
Abstract. Rogue waves are anomalously high waves that may
suddenly form on the sea surface. At the dawn of the
21st century, they attracted the interest of researchers, from
oceanographers to mathematicians. The review discusses the
results of their research: physical mechanisms leading to the
generation of anomalously high waves and respective mathema-
tical models, observational data, results of direct numerical
simulations and laboratory experiments, and new approaches
to modeling and forecasting extreme sea waves.

Keywords: rogue waves, freak waves, sea wind waves, nonlinear
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1. Introduction

Descriptions of anomalous sea waves in the scientific
literature go back more than half a century [1, 2], but rogue
waves (also known as freak waves) received serious attention

at the turn of the 20th to the 21st century, following the
appearance of accurate instrumental measurements showing
individual waves or short wave packets that significantly
exceeded the background sea waves in height [3]. Rogue
waves are considered to be the cause of some incidents with
ships or shelf platforms (in particular, with the tanker
Prestige (2002), the cruise ships Norwegian Dawn (2005) and
Louis Majesty (2010), and the cargo ship Cemfjord (2015))
(see Refs [4±8] and also [9±10], which report on unexpected
wave splashes on the shore). The possibility of describing
anomalously high waves within the framework of spectral
models of wind waves already used in oceanography and
marine engineering is being questioned. For this reason,
intensive work has been carried out over the last two decades
on field measurements of sea waves, the development of new
physical, mathematical, and probabilistic models, physical
modeling, the consideration of associated loads, and the
development of forecasting methods for sea waves. Reviews
of current research on rogue waves can be found, for example,
in monographs [5, 11±14] and articles [7, 15±19]. The aim of
this review is, first and foremost, to discuss the results
obtained in recent years in the design of physical and
mathematical models for rogue waves and in the modeling
of anomalous sea waves. Along with progress in the study of
marine rogue waves, similar studies have been started in other
branches of physics, most importantly in nonlinear optics (see
[17, 20±22]). The specifics of optical rogue waves will not be
discussed in this review.

The vastmajority ofmarine fieldmeasurements, both past
and present, are represented by time series of instantaneous
water surface displacements at measurement points. Long
records are divided into intervals of 10±30 min each, which
are assumed to be statistically homogeneous. For each such
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interval, the record is further subdivided into individual
waves based on crossings of the unperturbed surface. The
main characteristics of individual waves are their periods and
heights. The latter are calculated as the vertical distance
between the upper point (crest) and the lower point (trough)
of an individual wave (see inset in Fig. 1). There are different
implementations of this procedure [23], resulting in slightly
different estimates of periods and wave amplitudes.

Figure 1 shows the best known example of an anomalous
high waveÐ the so-called New Year Wave recorded with a
laser altimeter at the Draupner platform in the North Sea on
January 1, 1995 [24]. It shows a 20-min surface displacement
record and also the interval with the anomalous wave. The
measurement frequency of 2.1Hz ensures a sufficiently detailed
description of the wave profile (circles in the inset). The height
of the New Year Wave, estimated to be H � 25:6 m, is well
above the level of the background sea waves.

A traditional first approximation for describing sea waves
is to represent them as a superposition of independent
random sinusoidal waves. In this case, by virtue of the central
limit theorem, the sea surface displacement obeys Gaussian
statistics and, assuming that the wave spectrum is sufficiently
narrow, the probability of measuring a wave with a height not
less thanH is described by the Rayleigh distribution [25]

P �H � � exp

�
ÿ H 2

8s 2

�
; �1�

where s 2 is the variance of the surface displacement. In
oceanography, the characteristic (so-called significant) wave
heightHs is routinely defined as the average over one third of
the highest waves in the record, H1=3. In the case of a
narrowband spectrum, this quantity is related to the root
mean square displacement as H1=3 � 4:004s. If the spectrum
is not narrow enough, a modification of formula (1) is used,

P �H � � exp

�
ÿ 2

H 2

H 2
s

�
; �2�

in which case the use ofHs � H1=3 reduces the contribution of
small-scale waves to the mean height estimate and leads to
better agreement with direct modeling results.

A parameter AI (amplification index or abnormality index)
is introduced as a characteristic of the `abnormality' of a high
wave, describing the excess with respect to the background
sea waves,

AI � H

Hs
; �3�

where the significant height Hs is defined as Hs � H1=3 or
Hs � 4s. The definitionmost commonly used in the literature
to single out the class of `rogue waves' sets the minimum
required excess height at AI > 2. Alternative definitions of
marine rogue waves could use different thresholds of AI,
impose additional constraints (on the absolute magnitude
and asymmetry of the wave), be formulated for the crest
height, and so on. In this review, the definition of rogue
waves will be based on the AI criterion for wave height (3) or
a similar criterion for the wave amplitude amplification
factor (39).

The probability distribution for the wave height (2)
describes the real situation quite well if the events are not
too rare and respectively the waves are not too high [25].
Based on the probability distribution (2), it is easy to estimate
the recurrence rate of anomalous wave events for the
parameter AI (3) introduced above. For the New Year
Wave, H1=3�11:4 m and H=H1=3�2:24; hence, it follows
that it corresponds to an event with probability 4� 10ÿ5, i.e.,
one wave in 20 thousand. If we assume that the period of sea
waves is 10 s, we find that a wave with the indexAI � 2:24 has
a return period of less than 3 days. Similarly, waves with
AI � 2 should be recorded 2±3 times per day. Since the
absolute value of the wave height is important from a
practical point of view, which is not taken into account by
the AI parameter, dangerous rogue waves are much rarer in
real life.

The problem of rogue waves on the sea surface can be
statistically formulated as the description of probabilistic
wave properties (wave heights, amplitudes of crests and
troughs, etc.) in the conditional range of rogue waves
AI > 2; the Rayleigh distribution is commonly used as a
reference. In practical applications, within the framework of
quadratic weakly nonlinear theory, one takes into account the
deviation of the wave shape from a sinusoidal one, which
above all modifies the probability distributions for the
amplitudes of the crests and troughs, but not for the heights.
Rogue waves are not described by second-order statistical
models. Section 2 discusses the fact that, despite the huge
amount of instrumental measurements of sea waves (several
hundred million individual waves), there is no reliable
statistical description in the domain of rogue waves. It also
presents the available eyewitness observations of anoma-
lously high waves.

The deviations of wave statistics from Gaussian can be
conveniently estimated through the values of statistical
moments. The variance is defined through the root mean
square deviation of the surface Z: s 2 � hZ 2i with zero mean,
hZi � 0; the third and fourth statistical moments l3, l4 are
defined as

l3 � hZ
3i

s 3
; l4 � hZ

4i
s 4

: �4�

It is well known that for a Gaussian random value l3 � 0,
l4 � 3. The deviations in the measured values from these
values imply that the waves are vertically asymmetric and
have an altered balance between the proportions of small and
large displacements (the quantity l4ÿ3 is called the excess
kurtosis).

In a dynamical sense, the problem of rogue waves can be
understood as a search for possible mechanisms of rapid and
significantwave amplification (see thediscussion inSection3).
First of all, the literature was concerned with linear wave
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Figure 1.New Year Wave record: surface displacement at a measurement

point as a function of time. Inset shows the heights of an anomalous wave

determined according to the down-crossing and up-crossing methods,

Hdown and Hup.
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focusing mechanisms and the effects of wave amplification on
currents. Since the processes of random wave superposition
are already accounted for in Gaussian statistics, other effects
leading to wave amplification are important. This review
focuses on wave growth mechanisms resulting from `fast'
nonlinear wave interactions, which are new for oceanography
initiated by, among other things, variable conditions (rough
bottom, ambient currrents, or variable wind). These effects
are not taken into account in the kinetic equations used by
forecasting centers to model sea waves. The most impressive
series of studies is related to the `rediscovery' of the effect of
modulation instability of sea waves, which seems to be the
most likely candidate for the role of a universal mechanism
that increases the probability of anomalously high waves
under certain conditions.

Most of the research on rogue waves is carried out for the
deep sea. In this limit, the water depth drops out of the
parameter set and three-wave interactions only lead to a
modification of the wave shape. In the case of shallow
basins, the displacement obeys the Gaussian distribution
only for very small amplitude waves. The modulation
instability present in deep water disappears in shallow water.
However, the effects of nonlinear dynamics in shallow water
can also lead to a significant increase in the probability of high
waves. Waves propagating under variable depth conditions
may be affected by different nonlinear amplification mechan-
isms. These effects are also discussed in Section 3.

The use of integrable nonlinear models as a first approx-
imation to describe rogue wave effects allows the application
of the inverse scattering transform and related exact methods
to obtain model analytical solutions and effective descriptions
of nonlinear waves and their ensembles [26±28]. References
[29, 30] proposed using breather solutions to the nonlinear
Schr�odinger equation (NSE) [31±34] as models for rogue
waves, realizing a nonlinear mechanism for the occurrence of
unexpectedly high waves that ``appear from nowhere and
disappear without a trace'' [35]. Later, this class of solutions
was extended to include new solutions of the NSE as well as
other integrable equations describing a nonlinear stage in the
development of the instability of sinusoidal and nonsinusoidal
waves. The class of such solutions to nonlinear equations is
called rogue wave solutions: they have already lost their
physical `roots' and are studied as independent mathematical
objects. The correspondence between themodulation instabil-
ity and roguewave-type solutions has been demonstrated, and
a universal description of the modulation instability has been
obtained. These results are discussed in Section 4.

Due to the difficulties mentioned above in finding a
probabilistic description of rogue waves based on field data,
special attention has been given tomodeling in the framework
of laboratory experiments and numerical simulation. Wave
evolution computations in the framework of spectral energy
balance equations, which are currently used for operational
forecasting, are based on assumptions of weak nonlinearity,
quasi-stationarity, and independence of random wave phases
[36]. Kinetic models are unable to account for rogue waves,
and direct (phase-resolving) numerical simulation of the full
hydrodynamic equations is required. Furthermore, fast
numerical codes are needed to simulate large statistical
ensembles [37, 38]. The methods of integrating hydrodyna-
mical equations used for stochastic (Monte Carlo) modeling
of sea waves are presented in Section 5. Further, this section
discusses the results of numerical simulations for ensembles of
irregular waves: the observation of fast wave evolution,

probability distributions, as well as characteristic patterns of
rogue waves: the shape of extreme waves and the duration of
events.

A discussion of the general picture of the obtained results,
open problems, and prospective directions in rogue wave
research is given in the Conclusions (Section 6). In addition to
obtaining the calculated characteristics of extreme waves, it is
practically important to be able to predict dangerous waves
on various time horizons, performing deterministic forecast-
ing in short times (several minutes) and probabilistic fore-
casting at longer time intervals.

