It
follows from decomposition (11) that conjugate-mode
photons have opposite values of the azimuthal quantum
numbers (topological charge) ��n� and �ÿn�; in other
words, there is a correlation of photons with opposite
angular momentum projections on the z-axis for all azi-
muthal modes, except the one with n � 0.

Correlated photons were experimentally selected in
conjugate azimuthal modes in the multiphoton regime of
four-wave mixing by illuminating one of the conjugate
channels by the Laguerre±Gaussian mode with a fixed
angular momentum projection [114]. If the pumping also
has a nonzero OAM, then correlations between photons arise
in azimuthal modes with angular momentum projections
differing in absolute value but satisfying the conservation
lawwith the pumpingOAMtaken into account [114, 115].We
note that this scheme selects only a pair of conjugate modes
correlated in the number of photons and quadrature
entanglement, but strong spatial entanglement is not
achieved.

Sorting the modes by states with different OAM projec-
tions was implemented in [116] based on optical elements that
convert a twisted phase front of the beam in a polar
coordinate system into a transverse phase gradient in a
Cartesian system. It was thus possible to spatially separate 11
states with different OAM projections. In this case, however,
the zero mode partially overlaps with the neighboring modes,
which can drastically reduce photon correlations in conjugate
modes and increase the NRF. Because photons with zero
OAM are not correlated with photons of other modes, the
prevailing population of the zero orbital channel strongly

suppresses photon correlations in the OAMprojection, or so-
called azimuthal entanglement. An important task in the
multimode case is therefore to suppress the signal in the zero
azimuth channel without introducing additional noise.

The problem is that, even in the case of parametric
generation of squeezed light in the far field of a nonlinear
interferometer, different azimuthal modes share similar
spatial distributions [101], which makes it extremely difficult
to select different azimuthal channels. But in the near field, as
shown in [117], different orbital channels have different
spatial localization: photons corresponding to different
azimuthal modes are produced in different regions of the
crystal. Moreover, modes with zero OAM are mainly
localized in the center of the beam, while those with a large
OAM reside farther from the center. Thus, it becomes
possible to select modes with different orbital angular
momenta. Still, achieving the complete separation of the
channels is impossible due to a partial overlap of the
localization zones. To suppress the zero channel, a `mask'
can be installed to block the zero channel in the near zone.
Because this would introduce noise and somewhat deteriorate
the nonclassical properties in other modes, the transmitted
modes with a nonzeroOAMwould have to be amplified in the
second crystal. An alternative approach can be to use a near-
field diaphragm that is maximally transparent to the zero-
mode signal, which should then be suppressed in the second
system of crystals due to the effect of destructive interference
when the relative phase changes by p.

As it turns out, the suppression of the zero channel by a
mask is preferable. Moreover, selecting the mask size and the
parametric gain in the first and second crystals (G0 and G,
respectively) allows selecting the azimuthal channel with a
certain OAM projection on the z-axis whenever necessary.
We note that a more efficient suppression of the zero
azimuthal channel can be achieved if each of the two
nonlinear crystals is replaced with a nonlinear interferometer
phase-shifted by p=2, as described in Section 3.2. Then, with
the intensity suppression at the beam center due to inter-
ference, the distribution over small-number azimuthal modes
becomes flatter and the relative contribution of the zeromode
does not become too prominent (see Fig. 6). Moreover, this
mode provides a maximum difference between spatial
localizations of different azimuthal channels.

15

10

5

0

ÿ5

ÿ10

ÿ15
ÿ15 ÿ10 ÿ5 0 5 1510

E
xt
er
n
al

an
gl
e
y
0 ,
m
ra
d

External angle y, mrad

3

2

1

0

co
v
�y
;y
0 �,

ar
b
.u

n
it
s

0.2

u
n
;p
�y
�,
ar
b
.u

n
it
s

0.1

0

0 5 10 15
External angle y, mrad

p � 0

L � 0.72
p � 1

L � 0.14

a b

Figure 10. Measured (a) covariance and (b) profiles and weights reconstructed from it for the two lowest dominant radial Schmidt modes [93]. Crystal

length isL � 2 mm, distance between them d � 15 mm, pump parameters are lp � 354:67 nm, FWHM � 170 mm, and power 45 mW. To obtain profiles

and weights, integration over the 9� azimuthal angle was carried out.

April 2023 Photon correlations and features of nonclassical optical éelds in a squeezed vacuum state 395



In Fig. 11, we show the result of zero mode suppression
and the n � 2 azimuthal channel amplification using a mask.
Depending on the parametric gain G in the second crystal, we
can obtain a different ratio of the weights of the azimuthal
modes at the exit. In particular, atG � 1:5, the signal from the
azimuthal mode with n � 2 is clearly dominant. The redis-
tribution of the azimuthal mode weights in this case is shown
in Fig. 11a. A significant change in the fraction of the number
of photons in modes with n � 1; 2; 3 compared with the zero
mode, depending on the parametric gain coefficient, as shown
in Fig. 11b, suggests the possibility of varying the pump
intensity to choose the regime where one Schmidt mode or
another is dominant. Thus, in an essentially multimode
regime, the described scheme allows not only suppressing
the signal in the zero mode while preserving the photon
correlations but also changing the relative weights of the
azimuthal modes.

An important aspect of the considered mode selection
process is the preservation of photon correlations. To
characterize the correlations in this case, it is convenient to
use the NRF in Eqn (27), which is proportional to the
variance of the difference between the numbers of photons
in the signal and idler beams. A significant contribution to
this variance is made by the number of photons in the zero
azimuthal mode. That is why the suppression of the signal
with n � 0 is of fundamental importance for the preservation
of photon correlations. It is difficult, but quite possible, to
simultaneously satisfy the conditions for optimal selection of
azimuthal modes and preserve the photon correlations
(NRF5 1).

4. Parametric scattering
in a strongly frequency-nondegenerate regime

The effects described in Section 3 relate to parametric
generation in the frequency-degenerate regime. In the case
of a nondegenerate regime, a number of features arise, the
most interesting and promising of which from the standpoint
of practical applications is the generation of squeezed light
that is strongly nondegenerate in frequency when the
frequency of signal photons lies in the optical region and
idler photons correspond to the THz frequency range. Here,
the idler photon frequency approaches the phonon excitation
frequencies, and parametric scattering acquires the features
of light scattering on polaritons [1]. In fact, there are medium
states `dressed' by the acting field, and partial absorption of
the idler wave occurs.

