
Abstract. The review presents an analysis and generalization of
classical and most modern approaches to the description and
development of the principles of operation of open optical
nanoresonators, that is, resonators, all sizes of which are smal-
ler than the resonant wavelength of radiation in vacuum. Parti-
cular attention is paid to the physics of such phenomena as
bound states in a continuum, anapole states, supercavity
modes, and perfect nonradiating modes with extremely high
quality factors and localizations of electromagnetic fields. An
analysis of the optical properties of natural oscillations in
nanoresonators made of metamaterials is also presented in the
review. The effects considered in this review, besides being of
fundamental import, can also find applications in the develop-
ment of optical nanoantennas, nanolasers, biosensors, photo-
voltaic devices, and nonlinear nanophotonics.

Keywords: nanoresonators, quasi-normal modes, perfect nonra-
diating modes, supercavity modes, anapole states, bound states in a
continuum, Platonic solids, quality factor, nanoantennas, nano-
lasers, metamaterials, Mie resonances, plasmon resonances, bio-
sensors

1. Introduction

For modern optical devices, the localization of light in
volumes of any size smaller than the wavelength in vacuum,
that is, in nanoresonators, becomes critically important. The
localization is extremely important for such modern applica-
tions of nano-optics as lasers and spasers, optical nano-
antennas, metasurfaces, chemical and biological sensors,
optical computers, filters, switches, detectors, and optical
memory elements. The compactness of these devices allows
one to integrate them into optical microcircuits, and that is
extremely important, since the miniaturization process in the
production of electronic microcircuits has almost reached the
theoretical limit. In this regard, the resonant optical proper-
ties of plasmonic nanoparticles [1±6] and dielectric nanopar-
ticles with a high refractive index [7±25] are currently being
actively studied. Figure 1 shows examples of optical nano-
resonators.

The physics of optical phenomena in such nanostructures
is very complex and leads to many interesting applications,
such as nano-antennas [5, 6, 8±14], plasmonic [2, 4] and
nonplasmon nanolasers [22, 25, 26], and nonlinear nanopho-
tonics [17, 21, 27, 28]. As in any other field of physics, here, all
effects are associated with the existence of certain modes of
natural oscillations in nanoparticles.

For applications, eigenmodes with strong field localiza-
tion and low radiation losses are of particular interest.
Modes of this kind have recently attracted the closest
attention of leading scientific groups, which have discov-
ered several types of weakly radiating systems: bound
states in a continuum [27±30], anapole current distribu-
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tions [19, 31±36], supercavity modes [25, 37, 38], and
perfect nonradiating modes [39±41].

Due to radiation losses, intermode interference, and
amplification of both electric and magnetic fields, the physics
of high-Q modes in nanoresonators is very complex. In
particular, the fields of usual quasi-normal modes increase
without limit at infinity. In view of the exceptional impor-
tance of open nanoresonators, a number of approaches are
being intensively developed at present to describe them and to
create new nanodevices based on them.

These approaches are not well known to a wide range of
physicists working in the field of nano-optics and nanoplas-
monics and their applications. Therefore, the purpose of this
review is to analyze and generalize the most modern
approaches to the description and development of open
nanoresonators, that is, resonators of a size smaller than the
wavelength of radiation in vacuum. The large flow of work in
this area has led to the fact that their character is mainly
phenomenological and/or purely computational. Therefore,
one of the important objectives of the review is to present the
situation from a single, well-defined point of view. In doing
so, we restrict ourselves to the case of resonators of simple
shapes with high symmetry, allowing a more or less accurate
description of their resonant properties. The properties of
asymmetric resonators are also very interesting (see, for
example, [42]), but they critically (even chaotically) depend
on small shape variations, and their study deserves a separate
review.

Section 2 of the review will present general approaches to
the description of optical nanoresonators. Here, various
definitions and methods for finding their eigenmodes and
eigenvalues will be analyzed. Particular attention will be paid
to studies where alternative methods for describing eigen-
modes are developed that do not have the disadvantages
inherent in the standard description. This section will also

analyze the underlying software for finding eigenmodes and
eigenvalues. Section 3 will present studies of eigen oscillations
in plasmonic nanoresonators of various shapes (spheres,
spheroids, ellipsoids, Platonic solids, clusters of nanoparti-
cles). In Section 4, we will consider investigations of eigen
oscillations in dielectric nanoresonators of various shapes
(spheres, spheroids, cylinders). Section 5 will analyze studies
of eigen oscillations in nanoresonators made from chiral and
hyperbolic metamaterials, as well as from metamaterials with
a negative refractive index. Section 6 of the reviewwill present
examples of the use of nanoresonators for nanolasers,
biosensors and nonlinear optical devices, and optical and
quantum computers. Throughout the review, it is assumed
that the dependence of fields on time has the form exp �ÿiot�.

2. General approaches to describing
optical nanoresonator properties

2.1 Closed resonator eigenmodes
Describing the properties of electromagnetic waves in
resonators is a classical problem of mathematics and the
theory of electromagnetic waves (see, for example, [43±45]).
In classical studies, the main focus is on closed resonators,
that is, resonators without radiation losses.

Natural oscillations of such resonators are described by
Maxwell equations with the condition of perfect conductivity
of walls:

HH� HH� En � k 2
0; neEn ; �1�

En;tan

��
S
� 0 :

For resonators without internal losses, Im e � 0, the
eigenfrequencies of system (1) on � ck0; n are real num-
bers, and the modes for different frequencies are orthogo-
nal. This makes it possible to solve all practically interest-
ing problems concerning the excitation of such resonators
and the interaction of waves in them. Losses in the walls of
waveguides can be considered using perturbation theory
[43]. The theory of closed resonators is the basis for
considering any resonators.

2.2 Open nanoresonator eigenmodes
In addition to closed resonators, both in microwave technol-
ogy and in modern applications of nano-optics, open
nanoresonators, where natural oscillations lead to the
emission of energy and the associated damping of oscilla-
tions, are of great importance [46].

2.2.1 What are open nanoresonator modes? The concept of a
`resonator mode' seems to be well known, and this is true for
closed resonators that are used in microwave technology.
However, when applied to optical nanoresonators based on
nanoparticles, the concept of `resonator mode' becomes far
from trivial, since they are open systems [46], and oscillations
in the resonator volume interact with a continuum of free
space modes. So, the definition of modes in open resonators
as solutions of Maxwell's equations without sources becomes
incomplete, since for open resonators it is also necessary to
specify the character of the behavior of fields at infinity,
which can be very different both formally and when
considering specific problems. Setting certain conditions at
infinity imposes restrictions on the choice of spectral para-
meters that can be eigenvalues of the resonator modes.
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Figure 1. (a) Transmission electron microscope image of a gold spherical

nanoresonator with a diameter of 14 nm [2]. (b) Scanning electron

microscope (SEM) image of a spaser based on the resonator shown in

(a) [2]. (c) SEM image of a gold single-crystal nanoresonator with an

edge of 100 nm with opposite edges covered by a polymer doped with

CdSe/CdS/Zn (core/shell/shell) colloidal quantum dots [3]. (d) SEM

image of a cylindrical AlGaAs nanoresonator (refractive index n � 3:4)
635 nm high and 930 nm in diameter on a quartz substrate [20, 21].

(e) SEM image of a CsPbBr3 cubic nanoresonator with an edge of

310 nm on a sapphire substrate [22]. (f) SEM image of an Si ring

resonator with outer and inner diameters of 800 and 300 nm, respec-

tively, and a thickness of 80 nm [23].
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In any case, the main characteristics of the resonators are
the resonant frequencies on and the quality factors Qn,
according to definition [43], equal to the ratio of the energy
stored in the nth mode of the resonatorWn; stored to the power
Pn; rad radiated by the same mode:

Qn � onWn; stored

Pn; rad
: �2�

This definition assumes that the eigenmodes have already
been found in one way or another. However, in practice, in
the case of open resonators, it is often difficult to find natural
oscillations directly, and in this case the concept of a
generalized quality factor turns out to be extremely useful,
being valid at any frequency [47±49], in contrast to (2):

Q�o� � oWstored�o�
Prad�o� : �3�

In (3), the stored energy Wstored�o� and the radiated power
Prad�o� can be found by solving the scattering problem at an
arbitrary frequency. At frequencies corresponding to those of
natural oscillations, this expression naturally coincides with
the usual definition (2). However, the concept of a generalized
Q-factor turns out to be very useful in nontrivial cases when
the stored energy does not have resonant properties and
radiation losses have minima (see Sections 4.1.4, 4.2.2, 4.3.3,
5.1). Calculations of the energy stored in the resonator,
Wstored, for open resonators can be carried out in various
ways [50]. In this review, by stored energy we mean, as usual
[43], the positive energy that is concentrated inside the
resonator.

2.2.2 Frequency as mode eigenvalue. In the case of open
resonatorsÐand this is the case that is the subject of this
reviewÐ it is usually assumed (as in the theory of closed
resonators) that the eigenvalue is the oscillation frequency,
and the modes are defined as solutions of the Maxwell
equation

HH� HH� En � k 2
0; neEn inside nanoresonator ; �4�

HH� HH� En � k 2
0; nEn outside nanoresonator ;

where e is the permittivity of the nanoresonator, with
Sommerfeld radiation conditions at infinity [51]:

E�r; y;j� ÿ!
r!1

exp �ik0; n r�
r

F�y;j� : �5�

In (4), e stands for resonator permittivity.
However, such a formulation of the problem is contra-

dictory, since, due to radiation and the energy conservation
law, it follows that the eigenfrequencies On are complex
numbers, On � on ÿ iGn=2, leading, in turn, to an unlimited
increase in the mode fields at infinity

En�r� � exp �iOn r=c�
r

� exp �ion r=c� exp �Gn r=2c�
r

ÿ!
r!1 1 :

�6�

L A Weinshtein drew attention for the first time to this fact
[46]: ``This increase is an inevitable consequence of the
exponential damping of the field as t!1. Indeed, since at
R!1 the field of each natural oscillation has the character
of a spherical wave going to infinity at the speed of light, then,

for example, at t � 0, the field at a large distanceR is due to a
wave emitted by a sphere at t � ÿR=c when the oscillation
amplitude in it was much greater than at t � 0, due to which
this field is exponentially large. The above considerations are
very general and allow us to assert that the exponential
increase in the field of eigen oscillations at R!1 ... takes
place for all open resonators (three-dimensional).''

Eigenmodes of open systems are also known as decaying
states, leaky modes, quasi-modes, or quasi-normal modes.

The main problem in the description and computer
simulation of quasi-modes or modes of open resonators is to
determine how they can be normalized. Since these modes
increase at infinity, the usual normalization procedures do
not work, and nonstandard solutions are needed.