2. Data from observations
and records of rogue waves

Reports about sudden waves damaging ships and construc-
tions in the open sea and onshore and sweeping people off the
coast appear in the media almost every week. Among recent
cases: on January 16, 2011 the 114-meter-long cargo ship
Arvin was split in two by a wave in the Black Sea off the
Turkish coast and sank, with only six of its 13 crew members
rescued [39]. On January 4 of the same year, a sudden wave
washed two children off the coast of California; their father
died trying to save them [40]. A large number of descriptions,
photos, and videos of such events and waves can be found on
the Internet. Over the last 20 years, attempts have been made
to compile and analyze similar cases of roguewaves [8±10, 41±
47]. The catalogues compiled contain detailed descriptions of
the events that occurred, and also some of their characteristics
reported by witnesses and available data (meteorological
records, re-analysis of the state of the sea in the area, etc.).
The height criterion (3) is usually used to define rogue waves,
although the information on wave amplitude is not always
known with certainty. Besides, the media generally cover
events that create the largest damage, irrespective of the wave
height.

The latest catalogue [8] contains descriptions of 210 events
for the period 2011±2018, which corresponds on average to
one event every three weeks. The geographical distribution of
the observed rogue waves is shown in Fig. 2a. Its inhomo-
geneity is related to the connection to major shipping routes
in the world's oceans, as well as differences in population
density in coastal areas and the difficulty in finding informa-
tion in non-English media. Figure 2b illustrates the distribu-
tion of recorded cases across observation locations: deep or
shallow water (a threshold of 50 m is used) and on the shore.
As can be seen from the figure, anomalous waves have been
observed on deep and shallow water (this fact has been
examined separately in Ref. [48]). Most frequently, the
media's attention is drawn to cases of anomalous waves on
the shore (sneaker waves), but disasters with sinking ships on
the open sea dominate in terms of casualties.

A breakthrough in the recognition of the problem of
anomalously high waves by the community of oceanogra-
phers and marine engineers is related to the appearance of a
large amount of data on instrumental measurement of sea
waves. The overwhelming majority of measurements consist
of records of displacement at a point obtained by instruments
of various types (buoys, altimeters, bottom pressure gauges,
etc.) at different depths. In the 21st century, wind waves as
high as 30 m have been repeatedly recorded; the significant
wave height can reach 14±16 m in the North Atlantic [49, 50]
and even higher in other regions [51]. Some waves with
exceptionally high levels relative to background waves have
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been given individual names: in addition to the New Year
Wave (or the Draupner wave, 1995, AI � 2:24), these include
the waves Yura (1987, AI � 2:67), Andrea (2007, AI � 2:67),
and Killard (2014, AI � 2:29). The accumulated data of
surface wave registration allow retrieving quantitative char-
acteristics of rogue waves and constructing the corresponding
probability distributions required in engineering.

Reference [52] presents the results of the processing of
122 million individual waves measured from off-shore
platforms and buoys at four different geographical loca-
tions (more than 30 measurement points with depths
ranging from 7 m to 1.3 km); more than 3.5 thousand of
these waves satisfy the amplitude criterion on rogue waves
(3). Thus, approximately one wave in 33 thousand turns out
to be anomalously high, and if the characteristic period of
wind waves is taken as 10 s, it follows that a rogue wave
appears once every four days on average. In the database
considered, the maximum wave height is 25.5 m and the
maximum crest height is 18.5 m. The authors of [52] were
not able to identify wave conditions that facilitate the
occurrence of rogue waves; anomalous waves are encoun-
tered for different combinations of wind waves and swell.
The paper concluded that the rogue waves are the result of
dispersive focusing, so that no nonlinear mechanisms are
needed to explain them.

Another databank based on two decades of records from
34 buoys in the Pacific Ocean is analyzed in Ref. [53]; it
contains about 800 million individual waves, including
8 thousand rogue waves (one rogue wave for every
100 thousand waves). It is mentioned that the number of
rogue waves recorded by a buoy per year may reach 50. No
significant connection was found between the frequency of
rogue waves and sea depth (measurements were carried out in
conditions of relatively deep water, more than 80 m). During

the whole observation period, the amplification index AI (3)
reached the value of 3 five times.

The dependence between the occurrence frequency and
the recording location was investigated in Ref. [54] by
processing the records from 80 buoys located along the
American coasts for depths of 10 m or more, containing
1.1 billion individual waves and almost 75 thousand rogue
waves with AI > 2, including 19 waves with AI > 5; on
average, there is one rogue wave for every 15 thousand
waves. (According to the Raleigh statistics (2), the amplifica-
tion AI � 5 should correspond to the event repetition once in
1015 years for waves with a period of 10 s. This result indicates
that either the probability of the occurrence of rogue waves is
in fact much higher or the measurements are not reliable.) As
emphasized in that study, the sensitivity to local conditions is
particularly high in coastal regions, and it is most likely that
the mechanisms for rogue wave formation differ between
locations. Multi-year observations in [55] also reveal inter-
annual variability in the frequency of rogue wave occurrence,
which manifests itself differently at different sites in the
world's oceans.

More than 300 million individual waves measured by
different gauges in the conditions of the shallow North Sea
(not deeper than 35 m) were analyzed in Ref. [56]. In
comparison with the cases described above, they demon-
strate a higher mean frequency for the occurrence of rogue
wavesÐonce in 5±8 thousand waves, depending on the
observation point. Reference [44], based on a statistical
study of more than 1 million waves recorded by buoys at
different depths concludes that rogue waves occur more
frequently under conditions of open sea and deep water.

We note that the above estimate for the mean recurrence
rate of anomalously high waves are substantially lower than
follows from linear theory for a narrow-band Gaussian
processÐ the Rayleigh curve (2) (one rogue wave in 3000).
It also contradicts the results of earlier field studies [57±59],
which reported a significant underestimation of rogue wave
probability by the Rayleigh distribution.

A fundamental difficulty in obtaining probability distri-
butions based on field measurements lies in the statistical
inhomogeneity and finiteness of the samples (sampling
variability). In addition, there is the question of the quality
of the registration of anomalous waves, which is related to the
accuracy of the procedure used to reconstruct the surface
displacement information in the case of indirect measurement
(by a bottom pressure gauge, an accelerometer on a buoy,
etc.), as well as to the technical details of instruments and
errors associated with them. Empirical procedures applied
during wave registration for data quality control may
themselves be a source of systematic errors. The contra-
dictory conclusions drawn from the statistical processing of
long-term field measurement data discussed above place
particular importance on the results of physical modeling by
direct numerical simulations or experimental measurements
under controlled conditions.

In addition to estimating the probability properties of
anomalous waves, the data from field measurements are
examined with respect to characteristic forms of such waves,
which can be used, for example, to estimate loads on
constructions. A special form of anomalous wave occurring
in the strong countercurrent at Cape Agulhas (south-west
African coast) has already been mentioned in the literature,
with a long sloping trough preceding a steep high crest, the so-
called Lavrenov wave [60].
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Overall, the observational data reveal a diversity of rogue
wave shapes, even when measured at the same location at
different times. Figure 3 shows the shapes of rogue waves
found in records from a buoy deployed at 13 m depth off the
western Indian coast [61]. The most common anomalously
high waves are single waves with a large crest (type 1); they
can be of variable sign (type 2), but can also occur within a
group of several large waves (the `ninth wave' or `tenth wave'
or `three sisters', type 4). Waves with a very deep trough (the
so-called `hole in the sea', type 3) have also been recorded, and
in the study reported in Ref. [61], holes in the sea accounted
for 40% of the total number of rogue waves. In observational
results in the coastal zone of the Baltic Sea [62], 63% of the
rogue waves were the single crest type and 17% the single
trough type.Most of the anomalous waves in the shallow part
of the Sakhalin shelf were represented by groups of high
waves, as in the example shown in Fig. 4. Rogue waves were
also recorded in the Black Sea [4, 64].

Rigorous statistical studies of anomalous wave shapes
with good significance are rare. Averaged profiles of observed
rogue waves, based on the results of two studies, are shown in
Fig. 5; they look quite similar. Reference [52] mentions a
higher mean steepness of rogue waves than of `normal' large
waves (Fig. 5a). As can be seen, the wave crests are sharper,
and their height is greater than the depression in nearby
troughs, which is qualitatively consistent with the solution for
a stationary nonlinear wave on deep water (the Stokes wave).
Some of the records of rogue waves (e.g., the Andrea Wave)
show a strong crest asymmetry, which is an indicator of
breaking. Averaged profiles of extreme waves for given AI
thresholds were constructed in Ref. [54] and compared with
the shapes of `normal' waves (AI < 2) and also with the
conclusions of other studies based on field data. Although the
authors of studies mentioned here agree on the conclusion
that the characteristic portrait of a rogue wave includes a
sharp crest moving between shallower troughs, the conclu-
sions regarding a more detailed description are ambiguous.
Figure 5b from Ref. [54] shows profiles of extreme waves
which look noticeably different for the sets of rogue waves

selected by height (3) (blue curve) and an analogous criterion
for crest heights (red curve). According to the results of
measurements near the Brazilian coast [58], rogue waves
with deeper troughs behind the extreme crest are encoun-
tered almost twice as often as those with troughs in front. This
conclusion is the opposite of the picture in Fig. 5b (blue
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curve). Substantial differences in the shape and asymmetry of
extreme waves dependending on whether they reach the
breaking threshold are discussed in Ref. [65].

In recent years, new approaches for theoretical and
experimental oceanography have been developed to describe
the motion of a two-dimensional surface, supported by the
growing capabilities of direct numerical modeling of sea
waves as well as the development of stereometric wave
registration methods in natural conditions [66±68]. It is
expected that going beyond one-point measurements of the
sea surface and observing wave dynamics in time and space
will allow more precise answers to be obtained about the
shapes of rogue waves, their probability properties, and the
most efficient generation mechanisms.

3. Physical mechanisms and models
of the occurrence of rogue waves

A proper understanding of physical effects leading to the
occurrence of rogue waves is needed to model their dynamics
and statistics and to develop forecast methods. In addition to
the description of physical mechanisms, we also formulate
basic models in Section 3.1.