A strongly frequency-nondegenerate regime of parametric
scattering was observed in lithium niobate crystals [118±122].
Based on study [123], experimentalmethodswere developed in
[124±126] for measuring the brightness and for calibrating
detectors in the THz frequency range. The theoretical analysis
of highly frequency-nondegenerate parametric scattering is a
difficult task, because it is often necessary to take the
absorption and the effect of thermal noise for the THz
channel into account. Most of the theoretical work is based
on solving Maxwell's equations for classical fields or finding
the evolution of plane-wave photon creation/annihilation
operators, because this approach occasionally allows taking
absorption into account [127±130]. However, for negligibly
small absorption (not very low idler photon frequencies),
optical-THz squeezed light can be described using a theore-
tical approach in the formalism of Schmidt modes and
operators, similar to that considered in Section 2.2 but
generalized for the case of significantly different frequencies
of the signal and idler photons [131, 132].

4.1 Generation of nonclassical THz radiation
in a single crystal
Weanalyze the highly nondegenerate regimeof generation and
the spatial properties of the generated optical-THz squeezed
light in the formalism of Schmidt modes and operators. For a
single crystal and a Gaussian spatial shape of pumping, this
process is described by Hamiltonian (4) with a biphoton
amplitude that can be approximately represented as

F �qs; qi� � C exp

�
ÿ �qs � qi�2s 2

2

�
sinc

�
DkjjL
2

�
� exp

�
ÿ i

DkjjL
2

�
; �53�

where Dkk is the longitudinal mismatch of the wave vectors of
the pump, signal, and idler photons, which can be calculated
as

Dkjj �
������������������������������
k 2
p ÿ �qs � qi�2

q
ÿ

����������������
k 2
s ÿ q 2

s

q
ÿ

����������������
k 2
i ÿ q 2

i

q
: �54�

We note that, due to the considerable difference between
the frequencies of the signal and idler photons in (54), it is
impossible to use the approximation based on the smallness
of the transverse components of the wave vectors, which leads
to a simplified form of the longitudinal detuning in the
degenerate collinear mode (5), because the phase matching
condition corresponds to the opposite transverse wave
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Figure 11. Suppression of the zero mode and amplification of the azimuthal channel with n � 2 using a mask with a diameter of 350 pump wavelengths.
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vectors of the signal and idler photons:

q � qs � ÿ qi : �55�

The phase-matching condition in a highly nondegenerate
regime can only be satisfied for a THz photon with the wave
vector modulus q determined by the refractive indices at the
optical and THz frequencies:

q � ki

������������������������
1ÿ n 2 �op�

n 2 �oi�

s
: �56�

In Fig. 12, we show the biphoton amplitude modulus
normalized to the maximum. As can be seen, the spread in
transverse wave vectors is noticeably larger for optical
photons. But the picture changes dramatically when con-
verted into polar angles of photons inside the crystal,

ys � q

ks
� ki

kp

����������������������
1ÿ n 2

p

n 2
i �oi�

s
;

sin yi � q

ki
�

����������������������
1ÿ n 2

p

n 2
i �oi�

s
;

�57�

due to the significant difference in frequencies, the character-
istic polar angle of the wave vector of optical photons is very
small, and the radiation is directed almost parallel to the
pumping, while the THz radiation is characterized by angles
inside the crystal of the order of 60� with awidth of at least 10�

[131, 132]. Such values of internal angles allow THz radiation
to escape from the crystal due to total internal reflection. Only
by supplementing the crystal with a prism of a particular
shape and refractive index can THz radiation still be
extracted, but it would have a large angular aperture,
entailing great difficulties in detecting the complete THz
signal. These features of the spatial distribution of low-
frequency THz radiation generated at the difference fre-
quency were initially analyzed for classical fields in [133].

To analyze the spatial properties of optical-THz squeezed
light, it is convenient to use the Schmidt mode formalism. In

accordance with the technique described in Section 2.2, two-
photon amplitude (53) can be decomposed with respect to
azimuthal channels. Due to the smallness of the radiation
frequency and the spread of transverse wave vectors of THz
photons compared to optical ones, and also due to the large
pump width (about 1 mm), the angular distributions in
different azimuthal channels are very close to each other and
actually correspond to the distribution for the two-photon
amplitude shown in Fig. 12 [131, 132]. Moreover, the
distribution for each OAM channel actually factors into the
product of two dominant radial modes for the signal and idler
channels, whose profiles can be found analytically as

u �qs� � Nu
����
qs
p

exp

�
ÿ Dq 2

s s
2

2

�
exp

�
ÿ i

DqsqL
ks

�
;

�58�
v �qi� � Nv

����
qi
p

sinc

�
DqiqL
ki

�
exp

�
ÿ i

DqiqL
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�
;

where ks �
����������������
k 2
s ÿ q 2

s

p
and ki �

����������������
k 2
i ÿ q 2

i

q
. The dominance of

a single radial mode for each of the conjugate beams naturally
follows from the shape of the distribution in Fig. 12, showing
a slight change in values when one of the arguments is fixed.

Thus, the Schmidt-mode photon operators evolve as
described in Section 2.2, but the weights and mode profiles
differ significantly from those in the case of identical photon
frequencies.

The presence of a single radial modemeans that there is no
entanglement of photons in the polar angle and that the
angular distribution of the intensity of the generated optical
and THz radiation cannot be changed significantly. At the
same time, there are a sufficiently large number of azimuthal
modes, which depends significantly on the frequency of idler
photons. Figure 13 shows how the probability density of the
signal and idler photons depends on the difference between
their azimuthal angles. It can be seen that, similarly to the
degenerate regime, the photons are maximally correlated at
the angular differencefs ÿ fi � p. However, the distribution
width significantly depends on the idler photon frequency and
increases as the frequency decreases to values below 1 THz.
The effective number of azimuthal modes decreases with
increasing distribution width. Thus, the number of azi-
muthal modes increases with an increase in the frequency of
THz photons, and the degree of azimuthal entanglement
therefore increases.