A number of approaches to the normalization of quasi-
modes have been proposed in [46, 52±59]. In [58], the
eigenfunctions of spherical resonators, which are solutions
of the Maxwell equations without sources,

HH� HH� En ÿ k 2
0; ne�jrj�En � 0 ; �7�

are proposed to be normalized using the relation�
V

dr e�jrj�E2
n�r�

� 1

2k 2
n

�
S

dS

 
En

qEn

qr
� rEn

q2En

qr 2
ÿ r

�
qEn

qr

�2
!
� 1 ; �8�

where the integration is carried out over the spherical
resonator volume V and over the surface of the large sphere
S surrounding the volume V. In (8), the volume and surface
integrals, taken separately, diverge, but their sum remains
finite.

To find the eigenfrequencies and Q-factors of nanoreso-
nators, one can use the method of integral equations (see, for
example, [60±63]), where, apparently, there are no problems
with field divergences at infinity, which arise when solving
partial differential equations (4). However, the low preva-
lence of this method indicates the complexity of its applica-
tion.

2.2.3 Permittivity as mode eigenvalue. More reliable and
unambiguous results are obtained if we use not the frequency
(as is usually done), but the permittivity en of the nanoreso-
nator [1, 64, 65] as an eigenvalue. In this case, the eigenfunc-
tions satisfy the Maxwell equations

HH� HH� En � k 2
0 enEn inside resonator ; �9�

HH� HH� En � k 2
0En outside resonator ;

and the Sommerfeld conditions (5) at infinity.
In (9), o � k0c is the real frequency, and the permittivity

eigenvalue en is a complex number. It can be shown [1, 64, 65]
that its imaginary part is negative, Im en < 0, and this can be
interpreted as an amplifying medium that compensates
radiation losses. It is this circumstance that causes the fields
of eigenfunctions En to decrease at infinity. In addition, the
smallest eigenvalues en have a negative real part, making this
method especially useful for describing the properties of
plasmonic nanoresonators. We emphasize once again that in
system (9) the actual material properties of the resonator do
not appear.

The expansion of solutions of Maxwell's equations in
terms of eigenmodes for an arbitrary excitation field E 0 in the
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framework of the `e-method' has a simple form:

E � E 0 �
X
n

En
e�o� ÿ 1

en ÿ e�o�

�
V EnE

0 dV�
V E 2

n dV
; �10�

where e�o� describes the frequency dependence of the
permittivity of the resonator's specific material, and the
integration is carried out over the volume of the resonator V.

It follows from the form of this solution that e�o� enters
into (10) in a rather simple way, making it easy to carry out
calculations for nanoresonators of the same shape, but made
of different materials. This is very important when optimizing
certain nanodevices.

The most important feature of solution (10) is the
presence of the resonance factor �en ÿ e�o�� in the denomi-
nator. At frequencies on such that en ÿ e�on� � 0, the
resonance occurs in the system, and only one term becomes
significant in the solution:

E � E 0 � En
e�o� ÿ 1

en ÿ e�o�

�
V EnE

0 dV�
V E 2

n dV
: �11�

In this case, one can speak of excitation at a frequencyon of a
localized mode with a spatial structure described by the mode
fieldEn, which does not depend at all on a particular material.

The width of the resonance as a function of frequency
essentially depends on the imaginary parts of en and e�o�. It is
very important to note that the imaginary parts of en and e�o�
always have different signs, and therefore the resonance width
of (11) is determined by the sum of their moduli. As will be
shown below, in the case of nanoresonators, the imaginary
part of e 00n � �ka�3 becomes very small. In this case, the width
of the resonance is mainly determined by the losses inside the
nanoparticles, that is, by the imaginary part of e�o�. In those
cases where the imaginary part is small, it becomes necessary
to take the imaginary part of en into account, and a number of
interesting effects arise in this case [66].

Thus, within the framework of the `e-method,' plasmon
oscillations arise naturally as a result of solving the spectral
problem where the eigenvalue is the permittivity, not the
frequency. Another important feature of the described
approach is that the properties of plasmons actually depend
only on the shape of the particle, not on the specific material
of the resonator. Both these factors make the `e-method'
extremely useful in a wide variety of applications and
problems. Moreover, one can say that the `e-method' is a
constructive definition of localized plasmons.

2.2.4 Perfect nonradiating modes.Usually, the modes of open
resonators are found by solving the homogeneous Maxwell
equations with the Sommerfeld radiation conditions at
infinity (5) and, therefore, such modes are fundamentally
related to radiation losses. Moreover, such modes increase
unlimitedly at infinity, requiring the development of very
complex artificial approaches to describe them (see, for
example, [46, 52±59]).

However, finding all modes is a nontrivial task, and the
quasi-normal modes studied recently in [18±23, 27±38] do not
exhaust all solutions of the sourceless Maxwell equations in
open nanoresonators. Quite recently in [39±41], a fundamen-
tally new class of eigen oscillations in nanoresonators was
foundÐperfect nonradiating modes that are solutions of
sourceless Maxwell's equations and fundamentally do not
contain waves that carry energy away.

More specifically, in [40], it was proposed to search for the
electromagnetic fields outside the nanoresonator in the form
of a superposition of solutions of Maxwell's equations that
are nonsingular in unbounded free space. This approach is
fundamentally different from the usual one assuming that the
functions describing the fields outside the resonator can have
singularities upon analytic continuation to the region inside
the resonator. For example, in the expansion of any field
component E�r; y;j;o� outside the resonator in terms of
spherical harmonics, Y m

n �y;j�, in accordance with the
Sommerfeld radiation condition, the spherical Hankel func-
tions h

�1�
n �k0r�, which are singular at r � 0 (inside the

resonator), are usually used:

E�r; y;j;o� �
X

anm h �1�n �k0r�Y m
n �y;j� : �12�

In [40] to find the fields of nonradiating modes outside the
resonator, it was proposed to use only functions that are
nonsingular inside the resonator, for example, the spherical
Bessel functions, jn�kr�, so that, instead of (12), the asympto-
tic form of the fields has the form

E�r; y;j;o� �
X

anm jn�k0r�Y m
n �y;j� : �13�

Obviously, if the solution of (4) with the asymptote (13) exists,
then in principle it will not have a flux of energy and radiation
at infinity!

Since (13) has no singularities in the entire space, the
initial problem of finding fields in infinite space can be
reduced to that of finding fields only inside the nanoresona-
tor. As a result, the system of equations that determines
nonradiating modes in a nanoparticle with the permittivity e
can be written as a system of two equations for two auxiliary
fields E1, E2 inside the region V, determining the resonator:

HH� E1 � ik0H1 ; HH�H1 � ÿik0eE1 ; r 2 V ; �14�
HH� E2 � ik0H2 ; HH�H2 � ÿik0E2 ; r 2 V ;

connected only through the conditions for the continuity of
the tangential components of the electric and magnetic fields

Et;1 � Et;2 ; Ht;1 � Ht;2 �15�

on the surface of the resonator.
At some real values of frequency or permittivity, the

system (14), (15) becomes consistent, meaning the appear-
ance of `perfect' nonradiating modes. The physical fields
inside the resonator are equal to E1, H1, while the physical
fields outside the particle are determined by the analytical
continuation of the auxiliary solution E2,H2 into the outside
region.

The modes found in this way form an orthogonal system
and have no analogues. In particular, they differ from so-
called anapole current distributions [19, 31±36] in that, unlike
the latter, their fields outside the particle are nonzero and
have well-defined expansions in spherical harmonics (13).
These modes also differ from the `bound states in a
continuum' mode, as they do not decay exponentially. The
perfect modes are closest to strange (merkw�urdig) Neumann±
Wigner modes [67], but, unlike the latter, the nanoresonator
potential (permittivity) differs from the free space value only
in a finite region of space, which fundamentally distinguishes
perfect nonradiating modes from strange Neumann±Wigner
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modes [67], where the potential is nonzero in the entire space.
The complete absence of radiation makes it possible to call
these modes perfect nonradiating modes.

System of equations (14), (15) is very complicated, and
there is no rigorous mathematical theory for it in the general
case. Nevertheless, in [40, 41], it was possible to find
conditions for the existence of perfect nonradiative modes
for arbitrary spheroids, hyperspheroids, and elliptical cylin-
ders, describing well almost all nanoparticle shapes of interest
for applications. Perfect nonradiating modes are not abstract
solutions: they are of great importance for finding conditions
when the scattered power becomes minimal or even zero,
while the energy stored in the nanoresonator remains finite.
This leads to an unlimited increase in the Q-factor of these
modes (see Sections 4.1.2, 4.2.2, 4.3.3).

2.3 Anapole current distributions and eigenmodes
The concept of anapole was introduced by Zel'dovich [68] to
designate a current with electromagnetic fields equal to zero
where this current is absent. Anapole is the simplest
representative of the family of Cartesian toroidal (anapole)
multipoles, necessary (along with Cartesian electric and
magnetic multipoles) for a complete description of the field
of arbitrary current sources. An illustrative model of a
toroidal anapole is a torus-shaped solenoid with the current
flowing through its winding. A change in the anapole
(toroidal) moment with time leads, in the general case, to the
emission of electromagnetic radiation. However, there are
such distributions of charge densities and currents, r�r�, J�r�,
when the fields of Cartesian electric multipoles

Ql;m �
�
Y �lm

q
qr

�
rjl�kr�

�
r�r� d3r �16�

and Cartesian toroidal multipoles

Tl;m �
�
Y �lm jl�kr�

�
rJ�r��d3r �17�

completely cancel each other out. Sometimes, these current
distributions are called anapole states or even anapole modes
(see Section 4.1.3). Such definitions, of course, are not correct,
since modes, by definition, are solutions of the sourceless
Maxwell equations.

2.4 Symmetry properties of modes
in optical nanoresonators
The spatial structure of the eigenmodes of resonators is
rigidly related to the symmetry of the shape of the resona-
tors. In [69, 70], an algorithm was developed for classifying
eigenmodes in resonators of the simplest shapes depending on
their symmetry group. For each mode type En, its vector
multipole content is found:

En�r� �
X

anMnmp�r� �
X

bnNnmp�r� ; �18�

whereM andN are the magnetic and electric vector spherical
harmonics, respectively [51]. Relation (18) creates a bridge
between modal and multipole descriptions.

The authors of [69] claim that their approach can be used
to design, predict, and explain the scattering phenomena and
optical properties of nanoresonators based only on their
symmetry without the need for numerical simulations.
However, despite the useful qualitative picture of the multi-
pole composition of modes of a certain symmetry, without

numerical analysis, it is apparently impossible to say whether
the multipoles in (18) are suppressed or not for specific
resonator shapes (see also Section 4.3.2).