3.1 Basic hydrodynamic equations
To describe sea waves on scales that we are interested in, the
assumption that fluid motion is potential is commonly very
reliable, leading to Laplace's equation for the velocity
potential j�x; y; z; t�, which will be written for a homoge-
neous layer of incompressible water above the horizontal
bottom z � ÿh and with free surface z � Z�x; y; t�:

q 2j
qx 2

� q 2j
qy 2
� q 2j

qz 2
� 0 ; ÿh4 z4Z : �5�

A Cartesian reference frame (x; y; z) is used, with the z-axis
directed vertically upward and the x direction selected each
time to be aligned with the dominant direction of wave
propagation. The system of hydrodynamic equations also
includes the condition of impermeable bottom and kinematic
and dynamical conditions on the free surface [26, 69]:

qj
qz
� 0 ; z � ÿh ; �6�

qZ
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ÿ 1

2

�
qF
qy

�2

� 1

2

�
qj
qz

�2

�
�
1�

�
qZ
qx

�2

�
�
qZ
qy
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In (7) and (8), the surface potentialF �x; y; t��j�x; y; z�Z; t�
is introduced, g is the acceleration due to gravity, andPa is the
atmospheric surface pressure. In the problems considered
here, surface tension can be ignored for waves longer than
10 cm. Ignoring weak effects due to the inhomogeneity of
pressurePa, without loss of generality, one can takePa � 0, in
which case equations (5)±(8) describe only the motion of
water.

In the approximation of small-amplitude waves, the
solution of equations (5)±(8) takes the form [69]

Z�x; t� � Re
�
A exp �iy�� ; y � kxÿ ot ; �9�

j�x; z; t� � g

o
Im
�
A exp �iy��C�z� ;

C�z� � cosh
ÿjkj�z� h��

cosh
ÿjkjh� ; �10�

o �k� �
�������������������������������
gjkj tanh ÿjkjh�q

: �11�

Here, the notation x � �x; y� is introduced for the vector lying
in the horizontal plane, the parameter k � �kx; ky� is the wave
vector, o is the cyclic frequency linked to the wave vector
through the dispersion relation (11), and A is the wave
amplitude. The vertical structure of the velocity potential
enters (10) as a factor C �z� which depends on the wave
number. A general solution to the initial problem is presented
in the form of the integral of (9)±(11) over the wave vectors
(a presentation in the form of the Fourier integral).

Surface waves can be efficiently described using the
Hamiltonian formalism developed in Ref. [26]. The variables
Z and F form a canonical pair with the Hamiltonian H, and
motion equations for them take the form

qZ
qt
� dH

dF
;

qF
qt
� ÿ dH

dZ
; �12�

H � T�U ; T � 1

2

�
dx

� Z

ÿh
�Hj�2 dz ;

U � g

2

�
Z 2 dx : �13�

The introduction of normal variables ak�t� in the two-
dimensional space of wave vectors allows one to obtain
nonlinear equations in a spectral form:

qak
qt
� ÿi dH

da �k
; �14�

Zk �
������
ok

2g

r
�ak � a �ÿk� ; Fk � ÿi

��������
g

2ok

r
�ak ÿ a �ÿk� ;

ak � 1

2p

�
a�x; t� exp �ÿikx� dx ; �15�

where Zk and Fk are the Fourier transforms of the surface
displacement and surface potential, respectively, and
ok � o �k� is the dispersion relation for linear waves. The
Hamiltonian of interaction between waves Hint �H �
H0 �Hint ;H0 �

�
okaka

�
k dk� has a complex form. Its

representation as an asymptotic expansion in a small
parameter of wave steepness allows one to obtain simpler
approximate equations [70±72]. The transform to new
canonical variables bk�t� excludes nonresonant three-wave
interactions from dynamical equations and simplifies the
nonlinear part. The resulting evolution equation for waves
on deep water in new variables preserves the form (14),

i
qbk
qt
� okbk �

�
Tkk1k2k3b

�
k1
bk2bk3

� d�k� k1 ÿ k2 ÿ k3� dk1 dk2 dk3 : �16�
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The Zakharov equation (16) remains technically difficult to
solve because of the six-dimensional integral on the right-
hand side. The nonlinear coefficient of four-wave interac-
tions Tkk1k2k3 in the integrand also has a rather cumbersome
form [70], but possesses symmetry over the indices of
interacting waves and also homogeneity, which can be used
(see Section 5.2).

3.2 Geometrical and dispersive focusing
To describe wave focusing, also in the conditions of a
smoothly varying medium, for example, for variable depth,
a convenient approximation is that of geometrical optics [69].
Rays along which a linear wave described by (9)±(11) is
propagating are defined by the system in the Hamiltonian
form

dx

dt
� qo

qk
;

dk

dt
� ÿ qo

qx
; �17�

where the wave vector and frequency, which are functions of
coordinates and time, are defined through the wave phase
y�x; t�: k�x; t� � Hy, o�x; t� � ÿqy=qt. Under the same
assumptions, the wave amplitude is found from the energy
balance equation

qjAj2
qt
� H

ÿ
cgrjAj2

� � 0 ; �18�

where cgr � qo=qk is the group velocity. The wave amplitude
increases in regions of the convergence of rays along which
energy is transferred (the effect of geometrical focusing). Such
a situation can occur when different wave systems interfere
with one another (for example wind waves generated by
different storms), when waves are refracted by the character-
istic properties of bathymetry (submarine hills, ridges, coast-
lines and so on), and in currents.

Ray theory is developed very well in physics, in particular
as applied to waves on the water surface (for example,
tsunami waves). The wave amplitude in caustics, formally
tending to infinity, proves to be finite under a more accurate
analysis. The pattern of rays, caustics, and regions of wave
energy focusing is very complex and variable in conditions of
the real ocean and can be viewed as random.

Dispersive focusing is another obvious linear mechanism
for the generation of large amplitude waves. It can be
described with the help of a Fourier transform based on the
solution (9)±(11), but becomes more transparent after the
reduction of (17) to the kinematic equation for the group
velocity cgr�k� �here, for simplicity, we consider unidirec-
tional motion, cgr � �cgr; 0�� [73]:

qcgr
qt
� cgr

qcgr
qx
� 0 : �19�

The solution of equation (19) takes the form of simple
wave cgr�x; t� � c0�xÿ cgrt� and can be analyzed graphi-
cally. At the initial time moment t � 0, faster waves are
behind the slow one in the wave train if dc0=dx < 0. Thus,
the wave energy will be summed in these intervals of the
wave train, which corresponds to an increase in the
instantaneous gradient of function cgr�x�. The evolution
of wave intensity is described by the one-dimensional
version of equation (18), the solution of which in the
form of a Riemann wave can be found analytically and
may reach formally an infinite value upon summing waves
with different wavelengths.

Wind-generated waves can be quite inhomogeneous in
both direction and wavelength, creating conditions for
ongoing processes of random spatio-temporal focusing [74].
At the same time, random wave superposition is taken into
account in the framework of Gaussian statistics and the
resulting Rayleigh distribution for wave heights, so that the
events of geometric and dispersive focusing in homogeneous
stationary conditions do not alter the Rayleigh probability
distribution for extreme waves.

Processes of linear superposition of waves with different
wavelengths or directions have been repeatedly reproduced in
different variants under laboratory conditions and can be
considered to be standard [75, 76]. The consideration of a
nonlinear correction to frequency (the so-called nonlinear
dispersion relation) improves the description, but complicates
the problem of finding the wave train that provides the most
efficient focusing. An efficient method here is the wavefront
inversion method, where a nonlinear initial value problem is
solved with the expected form of the rogue wave, and the
solution obtained at a large time is then inverted to perform a
process backward in time [73, 77, 78]. From a physical point
of view, the focusing of linear and nonlinear wave trains
proceeds in the sameway in the absence of instabilities; hence,
dispersion focusing is also mentioned in the framework of
nonlinear problems. The effects of dispersive and geometric
wave convergence may govern the initial phase of wave
growth, which is then continued further as a result of the
action of nonlinear mechanisms [79±81].

3.3 Nonlinear wave interactions and modulation instability
Nonlinearity violates the independence of spectral compo-
nents assumed by the central limit theorem, which can lead to
significant deviations from theGaussian statistics. The effects
of nonlinearity determine the dynamics of large waves and are
therefore of primary importance for the description of
realistic rogue waves. As the solution to the nonlinear
problem is complicated, a significant part of the research is
based on numerical modeling and/or approximate equations.

The dominant part of the research is concerned with the
conditions of the open ocean and large depths (kh4 1), when
the dispersion is strong. For deep water waves, the resonance
conditions between wave triplets (quadratic nonlinearity) do
not hold in typical situations, and the nonlinear dynamics are
driven by the next order nonlinearity (4-wave interactions).
Nonresonant quadratic and higher-order interactions are
explicitly manifested in the deviation of the waveform from
sinusoidal, but do not affect the evolution of the spectra of
normal waves bk (16). The conditions for 4-wave resonance
interaction are written as

k1 � k2 � k3 � k4 ; o1 � o2 � o3 � o4 ; �20�

where each of frequencies is determined from the dispersion
relation oj � o�kj�, j � 1; 2; 3; 4. The resonance conditions
are written for the limit of waves with infinitesimal amplitude,
although they are modified under the action of nonlinearity.
It has been repeatedly shown that quasi-resonance (near
resonance) interactions play no smaller a role than the
interactions between waves in exact resonance [82, 83]. In
the case of waves on deep water, the degree of nonlinearity is
characterized by the wave steepness e � kjAj.

The expression for the surface displacement excess
kurtosis, which takes into account weak correlations of
normal waves as the result of 4-wave interactions in the
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framework of the Zakharov equations, can be found in
Ref. [84],

l dyn
4 � 12

g 2s 2

�
Tkk1k2k3

��������������������
oo1o2o3
p

GrN1N2N3

� d�k� k1 ÿ k2 ÿ k3� dk1dk2dk3 ; �21�
hbb �1 i � N�k� d�kÿ k1� ; Gr � 1ÿ cos �Dot�

Do
;

where

Do � o� o1 ÿ o2 ÿ o3 :

Relationship (21) is written for spectral components of wave
action N�k� (angular brackets imply ensemble averaging),
and thus does not contain the wave phase dependences, but
inherits the six-dimensional integration from the dynamical
equation. This integral is computed in Ref. [85] for quasista-
tionary conditions (large time t ) under the assumption of a
narrowband spectrum:

l dyn
4 � p���

3
p BFI2 ; �22�

where the parameter BFI (Benjamin±Feir Index) is computed
through the ratio of the measures of wave nonlinearity to
dispersion,

BFI �
���
2
p e

dk
: �23�

Here, dk � Dk=k is the relative width of the wavenumber
spectrum. The full excess kurtosis in (4) is composed of the
dynamic one l dyn

4 and the contribution defined by nonreso-
nant interactions lbound

4 (bound nonlinear waves),

l4 � 3� l dyn
4 � l bound

4 ; l bound
4 � 24e 2 : �24�

In the framework of the weakly nonlinear theory of second
orderO�e 2�, the skewness is set by bound waves, l3 � 3e. For
a real sea, the estimate e � ks � 0:03ÿ 0:1 for mean steep-
ness can be used; therefore, the skewness and excess kurtosis
from bound waves are small. The BFI parameter is not
necessarily small if wave steepness is large or the wavenum-
ber spectrum is sufficiently narrowband, in which case the net
excess kurtosis can increase considerably because of its
dynamical part.