We note that a number of important properties found in
the case of identical photon frequencies and discussed in
Sections 2 and 3 are preserved in the strongly nondegenerate
regime of parametric scattering. First and foremost are the
strong correlations for photons with opposite azimuthal
angles and opposite OAM projections. There is also a two-
mode quadrature squeezing, the operator of the difference
between the number of photons in conjugate channels being
an integral of motion (ignoring absorption). However,
special features arise due to the presence of thermal noise
in the THz mode. Because the variance of the photon
number difference in the coupled channels remains equal to
its value at the entrance to the crystal, we can represent the
theoretical expression for the NRF in Eqn (27) in the case of
one dominant mode for each of the coupled channels in the
form

NRF � DNs
�DNi

Ns �Ni � 2 �Ns �Ni � 1� sinh2 G ; �59�
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Figure 12. Biphoton amplitude modulus normalized to the maximum,
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where DNs
�DNi

is the sum of variances of the number of
photons of the signal and idler modes at the entrance to the
crystal,Ns �Ni is the sum of themean numbers of photons of
these modes at the entrance to the crystal, and G is the
parametric gain factor. If the signal and idler modes are
initially in the vacuum state, then the zero numerator in (59)
leads to the minimum theoretical value NRF � 0. But in the
case of thermal radiation at the entrance to the crystal, a
nonzero variance in the number of photons arises for the THz
mode, which in the spontaneous regime with low parametric
gain can lead to suppression of the intensity correlation in the
modes due to the smallness of the function sinhG in the
denominator of (59). Thus, there is a theoretical bound on the
NRF value from below, determined by the smallness of the
parametric gain and the temperature of the medium.

4.2 Advantages of the scheme with
a nonlinear interferometer
As shown in Section 4.1, the spatial distribution of the
optical-THz squeezed vacuum is actually determined by a
single radial mode dominant in each channel. Therefore, the
task of developing methods for controlling the mode
composition for such fields is particularly acute. One of the
solutions is to use a nonlinearMach±Zehnder interferometer,
discussed in Section 3. The most convenient scheme is with a
linear dispersion in the intermediate layer. The optical THz
fields generated in the first crystal are then amplified or
attenuated in the second crystal, depending on their phase
with respect to the pumping, realizing a spatial analogue of
Ramsey interference. The Ramsey time-frequency interfer-
ence effects in spontaneous parametric scattering were
discussed in [134]. For the arrangement with an interferom-
eter in the frequency-nondegenerate regime, the biphoton
amplitude is given by [132]

F �qs; qi� � C exp

�
ÿ s 2�qs � qi�2

2

�
sinc

DkjjL
2

� cos

�
DkjjL�Dk djjd

2

�
exp

�
ÿ i

�
DkjjL�

Dk djjd
2

��
;

�60�
where Dkjj � kpeÿ�k 2

se ÿ q 2
s �1=2 ÿ �k 2

ie ÿ q 2
i �1=2, Dkdjj � kpoÿ

�k 2
so ÿ q 2

s �1=2 ÿ �k 2
io ÿ q 2

i �1=2 are the respective longitudinal
mismatches of the wave vectors of the pump, optical, and
THz photons in the crystal and in the medium with the
relation k � no=c taken into account, L is the length of

each crystal, d is the distance between them, and the
subscripts e and o mark the extraordinary and ordinary rays
in the crystal and the intermediate layer. We note that
expression (60) is similar to (45) but is more general, because
it involves no approximations in calculating the longitudinal
mismatches. Interference effects lead to the appearance of
maxima and minima in the distribution of idler and signal
photons over transverse wave vectors (Fig. 14). Their position
and number are determined by phase shifts and dispersion in
the medium, which depend on the frequency of THz photons
and are determined by the condition DkjjL� Dk djjd � 2pm.

It then follows that the weights and profiles of the
Schmidt modes change. In addition to azimuthal modes, a
set of `radial' modes appears, which significantly increase the
degree of spatial entanglement of optical and THz photons.
The frequency-angular spectrum for the scheme with an
interferometer differs significantly from that in the case of a
single crystal (Fig. 15). For parameters close to the experi-
mental conditions in [132], in the low-gain regime, the
distribution of photons over transverse wave vectors, which
is determined under these conditions by the squared modulus
of the biphoton amplitude, acquires either one main
maximum or two secondary maxima (Fig. 14b). As a result,
the frequency-angular spectrum has the shape shown in
Fig. 15b.

An entirely different picture is realized at high values of the
parametric conversion coefficient. Due to the nonlinear
amplification, the single main maxima start dominating, and
double maxima in the frequency-angle spectrum are super-
seded by troughs. Thus, THz photons are emitted predomi-
nantly at certain frequencies, and their interference is sup-
pressed at frequencies corresponding to the minima (Fig. 15c).

The detected interference effects are significantly affected
by the dispersion of THz radiation in the intermediate layer.
This fact can be used to accurately find the unknown
dispersion properties of various media in the THz frequency
range, which is an important and needed task, based on
measurements of the frequency-angle spectrum in the optical
range. The advantage of this approach is that, although the
measurements are carried out in the optical channel, photon
correlations yield information about the medium properties
in the THz frequency range. Initially, this idea was developed
theoretically and implemented experimentally for idler
photon frequencies in the infrared (IR) range [135]. Later,
the samemethodwas applied to IR spectroscopy ofmolecules
in optical range measurements based on photon correlations
in conjugate modes [136].
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In [132], the refractive index of the medium in the
intermediate layer of the interferometer was calculated
theoretically and measured experimentally in the THz
frequency range. Based on the interference character of the
expression for the biphoton amplitude, Eqn (60), the accuracy
of determining the refractive index was estimated to be no
worse than

Dn � pc
2oid

: �61�

In fact, for the parameter values d � 2:5 mm and
ni � 1:5 THz, the accuracy Dn � 0:05 can be achieved.
Large thicknesses of the intermediate layer turn out to be
critical as regards increasing the absorption of THz radiation.
A significant decrease in the thickness of the measured
medium significantly reduces the measurement accuracy. In
the experiment in [132], the intermediate layer with a
thickness of about 0.1 mm was used, and therefore the
accuracy of measuring the refractive index did not exceed
0.2. Nevertheless, the experiment demonstrated for the first
time the possibility of such a measurement in the THz
frequency range.