2.5 Perturbation theory methods for describing
the properties of optical nanoresonators
2.5.1 Rayleigh method (quasi-statics). As early as 1897,
Rayleigh showed in [71] that, to describe the scattering of
light by nanoparticles, one can often use the perturbation
theory with respect to a small parameter

ka � oa
c
� 2pa

l
5 1 ; �19�

where a is the characteristic size of a nanoparticle and l is the
wavelength of radiation in the surrounding space. In [72, 73],
this method was further developed. As applied to nanoreso-
nators, this approach can be formulated as follows [1].Within
the framework of this approach, all fields are searched for in
the form of series in powers of k:

E � E �0� � kE �1� � k 2E �2� � . . . ; �20�
H � H �0� � kH �1� � k 2H �2� � . . . ;

while the permittivity e�o� is not expanded in powers of k
(frequency).

Further, by substituting such series into Maxwell's
equations and equating to zero the terms at the same powers
of k, the system ofMaxwell's equations can be reduced to a set
of potential theory problems. In particular, the eigenvalues en
and the eigenfunctions En of the `emethod' (see Section 2.2.3)
can be found in the first approximation by solving the
equations

HH
ÿ
e�r�En

� � 0 ; HH� En � 0 ; �21�

using substitution, En � ÿHjn can be reduced to the solution
of the Laplace equations

Dj in
n � 0 ; Dj out

n � 0 ; en
qj in

n

qn

����
S

� �e
qjout

n

qn

����
S

: �22�

In (22), �e is the permittivity of the space surrounding the
nanoresonator, j in

n , jout
n stand for the potentials of the

eigenfunctions inside and outside the particle, respectively,
and qjn=qnjS denotes the normal derivative at the boundary
of the particle. The last equation in (22) ensures that the
normal components of the induction or the tangential
components of the magnetic field are continuous. In this
case, the solution of Maxwell's equations with given excita-
tion fields (10) remains the same. Note that, in this case, to
describe plasmon oscillations, there is no need to find
magnetic fields at all.

The quasi-static description of plasmon resonances (22) in
nanoparticles is much simpler than the complete system of
Maxwell's equations, because, instead of the Helmholtz
equations, one has to solve the Laplace and Poisson
equations. The solution of the Laplace and Poisson equa-
tions can be found for nanoresonators of various shapes.

The most important feature of the quasi-static description
(22) is that it allows dealing only with plasmon oscillations.
Other particle modes (whispering gallery modes, etc.) do not
appear in this description and do not make it difficult to
obtain and interpret the results.
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From a mathematical point of view, the quasi-static
`e-method' differs from the full `e-method' in that, in the
former, the resonant values of the permittivity en are negative
real numbers. The absence of an imaginary part in the
resonant values of the permittivity en is due to the fact that
there is no radiation in the quasi-static approximation, while
the imaginary parts of en arise precisely due to radiation
losses.

Based on the foregoing, we conclude that the quasi-static
`e-method' describes well exactly the plasmon part of the
spectrum and can be effectively used to determine the
properties of localized plasmons.

Naturally, the substitution of en and mode distributions
En � ÿHjn found in the quasi-static approximation into (11)
makes it possible to find fields only in the near zone.
Nevertheless, the quasi-static approach allows finding not
only the natural frequencies on of eigen oscillations (by
solving the equation e�on� � en) but also their Q-factors (2),
where the expressions for the energy stored in the resonator
and the radiated power have the form

Wn; stored �
d
ÿ
one�on�

�
don

�
V

dV jEnj2 ; Pn; rad � ok 3

3
jdnj2 ;

dn � e�on� ÿ 1

4p

�
V

dVEn ;
�23�

where dn is the electric dipole moment of the nth mode of the
nanoresonator.

2.5.2 Perturbation theory for large permittivity.TheRayleigh±
Stevenson method (see Section 2.5.1) can also be applied to
dielectric resonators with a large positive permittivity, when
the dimensionsL are small with respect to the wavelength ldiel
inside the body, L5 ldiel � l0=N, where N is the refractive
index of the nanoresonator, N � ��

e
p !1. This limitation

obviously excludes the study of nanocavities with a high
permittivity, where the resonator size is smaller than the
wavelength in vacuum l0 but larger than the wavelength in
the resonator material l0 4L5ldiel � l0=N.

As the refractive index N tends to infinity, it makes sense
to focus on a specific resonant mode corresponding to a finite
wave number k in the dielectric to understand what happens
with the fields asN!1 [74]. During this passage to the limit,
kL approaches an asymptotic value that is finite and nonzero.
This value is a characteristic of the mode. The wave number
k0 in vacuum during such a passage �k0 � 2p=l0 � k=N �
o=c0� approaches zero along with the frequency, and the
wavelength l0 tends to infinity. In [74], it was proposed to
search for the modes of such nanoresonators by expanding
the fields into series:

H � H0 � H2

N 2
� . . . ; E � E1

N
� E3

N 3
� . . . : �24�

As a result, in the zeroth approximation, the natural
oscillation frequencies om � ckm=N and their spatial struc-
ture can be found from the system of equations

HH� HH�Hm � k 2
mHm inside the resonator ;

HH�Hm � 0 outside the resonator ; �25�
HHHm � 0 everywhere :

In the particular case of axisymmetric nanoresonators, there
can be a subset of modesÐ so-called confined modes with the

magnetic fields equal to zero outside the resonator in the limit
e!1 and satisfying the equations

HH� HH�Hm � k 2
mHm inside the resonator ;

�26�
Hm � 0 at the resonator boundary :

The electric fields have a higher order of smallness and can be
found from the relation

Em � i

kmN
HH�Hm : �27�

In this case, despite the tendency of the electric field to zero,
the energy of the electric field in the resonator remains finite.

Van Bladel's approach [74] is extremely important, not
only because of the possibility of constructing a good
perturbation theory, but also because it allows one to
understand the general properties of arbitrarily shaped
dielectric nanoresonators. In particular, using this approach,
van Bladel [74] showed that, for resonators with a very high
permittivity, the radiation quality factorQrad depends on e as

Qrad � eP ; �28�

where P � 1:5 for modes radiating as a magnetic dipole
(nonconfined modes, see (25)) and P � 2:5 for modes
radiating as an electric dipole (confined modes (26)), as well
as for modes radiating like a magnetic quadrupole.

Equation (28) and the P values given above are quite
general and are valid regardless of the shape of the resonator.
However, they have a good accuracy only for large values of e.
For example, for confined TM modes of axisymmetric
nanoresonators with e � 80, from (28) we get Q � 57;000!

In [75], based on (28), more accurate approximation
formulas were found for the quality factors of dielectric
nanocylinders with different aspect ratios.

2.5.3 Generalized Brillouin±Wigner perturbation theory. In
Sections 2.5.1 and 2.5.2, perturbation theories were consid-
ered based on the smallness of the resonator dimensions
relative to the wavelength or on the smallness of 1=e for the
material of the resonator. TheWigner±Brillouin perturbation
theory [30, 69, 76, 77] is based on the smallness of shape
variations of resonators with a known set of eigenfunctions
and eigenvalues. As a rule, spherical resonators are chosen as
unperturbed resonators. For a sphere, a complete set of
eigenfunctions is knownÐthey are vector spherical harmo-
nics with normalization (8). The expansion of any mode En of
a resonator with permittivity inhomogeneities De�r�,

HH� HH� En �
ÿ
e � � De�r�� O 2

n

c 2
En ; �29�

can be represented as

En�r� �
X
s

CnsYs�r� ; �30�

whereOn is the complex eigenfrequency of the mode En,Ys�r�
is the eigenfunction of a sphere with permittivity e �, and
complex eigenfrequency os, and s is the composite index that
includes polarization and orbital, azimuthal, and radial
quantum numbers.

268 V V Klimov Physics ±Uspekhi 66 (3)



From the generalized Wigner±Brillouin perturbation
theory, the dispersion equation can be obtained:

1

os 0

X
s

Cns�dss 0 � Vss 0 � � 1

On
Cns 0 ; �31�

where the overlap integral

Vss 0 � 1

2e �

�
dVDe�r�YsYs 0 �32�

describes the interaction between different unperturbed
modes of a spherical resonator due to its small deformation.

The inhomogeneity of the permittivity, De�r�, can be
chosen so that, in fact, (29) will describe a resonator different
from a spherical one. It is important that this resonator be
inside the initial spherical resonator, otherwise the conver-
gence will be poor. For example, if we choose De � 1ÿ e � in
the region between the cylinder inscribed in the original
sphere and the surface of the sphere, then (31) will describe
the natural oscillations of the cylinder (Fig. 2). Applications
of this method will be discussed in Section 4.

2.6 Numerical methods for describing the properties
of optical nanoresonators
Usual quasi-normal modes, their eigenfrequencies, and their
Q-factors are relatively easy to find by calculating spectra of
light scattering by nanoparticles making use of the commer-
cial packages Comsol [78] or CST Studio Suite [79]. In
addition, these packages allow one to set a specific spatial
structure of incident beams for excitation and studyingmodes
that cannot be detected under a plane wave illumination.

The same packages can also be used conveniently to find
expansion coefficients in various methods of perturbation
theory. A more detailed analysis of usual modes of open
resonators using the same packages can be found, for
example, using the numerical approach proposed in [80, 81].

To analyze natural frequencies, one can also use the
numerical solution of surface or volume integral equations.
These methods are highly efficient, because they have smaller
dimensions. However, these algorithms are complex andmust
be implemented manually (see, for example, [61]).

3. Modes in plasmonic nanoresonators

The uniqueness of plasmonic nanoresonators lies in the fact
that metal nanoparticles have natural oscillation frequencies
in the optical range, from the ultraviolet (UV) to infrared (IR)
ranges. On the other hand, there are many methods for
creating plasmonic nanoparticles, including colloid chemis-
try and electron nanolithography. Finally, the properties of
plasmonic nanoresonators can be understood in the first
approximation using the quasi-static approximation (see
Section 2.5.1). All this led to the rapid development of
research on the resonance properties of plasmonic nanopar-
ticles [1].

3.1 Optical properties of spherical plasmonic resonators
The spherical geometry is unique and allows one to describe
in detail all optical properties of spherical nanoresonators,
which are completely determined by the poles of the reflection
coefficients of spherical waves of different polarization
incident upon a spherical particle of an arbitrary size and
composition [1, 51, 82]:

qn �
e1

d

dz2

�
z2 jn�z2�

�
jn�z1� ÿ e2

d

dz1

�
z1 jn�z1�

�
jn�z2�

e1
d

dz2

�
z2h

�1�
n �z2�

�
jn�z1� ÿ e2

d

dz1

�
z1 jn�z1�

�
h �1�n �z2�

;

TM polarization ; �33�

pn �
m1

d

dz2

�
z2 jn�z2�

�
jn�z1� ÿ m2

d

dz1

�
z1 jn�z1�

�
jn�z2�

m1
d

dz2

�
z2h

�1�
n �z2�

�
jn�z1� ÿ m2

d

dz1

�
z1 jn�z1�

�
h �1�n �z2�

;

TE polarization : �34�

Here, z1; 2 � ���������������e1; 2m1; 2
p

k0a � k1; 2a, a is the resonator radius,
and e1; 2, m1; 2 stand for permittivity and permeability of the
sphere (index 1) and the surrounding space (index 2),
respectively.