Reference [85] shows theoretically that for a weakly non-
Gaussian process the increase in the fourth moment, l4 > 3,
leads to an increase in the probability of waves with large
height, H > 4s,

P�H � � exp

�
ÿ H 2

8s 2

��
1� �l4 ÿ 3�B

�
H

s

��
;

B �x� � 1

384
x 2�x 2 ÿ 16� �25�

(the Gram±Charlie series for a weakly non-Gaussian dis-
tribution [25]); for this reason, the excess kurtosis is
frequently used as an index indicating the degree to which
the sea waves are anomalous.

The BFI (23), which corresponds to the similarity
parameter of the nonlinear Schr�odinger equation, was
proposed in Refs [84, 86] as a deep-water analog of the
known Ursell parameter for weakly nonlinear weakly dis-
persive waves on shallow water. Based on this understanding,
the BFI parameter for a finite sea depth can be readily written

taking into account the coefficients of NSE (see Section 5.2,
equation (61))Ð the nonlinearity a and dispersion b :
BFIfinite depth � BFI�a=b�1=2 [87].

The criterion BFI > 1 corresponds to the condition for
the occurrence of modulational wave instability (see review
[27]). Instability of uniform waves with respect to sufficiently
long perturbations develops as a result of quasi-resonant
4-wave nonlinear interactions and is a dominant type of
instability for waves of small and moderate steepness on
deep water [88]. Longitudinal perturbations of nonlinear
waves gain stability if the depth decreases, kh < 1:363; in
contrast, perturbations at an angle to the direction of wave
propagation remain unstable, but with a smaller increment
down to depths kh � 0:5.Modulational instability disappears
at smaller depths.

We note that, in fact, the BFI parameter was discussed
much earlier by I Alber [89], who proposed an analog of NSE
to describe random waves. Based on estimates made, Alber
concluded that typical sea wave spectra correspond to the
stability condition, although they are close to the instability
threshold. He formulated a hypothesis that modulational
instability prohibits the development of conditions with too
narrow a spectrum. Today, the effect of modulational
instability of sea waves is considered a mechanism for the
formation of large amplitude waves, increasing their prob-
ability. A mathematical description of these processes in the
framework of approximate integrable models is discussed in
Section 4. The important role of strong nonlinearity effects,
leading to a sharper growth of anomalous wave and
subsequent breaking, was stressed in Ref. [90]. We note that
Ref. [91] drew attention to nonlinear effects of 5-wave
interactions. Its authors observed their manifestations in the
spectrum of the New Year Wave record. Five-wave reso-
nances are realized only for three-dimensional waves, which
complicates their study.

3.4 Generalizations of modulation instability parameter
The index of modulation instability, BFI (23), introduced
theoretically using a set of assumptions, is written for the
spectrum parameters e and dk, so that it hypothetically allows
one to estimate the danger of a sea state based on the standard
output data of existing (spectral) models forecasting sea
waves. A set of studies sought the form of the expression for
this index defining the modulation instability threshold in
conditions more realistic for a sea.

Longitudinal perturbations of waves on deep water
correspond to the maximum increment of modulation
instability [88], whereas perturbations at too large an angle
to the dominant wave propagation direction are stable. To
describe directional random waves, several alternative var-
iants of the parameter of modulation instability were
proposed in the literature. In Ref. [92], a modification of
BFI is formulated based on theoretical ideas about the
dependence of excess kurtosis on the parameters of weakly
nonlinear waves with a narrowband spectrum, numerical
simulation of NSE for two spatial coordinates, and a
comparison with the data of laboratory measurements,

BFI 22D �
BFI2

1� a2R
; R � d 2

y

2d 2
o

: �26�

Here, do � dk=2 is the relative width of the frequency
spectrum for waves on deep water, dy is the relative width of
the angular spectrum, and a2 � 7:1 is an empirical coefficient.
In such a representation, the formula for dynamic kurtosis
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(22) preserves its form: only the BFI parameter should be
replaced by its two-dimensional analog BFI2D. A similar
representation based on the modification of the formula for
spectral bandwidth was used in Ref. [93].

Other alternatives to the BFI were proposed in Refs [94,
95] on the basis of the already mentioned Alber equations. In
Ref. [94], a factor depending on the width of the angular
spectrumwas added to definition (23). Reference [95] used the
model sea wave spectrum JONSWAP [96] in an explicit form
(see Section 5) and proposed new parameters in the form

P1 � e
aPg

; P2 � P1 � 0:0256

eAd
; �27�

where aP is the multiplier at the spectrum profile, setting the
wave intensity (the so-called Phillips parameter) and g is the
peak enhancement factor (the degree to which the main
spectral peak is expressed). By default, aP � 0:01 and
g � 3:3. The authors insist that the parameter P1 introduced
for unidirectional waves is essentially different from BFI (23),
since the parameter aP and g influence the wave steepness as
well as spectral width, being physically more adequate
characteristics of the spectrum. The same work also proposes
a generalization of the modulational instability index for
directional waves P2. A finite width of the angular spectrum
is accounted for in P2 (27) with the help of the so-called
directional spectral depth Ad, dy � Aÿ1d . Also, Ref. [95] gives
estimates of threshold values which correspond to modula-
tion-unstable spectra:P1 > 1 andP2 > 1:1; these values were
made more precise by other authors later.

3.5 Coherent wave structures and their interactions
Under the assumption that nonlinear effects are weak, and
also that frequency and wavenumber spectra are narrow-
band, system (5)±(8) can be reduced to simpler nonlinear
equations (see also Section 5.2), including those that are
integrable using the inverse scattering transform (IST): the
Korteweg±de Vries and Kadomtsev±Petviashvili equations
(when the wavelength exceeds the depth, kh5 1) or the
nonlinear Schr�odinger equation for weak wave modulation.
All the listed equations allow exact solutions in the form of
structurally stable solitary waves or wave groups which exist
owing to the balance between the effects on nonlinearity and
dispersion. In the case of waves on deep water, the modula-
tional instability is connected with the breather solutions of
the NSE (see Section 4), which, in turn, could be interpreted
as envelope solitons on the background of a uniform wave.
The existence of solitons is supported by the coherent
dynamics of the respective spectral components; therefore,
the presence of solitons in irregular wave fields modifies the
statistics. It is known that the probability of high waves
occurring on shallow and deep water increases if the
contribution from the soliton part increases [86, 97]. Soliton
interactions may provide principally nonlinear mechanisms
of rogue wave generation [98±100]. The interaction of solitary
wave groups which propagate at a small angle to each other
was proposed as a natural mechanism for the occurrence of
rogue waves [101].

In the limiting case when waves are presented exclusively
by solitons, we are talking about a soliton gas. The spectrum
of the associated scattering problem for integrable equations
contains key information on the wave composition. The
problem of establishing a link between such a `nonlinear
spectrum' and the statistical properties of the soliton gas (the
description of integrable turbulence) is a subject of active

research [102±107] which is outside the scope of this review.
We only note that different types of soliton gas may provide
both increased or reduced probability for rogue waves to
appear [103]. A set of studies was carried out on modeling
the gas of solitons and envelope solitons in the framework of
nonintegrable generalizations of model equations and
primitive equations of fluid dynamics [108±110] (see also
Section 5.5).

3.6 Nonlinear wave dynamics under varying conditions
Numerous experimental and numerical studies indicate that a
modulationally unstable wave system comes to a quasi-
equilibrium state. In this process, the wave spectrum sharply
broadens at first, and the probability of extreme waves
substantially increases; the spectrum then narrows, but to a
smaller degree (see Section 5.3). An elegant theoretical
rationale for the link between the spectral width and kurtosis
is given in Ref. [111] relying on the Hamiltonian representa-
tion for the NSE,

l4�t� � l4�t0� � b
2a

d 2
k �t� ÿ d 2

k �t0�
s 2

: �28�

Here, a and b are, respectively, the coefficients of nonlinearity
and dispersion of the NSE (see equation (61) in Section 5.2);
the same study also gives a formula for directional waves.

The evolution of excess kurtosis in time under the
assumption of weakly non-Gaussian statistics was explored
in theoretical studies [112, 113], where the six-dimensional
integral (21) needed for computations of the dynamical
excess kurtosis is reduced after some assumptions to the
form [85, 113]

l dyn
4 �t� � 3J �R; t�BFI2 ; t � d 2

oo0t : �29�

Here, J is the integral functionwith cubical dependence on the
wave spectrum, t is the function of time defining the
qualitative form of the dependence of J on time, and R is the
characteristic of the width of the angular spectrum (26). It was
shown that nonlinear self-modulation develops for a suffi-
ciently narrowband spectrum, R < 1, in which case the
dynamical excess kurtosis at first increases, reaches its local
maximum, and then decays, but to a smaller degree.

A similar fast evolution of spectra and wave probability
characteristics arises in different situations when a nonlinear
wave system becomes unstable to modulation or is subjected
to perturbations, if initial conditions are given in the form of a
linear superposition of waves with a sufficiently narrowband
spectrum [114], for forced reshuffling of wave phases [115], on
switching on or off the forcing which is modeling the wind
action [116±118]. Analogous behavior was observed when
ambient current conditions [119, 120] or local depth [121±123]
abruptly changed.

The last caseÐwith a variable depthÐattracted special
attention because of its importance for coastal regions. The
problem of wave transformation over a variable bottom has a
long history (linear transformation, propagation of solitons
of long waves), but over recent years the focus has been on
nonlinear irregular waves and a larger depth range. It is
known that, in the case of an adiabatically slow decrease in
depth, the solitons of long waves grow faster than linear
waves (the nonlinear and linear Green laws, respectively).
Qualitatively similar effects are also realized for envelope
solitons propagating in nonhomogeneous conditions or
under external action [118, 124, 125].
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The effect of growth on skewness, kurtosis, and the
probability of high waves accompanying fast depth reduction
was discovered in numerical and laboratory experiments
relatively long ago [121±123]. Solving this problem in a
general form presents a difficult task because of the large
number of governing parameters and the dependence of
nonlinear and dispersive wave properties on depth [126±128].
In the recent study [129], the effect whereby waves become
more anomalous when passing through an abrupt depth
reduction is explained in the framework of weakly nonlinear
second-order theory. The abrupt change in depth destroys the
balance between free and bound wave components, which
leads to the appearance of new free waves (in particular, half
as long) in anti-phase with the parent nonlinear waves.
Further wave evolution leads to constructive interference.