Another advantage of the interferometer scheme is the
ability to vary the mode composition and then amplify a
certain Schmidt mode and thus control the spatial distribu-
tion of the output squeezed light. The possibility of such
control is especially important for THz radiation because its
faultless detection requires generation in a narrower angular
range, which can be realized by amplifying a certain THz
mode with a narrower angular distribution. The most
convenient way to do this is by seeding the conjugate optical

mode, for example, with intense coherent light. By choosing
the spatial profile of the optical seed so as to ensure a
significant overlap with the mode most narrowly localized in
polar angles, it is also possible to significantly amplify the
signal in the conjugate THzmode.However, this is difficult to
do for a single crystal of a large length because, as shown
above, only one radial mode, the one that determines the
distribution of outgoing photons over the polar angle, makes
an effective contribution in the strongly nondegenerate
frequency regime for one crystal, while the contribution of
the remaining modes is negligibly small. For an interferom-
eter, there are more radial modes with different polar angle
localizations.

In Fig. 16, we show the spatial distributions of photons in
the THz mode for a long crystal and in the setup involving an
interferometer without and with the seeding of the optical
channel by coherent light prepared in a superposition of
Laguerre±Gaussian spatial modes with the azimuthal quan-
tum numbers n � �3. As can be seen, the intensity distribu-
tion of THz radiation for one crystal is predominantly
characterized by internal polar angles (57) in the range of
50±60�. Even with the seeding, large values of the wave
vector polar angles of THz photons cannot be effectively
reduced, and the proportion of photons with small
transverse wave vectors is negligible (Fig. 16b). With the
interferometer, due to the richer mode composition, there
are rather narrow modes of the optical channel that overlap
well with seeded. Due to high-intensity seeding, they can be
amplified. As a consequence, THz radiation is also
predominantly amplified in the spatial mode coupled to
the `seeded' optical spatial mode. Figure 16d clearly shows
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the narrowing of the angular distribution of THz radiation
amplified by seeding in the optical channel. In this case,
characteristic values of internal polar angles of the order of
12� can be obtained for the THz mode [132]. The
characteristic `leafed' structure of the spatial distribution
of THz photons due to the superposition of azimuthal
modes with quantum numbers n � �3 demonstrates the
possibility of varying the spatial output intensity profile by
amplifying certain azimuthal modes.

We note that, in this case, it is necessary to localize
the optical illumination mode in the range of polar angles
of the order of Y � 0:01�, which is a difficult task.
However, this method allows selecting one or several
narrow-angle Schmidt modes with small weights and
localizing THz radiation within small polar angles with-
out loss of correlations with optical photons in the signal
beam.

Although the seeding of one of the channels changes the
photon statistics of the generated squeezed optical-THz field,
the correlations in the number of photons can be preserved.
Under these conditions, the NRF that can be found
theoretically from (59) can be much less than unity for
illumination in a coherent state at a sufficiently high
parametric gain.

4.3 Mutual influence of the difference
and sum frequency generation processes
Another feature of parametric scattering in the nondegener-
ate regime is that, alongwith frequency down-conversion, up-
conversion is also possible. This process consists in the fact
that, in a medium with a quadratic nonlinearity, a pump
photon and a THz photon give rise to a photon of the sum
frequency. Such a process can be interpreted as sum
frequency generation. In parametric scattering, in turn,
optical photons of the difference frequency are generated
that differ from the pump photon in energy by the THz
radiation quantum. We note that the sum frequency is not
generated in the absence of THz photons, but these can be
produced in the course of frequency down-conversion.
Because THz photons are involved in both processes, it is
appropriate to consider the difference and sum frequency
generation not separately but within a single approach.
Double phase matching for both processes is observed quite
rarely, but generation also occurs in the absence of phase
matching for one of them [1]. A detailed analysis of the
efficiency of cascade hyperparametric scattering depending
on the phase matching conditions for each of the processes
carried out in [137] showed that parametric amplification
requires the phase matching conditions to be satisfied not for
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each of the processes separately but for the cascade process as
a whole. The possibility of simultaneously realizing both
noted nonlinear optical processes in a crystal with a periodic
nonlinear inhomogeneity was previously demonstrated in
[138, 139]. The mutual influence of the processes of genera-
tion of sum and difference frequencies in a strongly
frequency-nondegenerate regime was studied in [131] using
the formalism of Schmidt modes. Because the THz radiation
Schmidt modes are the same in the case of difference and sum
frequency generation, THz radiation can be characterized by
the same operators in the Schmidt modes in both processes.
The Hamiltonian describing simultaneous generation of the
difference and sum frequencies has the form [131]

H � i�hG1

X
n; p

��������
ln; p

p �D yn; pB yn; p ÿDn; pBn; p�

� i�hG2

X
n; p

�ÿ1�n ��������
ln; p

p �A yn; pBn; p ÿ An; pB
y
n; p� ; �62�

where the operators Dn; p characterize the difference optical
frequency modes, called the Stokes component, the operators
An; p correspond to the anti-Stokes component of the sum
frequency, and Bn; p describe the THz radiation modes. We
note that, in the term characterizing the generation of the sum
frequency, an extra phase factor �ÿ1�n arises, reflecting the
fact that the produced anti-Stokes optical photon has the
same azimuthal angle as the THz photon participating in the
conversion.

Within an approach similar to that described in
Section 2.2, the evolution of all photon creation operators in
the Schmidt modes involved in Hamiltonian (62) is found and
expressions for themean number of photons in each beam are
obtained. It turns out that, even in the case of the vacuum
state for all modes at the entrance to the crystal, the mean
number of anti-Stokes component photons at the exit from
the crystal is not equal to zero but depends on the ratio of
quadratic nonlinearities for the frequency down- and up-
conversion processes. Importantly, in the high parametric
gain regime, both processes occur not sequentially but
simultaneously, thereby significantly increasing the effi-
ciency of the sum frequency generation.

In [131], an integral of motion reflecting the noted mutual
influence of processes was also obtained in the form of a

combination of the photon number operators for the anti-
Stokes ( bNAS), THz ( bNi), and Stokes ( bNS) beams that is
preserved during evolution:bNAS � bNi ÿ bNS � bN in

AS � bN in
i ÿ bN in

S : �63�

Integral of motion (63) implies an important relation for
the dispersion of the numbers of photons of the Stokes, anti-
Stokes, and THz beams, which is valid in the case of initial
vacuum states of all generated modes:

DNASÿNS
� DNi

: �64�
This result means the occurrence of correlations in the number
of photons between Stokes and anti-Stokes beams and allows
studying the statistics of THz radiation photons based on
measurements of only optical Stokes and anti-Stokes signals.
It is also possible to obtain information about the correlations
of THz and Stokes photons by analyzing the statistics of anti-
Stokes ones. Such methods are important, because direct
detection of THz signals is difficult.