For plasmonic nonmagnetic nanoresonators in vacuum,
the dispersion equations for the frequencies of dipole,
quadrupole, and octupole resonances can be found from
(33) by expanding denominators over the small size para-
meter k0a [1]:

eres; 1�o� � 2� 12

5
�k0a�2 � 2i�k0a�3 � . . . � 0 ;

eres; 2�o� � 3

2
� 5

14
�k0a�2 � 65

392
�k0a�4 � i

12
�k0a�5 � . . . � 0 ;

eres; 3�o� � 4

3
� 56

405
�k0a�2 � 11788

601425
�k0a�4

� 469672

95954625
�k0a�6 � 4i

2025
�k0a�7 � . . . � 0 ; �35�

where, as usual k0 � o=c. It is important to note that the
imaginary parts of the resonant permittivity (which are
associated with radiation losses) appear in higher and higher
orders in powers of k0a with increasing multipole order. This
is due to the smallness of the corresponding radiation
intensities and leads to huge values of the Q-factors of such
natural oscillations.

Plasmon oscillations under conditions (35) take place for
arbitrarily small spheres and are of great importance in
various applications.

De � 1ÿ e �

e�

Figure 2. Illustration of the application of Brillouin±Wigner perturbation

theory via the example of a cylinder inside a spherical region. A

perturbation De � 1ÿ e � outside the cylinder is introduced into a sphere

with permittivity e �. As a result, the perturbed resonator has the shape of a

cylinder with permittivity e �.
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Potentials of quasi-static electric fields corresponding to
resonances (35) can be found from (22) and have a simple
form:

Fm
n �

�
r

a

�n

Y m
n �y;j� ; r < a ;�

a

r

�n�1
Y m

n �y;j� ; r > a :

8>>><>>>: �36�

It is very similar to the solution to the quantum mechanical
problem for the hydrogen atom.

Expressions (35), (36), together with the solution to
the general scattering problem within the framework of
the `e-method' (11), give a good description of all optical
properties of spherical plasmonic nanoresonators.

Despite the fact that the electric fields of natural
oscillations in plasmonic nanoresonators are described by
simple spherical harmonics, the energy flows have a rather
complicated form, even for very small nanoresonators. In
particular, it was shown in [83±85] that near the resonances
there are nontrivial vortices in the pattern of energy flows
inside and around the resonator. When weak dissipation is
taken into account, these vortices terminate inside the sphere
[86].

A very interesting regime of scattering of a converging
spherical wave h

�2�
n �k0r� by a plasmonic sphere was found in

[87], where it was shown that, if the condition

e1
d

dz2

�
z2h

�2�
n �z2�

�
jn�z1� � e2

d

dz1

�
z1 jn�z1�

�
h �2�n �z2� �37�

is fulfilled, the reflected spherical wave proportional to
h
�1�
n �k0r� is completely absent and the solution of Maxwell's

equations turns into a single vortex, starting at infinity and
ending at the center of the sphere, that is, coherent perfect
absorption appears. Note that condition (37) coincides with
the condition of vanishing of the complex conjugate denomi-
nator of the Mie coefficient (33), and therefore the solution
found in [87] can be considered a time-reversed solution for a
spaser [2].

A converging spherical wave h
�2�
n �k0r�, resulting in perfect

absorption, cannot be accurately realized in practice. There-
fore, to realize perfect coherent absorption by a plasmonic
nanoparticle, a specially selected superposition of radially
polarized Bessel beams in the form

Ein�r� �
Er

Ej

Ez

0@ 1A � � k0

0

dkr E0�kr�
ikz J1�krr�

0
kr J0�krr�

0@ 1A
� exp

�
ÿi

����������������
k 2
0 ÿ k 2

r

q
z

�
�38�

was used in [88]. In (38), the weight function E0�kr� should be
chosen to achieve complete absorption. Assuming that the
absorbing nanoparticle can be described in the dipole
approximation, an explicit form for E0�kr� was found in [88].

3.2 Optical properties of spheroidal
and ellipsoidal plasmonic resonators
The optical properties of spheroidal and ellipsoidal plasmonic
resonators can also be found in the framework of the quasi-
static approximation.

For prolate spheroids with semi-axes a � b < c, the
dispersion equation that determines the frequencies of

plasmon oscillations has the form [1]

e�om
n � � emn �

ÿ
Qm

n �x0�
�0
Pm
n �x0�ÿ

Pm
n �x0�

�0
Qm

n �x0�
; �39�

where the parameter x0 � c=
����������������
c 2 ÿ a 2
p

, and Pm
n , Q

m
n are the

associated Legendre polynomials of the first and second kind,
respectively. Corresponding to (39), the distributions of mode
potentials have the form

jm
n � Pm

n �Z�Pm
n �x�Qm

n �x0�
cos �mj�
sin �mj�
� �

; x < x0 ; �40�
jm
n � Pm

n �Z�Pm
n �x0�Qm

n �x�
cos �mj�
sin �mj�
� �

; x > x0 ;

where Z, x, and j are prolate spheroidal coordinates [89]. For
a plasmonic nanoresonator in the form of an oblate spheroid,
these expressions are also valid after the corresponding
analytical continuation.

The most common form of a plasmonic nanoresonator
with known natural frequencies is a triaxial nanoellipsoid [1,
90, 91]. For an arbitrary plasmonic resonator in the form of a
nanoellipsoid with semiaxes a1 > a2 > a3 along each axis of
the Cartesian coordinate system x1, x2, x3, the dispersion
equation that determines the frequencies of plasmon oscilla-
tions om

n has the form

e�om
n � � emn �a1; a2; a3� �

Em
n �a1; a1; a2; a3�F 0mn �a1; a1; a2; a3�

E 0mn �a1; a1; a2; a3�F m
n �a1; a1; a2; a3�

:

�41�
For the eigenfunctions of plasmon oscillations, respectively,
we have the expressions

jm
n � Em

n �m; a1; a2; a3�Em
n �n; a1; a2; a3�

� F m
n �a1; a1; a2; a3�Em

n �r; a1; a2; a3� ; r4 a1 ;

Em
n �a1; a1; a2; a3�F m

n �r; a1; a2; a3� ; r > a1 :

�
�42�

In (41), (42), F m
n , Em

n are the external and internal Lam�e
functions, respectively, and r, m, and n are ellipsoidal
coordinates [92], the values of n are natural numbers, and m
varies from 1 to 2n� 1, as in spherical harmonics. Figure 3
[90] shows the dependences of the eigenfrequencies of the
lowest plasmon oscillations on the aspect ratio a3=a1 in a
nanoellipsoid with the permittivity described by the Drude
law:

e�o� � 1ÿ o2
pl

o2
: �43�

In [90], plots of eigenfrequencies for higher-order modes are
also presented.

In a triaxial ellipsoid, there is no axial symmetry, and
therefore the eigenvalues degenerated in the case of a sphere
split into 2n� 1 different ones. Moreover, as the parameters
of the ellipsoid change, these eigenvalues change in a
nonmonotonic and nontrivial way. This is extremely impor-
tant, since it enables effective control of optical processes
where there are several frequencies, for example, to create
bright artificial fluorophores [91].

Equations (41), (42) exhaust the solution to the problem
of plasmon oscillations in a triaxial nano-ellipsoid in the
quasi-static (Rayleigh) approximation. Corrections due to
retardation effects and explicit expressions for the eigenfunc-
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tions of ellipsoidal resonators in Cartesian coordinates can be
found in [90].

The effect of the mode structure in a silver nanospheroid
on the temporal dynamics of plasmon oscillations in it was
considered in [93], where it was shown that the use of only two
quasi-normal modes to describe such a nanoparticle explains
well the experimental data on measuring ultrafast dynamics
using photoemission electron microscopy (PEEM) [94].

3.3 Optical properties of clusters of plasmonic resonators
In Sections 3.1 and 3.2, we have presented the results of
studies on plasmonic resonances in isolated particles that are
topologically equivalent to a sphere. Even more interesting
resonant oscillations are possible in nanoparticle clusters,
since they have a more complex geometry and a larger
number of control parameters.

In [95±97], an analytical description of the resonant
properties of oscillations in a dimer of two spherical nano-
particles was developed.

Figure 4 shows the dependences of eigenfrequencies of
transverse oscillations �m � 1� of a plasmonic dimer on the
distance between nanoparticles. The L- and T-modes are

associated with the hybridization of the modes of individual
nanoparticles [98, 99], while the high-frequency M-modes,
which appear only at short distances R12=�2R0�4 1:2, have
no equivalent and correspond to bound states that arise in the
strong interaction regime.

For the eigenfrequencies of the M-modes, the analytical
solution has the form [95±97]

o �M�m � opl�����������������
1ÿ e �M�m

q ;

e �M�m � ÿ�m�M� dm� arsinh
������������������
R 2

12

4R 2
0

ÿ 1

s
; �44�

m � 0; 1; 2; . . . ; M � 1; 2; 3; . . . :

The corrections dm are independent of the mode number M
and are equal to �1=2, ÿ0:08578, ÿ0:2639, ÿ0:33, ÿ0:3769,
ÿ0:4, ÿ0:4172, 0:4289, ÿ0:4377, ÿ0:4446� for m � 0ÿ9,
respectively. These expressions show that, as the nano-
spheres approach each other, the resonant frequencies of the
M-modes of the dimer tend to the plasma frequency opl.

ForL-modes, there is a similar analytical solution [95±97]:

o �L�m � opl����������������
1ÿ e �L�m

q ;

e �L�m � ÿ �m� Lÿ 1=2�ÿ1

arsinh
������������������������������
R 2

12=�4R 2
0 � ÿ 1

q � . . . ; �45�

m � 0; 1; 2; . . . ; L � 1; 2; . . . ;

that is, as the nanospheres approach each other, the resonant
frequencies of the L-modes of the dimer tend to zero.

Figure 5 shows the spatial distribution of the potential of
the longitudinalM-,L-,T-modes �m � 0�. It can be seen from
Fig. 5 that the spatial structure of antisymmetric (L-modes)
and symmetric (T-modes) wave functions generally corre-
sponds to that of wave functions of isolated plasmonic
nanoresonators. Namely, a positive charge is located on one
hemisphere, while a negative charge equal to it due to the
electroneutrality of the sphere is located on the opposite side
of the sphere. In this case, the interaction between plasmonic
nanoresonators is reduced to some quantitative redistribu-
tion of the charge on opposite hemispheres only.
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Figure 3. Eigenfrequencies of plasmonic oscillations of a triaxial ellipsoid as a function of the ratio of semiaxes a3=a1 (for a2=a1 � 0:6). Solutions are
shown in the following cases: (a) n � 1; (b) n � 2 [90].
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Upper part of the figure shows clearly the emergence of new modes

(M-modes) at small distances between the spheres. It is assumed that the

permittivity is described by the Drude law (43).
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In the case of symmetric M-modes, the situation is
different, and both positive and negative charges are con-
centrated near the gap between the nanospheres. Actually, at
points far from the gap of the nanospheres, the wave
functions ofM-modes vanish.