A nonlinear mechanism of wave amplification past a
sharp increase in depth, proposed in Ref. [125], is linked to
the transformation of envelope solitons, which can propagate
on not too shallow water, kh > 1:363, including the genera-
tion of new envelope solitons and their interaction. The
proposed mechanism is potentially applicable to any situa-
tion where the characteristics of nonlinearity and dispersion
vary so that the effective BFI increases. For example, it is
applicable when an opposing current becomes stronger, as
proposed in Ref. [120].

3.7 Nonlinear dynamics of trapped waves
Trapping and subsequent blocking of waves by currents,
leading to an increase in wave amplitudes in certain regions,
has been discussed in the framework of linear theory since
long ago (see, for example, [74, 130, 131]). Later, these effects
were reproduced taking into account weak nonlinearity and
also in the framework of full nonlinear models [119, 122, 132]
(see also review [133]). The new understanding concerns
principally nonlinear mechanisms of the occurrence of
extreme waves in fields of trapped waves. As follows from
direct numerical simulation and is reflected in two-dimen-
sional expressions for the index ofmodulation instability (26),
(27), the effect of nonlinear self-modulationweakens fast with
the increase in the angular spectrum width. Waves with
narrow angular and frequency spectra, which are not typical
of natural conditions, are most strongly susceptible to
modulation instability. In the case of wave trapping by jet
currents or extended bottom topography features (topo-
graphic waves), in particular, a sloping bottom in shallow
regions (edge waves), the formation of wave guides with a
modal transverse structure takes place. As a result, the
dimension of a dynamical system is effectively reduced, the
nonlinear dynamics become close to the case of collinear
waves, and substantially more favorable conditions for
modulation instability are realized which cannot be achieved
in usual cases [134, 135].

4. Mathematical models of rogue waves
on the background of modulated waves

Studies of wave dynamics in the framework of the NSE of
focusing type, describing modulated surface waves in a
sufficiently deep basin (see Section 5.2), have received the
most attention. In dimensionless variables, the NSE is
expressed in the form

ict �
1

2
cxx � jcj2c � 0 : �30�

Here, the complex-valued function c�x; t� describes wave
modulations and the function jc�x; t�j defines wave ampli-
tudes. Equation (30) is invariant to scale transformation so
that, if the function c�x; t� is a solution of (30), then, for
arbitrary real number C, the function Cc�Cx;C 2t� is also a
solution.

4.1 Periodic solutions
of the nonlinear Schr�odinger equation
The NSE (30) has a solution in the form of a uniform wave of
constant amplitude

c�x; t� � exp �it� ; �31�
which can be generalized with the help of a scale transform
and arbitrary shift in time t. More complex solutions can be
presented as periodic functions of the coordinate,

c�x; t� � u�x� exp �iot� : �32�

In (32), the parameter o has the meaning of frequency
correction, and u�x� is a periodic envelope profile which
satisfies the Lax±Novikov equation of the second order,

u 00 � 2juj2uÿ 2ou � 0 : �33�

Periodic solutions of equation (33) can be expressed in terms
of the Jacobi elliptic functions with modulus k 2 �0; 1�. The
two simplest periodic solutions with trivial phases are given
by the expressions

u�x� � dn �x; k� ; o � 1

2
�2ÿ k 2� ; �34�

u�x� � k cn �x; k� ; o � 1

2
�2k 2 ÿ 1� : �35�

The `dnoidal' solution (34) is strictly positive, whereas the
`cnoidal' solution (35) changes sign. In the limit k � 1, both
solutions (34) and (35) transform into an envelope soliton:

u�x� � 1

cosh x
; o � 1

2
: �36�

Other solutions of equation (33) can be constructed in
polar coordinate representation, u�x� � R�x� exp �iY�x��,
which, being inserted into (33), leads to the expressions for
functions R anY 0,

R�x� �
��������������������������������
bÿ k 2sn2�x; k�

q
; Y 0�x� � b�1ÿ b��bÿ k 2�

bÿ k 2 sn2 �x; k� ;

o � 1

2
�3bÿ 1ÿ k 2� ; �37�

for arbitrary parameters b 2 �k 2; 1� and k 2 �0; 1�, andY 0�x�
is the derivative of function Y�x�. At the boundaries of the
admissible values of the parameter, b � 1 and b � k 2,
solution (37) reproduces solutions (34) and (35), respec-
tively. The exact solutions (34)±(37) were explored in the
context of modulation instability and rogue waves [136, 137].

Following the definition of rogue waves as appearing out
of nowhere and disappearing without a trace on a given
backgroundcb, one can give amathematical definition of this
property for function c,

max
x2<

��c�x; t�ÿcb�xÿ x�; tÿ t��
��! 0 at t! �1 ; �38�
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for some real constants x� and t�. We define the numerical
factor of wave amplification M, similar to (3), as the ratio of
the maximal achievable solution amplitude to the maximum
amplitude of background,

M �
max
�x; t�2< 2

��c�x; t���
max
�x;t�2< 2

��cb�x; t�
�� : �39�

As is well known, the NSE (30) is the compatibility
condition jxt � jtx of the Lax pair with the spectral
parameter z 2C and complex-valued eigenvectors j�x; t�:

jx � U�c; z�j; U�c; z� � z c
ÿc � ÿz

� �
; �40�

jt � V�c; z�j;

V�c; z� � i
z 2 � 1

2
jcj2 zc� 1

2
cx

ÿzc � � 1

2
c �x ÿz 2 ÿ 1

2
jcj2

0B@
1CA : �41�

Such a representation allows one to obtain analytical results
on the description of modulation instability of waves and the
processes of rogue wave formation on their background. The
equation with a derivative over the coordinate (40) presents
the Zakharov±Shabat spectral problem derived in the
pioneering paper [138] (it is a particular case of the system
by Ablowitz, Kaup, Newell, and Segur (AKNS) [139]).

The Lax equations possess a symmetry such that, if
j � �j1;j2�T is an eigenvector with an eigenvalue z, then
j � �j �2 ;ÿj �1 �T is the eigenvector for the eigenvalue ÿz �.
Thus, the eigenvalues of the associated scattering problem
(40) appear in the complex plane by symmetric pairs with
respect to the imaginary axis.

4.2 Rogue waves on the background
of constant amplitude waves (breathers)
It is well known that the NSE solution in the form of uniform
wave (31) is unstable to modulation [27]: small perturbations
of sufficiently large length grow exponentially. To illustrate
this phenomenon, we consider a perturbation of uniform
wave (31) in the form

c�x; t� � exp �it��1� �u0 � iv0� exp �lt� ikx�
� �u �0 � iv �0 � exp �l �tÿ ikx�� ; �42�

where �u0; v0� 2C is an eigenvector describing weak
perturbations and k 2 < is the wavenumber. The relation-
ship for constant l � l�k� follows from a linear analysis of
solution stability,

l 2 � k 2

�
1ÿ 1

4
k 2

�
: �43�

Unstable perturbations with positive values of l occur for
perturbation wavenumbers k in the interval (0, 2). Thus,
sufficiently long perturbations are unstable, with the length
L � 2p=k > p.

Reference [140] presents a universal picture of the
dynamics of localized perturbations of a uniform wave. For
a wide class of localized initial perturbations such that the
Zakharov±Shabat problem (40) does not have discrete
eigenvalues, it is shown that the solution c�x; t� consists of

two outer unperturbed sectors separated by a wedge-like
central domain filled with modulated periodic waves.

The general picture of periodic perturbations of a plane
wave was explored in Ref. [141]. The dynamics of one
unstable mode were analyzed with the help of the method of
finite-zone potentials based on the spectral Zakharov±Shabat
problem with periodic boundary conditions. In the simple
case of one-zone perturbation, it was shown that the
asymptotic solution is described by a breather (see below)
with parameters defined by the initial conditions.

As concerns the modulation instability, the question is
how a uniform background wave is deformed by the
development of unstable modes, and how anomalously high
waves emerge, propagate, and disappear. The breather
solutions considered below model rogue waves.

The rogue wave type NSE solution (38), localized along
the x-coordinate, was constructed by D Peregrine [32],

cP�x; t� �
�
1ÿ 4�1� 2it�

1� 4�x 2 � t 2�
�
exp �it� ; �44�

and solutions periodic in x with the period L � 2p=k > p
were found in Ref. [33],

cA�x; t��
�
1ÿ
�
k

2

�
k 2 cosh �lt��2il sinh �lt�
k cosh �lt�ÿl cos �kx�

�
exp �it� : �45�

Here, k 2 �0; 2� is a free parameter and l is given by (43). The
maximum amplitude of solution (44) is found as
M � jc�0; 0�j � 3. Thus, the Peregrine breather provides
three-fold amplification relative to the background wave.
The coefficient of wave amplification in solution (45), which
is commonly referred to as the Akhmediev breather, is given
by the relationship

M � ��c�0; 0��� � 1� 2

���������������
1ÿ k 2

4

r
; k 2 �0; 2� ; �46�

it monotonically decreases from 3 to 1 on the change in k from
0 to 2. A perturbation with maximum instability increment
l � 1 at k � 21=2 corresponds toM � 1� 21=2 � 2:4.

A breather solution of the NSE describing modulations
periodic in time (which is why it does not satisfy the formal
criterion (38)) and localized over x was obtained by
E A Kuznetsov [31] even earlier,

cK�x; t��
�
1ÿ
�
k
2

�
k 2 cos �gt� � 2 ig sin �gt�
g cosh �kx� ÿ k cos �gt�

�
exp �it� ; �47�

where g � k �1� k 2=4�1=2, and k 2 �0;1� is a free parameter.
The Kuznetsov solution (47) is linked with (45) by the formal
transformation k � ik, l � ig. The Peregrine breather can be
obtained from (45) and (47) in the limits k! 0 and k! 0,
respectively.

Multi-breather solutions were constructed in an analytical
form; their simplest forms represent multiply degenerate
algebraic Peregrine breathers (high-order breathers or super-
rogue waves) [35, 142, 143].

As is shown in Ref. [34], solutions (44), (45), and (47) are
degenerate cases of amore general class of doubly periodic (in
x and t) solutions of the NSE (30) in the form

c�x; t� � �q�x; t� � id�t�� exp ÿiy�t�� ; �48�
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where q, d, and y are real-valued functions. For a fixed time
moment t, the function u�x� � q�x; t� � id�t� satisfies the
Lax±Novikov equation of the third order,

u 000 � 6juj2u 0 ÿ 2ou 0 � 0 ; �49�

and doubly periodic solutions are expressed through rational
functions which contain the Jacobi elliptic functions (for
details, see Ref. [144]).