The Stokes and anti-Stokes components can be correlated
not only in the number of photons but also in azimuthal
angles. In the case of one dominant radial mode, the
covariance of Stokes and anti-Stokes photons in azimuthal
angles can be found as [131]

cov �S;AS��
����X

n

lnG 2�lnG 2�1� exp �in ÿfsÿ�p�fa�
������2 :
�65�

It follows from (65) that a strong azimuthal entanglement
is established between Stokes and anti-Stokes photons that
are emitted predominantly with opposite transverse compo-
nents of the wave vectors. Figure 17 shows the distribution of
covariance (65) with respect to the azimuthal angles of Stokes
and anti-Stokes photons and the maximum of their correla-
tion attained at fs ÿ fa � p.

Thus, the mutual influence of frequency up- and down-
conversion processes results in correlations in optical Stokes
and anti-Stokes beams both in the number and in the
azimuthal angle of photons. The correlations, which can be
measured easily, allow extracting information about the
properties of nonclassical light in the THz mode.
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5. Anisotropy effects

The influence of the anisotropy of a nonlinear medium on
parametric generation leads to so-called spatial drift. The
effect of spatial (transverse) drift occurs because, in the
general case, for extraordinarily polarized pumping, the
Poynting vector corresponding to energy propagation and
the wave vector have different directions inside the crystal due
to birefringence. The effect of spatial drift, which turns out to
be significant in the case of narrow pumping and long
crystals, is usually parasitic. To eliminate it, a compensation
setup is used that includes two nonlinear crystals with optical
axes located in the same plane but at symmetric angles to the
pump propagation direction, so as to eliminate the effect of
spatial drift at the double crystal length. A similar setup
without compensation but with the same length of the
nonlinear medium just consists of two consecutive crystals
with optical axes parallel to each other (Fig. 18a, b). The
biphoton amplitude then has a different form for compen-
sated and uncompensated anisotropy [79, 80]. Moreover, the
anisotropy effects manifest themselves differently in low and
high parametric gain.

In [81], the anisotropy effects were analyzed in the
Schmidt mode formalism and, based on the analysis of the

profiles and weights of the Schmidt modes, the output
angular distributions of a squeezed vacuum in the collinear
degenerate parametric scattering regime were obtained (see
Fig. 18). As can be seen from Fig. 18c, at a low parametric
gain and the same orientation of the optical axes in the
crystals, the spatial drift effect leads to a strong asymmetry
in the angular distribution of the generated squeezed light: the
radiation is predominantly amplified in the drift direction. In
this case, at angles symmetric with respect to the drift
direction, an interference structure arises due to the induced
coherence effect [80, 81, 140]. This effect can be explained as
follows. Amplification of the signal beam occurs in the same
direction at each point, along the direction of the Umov±
Poynting vector of the pump. Due to the photon number
correlation of twin beams, the idler radiation is also
amplified, but in a symmetric direction, in accordance with
the phase matching condition. However, it is generated in
different, albeit collinear, directions at each point as the
radiation propagates through the crystal. Thus, the total
field in the idler channel has an interference structure. At the
same time, anisotropy compensation allows obtaining an
angular distribution of squeezed light that is symmetric with
respect to the direction of collinear emission of photons
(Fig. 18d).
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The picture changes at high values of the parametric
gain coefficient: for uncompensated anisotropy in the
regime of collinear degenerate phase matching, two nar-
rower peaks appear due to the phase matching condition,
one peak along the direction of the Umov±Poynting vector
of the pump and the other in the direction symmetric to it
(Fig. 18e). Moreover, when the crystal orientation changes,
the condition for radiation amplification in the two conjugate
directions is satisfied for different frequencies of the signal
and idler beams. Thus, as a result of the anisotropy effect,
it becomes possible to generate a two-color squeezed
vacuumÐhigh-intensity correlated twin beams at conjugate
frequencies [81, 141].

Based on the anisotropy effect, a substantial change in the
angular distribution of the generated squeezed vacuum and
the buildup of two bright symmetric peaks detected at a fixed
wavelength of parametric radiation with a change in the
crystal orientation relative to the optical axis were observed
experimentally and explained theoretically in [141].

The theoretically calculated one-dimensional angular
profiles of the parametric radiation intensity obtained at a
fixed wavelength of 710 nm for various crystal orientations
(Fig. 19a) coincided with the measured ones with high
accuracy [141]. As the crystal is detuned from the collinear
phase-matching regime, the central peak splits into two
peaks, whose intensity increases severalfold as the crystal
rotation angle increases. At the angle of 34:9�, the phase-
matching condition for the degenerate wavelength is satisfied
at the drift angle, and therefore the peak intensity reaches its
maximum at that orientation of the crystal, increasing by two
to three orders of magnitude compared with the collinear
phase-matching regime. The experimentally obtained inten-
sity distribution corresponding to the degeneration of the ring
structure into two symmetric high-intensity peaks in the case
of giant amplification is shown in Fig. 19b. With a further
increase in the rotation angle of the crystal relative to the
optical axis, the intensity of the peaks starts decreasing. Thus,
maximum-intensity radiation is generated in the crystal when
the phase matching condition is satisfied for a given
wavelength at the drift angle. In this case, turning the crystal
allows selecting the wavelength at which the squeezed light is
maximally amplified. From the standpoint of the Schmidt
modes, the described situation is associated with a change in

themode weights and profiles: the distribution of the Schmidt
weights for the drift angle is sharper, and the mode profiles
are significantly narrowed, which leads to a sharp increase in
the signal intensity for this crystal orientation in the high
parametric gain regime. As a consequence, due to anisotropy
effects, a giant amplification of the parametric scattering
signal by several orders of magnitude occurs, which is
observed at a certain frequency in the `drift' direction.

6. Controlling the spectral properties
of a bright squeezed vacuum

The spectral properties of squeezed light obtained in the
process of parametric scattering are similar in a number of
aspects to the features inherent in the spatial case. We first
note the frequency correlations of signal and idler photons.
Depending on the type of phase matching, a frequency-
degenerate or nondegenerate parametric scattering regime
is realized, with correlations between photons of the same
or conjugate frequencies (which add up to the pump
frequency).