As the distance between the spheres increases, the
localization of the M-modes decreases and, at a critical
distance between the spheres, these modes disappear, while
the hybridized L- and T-modes do not undergo significant
changes.

The difference between the localizations of the M-modes
and L-, T-modes determines their fundamental difference
with respect to the excitation fields. L-, T-modes have a
polarizability of the order of the volume of a nanosphere,
a � R 3

0 , and effectively interact with uniform external fields
of the appropriate orientation and symmetry. By contrast,
M-modes have a relatively low polarizability a � D3, where D
is the gap width between the spheres. Because of this, the
M-modes are weakly (compared to the L- and T-modes)
excited by uniform optical fields. On the other hand,
M-modes interact effectively with strongly inhomogeneous
fields that are localized near the gap between the spheres.
Fields of this kind arise during the radiation of atoms and
molecules located near the gap. This circumstance makes the
M-modes extremely promising from the point of view of
creating nanosensors and elements of nanodevices that are
sensitive to the radiation of individual molecules.

A similar study of the resonance properties of a cluster of
two plasmonic nanospheroids was carried out in [100].

Currently, plasmonic resonant nanostructures based on
DNA origami technology are being actively studied [101±
109]. This technology is very promising, as it allows one to
arrange nanoparticles in a nanostructure with an accuracy
higher than that of modern optical or electronic nanolitho-
graphy. The creation of complex three-dimensional nanos-
tructures from nanoparticles using DNA tethers is possible
based on the canonical pairing of DNA bases �a la Watson±
Crick [101]. This approach opens unprecedented possibilities
for the control of three-dimensional macromolecular struc-
tures on large scales. Using this technology, nanostructures of
nanoparticles in the form of arrays [102, 103], spirals [104],
tetrahedra [105], chains [106, 107], or nanorings [108] have
already been realized. Recently, the possibility of transmitting
information with low losses through a plasmonic waveguide
made using DNA origami technology has been demonstrated
[109].

In [110], the dependence of the resonant optical properties
of Platonic clusters that can be synthesized using DNA

origami technology on their topology and size was studied
(Fig. 6). To describe the optical properties of such clusters, a
model was used in [110] where individual nanoparticles are
characterized by isotropic polarizabilities and induced dipole
moments with the interaction described by the retarded
Green's function. Figure 7 shows the extinction spectra of
various Platonic clusters with the same edge lengthL0 and the
same radius R0 of silver particles, but with different
topologies.

Comparing Fig. 7a and Fig. 7b shows that the number of
observed modes of Platonic clusters effectively increases as
radiation and Joule losses decrease. Therefore, Fig. 7 can
serve as a guideline for understanding the optical properties
of meta-atoms in the form of Platonic clusters and interpret-
ing experimental data.
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Figure 5. Spatial distribution of the potential in some plasmon modes in a

cluster of two nanospheres (m � 0, axisymmetric longitudinal oscillations)

[97].

Figure 6. Platonic clusters of nanoparticles, shown as yellow balls.

15

10

Icosahedron

Icosahedron

Octahedron

Dodecahedron

Octahedron

Tetrahedron

Tetrahedron

Cube

Cube

Single
sphere

5

0

300 320 340 360 380
l, nm

Sext a

50

40

30

20

10

Icosahedron

Icosahedron

Octahedron

Octahedron

Dodecahedron
Dodecahedron

Octahedron

Tetrahedron

Tetrahedron

Cube

Cube

Single
sphere

0

300 310 320 330 340 350 360 370
l, nm

Sext

b

Figure 7. Comparison of extinction spectra of Platonic clusters: (a) Ag,

L0 � 50 nm and R0 � 20 nm and (b) L0 � 25 nm and R0 � 10 nm (losses
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In [111], a plasmonic nanoresonator was synthesized in
the form of a dodecapod consisting of a quartz core and
20 gold satellitesÐ `pods' (Fig. 8)Ð and it was experimen-
tally shown that the value of the magnetic dipole moment
induced in it is about 14% of the induced electric dipole
moment, that is, optical magnetism has been demon-
strated.

4. Modes in dielectric nanoresonators

The main advantage of the plasmonic nanoresonators
considered in Section 3 is that natural oscillations can exist
at arbitrarily small sizes of nanoresonators. However, the
value of this fact is significantly reduced by the circumstance
that the Joule losses in plasmonic resonators are quite large
and, in fact, the quality factors of plasmonic nanoresonators
are limited to values of the order of 10±100.

Recently, research has begun on an alternative approach
to controlling light on the nanoscale. It is based on dielectric
nanoresonators, that is, nanostructures made of dielectric
materials with a high or moderate refractive index, such as Si,
Ge, GaAs, TiO2, and Cu2O, and very small internal (Joule)
losses. Although most dielectric nanoresonators are larger
than 100 nm in one or several dimensions, they are referred to
in most publications as nanospheres, nanorods, nanodisks,
and so on according to their shape. We will also call them
nanoresonators, since their dimensions aremuch smaller than
the wavelength in free space.

The history of dielectric resonators began with study [47]
in 1939, which laid the foundations for the theory of such
resonators. An important development in this area was due to
vanBladel [74], who developed the theory of resonators with a
large permittivity and noted the importance of the axial
symmetry of such resonators for obtaining a high quality
oscillation. Dielectric resonators were developed further in
microwave technology [75, 112, 113]. At present, in connec-
tion with the development of nanotechnologies, the elabora-

tion of dielectric resonators in the optical range has also
become possible [7, 16, 114, 115].

4.1 Spherical dielectric nanoresonators
4.1.1 Usual (quasi-normal) modes. As in the case of spherical
plasmonic resonators, modes of spherical dielectric resona-
tors are completely described by the Mie theory, that is, the
scattering coefficients (33), (34). In Fig. 9, the dependence of
the absolute value of the Mie coefficients q4 (33) on the
permittivity and size of the sphere is shown. It can be seen
from this figure that, for subwavelength spheres, the
resonance is possible only at high permittivities, when the
wavelength in the dielectric becomes much smaller than the
nanoresonator dimensions.

The poles of the Mie scattering coefficients at positive
permittivity completely determine the eigenfrequencies of the
quasi-normal modes of dielectric spheres. In the case of large
permittivity e!1, the resonant properties of the dielectric
sphere were studied in detail in [74, 116, 117]. In the case of
TM modes, the approach in [117] leads to the following
asymptotic expressions for the eigenfrequencies and Q-
factors of the three lowest modes:

kTM
n a � XTM

n ��
e
p

�
1ÿ 1

ne
� . . .

�
; QTM

1 � e 5=2

2�XTM
1 �3

;

QTM
2 � 18e 7=2

�XTM
2 �5

; QTM
3 � 2025e 9=2

2�XTM
3 �7

; �46�

Jn�1=2�XTM
n � � 0 :

For TE modes, the approach in [117] leads to the expressions

kTE
n a � XTE

n��
e
p

�
1ÿ 1

�2n� 1�e� . . .

�
;

�47�

QTE
n � G 2�n� 1=2��4e�n�1=2

4p�XTE
n �2nÿ1

; Jnÿ1=2�XTE
n � � 0 :
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Figure 8. Synthesized dodecapods. SEM image of the dodecapods before

(a) and after (c) condensation of seed nuclei. (b) and (d) show the elemental

composition of the synthesized dodecapod: green colorÐSiO2, red

colorÐAu [111].
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Comparing the Q-factors of TM and TE modes, one can see
that the Q-factors of TM modes are much higher. This is due
to the fact that, as shown in [74], in resonators with a large
permittivity, TM modes are confined, that is, in the limit
e!1, the magnetic field is strictly confined inside the
resonator, and the electric field is zero everywhere. TE
modes, by contrast, are not confined, and even in the limit
e!1 the magnetic field of TE modes is nonzero outside the
sphere. This circumstance leads to nonconfined TE modes
radiating more effectively, and therefore having lower quality
factors. This circumstance is general.

4.1.2 Perfect nonradiating modes. For a spherical nonmag-
netic nanoresonator of radiusR in vacuum, the expression for
the magnetic field of the perfect nonradiating TM modes has
the form [40]

H �n�j � jn�z0� jn�k0
��
e
p

r�P 1
n �cos y� ; r < R ;

H �n�j � jn�z1� jn�k0r�P 1
n �cos y� ; r > R ; �48�

z0 � k0R ; z1 � k0
��
e
p

R ;

which follows from the direct solution ofMaxwell's equation.
Note that, in the case of a sphere, the condition for the

existence of perfect nonradiating modes (48)

e jn�z1�
�
z0 jn�z0�

� 0 � j �1�n �z0�
�
z1 jn�z1�

� 0 �49�

coincides with the vanishing of the numerator of the Mie
scattering coefficient. Dispersion equation (49), along with
complex roots, also has real roots, which correspond to
perfect nonradiating modes. Figure 10 shows the depend-
ences of Re �Hj�r; y � p=2�� on the radius for the perfect
nonradiative PTM101 mode and the usual quasi-normal
TM101 mode with radiative loss in a sphere with e � 10.
From Fig. 10, it can be seen that the field of the usual
(quasi-normal) mode increases exponentially at infinity,
while the field of the perfect nonradiating mode decreases
and has no radiation losses! It was also shown in [40] that
Joule losses in a dielectric have practically no effect on the
properties of perfect nonradiating modes.

4.1.3 Anapole current distributions. In [32±36], the case of
vanishing individual Mie scattering coefficients was studied,

but here the main attention was on demonstrating how the
expansion over Cartesian multipoles when taking into
account toroidal moments is consistent with the expansion
over vector spherical harmonics, thus leading to a zero field
outside the spheres and, accordingly, to zero radiation. In
these studies, the distribution of fields inside the sphere, which
leads to the compensation of the Cartesian electric dipole
moment by the Cartesian toroidal electric moment, is highly
incorrectly called the anapole mode, since the modes, by
definition, are solutions of the Maxwell's equation in the
absence of currents. From our point of view, it is more correct
to talk about anapole current distributions.

4.1.4 Excitation of modes of spherical nanoresonators. To
understand the practical importance of usual quasi-normal
and perfect nonradiating modes, one must also consider how
they can manifest themselves in practical conditions, that is,
find the conditions for their excitation. There are two lines of
research here. The first deals with conditions for excitation of
several resonant modes simultaneously and the resulting
interference phenomena in the far zone. For example, in
[118], it was first noticed that, at 2p

��
e
p

R=l0 > 2:7, the
radiation pattern of light scattered by a dielectric sphere of
radius R transforms from Rayleigh nondirectional scattering
into forward scattering. In this paper, this effect was
explained by the interference of electric and magnetic dipole
moments induced in the sphere.