Figure 6 plots the spectrum of scattering problem (40) for
two families of doubly periodic solutions (48). The form of
solution depends on three pairs of roots,� ���

z
p

1,�
���
z
p

2,�
���
z
p

3,
of the associated polynomial P�z�,

P �z� � z 6 ÿ oz 4 � 1

4
�o 2 � 8C1� z 2 � C2 ÿ oC1 ; �50�

where o is the parameter of equation (49), and C1 and C2 are
the integration constants for this equation (for details, see
Ref. [144]). The spectrum in Fig. 6a corresponds to real roots
04 z1 4 z2 4 z3, and the spectrum in Fig. 6b corresponds to
one real root, z1 > 0, and two complex conjugate roots,
z2 � z �3 . The roots � ���

z
p

1, �
���
z
p

2, �
���
z
p

3 are indicated by red
dots in Fig. 6.

According to the Floquet theory, the spectrum of the
scattering problem, which corresponds to solutions periodic

in x (48), is composed of regions of the continuous spectrum
shown by the black lines in Fig. 6, for which the solutions to
the spectral Zakharov±Shabat problem are bounded quasi-
periodic functions. In addition to the imaginary axis (which
always belongs to the spectrum), the spectrum includes three
continuous lines connecting six roots of the polynomial P�z�.

When z3 � 1, z1 � z2 � z 20 < 1, where z0 � �1ÿ k 2=4�1=2,
the gaps between spectral lines on the real axis (Fig. 6a) shrink
into a pair of points �z0 belonging to the interval [ÿ1, 1]. In
this limit, solution (48) transforms into the Akhmediev
breather (45). When z1 � 1 and z2 � z3 � z 20 > 1, where
z0 � �1� k 2=4�1=2, the outer spectral lines on the real axis
(Fig. 6a) contract to a pair of points �z0 outside the interval
[ÿ1, 1]. Such a situation corresponds to the transformation of
solution (48) into the Kuznetsov breather (47). The same
degeneration takes place when z1 � 1 and the complex
spectral lines in Fig. 6b coalesce in a pair of points �z0.

If z1 � z2 � z3 � 1, all three pairs of roots spawn a pair of
points�1 at the ends of spectral interval [ÿ1, 1]. In this limit,
the doubly periodic solution (48) degenerates into the
Peregrine breather (44) with a power-law decay in x and t.

Generalized breather solutions for complex eigenvalues
fz0;ÿz �0 g that were constructed in Refs [145, 146] were
discussed in relation to rogue waves; they present perturba-
tions of a background wave moving relative the selected
reference system. Pairs of breathers propagating towards each
other correspond to quadruplets of eigenvalues f�z0;�z �0 g;
such exact solutions were constructed in Ref. [147].

Recent publications devote great attention to breather
stability. The dynamics of the Peregrine and Kuznetsov
breathers under the action of perturbations was explored in
Refs [148, 149] with the use of IST for functions that decay
into nonzero boundary conditions. The completeness of
squares of eigenfunctions of the Zakharov±Shabat spectral
problem (40) in the class of functions that decay into nonzero
boundary conditions was proven in Ref. [150], where this
result has been used in the study of the linearized NSE:

ivt � 1

2
vxx � 2jcj2v� c 2v � � 0 : �51�

The linear approximation does not give a description of
the transformation of perturbed Peregrine breathers. Refer-
ence [151] shows a structural instability of the spectrum of
the scattering problem for the Peregrine solution with
respect to small perturbations. Depending on the sign of
scalar quantity�1

ÿ1
cP�x; 0�

�
Re
ÿ
c�x; 0��ÿ cP�x; 0�

�
dx ; �52�

wherecP is the Peregrine solution (44) andc�x; 0� is the initial
condition for NSE (30) satisfying the boundary condition
c�x; 0� ! 1 for jxj ! 1, from the end points of spectral
interval [ÿ1, 1], either a pair of eigenvalues or a quadruplet is
born. The first case corresponds to the emergence of a
`standing' Kuznetsov breather, as shown in Fig. 7a, and in
the second case a symmetric pair of breathers is born which
are moving in opposite directions (Fig. 7b).

The instability of Peregrine breathers is illustrated in
Ref. [152] through numerical simulations of the temporal
evolution in the NSE framework. The linear instability of
Peregrine breathers was also explored in Ref. [153].

A detailed numerical study of linear stability of Kuznet-
sov breathers was performed in Ref. [154] with the help of the
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Figure 6.Examples of the scattering problem spectra on the complex plane

z for doubly periodic solutions (48) [144].
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Floquet theory in the time domain after the spatial domain
was reduced to a finite one through the use of periodic
boundary conditions. As was shown, the Kuznetsov breather
is unstable with the same increment as uniform background
waves, but the number of unstable modes depends on the size
of the model domain and decreases with a reduction in the
spatial period.

Another interesting study concerns the linear instability
of Akhmediev breathers in the space of functions periodic in
x. Reference [155] argued that solution (45) is linearly
unstable if more than one unstable mode fits instability
region (43), but it is linearly stable for L 2 �p; 2p� when
only one mode fits instability region (43). This assertion is
refuted in recent study [156], where the authors constructed
explicit solutions of the linearized NSE (51) for c � cA

given by the Akhmediev solution (45), which grow exponen-
tially with time t in the case of one as well as several unstable
modes.

Another way to reach a conclusion about the instability of
Akhmediev breathers in the class of periodic functions is
through the use of the fourth-order Lax±Novikov equation
and variational representation of breathers [157]. A similar
approach was applied to the Kuznetsov and Peregrine
breathers, which turned out to be energetically unstable in
the class of functions decaying into nonzero boundary
conditions. Although the breather solutions being discussed
are the solution of the third-order Lax±Novikov equation
(49), they also satisfy the fourth order equation (and all Lax±
Novikov equations of high order), which has been used in
Ref. [157].

4.3 Rogue waves on the background of modulated waves
It is known that waves with periodic modulations in the form
(32) are unstable to relatively long perturbations [136] (see
recent review [158]). In this respect, a natural question arises
about the existence of rogue waves on the background of
periodically modulated waves, which are analogous to
breathers on the background of uniform waves, described
above.

Such solutions were first constructed numerically in
Ref. [159]. Rogue waves emerging from periodic dnoidal
waves (34) were observed in the numerical simulation of time
evolution in the framework of the NSE in Ref. [109]. Exact
solutions for such rogue waves were elaborated in Ref. [160]
and generalized in Ref. [161]. The modulation instability of
periodically modulated waves and rogue waves emerging on
the background were observed in experiments [162].

The link between the instability of solutions (32) and the
occurrence of rogue waves is established in Ref. [137]. The
black line in Fig. 8 bounds a domain in the parameter plane
b; k, where periodic solutions (37) with a nontrivial phase
may exist. The spectra of the Lax system in Fig. 9 are
constructed for the set of parameters marked with blue dots
in Fig. 8. The black lines in Fig. 9 depict spectral lines, and the
red dots correspond to the positions of the roots of the
associated polynomial for periodic solutions (37) (see details
in Refs [136, 137])

P�z� � z 4 ÿ 1

2
�3bÿ 1ÿ k 2�z 2 ÿ i

����������������������������������
b�bÿ k 2��1ÿ b�

q
z

� 1

16

�ÿ 3b 2 � 2b�1� k 2� � �1ÿ k 2�2� : �53�

Polynomial (53) possesses two symmetric pairs of roots
fz�;ÿz ��g,

z� �
1

2

ÿ ���
b
p
�

��������������
bÿ k 2
p �� i

2

�����������
1ÿ b
p

: �54�

The green curve in Fig. 8 separates two regions with
qualitatively different spectra. The spectrum of the scattering
problem for periodic solutions in the upper (or lower) domain
contains spectral lines intersecting the imaginary (or real) axis
in the plane z (see Fig. 9).
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The link between the Lax system spectrum and the
spectrum of the modulational instability of periodic
solutions (32) is explained in Ref. [136]. The substitution
with separable variables c�x; t� � u �x� exp �iot�, v�x; t� �
w1�x� exp �iot�lt�, and v ��x; t� � w2�x� exp �ÿiot� lt�
reduces the linearized NSE (51) to a problem on the stability
of the solution with the spectral parameter l. This stability
problem can be written in the form

Lw � ils3w ; �55�

where w � �w1;w2�T, s3 � diag �1;ÿ1�, and the linear opera-
tor L takes the form

L �
ÿ 1

2
q 2
x � oÿ 2juj2 ÿu 2

iu �2 ÿ 1

2
q 2
x � oÿ 2juj2

0B@
1CA : �56�

From the Floquet theory, it follows that the spectrum of
problem (55) consists of continuous spectral lines for which
the eigenvector w is a bounded quasiperiodic function of
coordinate x. Unstable solutions correspond to Re l > 0.
Spectral lines with Re l > 0 passing through the point l � 0
correspond to modulation instability of the periodic solution.

The spectrum of problem (55) can be obtained from the
spectrum of the Zakharov±Shabat problem (40) with the use
of the transformation formula

l � �2i
���������
P�z�

p
; �57�

where the polynomial P�z� is defined in (53). The stability
problem spectrum is plotted in Fig. 10 on the complex plane l
for the same set of parameters as in Fig. 9. Depending on the
spectrum of the scattering problem, the stability problem
spectrum takes the form of either two eights (Fig. 10a) or a
butterfly (Fig. 10b).

Different from the spectrum of modulation instability
for plain waves (42), (43), the spectrum l of unstable
perturbations of periodic solutions with a nontrivial phase
is no longer real. This property complicates the observa-
tion of modulation instability for cnoidal waves (35) or
waves with a nontrivial phase (37), reproduced in experi-
ments [162]. Only in the case of dnoidal waves (34), which
generalizes the solution for waves of constant amplitude
(31), does only one branch of modulation instability
located at the real axis exist, analogously to solution (43)
[136, 158, 162].
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We explain now the role of the red curve in Fig. 8 and the
connection between the modulation instability of periodically
modulated waves and the emergence of anomalously high
waves in their background. Figures 9a and 10a correspond to
a point on the red curve in Fig. 8. The red curve corresponds
to the situation when the internal eight on the spectral plane l
is shrinking towards the imaginary axis, as shown in Fig. 10a.
This leads to delocalization of anomalously high waves
appearing on the periodic background as explained further.

In Ref. [137], solutions in the form of rogue waves were
constructed with the help of an algebraic method based on the
roots (54) of the polynomial P�z� (53). Figure 11 shows
solutions in the form of rogue waves on the background of
periodic modulations for the choice of parameters in Figs 9
and 10. The upper row of images corresponds to the root z�,
and the lower one corresponds to the root zÿ.

The wave amplification coefficient defined in (39) was
computed in Ref. [137],

M� � 2�
��������������
1ÿ k 2

b

r
; �58�

where the upper and lower signs correspond to the roots z� in
(54). The magnitude of wave amplification is linked to the
distance from the root to the imaginary axis in Fig. 9.