The properties of the spectral distribution of biphotons
obtained in the spontaneous parametric scattering regime
were studied in [142±144]. The results of an experiment to
determine the spectrum of the bright squeezed vacuum and
measure correlations in the number of photons are described
in [145], where the auto- and cross-covariance of the
intensities were measured, depending on the wavelength of
the signal and idler photons, and strong correlations of twin
beams were also observed in the number of photons for
conjugate wavelengths with the NRF of the difference
signal, NRF5 1, much less than unity.

The theoretical analysis of the spectral characteristics of a
squeezed vacuum is typically based either on the perturbation
theory or on the introduction of broadband modes similar to
Schmidt modes [71±73, 94].

The approach described in Section 2.3, also based on
finding broadband frequency Schmidt modes and introduc-
ing the corresponding photon creation/annihilation opera-
tors, was used in [86, 110] to analyze the spectral properties of
a squeezed vacuum. The found evolution of these operators in
the Heisenberg representation allows calculating all the
necessary characteristics of squeezed light if the Schmidt
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mode profiles are known. To control the spectral properties
of the multiphoton squeezed vacuum just as in the spatial
case, it is most promising to use a scheme with a nonlinear
interferometer.

In [86, 110], the generation of a bright squeezed vacuum
was analyzed in a scheme with a nonlinear Mach±Zehnder
interferometer made of two successive nonlinear crystals
separated by a medium with strong group velocity disper-
sion: SF6 glass was used as the dispersing medium. In such a
configuration, the radiation obtained in the process of
parametric scattering in the first crystal can be amplified or
attenuated in the second, depending on the phase relations
between the pump and the signal and idler fields. When
propagating through a medium with strong dispersion, the
parametric scattering pulse generated in the first crystal
spreads in time and becomes chirped due to the differences
among the propagation speeds of different spectral compo-
nents of the squeezed vacuum in a medium with group
velocity dispersion [86, 110]. As a result of the chirping of
the time pulse of the squeezed vacuum and the delay of the
pump pulse in a dispersive medium, a nonlinear signal in only
a certain spectral interval appears in the second crystal
simultaneously with the pumping, and therefore amplifica-
tion in the second crystal becomes possible for squeezed light
of only a certain frequency range [86, 110]. Therefore, by
changing the delay time of the pump pulse, it is possible to
selectively amplify or attenuate certain spectral components
and thereby vary the spectral composition of squeezed light.

As was established in the analysis of the relative phase
shift acquired by the pumping and the signal and idler beams
in the first crystal and in the dispersive medium, the condition
for the frequency derivative of this phase to vanish determines
the spectral interval in which the nonlinear signal overlapping
with the pump pulse in the second crystal can be amplified,
and the phase value itself is responsible for the condition of
constructive or destructive interference. Thus, if the amplifi-
cation condition is realized at a degenerate frequency, one
central peak is observed in the spectrum, which is rather wide
and rugged in the case of low parametric gain. If the
amplification condition is satisfied for a nondegenerate
spectral component, then two peaks appear in the spectrum,
with the second one centered at the conjugate frequency;
according to theoretical analysis, it should exhibit strong
interference irregularity. The appearance of the second peak
at the conjugate frequency is a direct consequence of photon
correlations in conjugate twin beams, and sharp oscillations,
similar in many respects to those described in Section 5, are
due to the induced coherence effect.

All the above effects follow directly from the analysis
carried out in terms of Schmidt modes and photon operators
in these modes. Importantly, the mode profiles and their
weight distributions depend significantly on the phase shift
between the pump and the signal and idler beams. Moreover,
for both the signal and idler channels, the dominant zero
mode changes its structure from a single-peak one in the case
of amplification at a degenerate frequency to an asymmetric
two-peak one in the nondegenerate regime. In the degenerate
regime, as the parametric gain coefficient increases, the
distribution of mode weights narrows greatly, and the zero
mode begins to dominate, such that only its contribution
becomes significant and only one frequency mode is actually
singled out in the high-gain limit. Moreover, in the high-gain
regime, the profile width of this mode becomes very small.
The frequency spectrum of the generated squeezed vacuum

therefore becomes a very narrow peak, enhanced by several
orders of magnitude compared to the spectrum in the
spontaneous low-gain regime.

In Fig. 20, we show the normalized spectral intensity of
the squeezed vacuum calculated in the Schmidt mode
formalism in the case of amplification of degenerate spectral
components in a nonlinear interferometer for low and high
parametric gain [86]. It can be seen that a very narrow
spectrum is formed at high gain, with amplification by
several orders of magnitude (which is not shown in the figure
due to the normalization of the function to unit height). As
follows from an analysis of the second-order correlation
function g �2�, its value at G � 13 is close to 3, which implies
the selection of one frequency mode and the generation of a
single-mode squeezed vacuum [86].

We note that the described effects, obtained theoretically
in the framework of the Schmidt mode formalism, were
directly detected experimentally at low [146] and high [110]
parametric gain. When the phase-matching condition corre-
sponds to a nondegenerate frequency, at large values of the
parametric conversion coefficient, two peaks remain in the
spectrum of the bright squeezed vacuum, centered at
conjugate frequencies; the peaks are narrow and are
enhanced by several orders of magnitude (Fig. 21). The
squeezed vacuum is actually enhanced only in two narrow
spectral intervals selected by the phase-matching condition
and controlled by the time delay of the pump pulse.

As can be seen fromFig. 21, an increase in the optical path
of the pump leads to an increasingly greater detuning from the
degenerate frequency, which allows the controlled selection of
the frequencies of the squeezed-light twin beams. In addition
to the experimental data, the figure shows the results of a
calculation performed in the Schmidt mode formalism (red
dashed-dotted curve), which are consistent with the experi-
mental data. The inset shows an enlarged calculated inter-
ference structure of the right peak conjugate to the left peak
for which the phase-matching condition is satisfied. Thus, the
scheme with a nonlinear interferometer allows spectrum
control and controlled selective generation of a two-color
squeezed vacuum in a narrow spectral range with high gain.
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Theoretical analyses also showed that, in the case of a
two-color squeezed vacuum in the high-gain limit, the
contribution to the spectrum is made not by one Schmidt
mode (as in the case of frequency-degenerate generation) but
by two (symmetric and antisymmetric) modes having the
same weights and spectral distributions but differing in parity
with respect to the position of the degenerate frequency. In
the case under consideration, the calculated theoretical value
of the second-order correlation function is g �2� � 3=2 [86].
This effect is analogous to the doubling of the weight
coefficients of the spatial radial Schmidt modes (see Fig. 9)
discussed in Section 3.2.