In [9±11], the results of [118] were generalized to the case
of excitation of silicon spherical nanoresonators by radiation
from a dipole source. It was shown that both electric and
magnetic dipole moments can be simultaneously excited in an
Si nanoresonator, and the interference of their fields can lead
to directional radiation due to the complete suppression of
backward scattering (Huygens element), even from a single
nanoparticle [9, 11, 119]. In Si nanoparticle with a radius of
65 nm, this effect is achieved, since, in a certain frequency
range (l � 570 nm), it is possible to ensure that the electric
and magnetic dipole moments induced in the particle are the
same in amplitude and phase. In this case, the radiation of the
dipole � nanosphere system will be directed from the dipole
to the side where the nanoparticle is located. At l � 490 nm,
the electric andmagnetic dipole moments induced in the same
particle will have the same amplitudes, but the phases will be
shifted by 1.3 radians, leading to a change in the direction of
radiation in the system under consideration to the opposite
one. The importance of the contribution of induced magnetic
dipoles to light scattering even led to the appearance of the
term `magnetic light' [120].

Another line of research on the manifestation of optical
resonances in nanoparticles is, by contrast, the detection of
only one resonantmode, a quasi-normal or perfect nonradiat-
ing one. This is a more difficult task, since specially prepared
light beams are needed for this, because the sphere excitation
by a standard plane wave always conceals subtle effects
associated with individual modes by strong fields from the
excitation of a continuum of quasi-normal modes.

In [39], an exact analytical solution was found for the
problem of excitation of a dielectric sphere by an axisym-
metric Bessel beam:

Hj � H0 J1�k0r sin b� exp �ik0z cos b� �TM polarization� ;
Ej � E0 J1�k0r sin b� exp �ik0z cos b� �TE polarization� ;
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Figure 10. Dependence of Re �Hj�r; y � p=2�� on the radius for a usual

quasi-normal TM101 mode (blue curve, k0R � 1:35715ÿ0:160978i) and
for a perfect nonradiating PTM101 mode (red curve, k0R � 1:51893) in a

sphere of radius R with e � 10 [40].
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where r and z are cylindrical coordinates, and b is the conical
angle of the beam. Such a beam has a complex spatial
structure (Fig. 11), enabling one to control its interaction
with axisymmetric particles effectively.

The expression for the magnetic field scattered by the
sphere in spherical coordinates �r; y;j� has the form [39]

HR
j �r; y� � iH0

X1
n�1

i nqn
2n� 1

n�n� 1� h
�1�
n �k0r�P 1

n �y�P 1
n �b� ; �51�

where qn are the Mie coefficients (33).
Solution (51) describes the excitation of a sphere (exactly)

and other axisymmetric nanoparticles (qualitatively) by
axisymmetric beams having only TM or TE polarization.
This solution removes the limitation imposed by the Mie
1908 solution, where the TM and TE modes cannot be
separated. An important feature of solution (51) is also
that it nontrivially depends on the cone angle b, whose
tuning can control the excitation or suppression of certain
modes.

In Fig. 12, one can see the dependence of the generalized
Q-factor (3), scattered power, and stored energy on the size
parameter k0R of the nanosphere for a beam with TM
polarization. Figure 12 clearly shows ultra-high quality
�Q > 104� perfect modes �PTM101� with very low scattered

power, with the Q-factor limited only by the presence of a
continuum of usual quasi-normal modes. The positions of the
perfect modes correspond exactly to the solutions of disper-
sion equation (49).

The dependence of the solution found on the parameters
of the Bessel beammakes it possible to find the conditions for
the excitation of any preassigned usual or perfect mode with
an unlimited radiation Q-factor.

Figure 13 shows the distribution of the magnetic field
when the sphere is illuminated with a superposition of 4 Bessel
beams with specially selected parameters, suppressing the
lowest order mode radiation completely. As a result, only
extremely weak 32-field (triacontadipole) radiation survives.
Note that inside the sphere the field distribution corresponds
to the pure PTM102 mode.

Recently, in [15], an attempt was made to study experi-
mentally TM and TE resonances in Si nanospheres separately
using radially and azimuthally polarized beams. Figure 14
shows the results of such an experiment and the correspond-
ing computer simulation. FromFig. 14, it can be seen that, for
a radially polarized beam, mainly electric modes (both ED
and EQ) are excited, while during excitation by an azimuth-
ally polarized beam, mainly magnetic modes (both MD and
MQ) are excited. Note that for the radial excitation there is a
scattering minimum near l � 450 nm, which probably
corresponds to the perfect nonradiative mode.

4.2 Spheroidal nanoresonators
4.2.1 Quasi-normal modes. In principle, usual quasi-normal
modes of spheroidal nanoresonators can be found on the
basis of an analytical solution to the problem of plane wave
scattering by a dielectric spheroid [121, 122]. However, we
failed to find such a solution in the literature.

The case of small deviations from the spherical shape was
considered in [123], where small deviations from the spherical
shape were described by the expression

r

R
� 1� mF�y;j� �52�

Figure 11. Structure of the electric field in an axisymmetric TM Bessel

beam.
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with the small parameter m, and the change in the quality
factor of the mode associated with this perturbation was
sought in the form of a series

1

Q
� 1

Q0
� mC1 � m2C2 � . . . ; �53�

where Q0 4 1 is the quality factor of the unperturbed sphere
mode.

The main and most important result of [123] is that
it shows that, for any high-quality mode of the sphere
�Q0!1� C1� O�1=Q0�! 0, C2 5 0, i.e., any small shape
perturbation of the high-quality spherical resonator leads to a
decrease in the quality factor of its modes. This result is quite
consistent with the intuitive idea of a sphere as a perfect object
that minimizes the scattering of waves on its surface. In the
case of not very high Q-factors, the coefficient C1 becomes
nonzero, and the maximum Q-factor can be realized for
particles with a shape slightly different from spherical.

In [61], the eigenfrequencies and Q-factors of the spher-
oidal resonator modes were found numerically by solving the
Muller boundary integral equations discretized with the
Nystrom method. In [61], a determinant was found to search
for eigenmode frequencies and, with its help, the resonant
frequencies and quality factors of usual eigenmodes of a
dielectric spheroid with semiaxes a (along the axis of
symmetry) and b (perpendicular to the axis) were found. It
was assumed that the spheroid had a volume equal to the
volume of a sphere of radius R, and its surface is described by

the equation�
r
b

�2

�
�
z

a

�2

� 1 ; a � Rt 2=3 ; b � Rtÿ1=3 ; �54�

where t � a=b. For t < 1, we have an oblate spheroid, and for
t > 1, it is prolate.

Figure 15 shows the dependences of the quality factors of
the lowest modes for spheroids with e � 38 on the aspect ratio
of the semiaxes. From Fig. 15, one can draw extremely
important and highly nontrivial conclusions that:
� TMmodes have significantly higher quality factors than

TE modes, due to the fact that they are confined modes (see
(26) and (28));
� the quality factors of the lower TM modes (TM101,

TM201) are maximal, not for spheres, but for oblate spher-
oids. Higher-order modes have maximal Q-factors for
spheres in accordance with the results of [123];
� the quality factors of all TE modes are maximal for

spheres, but not for oblate or prolate spheroids, which also
agrees with the results of [123];
� TM101 (electric dipole) and TE101 (magnetic dipole)

mode resonances have good overlap for oblate spheroids
�a=b < 1�. This circumstance was used in [124] to maximize
forward scattering by an oblate dielectric spheroid.

A more detailed study of the relationship between the real
and imaginary parts of resonant frequencies was carried out
in [125] using simulations with COMSOL Multiphysics [78].
Figure 16 shows how the real and imaginary parts of the
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resonant frequency of a silicon spheroid change depending on
the aspect ratio a=b of the spheroids. It can be seen from
Fig. 16 that the trajectories of natural frequencies in the
complex plane when the shape of the spheroid changes are
quite complex, especially in the case of higher modes.
Nevertheless, again, high-Q modes without zeros in the
radial direction (TM301, TM401, TM501, TM601, TM701) have
a near-zero imaginary part of the frequency and, therefore,
the maximal Q-factor in the case of a spherical nanoparticle.
The low-Q TM101 mode has the maximal Q-factor for oblate
spheroids, agreeing with the results of [61] (see Fig. 15). In
[125], similar results were also obtained for TE modes in
spheroids.

4.2.2 Perfect nonradiating modes. Perfect nonradiating modes
are not a feature of spherical geometry and definitely exist for
axisymmetric bodies of an arbitrary shape. In [40], by
expanding the solutions of Eqns (14), (15) in terms of radial
Sn1�c; x� and angular PSn1�c; Z� spheroidal wave functions
[122], it was shown rigorously that perfect modes exist for
arbitrary spheroids, and their eigenfunctions and frequencies
were found.

The dispersion equation describing perfect nonradiating
modes for prolate spheroids with permittivity e has the form
[40]

DetM � 0 ;

Mnp � Pnp�c1; c0�
ÿ
eSDp1�c0; x0�Sn1�c1; x0�

ÿ Sp1�c0; x0�SDn1�c1; x0�
�
; �55�

where

Pn; p�c1; c0� �
� 1

ÿ1
dZPSn1�c1; Z�PSp1�c0; Z� ;

SDn1�c; x0� �
q�x 2

0 ÿ 1�1=2Sp1�c; x0�
qx0

; �56�

x0 �
t�������������

t 2 ÿ 1
p ; c0 � k0R

�������������
t 2 ÿ 1
p

t 1=3
; c1 � k0R

��
e
p �������������

t 2 ÿ 1
p

t 1=3
:

In (56), k0 � o=c and R is the radius of the sphere, which
defines the fixed volume of the spheroid. Dispersion equation

(55) is also valid for an oblate spheroid after the correspond-
ing analytic continuation.

We emphasize once again that the fields of perfect
nonradiating modes found in [40] are not equal to zero
outside the spheroidal resonator, that is, they are not
`anapole current distributions' with the field equal to zero
outside the resonator. It is also important that perfect
nonradiating modes exist for any shape of a spheroid.

The found perfect nonradiating modes of spheroids are
not abstract solutions either; they are of great importance for
finding the conditions under which the scattered power
becomes minimal or even zero. To demonstrate the practical
importance of perfect nonradiating modes, the characteristics
of scattering of an axisymmetric Bessel beam

Hj � J1�k0r sin b� cos �k0z cos b� �57�

by spheroidal resonators of various shapes were calculated in
[40].