For dnoidal waves (34) with b � 1, formula (58) gives the
dependence M�2� �1ÿ k 2�1=2, and for cnoidal waves with
b � k 2, the amplification reaches the value of two, M � 2.
The amplification coefficient M for these cases was obtained
theoretically in Ref. [160] and then confirmed experimentally
[162].

Each of the roots P�l� marked by red dots in Fig. 9 is
mapped by transform (57) to the coordinate origin point of
complex plane l in Fig. 10. The increment of modulation
instability depends on the angle atwhich the spectral line passes

through the point l � 0: it is smaller if the line passes closer to
the imaginary axis and larger if it is closer to the real axis.

This same angle determines the degree of rogue wave
localization. The solution in Fig. 11c corresponds to the
internal eight in Fig. 10a contracted along the imaginary
axis. This solution is delocalized in the plane �x; t� and in fact
presents a soliton propagating on the background of a
periodically modulated wave. The solution in Fig. 11d
corresponds to that part of the butterfly in Fig. 10b which
crosses the coordinate origin closer to the imaginary axis.
This solution is localized in the plane �x; t� and corresponds to
the definition of a rogue wave (38), although the localization
degree is weaker than for rogue waves that correspond to the
other branch of the butterfly.

The link between the slope of the modulation instability
line in the plane l for a periodic modulated solution and
localization of emerging anomalously high waves was also
confirmed by many other examples. For systems of coupled
NSEs, Refs [163, 164] drew the conclusion that anomalously
high waves on the background of constant amplitude waves
can only form in cases unstable to modulation. For subsets of
parameters that correspond to modulation stability, con-
structing rogue-wave solutions was not successful, and
large-amplitude localized waves do not arise in direct
numerical simulation [165]. Here, it is important to note
that, if a solution with a constant amplitude or a periodic
solution for the envelope are unstable relative to short
perturbations but stable with respect to longer perturba-
tions, the wave is considered to be stable to modulation.

Another example of mathematical rogue waves is given by
the sine±Gordon equation [166], where two solutions in the
form of periodic waves have different properties of modula-
tion instability [167, 168]. Cnoidal waves are unstable to
modulation, and the occurring rogue waves are localized in
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space and time. Along with this, dnoidal waves are stable to
modulation (but unstable with respect to perturbations with a
smaller spatial scale) and solutions in the form of rogue waves
degenerate in propagating solitons. A similar situation is
observed in the framework of the modified Korteweg±
de Vries equation [169].

4.4 More complex structures of rogue waves
More complex quasi-periodic wave patterns are described by
exact solutions of the NSE (30) in terms of Riemann theta
function [170±173]. The Riemann theta function describes a
general solution of the third-order Lax±Novikov equation
(49) and in special cases is reduced to rational functions of the
Jacobi elliptic functions, as found in Ref. [34]. In the latter
case, the solutions are periodic in both time and space. It can
be guessed that these doubly-periodic solutions describe an
intermediate stage preceding the onset of chaotic waves as the
result of developing modulational instability of plane waves.

Two families of doubly-periodic solutions describe back-
ground waves [174]: with the repeating phases of modulations
(Fig. 12a) and with alternating phases (Fig. 12b). The Lax
system spectra that correspond to them are plotted in Fig. 6a
and 6b. These two families generalize solutions in the form of
Akhmediev breathers (45), which can be explicitly seen from
the spectra, as described in Section 4.2. Experimental
observations of doubly periodic solutions as perturbations
of Akhmediev breathers were mentioned in Refs [175, 176].

Solutions describing the emergence of rogue waves on the
background of doubly-periodic solutions are constructed
analytically and numerically in Ref. [144]. The growth rates
of doubly-periodic solutions are computed in Ref. [158] based
on a numerical analysis of Lax system equations and also
obtained through the results of direct numerical simulation of
the NSE in Ref. [177]. Reference [158] shows that the
increment of modulations is larger for a uniform wave than
for a doubly-periodic solution with an equivalent amplitude.
Just as in the cases described above, anomalously high waves
emerging on the background of doubly-periodic solutions for
the envelope are attributed to the instability of the back-
ground wave.

Figure 12 presents solutions describing rogue waves on
the background of periodically modulated waves. For each
eigenvalue of the Lax system spectrum located at the ends of
spectral lines in Fig. 6, a solution can be constructed in the
form of a rogue wave localized in space and time. In this case,
the wave amplification coefficient is maximal for the
eigenvalue which is furthest from the imaginary axis. Namely
solutions characterized bymaximum amplification are shown
in Fig. 12.

5. Direct modeling of sea waves

5.1 Conventional approach
The description of sea waves in prognostic models (WAM,
WaveWatch, SWAN) is based on the spectral kinetic theory
(the Hasselmann equations). The balance equations for the
spectral density of wave action N �k; x; t��E�k; x; t�=o�k�,
where E is the surface density of the total mechanical energy,
are written in a conservative form as [71, 72, 96]

qN
qt
� Hx�cgrN � � Snl ; cgr � Hko ; �59�

Snl � 4

� � �
jTkk1k2k3 j2�N1N2N3 �NN2N3 ÿNN1N2

ÿNN1N3� Im
�
G�Do; t��d�k� k1 ÿ k2 ÿ k3�

� dk1 dk2 dk3 ; �60�

Do � o� o1 ÿ o2 ÿ o3 ;

G�Do; t� � 1ÿ exp �ÿiDot�
Do

;

where the relationship between the wave vectors and
frequencies is given by the linear dispersion relation. Expres-
sion (60) for the collision integral Snl, which is obtained from
the spectral Zakharov equations (16) under the assumption of
weak deviation from the Gaussian process, contains the
coefficient of 4-wave interactions Tkk1k2k3 . The derivation of
system (59), (60) relies on the independence of random wave
phases (a closure hypothesis). A nonconservative form of
kinetic equation (59) takes into account the effects of wind
and dissipation, but there is no rigorous derivation for their
form from first principles.

In the `classical' variant of the kinetic equation, the limit of
large time is used under the assumption that the wave action
varies slowly, in which case ImG�Do; t� ! pd�Do� and the
evolution is only affected by resonant nonlinear interactions
which nullify the function of difference frequency Do, which
simplifies computations of integral Snl. For homogeneous
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conditions, the characteristic evolution time scale follows from
equation (60): for the `classical' case this is the so-called kinetic
scale O�o0eÿ4�, where o0 is the characteristic frequency, and
e � k0s is the nonlinearity parameter. At small times
ImG�Do; t� � t, and then a faster scale, the so-called dynamic
scale,O�o0eÿ2� is present.A fast evolution ofwave spectrawas
observed through direct numerical simulation of the Zakharov
equations in Refs [116, 117]. As shown below, modulation
instability and the related increased probability of observing
rogue waves develop on a dynamic time scale. To account for
fast wave interactions, Refs [83, 113, 178] proposed versions of
the kinetic equation that take into account the dependence of
function G on time.

An example of the evolution of the fourth statistical
moment for the same conditions comprising irregular waves
with a narrowband initial spectrum is presented in Fig. 13
[179] based on computations with the kinetic equation which
took into account the time dependence of function G,
computations based on the phase-resolving Zakharov equa-
tions, and computations based on the solution of hydro-
dynamic equations in the original formulation. As can be seen
from the figure, even though there is approximate similarity
in the behavior of the curves, they demonstrate a noticeable
difference. Computations based on the primitive equations of
hydrodynamics reproduce the laboratory measurements
(shown by dots) better than the others do.

To model the effects of strong nonlinearity and coherent
and rapidly evolving processes, one needs computations of
dynamical equations which resolve the wave phases. The
tasks of forecasts and computations of statistical distribu-
tions require `fast' evolution models and numerical codes.
Further, a brief review of suchmodels is given, with particular
attention paid to the case of deepwater; the results of their use
for exploring rogue waves are presented, in comparison to the
data from laboratory and field experiments.

5.2 Fast models for the description
of surface wave dynamics
Under the assumption of a narrowband spectrum with a
dominant wavenumber k0 and frequency o0 � o�k0�, the
Zakharov equations lead to the NSE for the complex

envelope A�x; t� [26, 69],

ÿi
�
qA
qt
� cgr

qA
qx

�
� ajAj2 � b

q 2A

qx 2
� 0 ; �61�

Z�x; t� � Re
�
A�x; t� exp �ik0xÿ io0t�

�
; �62�

which is fully integrable with the help of IST (see Section 4).
Equation (61) can be reduced to the dimensionless form (30)
for the function c�x 0; t 0� after the transformations

x 0 �
������
o0

4b

r
�xÿ cgrt� ; t 0 � o0

2
t ; c �

������
2a
o0

s
A � : �63�

The NSE takes into account effects of the third order
O�e 3� of weak nonlinearity and dispersion, dk � O�e�. The
real coefficients of equation (61) are the functions of
dimensionless depth k0h, and b > 0. The nonlinear coeffi-
cient a changes sign at k0h � 1:363 and for large depths
ensures the fulfillment of the criterion that the medium be
unstable to modulation, ab > 0.

Asymptotic models of modulated waves of higher order
have been presented in the literature (see, for example,
Refs [180, 181]), but the most popular ones are modifications
of the Dysthe equation [182, 183], which is a nonlocal
generalization of the NSE of fourth order, O�e 4�, for
sufficiently deep water, k0h5O�eÿ1�. The evolution equa-
tion describes the wave amplitude A�x; t�, where the potential
of the induced flow �j�x; z; t� is found fromLaplace's equation
with given boundary conditions at the bottom and unper-
turbed surface z � 0,
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In the first approximation, the surface displacement Z�x; t� is
computed from formula (62) (formulas of reconstructionwith
O�e 3� accuracy can be found in Ref. [184]). The dispersion
operator, which has the form L̂k �

�������������������
g�k0 � k�p ÿ o0 in the

Fourier representation, describes a linear solution of hydro-
dynamical equations. The classical NSE (61) in the limit of
deep water follows from (64) by omitting the last three terms
in the evolution equation and reducing dispersion to
L̂A � o0Axx=�8k 2

0 � �O�e 4�. For brevity, we present here
versions of the equation for the envelope (61), (64) without
accounting for the transverse surface coordinate.