The above-described control of the spectral properties of a
squeezed vacuum is related, inonewayor another, to a decrease
in the effective number of Schmidt modes and the dominant
contribution of one or several lower modes. A separate
interesting, but rather difficult problem is to develop methods
to vary the weights of the Schmidt modes by changing the
dominant character of a particular mode. Importantly, this
must not introduce losses that destroy photon correlations. A
possible solution to this problem is based on a scheme in which
squeezed light is used as a seed of the signal mode and is
transformed in the process of the sum-frequency generation
(SFG) [147, 148]. Using such a scheme, called a quantum pulse
gate, it is possible to selectively block any Schmidt mode of the
squeezed vacuum by completely converting it into the
frequency sum mode [149±152]. This scheme is also promising
as regards solving problems in quantum tomography [153, 154].

We consider the principle of operation of a quantum
optical gate using the example of a degenerate SFG regime,
when the pump and the input signal photon frequencies
coincide, and their sum corresponds to the frequency of the
generated `output' photon. To analyze this nonlinear process,
we can also use the formalism of Schmidt modes and describe
the signal and output fields using Schmidt modes. Due to the

short duration of the pump pulse, a single-mode regime is
realized for each field [149, 150], and in that case the SFG
Hamiltonian can be written as

bHSFG � i�hG1� bD bC y ÿ bD y bC � ; �66�

where C y and bD are the photon creation and annihilation
operators in the respective sum-frequency mode and signal
mode. The spectral profile of the output high-frequencymode
is determined by the crystal parameters and tuning, while the
converted signal mode corresponds to the pump frequency
spectrum. Mathematically, Hamiltonian (66) corresponds to
a beam-splitter Hamiltonian, and the input and output
operators in the Heisenberg representation are related by a
standard transformation in terms of the beam-splitter matrix,
with the transmission and reflection probabilities respectively
expressed as cos2 Y and sin2 Y,

bC outbD out

� �
� cosY sinY
ÿ sinY cosY

� � bC inbD in

� �
; �67�

where Y � �G1 dt is the so-called beam-splitter angle char-
acterizing its transmission and reflection. We can see that the
field in the signal mode is not completely converted into a
high-frequency signal in the general case. The complete
transformation occurs at the angle p=2. It is not difficult to
obtain expressions for the mean numbers of output photons
in the modes. When the vacuum is at the input for the sum-
frequency mode, the mean numbers of photons in the high-
frequency and signal modes, h bN out

SF i and h bN out
s i, follow from

the transformation of only the input number of photons in the
signal mode h bN in

s i [150],
h bN out

SF i � sin2 Yh bN in
s i ; �68�

h bN out
s i � cos2 Yh bN in

s i : �69�

Let the multimode squeezed vacuum generated in the
frequency-degenerate regime of parametric scattering and
characterized by a set of frequency modes be fed to the
entrance to the signal channel of a quantum-optical gate. If
one of the Schmidt frequency modes of the squeezed vacuum
coincides with the Schmidt mode of the signal channel, then,
under the condition Y � p=2, photons in the squeezed
vacuum mode are completely converted into the sum-
frequency signal, while the other modes not involved in this
process pass without change. Thus, it is possible to block a
certain Schmidt mode of a squeezed vacuum by the quantum-
optical method with minimal losses. Because the frequency
profile of the signal mode of a quantum-optical gate coincides
with the spectral profile of classical pumping, varying the
pumping spectrum allows selectively `tuning' to one blocked
Schmidt mode or another of the squeezed vacuum. Selective
blocking of frequency Schmidt modes was described theore-
tically and demonstrated experimentally in [149, 150].

Further development of this approach and its general-
ization to the case where several Schmidt modes of a squeezed
vacuum are involved in the transformation in a mode gate is
described in [155]. Depending on the transformation angleY
and the overlap of the spectral profiles of the converted
Schmidt modes and the gate signal mode, one can obtain a
different number of photons in these modes at the output of
the quantum optical gate and thus change their relative
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contributions (weights). In the framework of the developed
approach, the possibilities of exchanging weights between a
pair of modes, of selectively increasing the contribution of a
certain mode, etc., have been demonstrated.

Figure 22 shows the redistribution of the Schmidt mode
weights for a squeezed vacuum after the transformation of the
zeroth and second Schmidt modes in a quantum optical gate
at the angle Y � p, when no high-frequency mode is
generated [155]. It can be seen from the figure that, as a
result of such a transformation, the zeroth and second modes
exchange weights and the second mode becomes dominant,
while the initial mode weights monotonically decrease with
increasing mode number. Thus, this scheme allows control-
ling the weights of the Schmidt frequency modes of the bright
squeezed vacuum over a wide range.

To conclude this section, we note that considering the
spatial or spectral properties of the bright squeezed vacuum
separately is not always correct because of the entanglement
andmutual influence of these degrees of freedom.Most of the
effects discussed in this review, described in terms of either
frequency or spatial settings, are in very good agreement with
experimental data. However, broadening of the spatial or
spectral distribution of a squeezed vacuum generated in a
single crystal with increasing parametric gain [145], predicted
theoretically in [1] and observed experimentally, was not
obtained in the framework of the approach in Section 2. For
a theoretical analysis of this effect, an approach has been
developed where spatial and spectral degrees of freedom are
considered simultaneously and their mutual influence is taken
into account [107]. This approach involves solving integro-
differential equations for photon operators, depending on
spatial and temporal variables. In the case of generation in a
single nonlinear crystal, a broadening of the angular distribu-
tion of the bright squeezed vacuum with an increase in the
parametric gain was found, which led to an increase in the
FWHMby almost a factor of 1.5 in the high-gain limit. From
the standpoint of the Schmidt modes, this fact means that
their dependence on the parametric gain is not too strong, but
still noticeable.

We note that, in the scheme with a nonlinear interferom-
eter, such broadening does not occur; instead, the highest
peaks in the spatial or spectral distribution are amplified and
dominate, indicating, on the contrary, a narrowing of the
angular or frequency spectrum and the tendency to select one

Schmidtmode [107]. Thus, we can conclude that the approach
considered in Section 2 is indeed valid for a nonlinear
interferometer: the Schmidt modes are independent of the
gain coefficient, and only their weights change as it increases.