Figure 17 shows the dependence of the scattered power,
the energy stored in the spheroid, and the quality factor on the
size parameter of nanospheroids with a=b � 0:7. It can be
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seen from this figure that, under such excitation, all
scattering minima and Q-factor maxima �Q > 105� are
due to the perfect nonradiating modes. The positions of
these modes correspond exactly to the solutions of
dispersion equation (55). The finite quality factor of the
perfect modes (which are infinite in theory) is due to the
fact that there is a continuum of usual quasi-normal
modes that result in small but finite radiation, which can
be reduced unlimitedly by the optimal tuning of the beam.
In any case, the power scattered by perfect nonradiating
modes (PTM101 and PTM301) is 4 to 5 orders of magnitude
less than that scattered by usual quasi-normal modes
(TM101 and TM301). Accordingly, the quality factors of
perfect nonradiating modes are 4±5 orders of magnitude
greater than the quality factors of usual modes.

The existence of TE perfect nonradiative modes in
spheroids was also theoretically demonstrated in [40].

4.3 Dielectric nanoresonators of more complex shapes
4.3.1 Usual modes of finite-height cylinders. Relatively simple
shapes of the resonators considered above can be described
theoretically in detail and, consequently, the physics of
processes in such nanoresonators is quite understandable.
However, from a technological point of view, such resonators
are difficult to implement, especially in optical integrated
circuits. Therefore, in recent years, special attention has been
paid to the study of cylindrical dielectric nanoresonators, that

is, resonators with an external size smaller than the wave-
length in the air.

For circular cylindrical resonators of finite height, a
great deal of theoretical and experimental research has
been done, and therefore their characteristics are generally
well known. In particular, Table 1 [75] lists the character-
istics of some high-Q modes of cylindrical nanoresonators
and the values of the index P (see (28)) that determines
their Q-factor as a function of the refractive index. In the
same study, one can find corrections related to the shape of
a particular cylinder.

For example, for the mode EH11d (electric dipole
perpendicular to the axis), index P � 2:71, and this gives the
value of the quality factor Q � 1:4� 105 at e � 80.

A similar study was carried out in [126], where approx-
imation formulas were also found for the eigenfrequencies
and quality factors of several principal modes of dielectric
cylindrical nanoresonators. In particular, for TM01d (electric
dipole along the axis), the approximation expression for the
quality factor is

QTM01d � 0:008721e 0:888413 exp �0:0397475er�

�
�
1ÿ

�
0:3ÿ 0:2

a

h

�
38ÿ e
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�

�
�
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� 2058:33

�
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�4:322261
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�
ÿ3:50099 a

h

��
:

�58�

Figure 18 shows theQ-factors of the lowest TE01d and TM01d

modes in a cylindrical resonator with e � 38 [61, 127].

4.3.2 Supercavity modes in cylinders. Recently, much
attention has gone to the theoretical and experimental
study of high-quality modes in cylindrical nanoresonators
[21, 25, 30, 37, 38, 128]. In view of the high-quality factor,
these, in general, usual quasi-normal modes have even been
called `supercavity' modes or `quasi-BIC states.' These
modes arise at optimal cylinder shapes, at which the
lowest spherical harmonic disappears in the multipole
expansion of the eigenmode (18).

In [69], modes were studied in a more complex cylinder of
finite height with an equilateral triangle at the base. In view of
the presence of sharp corners, it is difficult to expect the
presence of high-quality modes in such resonators in the
general case. However, at certain parameters, there aremodes
(sometimes also called `supercavity' modes) that do not sense

Table 1.Characteristics of some high-quality modes of cylindrical nanoresonators and values of indexP (see (28)) that determines the dependence of their
quality factors on the refractive index [75].

Mode Field structure inside the resonator Far éeld structure Multipole orientation Index P

TE01d Hz � J0�hr� cos b z
Ez � 0

Magnetic dipole k axis 1.27

HE11d Ez � J1�hr� cos b z exp �ij�
Hz � 0

Magnetic dipole ? axis 1.30

HE21d Ez � J2�hr� cos b z exp �i2j�
Hz � 0

Magnetic quadrupole ? axis 2.49

EH11d Hz � J1�hr� cos b z exp �ij�
Ez � 0

Electric dipole ? axis 2.71

TE011�d Hz � J0�hr� sinb z
Ez � 0

Magnetic quadrupole k axis 2.38

TM01d

TE01d

h

d

0.438

80

Q

60

40

20

0
0.1 0.4 0.7 1.0 1.3

h=d

Figure 18.Dependence ofQ-factors of the lowest TE01d and TM01d modes

in a cylindrical resonator with e � 38 as a function of aspect ratio h=d [61,
127].
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sharp corners, and their quality factors approach those of
smoother resonators of the same volume, such as spheres or
spheroids (see Section 4.2).

In [38], an experimental observation of `supercavity'
modes in subwavelength ceramic resonators in the radio
frequency range was carried out. Figure 19 shows the
experimental setup and the results of measuring the scatter-
ing coefficient.

Mathematical analyses of the measured scattering coeffi-
cients showed that, by fine-tuning the shape of the resonator,
in the experiment it is possible to achieve a substantial
increase in the quality factor, reaching values up to Qsuper �
1:25� 104 for amode in ceramics with a loss tangent of about
10ÿ4. Direct finite element simulation shows that the intrinsic
radiation Q-factor of the cylinder mode is about Qsuper �
180;000, approaching the Q-factor of the TE401 mode in a

sphere with the same permittivity and the same volume,
Qsph � 213;945, k0r � 1:04.

Figure 19c shows that the spatial structure of the
`supercavity' mode is close to the structure of the field in a
spherical resonator, and the cylinder edges are in the region of
a small field, explaining the absence of scattering by them and
the high-quality factor of these modes. `Supercavity' modes
have a Q-factor lower than those of modes of a similar
structure in spheres of the same material and the same
volume, in full agreement with the results of [123] (see
Section 4.2.1).

A system similar to that shown in Fig. 19a was also
studied in [129] to see if it could achieve super scattering
[130±132] rather than the maximal quality factor. By
optimizing the relationship between the spherical multipole
content of the excited mode, it was shown in [129] that the
optimized structures in the limit of dipole scattering have a
scattering cross section that exceeds the limit for a sphere by a
factor of 4.

`Supercavity' modes in a system of two coaxial silicon
cylinders (Fig. 20) were analyzed in detail in [133] using
simulations with COMSOLMultiphysics [78].

The physics of this problem is much richer than the
physics of a single cylinder, since an additional parameter
LÐthe distance between the centers of the cylindersÐ
appears. Figure 21 shows the evolution of the resonant
frequencies of axisymmetric TE modes in the complex plane
as a function of the distance L between the cylinders. Again,
this figure shows that the minimum imaginary part of the
frequency occurs at L � 1:75h on the curve corresponding
to antisymmetric hybridization. In this case, the quality
factor Q � 5500, and the field structure is close to that of
the TE602 mode in the sphere. Another high-quality mode
appears at L � 1:08h on the curve corresponding to
symmetrical hybridization. The structure of this mode is
close to that of the TE502 mode in a sphere, and the quality
factor is lower than in the case of antisymmetric hybridiza-
tion at L � 1:75h.

An interesting approach to the creation of high-Q
optical nanoresonators was proposed in [23], where it
was shown that a cavity in a spherical or cylindrical
resonator can significantly reduce the fraction of lower
spherical harmonics, since they are localized closer to the
resonator center and the cavity acts as a filter of lower
harmonics. It is important that the contribution of electric
multipoles decrease especially strongly. This interesting result
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was confirmed experimentally with silicon nanorings (see also
Fig. 1).

In general, it can be said that `supercavity' modes in
circular cylinders are a special case of the well-studied quasi-
normal modes [75, 126]. `Supercavity' modes are close in
structure andQ-factor to themodes of spherical resonators of
the same volume and with the same permittivity, which have
the highest possible quality factors [123, 134].

4.3.3 Perfect modes in a cylindrical nanoresonator. In a
cylindrical resonator, for any aspect ratios (and not only for
exceptional ones, as in the case of `supercavity' modes), in
addition to the usual modes, there are also perfect nonradiat-
ing modes [40, 41].

In [135], scattering spectra in a system based on a silicon
dielectric cylinder were studied experimentally using highly
focused axisymmetric Bessel beams with radial and azimuthal
polarizations (Fig 22). In this study, due to the use of such
polarizations, it was possible to demonstrate almost complete
suppression of scattering from the Si nanodisk. Figure 23
shows the scattered power spectrum for different polariza-
tions.

It can be seen from Fig. 23 that, for radial polarization at
l � 720 nm, the scattered power practically disappears.
Another interesting feature of this geometry is that the same
sample, when irradiated with an azimuthally polarized beam,
strongly radiates a magnetic quadrupole spherical harmonic.

The authors of [135] call the disappearance of scattering at
l � 720 nm the `anapole condition,' but the connection of this
condition with natural oscillations of the resonator is not
discussed, and the `anapole condition' can correspond both to
weak radiation of high-quality `supercavity' modes and to the
excitation of the perfect nonradiating modes considered
above [40].

The question of the existence of perfect nonradiating
modes in finite-height cylinders of noncircular cross section
is still open. However, perfect modes always exist for straight
infinite cylinders of arbitrary cross section [41].

5. Modes in nanoresonators made
of metamaterials

The history of metamaterials begins with a paper in Physics±
Uspekhi [136], in which V G Veselago showed that, unlike
metals, matter (then hypothetical) with both negative
permittivity and permeability allows the propagation of
waves with a negative refractive index, n � ÿ �����

em
p

, that is,
with oppositely directed phase and group velocities of waves.

The rapid development of this area began with studies
[137, 138], where metamaterials with a negative refractive
index were realized in the microwave frequency range. Later,
metamaterials were implemented in the IR and visible ranges
(for more details, see, for example, [139 ± 141]). Such materi-
als are now called NIMs (Negative Index Materials) or DNG
(double negative) metamaterials. Then, all substances with
unusual properties began to be called metamaterials, for
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example, chiral metamaterials, hyperbolic metamaterials, or
metamaterials with a permittivity near zero (ENZ, epsilon
near zero, or ZIM, zero-index metamaterials).

5.1 Modes in a sphere with a negative refractive index
In [1, 142], theMie theory was directly applied to describe the
optical properties of a nanoresonator made of ametamaterial
with a negative refractive index. Figure 24 shows the
dependences of the amplitudes of the Mie scattering coeffi-
cients (33) and (34) as a function of permittivity and
permeability.

FromFig. 24, it can be seen that the resonant properties of
a sphere with a negative refractive index are only partially
similar to those of a usual dielectric sphere. In it, along with
the usual bulk modes, there are also surface LH (left-handed)
modes, which are localized on the surface. Such a complex
structure of the Mie coefficients leads to a completely
different structure of modes and their quality factors
compared to usual dielectric spheres.

Figure 25 shows the dependences of the TE Mie
coefficients pn on the size parameter ka of the sphere.
Figure 25 shows clearly the highly anomalous behavior of
TE resonances in a sphere made of a DNG metamaterial:
with an increase in the mode multipole order, a decrease in

the size parameter of the sphere ka is required to achieve
resonance. Moreover, the number of such resonances is
finite. A decrease in the size parameter at which high
multipole order modes exist leads to the fact that they
become surface modes, that is, the field maximum falls on
the surface of the sphere.
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Figure 26 shows the dependence of the generalized quality
factor of a sphere made of DNG metamaterial on the size
parameter ka. It can be seen from this figure that, indeed,
spheres with a negative refractive index have huge quality
factors, which are associated with the surface nature of the
LH modes. Their other most important feature is that such
huge Q-factors arise for spheres of subwavelength sizes even
at relatively small absolute values of the refractive index. Both
these features radically distinguish modes in DNG resonators
from those in usual dielectric resonators.

5.2 Modes in a chiral sphere
Chiral metamaterials, where the polarization depends on
both electric and magnetic fields, are related to DNG
metamaterials directly. The material equations of chiral
media can be expressed in the form [145, 146]

D � e
�
E� wHH� E

k0

�
; B � m

�
H� wHH� E

k0

�
; �59�

where w is the dimensionless chirality parameter. In bi-
isotropic chiral metamaterials, where e, m, and w are scalar
quantities, the wave vectors �kL; kR� and the refractive indices
�nL; nR� for right and circularly polarized waves have
different values:

kL � k0

�����
em
p

1ÿ w
�����
em
p � k0nL ; kR � k0

�����
em
p

1� w
�����
em
p � k0nR :

�60�

It can be seen from expressions (60) that, for a sufficiently
large w

�����
em
p

, one of the refractive indices (nR or nL) will
necessarily become negative. In [147], it was proposed to
use this fact to realize media with a negative refractive
index. Chiral media can be made in several ways [148±152].
Figure 27 shows possible realizations of a chiral spherical
nanoresonator.

It was shown in [153, 154] within the framework of the
quasi-static approximation that, instead of a dipole plasmon
resonance, e�o� � 2 � 0, a chiral-plasmon dipole resonance
arises in chiral spheres, the condition for which is

�e� 2��m� 2� � 4emw2 : �61�

A complete electrodynamic theory of resonances in chiral
spherical nanoparticles of arbitrary sizes was developed in
[155±157], where expressions for analogues of the Mie
coefficients were found. These expressions are much more
complicated, since in chiral spheres it is no longer possible to
separate them into TE and TMmodes. However, it is possible
to introduce more complex modes, called in [156] A and B
type modes. Figure 28 shows the dependence of the scattering
coefficient T A

4 (type A mode), which reduces to the Mie
coefficient for TM mode scattering, q4, at w � 0, on the
permittivity e and permeability m for various values of the
size parameter k0a and chirality w. It can be seen from this
figure that the structure of the modes of the chiral sphere is
much more complicated than in the case of the DNG sphere,
since here the chiral-plasmon resonance (61) arises addition-
ally, manifesting itself in a discontinuity in the dispersion
curve of the surface DNG modes.

The dispersion equation that determines the eigenfre-
quencies of the chiral sphere has the form [155, 156]

Dn �Wn�L�Vn�R� �Wn�R�Vn�L� � 0 ;

Wn�J� �
�
e
m

�1=2

cn�kJa� z �1�
0

n �k0a� ÿ c 0n�kJa� z �1�n �k0a� ; �62�

Vn�J� � cn�kJa� z �1�
0

n �k0a� ÿ
�
e
m

�1=2

c 0n�kJa� z �1�n �k0a� ;

where cn�z� � z jn�z� and z �1�n �z� � zh
�1�
n �z� are the Ricatti±

Bessel functions, the prime denotes the derivative, and index J
takes the values L, R (see (60)). It is important that, as in a
usual dielectric sphere, the expression for the determinant Dn

does not depend on the azimuthal quantumnumberm. Figure
29 shows the projection of the dependence of the eigenfre-
quencies of chiral sphere with e � 2� 0:04i on w, Re �k0a�,
Im �k0a� onto the �Re �k0a�; Im �k0a�� plane for an orbital
quantum number n � 1. It can be seen from this figure that an
increase in chirality (moving downwards along the curves)
leads to a significant increase in the quality factor of natural
oscillations. This is mainly due to the fact that the wave
number of one of the polarizations in a chiral medium can
increase infinitely (the pole in (60)), and therefore the
wavelength of such waves in a sphere is much smaller than
in vacuum, leading to an effective increase in the size of the
sphere and the quality factor of the modes existing in it.

Figure 30 shows the distribution of the z-component of
the electric field in the plane z � 0 (shaded plane in the
geometry inset) for different values of the dimensionless
chirality parameter corresponding to different values of the
radial quantum number n � 1, 2, 3, 4 when the sphere is
excited by a plane wave.
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Other regimes of eigen oscillations for a chiral sphere were
considered in [156±158]. Natural oscillations in a cluster of
chiral spheres [159] and in a chiral sphere with an asymmetric
shell [160] were also studied in detail.

5.3 Modes in a sphere made of a hyperbolic metamaterial
In [161], modes were considered in a spherical nano-
resonator made of a hyperbolic metamaterial (HMM),
that is, an anisotropic material where the diagonal values

of the permittivity tensor have different signs [162]
(Fig. 31a).

As is known [162], the key feature of the HMM is the
possibility of the existence of propagating waves with an
unlimited radial wave number (Fig. 31b), enabling the
existence of resonant modes in spheres of arbitrarily small
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sizes (in the approximation of a homogeneous medium, of
course) (Fig. 31c, d). With a decrease in the outer radius of
resonator R, theQ-factors of the modes increase unlimitedly,
according to the law Qrad / Rÿ�2n�1�, where n is the order of
the multipole moment of the mode. Although the authors of
Ref. [161] say that the high-Q modes found by them can be
attributed to whispering gallery modes, this is apparently not
the case, and it can be seen from Fig. 31c, d that these modes
are concentrated at the center of the resonator. From a
mathematical point of view, this is because the radial
distributions of TM fields inside a spherical HMM resonator
are described not by usual Bessel functions of a half-integer
order but by Bessel functions with an imaginary order [163],

Jl�1=2
ÿ ��

e
p

k0r
�) Jg�l��1=2

ÿ ����
ey
p

k0r
�
; �63�

where the imaginary order is given by

g�l� � 1

2
� 1

2

�������������������������������
1� 4

l�l� 1�ey
er

s
: �64�

Bessel functions with an imaginary order do not tend to zero
at the origin, leading to the concentration of fields at the
center of the sphere.

The properties of HMM resonators are generally similar
to those of resonators made of DNG or chiral metamaterials:
in all cases, modes can exist for arbitrarily small external
dimensions of the resonators. From a physical point of view,
these resonators are fundamentally different: in nanoresona-
tors made of hyperbolic and chiral metamaterials, the modes
are bulk, while in DNG nanoresonators, superhigh-Qmodes
are of a surface nature.

6. Examples of possible applications
of optical nanoresonators

Although optical nanoresonators have very interesting
fundamental properties, their wide practical application is
yet to come. Nevertheless, the principles of operation of
several optical nanodevices based on the resonant properties
of nanoparticles have already been experimentally demon-
strated.

(1) First of all, attempts to create sources of coherent
radiation with the use of optical nanoresonators should be
noted. In this regard, first of all, it is worthmentioning spasers
and nanolasers, based on plasmonic nanoresonators [2, 4] and
on dielectric nanoresonators [22, 25, 26, 164]. There are also
proposals to use HMM nanoresonators for nanolasers [165].

(2) Optical nanoresonators can also be used effectively to
control the spontaneous emission of elementary quantum
systems [143, 144, 166±172] and to construct bright artificial
fluorophores [91] and quantum photonic circuits [173] on this
basis (where a 1D photonic crystal nanoresonator was used).

(3) An important area of application of optical nano-
resonators is to increase the efficiency of solar cells, and, for
this purpose, not only plasmonic but also dielectric nano-
resonators are used [174±178].

(4) The high sensitivity of natural oscillations in optical
nanoresonators to the refractive index of the environment
makes it possible to create highly sensitive biosensors on this
basis [110, 179±185].

(5) The high field concentration in high-Q modes of
optical nanoresonators and the correct choice of pump
polarization increase the efficiency of the generation of the
second [21, 28, 188, 189] and the third [27, 190 ± 192]
harmonics and other nonlinear effects [17, 21, 29] signifi-
cantly (by 2 orders of magnitude compared to the best
microresonators [186, 187]).

(6) Electromagnetic resonances in dielectric nanoresona-
tors can be used to implement optical magnetism �m 6� 1�
[120, 193, 194].

7. Conclusion

The review presents the current state of a rapidly
developing field of optics: the optics of 3D nanoresona-
tors, that is, resonators with subwavelength dimensions in
all directions. In this case, the focus is on the fundamental
aspects of describing the optical properties of such
nanoresonators. The rapid development of this area by
the efforts of various scientific groups led to the discovery
of several new effects and to the emergence of colorful new
terms related to them, which are often not precisely
defined. This complicates the further development of this
field, and we try to connect the new terms with each other
and with generally accepted definitions.

Mainly, the review considers highly symmetric nano-
resonators without internal losses, which have ultra high
Q-factors at resonant frequencies. However, a whole class
of nanoresonatorsÐasymmetric nanoresonatorsÐ remains
outside the scope of the review. It is difficult to expect
superhigh quality factors in the usual sense of the word from
such resonators, but interesting nonstationary field distribu-
tions can be realized in them, which can serve as the basis for
information processing on a single chip and other applica-
tions. Super scattering regimes can also exist in asymmetric
nanoresonators.
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The materials of nanoresonators have a fundamentally
important effect on their properties, and therefore both
plasmonic and dielectric nanoresonators are considered in
the review. The review also considers nanoresonators made
from hypothetical metamaterials. Although thesemetamater-
ials have not yet been realized on the nanoscale (see, however,
[195]), the extreme properties of resonators made from them
make the search for such metamaterials extremely topical.

In the review, modes of natural oscillations are considered
in more or less detail, but the methods for their effective
excitation are only outlined. At present, optical nanoresona-
tors are mainly excited by an external (far) field, and,
therefore, studies aimed at creating far-field configurations
that effectively interact with eigenfields are extremely impor-
tant. Especially interesting for the excitation of symmetrical
nanoresonators are Bessel beams with a certain (radial or
azimuthal) polarization. For example, only the use of an
azimuthally polarized beam, not a linearly polarized one,
makes it possible to increase the efficiency of the second
harmonic generation by 2 orders of magnitude [28]. Even
more important from a practical point of view is the
excitation of natural oscillations in nanoresonators using
near fields for the construction of photonic nanochips. It is
natural to consider elementary quantum systems (dye
molecules or quantum dots) to be the sources of near fields.
Such studies are just beginning, and mostly in theory, since
the experiments are very complex.

We believe that fruitful achievements and great break-
throughs will be made in this area in the future, and we hope
that this review will give an additional impetus to research in
this direction.
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