In [156±158], an attempt was also made to unify the
analysis of the spatial and spectral properties of the squeezed
vacuum. However, many of the results obtained were
explained as a consequence of the pump depletion effect,
and in some cases the analysis was carried out in terms of the
dynamics of the mean values of the photon and field
operators [157, 158].

The results of an experimental study of quadrature
squeezing in various space±time modes of a squeezed
vacuum in [103] have already been discussed in Section 2.5.
We note that, in the experiment, the spatial properties were
studied for each spectral mode separately and hence a specific
spatial mode was selected for the analysis of spectral proper-
ties. Thus, the results obtained do not allow drawing detailed
conclusions about the mutual influence of the spatial and
spectral degrees of freedom of squeezed light.

A theoretical study of squeezing in space±time modes of a
squeezed vacuum was carried out in [159] both numerically
and analytically using Gaussian functions in curvilinear
coordinates to approximate the biphoton amplitude. The
results obtained confirmed the conclusion in [107] about the
impossibility of factorization of space±time degrees of free-
dom in the general case and about the strong entanglement
between them, which is especially important in the limit of an
ultrashort pump pulse duration.

7. High-precision measurements
using squeezed light

The use of biphoton pairs and multiphoton squeezed states
opens up new possibilities for a number of applied problems
in the field of quantum communication, quantum informa-
tion technologies, metrology, and others, discussing which
would require writing a separate review. We briefly consider
the prospects for using squeezed fields in linear and nonlinear
interferometers. The use of squeezed light in optical inter-
ferometers for measurements with an accuracy exceeding the
standard quantum limit, as well as in gravitational wave
detectors, is discussed in detail in [160].

The correlations among photons allows carrying out
high-precision measurements with a very low noise level.
Indeed, due to the presence of strong correlations, the change
in the number of photons in conjugate beams occurs
synchronously, and hence the dispersion of their difference
is minimized, to become much less than shot noise. If a weak
disturbance which is to be measured arises in one of the
correlated channels inside the interferometer, then the
calculation of the difference between the numbers of photons
in the signal and idler beams (according to the coincidence
scheme) gives the desired signal with a high degree of accuracy
due to subtraction of the noises, which are the same in the
conjugate beams.

As discussed in the foregoing, the setup with a nonlinear
interferometer allows controlling the profiles and weights of
the Schmidt modes both in space and in frequency, and hence
allows controlling the spatial and spectral/temporal correla-
tions of photons.With the interferometer setup, the unknown
properties of a medium placed inside the interferometer can
be measured with high accuracy (due to interference),
similarly to the case of finding the dispersion characteristics
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of the intermediate layer in the THz range, as described in
Section 4.2 for strongly frequency-nondegenerate parametric
scattering. It is important that photon correlations in the
signal and idler channels allow obtaining all information in
the THz range from measurements in the optical channel.

The scheme with a nonlinear interferometer has a high
sensitivity to the relative phase between the pump and the
signal and idler fields. Therefore, even a weak phase
perturbation can be measured with high accuracy due to
correlations in the number of photons in conjugate beams and
quadrature squeezing [59, 61, 161, 162], because the output
signal depends nonlinearly on the phase and can be
significantly amplified, while the noise due to quadrature
squeezing is below the shot noise level [59, 61, 161, 162].

For the interferometer scheme, the accuracy of measuring
the phase Df, which depends significantly on the photon
statistics of the light used, satisfies the uncertainty relation

DNDf5 1 ; �70�

where DN is the uncertainty in the number of photons in a
given state of the electromagnetic field. In the case of coherent
fields with the mean number of photons N, the limit
measurement accuracy corresponds to the shot noise level
[163]:

DfSNL �
1����
N
p : �71�

Superresolution can be achieved when using coherently
squeezed light with not too much squeezing, which allows
overcoming the shot noise level [60]:

Df0
exp �ÿR�����

N
p : �72�

In highly squeezed fields close to a squeezed vacuum, the
relation

exp �ÿR� � 1����
N
p �73�

allows the Heisenberg limit to be approached:

Df0
1

N
: �74�

Various configurations of interference schemes using
squeezed light were analyzed in detail in [60]; the ones with
external illumination, as well as those implementing squeez-
ing of conjugate field quadratures at the entrance to and exit
from the interferometer (i.e., squeezing of a certain quad-
rature in the first crystal and so-called anti-squeezing in the
second), were found to be optimal.

A scheme of an `unbalanced' nonlinear interferometer
was also proposed, in which the gain in the second crystal is
almost twice that in the first crystal. It has been demonstrated
that such a scheme is not very sensitive to external losses, and
the high accuracy of phase measurements is preserved even at
up to 80% detection losses [59].

In [164, 165], a nonlinear interferometer was used for
high-precision detection of angular rotations and perturba-
tions of the angular coordinate, realized due to the twisting of
squeezed light and the correlation of photons in modes with
opposite OAMprojection values. Phase measurements with a

noise level much less than shot noise have also been
demonstrated for a wide-angle multimode SU(1,1) interfe-
rometer with an effective number of modes greater than 100
[106]. The implementation of optimal regimes in terms of high
phase sensitivity and visibility in a multimode SU(1,1)
interferometer was analyzed in [166].

8. Conclusion

We have discussed the spatial and spectral features of
nonclassical electromagnetic fields in a squeezed vacuum
state, as well as photon correlations in such fields. Correla-
tions of photons and a number of unique properties of
squeezed states make them indispensable for practical
applications in quantum information technologies, coding
and transmission of quantum information, optomechanics,
quantum metrology, quantum imaging, and high-precision
measurements with an extremely low noise level. At the same
time, squeezed fields are very fragile objects, extremely
sensitive to losses, which requires precision experiments and
the development of special quantum-optical methods for
controlling their properties. The bright squeezed vacuum is
actually a macroscopic quantum state with a large number of
photons in each mode, which greatly complicates its theoret-
ical analysis. Today, the most promising theoretical approach
is apparently that based on the introduction of independent
Schmidt modes and photon operators in them. It allows
correctly describing such states and gives good agreement
with experimental data.

Possible applications of squeezed states are not limited to
the above problems. Another important and already devel-
oping area is the interaction of such states with variousmedia,
atoms, molecules, and nanostructured objects. An increase in
the probability ofmultiphoton processes under the action of a
squeezed vacuum field has already been registered in
experiments on the generation of two to four harmonics
[167]. The discovery of many more new physical effects
associated with the nonclassical properties of such fields can
also be expected.
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