In plane geometry (one horizontal coordinate), equations
of hydrodynamics can be efficiently solved by conformal
mapping, which reduces the domain Z � x� iz filled with
fluid, bounded at the top by a nonstationary free surface
z � Z�x; t�, to the layer W � u� iv with a constant upper
boundary v � 0. In the case of infinitely deep water, such a
transform is written as

z � Ĥ
�
x�u; t� ÿ u

	
; x�u; t� � uÿ Ĥ

�
z�u; t�	 ; �65�
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Figure 13. Evolution of surface displacement excess kurtosis l4 ÿ 3 based

on the results of numerical modeling of the modified kinetic equation, the

Zakharov equation, the HOSM code for Euler's equations, and labora-

tory measurements. Abscissa corresponds to the distance normalized by

the wavelength of waves that correspond to the spectral peak [179].
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where Ĥ is the Hilbert transform operator. In this case, the
full system of hydrodynamical equations (5)±(8) can be
reduced to equations with cubic nonlinearity in conformal
variables [185, 186],

Rt� i�URW ÿ RUW� ; Vt� i�UVW ÿ RBW� � g�Rÿ 1� ;
�66�

U � P̂fVR � � V �Rg ; B � P̂fVV �g ; P̂ � 1

2
�1� iĤ � ;

R � 1

ZW
; V � i

1

ZW

q
qW

ÿ
F� iĤ fFg� : �67�

Here, F is the velocity potential on the surface, as earlier. A
numerical set of equations for R�W; t� and V�W; t� (66)
(Dyachenko±Zakharov equations) demonstrates high speed
and stability. Reference [187] shows an exclusively high
computational accuracy in computations of the evolution
of very steep waves for 1000 periods using equations
formulated in conformal variables Z�W; t� and F�W; t�.
There are generalizations of the model in conformal
variables in the literature for the cases of finite depth, a
time-varying bottom, and quasiplanar waves [188, 189].
Recent studies [190, 191] propose new analytical approaches
based on conformal mapping for a more efficient description
of very steep waves.

A pseudospectral method of high nonlinear order (High
Order Spectral Method, HOSM) proposed independently in
Refs [192, 193] to solve the full potential equations of
hydrodynamics (5)±(8) shows a faster performance than
the Zakharov equations with the analogous nonlinearity
order. In the HOSM, to compute the vertical velocity
components that enter (7), (8), an exact solution of
Laplace's equation (5) is used at each time step in the fixed
domain bounded from the top by the unperturbed surface
level z � 0. The velocity potential j�x; z; t� is presented as an
asymptotic series j �m� in small wave steepness parameter e,
and the transfer of the surface potential F�x; t� to the level
z � 0 is carried out with the help of the inversion of the
expansion of the potential in Taylor series j�x; z; t� around
z � 0 up to an arbitrary order M,

j �
XM
m�1

j �m��x; z; t� ;

F�x; t� �
XM
m�1

XMÿm
n�0

Z n
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cosh

ÿjknj�z� h��
cosh

ÿjknjh� exp �iknx� :

The parameter M governs the degree of model nonlinearity.
The HOSM scheme in formulation of Ref. [193] is equivalent
to the 4-waveHamiltonian Zakharov equations for the choice
M � 3 [194]. References [195, 196] proposed HOSM mod-
ifications to describe waves on inhomogeneous bathymetry
and currents, and improved the convergence of the method as
applied to very steep waves.

Because of the limited capability of the HOSM to describe
steep waves of different lengths (see [37, 38]), Ref. [197]
proposed a new fast method to solve equations (5)±(8) with
a high accuracy in an accompanying curvilinear reference
frame, which employs an analytical solution of Laplace's
equation as the first approximation.

We mention a set of new models, all being a modification
of the Zakharov equations for the case of unidirectional
waves, so-called compact and super-compact equations
[189±200]. Their derivation is based on a new canonical
transform from bk�t� (see (16)) to variables ck�t� and a set of
simplifications based on symmetry properties of four-wave
interaction coefficient Tkk1k2k3 and its approximation on
resonance surfaces. The compact equations take a simple
form in both spectral and physical spaces and also allow
the so-called spatial formulation when the coordinate
becomes the evolution variable instead of time. It is
essential that the supercompact equation have an exact
solution in the form of a soliton-like short group of steep
waves [199]; the equation does not have a formal limitation
on the spectral width (see Section 5.5).

5.3 Stochastic numerical simulation of sea waves
A special role in the solution to the rogue wave problem is
played by direct phase-resolving numerical modeling of
irregular waves, which allows one to connect spectral
characteristics (which are the output data of the existing
prognostic sea wave model) and wave probability properties
under minimum assumptions. Most frequently, a problem
statement is used that for a wave spectrum given at the initial
time moment t � 0 the wave evolution is computed for some
time interval 0 < t < T. Subsequent statistical processing is
carried out for an ensemble of realizations of initial condi-
tions with random phases, and sometimes also with averaging
over the time period T. For not very large simulation interval
T, one commonly ignores the effects of wind forcing andwave
decay. A dominant part of stochastic numerical simulation is
carried out in the framework ofmodels listed in Section 5.2. A
set of laboratory experiments appears to be analogous, with
the difference being that, instead of an initial condition, the
wavemaker creates a boundary condition on one basin side,
and wave evolution is studied as waves propagate along the
basin.

Spectra of model forms are commonly used in computa-
tions, including the JONSWAP spectrum based on the results
of long-term measurements in the North Sea [96],

S �o� � aPg 2
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2
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s 2o 2
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Here, op is the spectral peak frequency, aP is the Phillips
parameter which governs wave intensity, and the parameter
s � 0:07 and s � 0:09 for o4op and o5op, respectively.
For the peak enhancement factor g equal to one, expression
(69) coincides in form with the classical Pierson±Moskowitz
spectrum [23]. For large values of the peakedness factor, the
spectrum becomes in effect narrower.

A fundamental difficulty in modeling large waves consists
in accounting for wave breaking [201]. Solutions of primitive
equations (5)±(8) should be single-valued functions of coordi-
nates. In conformal variables, the surface is described
parametrically and can be a multivalued function of the
horizontal coordinate, but without self-crossings. If there are
large slopes (even at a single spatial point), the Fourier series
begins to converge slowly, which leads to instability of short
waves in the framework of spectral numerical codes. Since fast
models are required for statistical modeling, the effects of
breaking are parameterized with the use of spectral filters or
the addition of artificial dissipation in the region of short
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waves [94, 197, 203]. Sometimes, to compensate for energy
losses, forcing is added [203, 204]. Another strategy consists in
computations without parameterized wave breaking up to the
moment the first wave breaks (not necessarily the highest one),
when the numerical scheme is brought to a halt because of
numerical instability [205, 206]. All the approaches listed here
have their own drawbacks and can lead to systematic errors in
the description of wave height probabilities.

In a large number of numerical and laboratory experi-
ments (e.g., [92,114, 115, 179, 207, 208]), it is demonstrated
that, if, for a fixed intensity, the spectrum of initial conditions
is sufficiently narrowband, then its fast broadening takes
place, accompanied by the growth of excess kurtosis (see
Fig. 13) and an increased probability of high waves. Unstable
states are identified well by the index of modulation
instability BFI (23). Figure 14 plots the graphs of the
dynamics of instantaneous BFI values based on computa-
tions of unidirectional waves with a Gaussian spectrum in the
framework of theNSE andDyachenko±Zakharov conformal
equations, and also on data from field measurements in a
300-m hydrodynamical basin [207, 209]. Initial conditions
from the region BFI < 1 prove to be stable and at the times
considered do not demonstrate noticeable changes in wave
statistics. For BFI > 1, the system returns to a stable state
through a characteristic time which corresponds to the
dynamical scale Tnl � oÿ10 eÿ2. During this time interval, the
probability that a very high wave may occur increases, which
is reflected in a short-term increase in the excess kurtosis of
surface displacement, as shown in Fig. 15a.

A substantial growth in surface displacement excess
kurtosis on the dynamic scale time, coming from its dynamic
part of kurtosis l dyn after a sudden wind change, is
demonstrated in the numerical modeling of the Zakharov
equations [116]. In Ref. [210], where the dynamic part of
kurtosis was retrieved from the data of direct numerical
simulation of Euler's equations, it is shown that the role of
dynamic kurtosis is important in nonequilibrium situations
with intense waves, which have a relatively narrow angular
spectrum, as is seen from Fig. 15a. In the opposite case of a
wide spectrum, the main contribution in excess kurtosis (and
the related deviation from the Gaussian statistics) is made by
bound waves (Fig. 15b). Under such conditions, statistical
moments are defined by the shape of the spectrum (phase

relationships between waves are not important), and, using
numerical methods to compute the six-dimensional integral
(21), they can be presented as parameterized realistic spectra
(such as JONSWAP) [211], which gives a practical instru-
ment for probabilistic wave description in stationary condi-
tions.

The probability distributions for wave heights computed
through numerical simulation of unidirectional waves with
the JONSWAP spectrum for g � 3 and moderate nonlinear-
ity kps � 0:035 (there is practically no breaking) in the
HOSM framework (M � 6) are given in Fig. 16. They agree
with the Rayleigh distribution in the interval of waves with
relatively small heights and demonstrate a significant differ-
ence for high waves, H>2H1=3.

It is plausible to assume that the majority of sea wave
spectra correspond to equilibrium conditions of a sufficiently
wide spectrum. In particular, in Ref. [212], based on the
modeling of the generalization of the Alber equation for a
broadband spectrum, a conclusion is drawn on the stability of
sea wave states with g4 1 for arbitrary realistic wave heights.
This circumstance could help explain the paradox that, on
averaging over large ensembles of field measurements, the
deviation in wave height probability distribution from the
Rayleigh distribution turns out to be unnoticeable [52, 213,
214]. To assess the danger of roguewaves and the feasibility of
forecasting them, one needs to explore the mechanisms
leading to the occurrence of nonequilibrium conditions on
the sea, in particular, spectra with narrow intense peaks.

5.4 Characteristic portrait of a rogue wave
Because of dispersion, which is strongest for large depths,
wave groups move more slowly than individual waves. The
largest surface displacement in groups is observed at those
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time moments when the wave peak coincides with the
maximum of the group envelope. Because of nonlinear
corrections, the height of crests is larger than the depths of
troughs. From this simple reasoning, it follows that rogue
waves should be expected in the form of very high crests
surrounded by lower amplitude waves. Computed configura-
tions of wave trains containing anomalous waves can be
obtained in the framework of linear theory (the so-called
NewWave theory) or its weakly nonlinear generalization (see
Refs [65, 215, 216]) or by direct numerical simulation of
hydrodynamical equations [90, 94, 217±225].

Indeed, for extreme waves characterized by higher sharp
crests, such profiles are dominant among computed waves
with AI > 2. Waves of large amplitude that evolve as the
result ofmodulation instability acquiremuch higher energy in
the process of focusing than their neighboring waves; with the
growth in wave steepness, the concentration of wave energy
increases even more [218, 220]. These waves are close in shape
to the examples of field measurements in Figs 1 and 5.
However, waves of other forms, given in Figs 3 and 4, form
too [219]. Based on the result of numerical simulation, it was
pointed out that the dominant part of rogue waves has a
steeper rear slope (the trough behind the wave is deeper than
ahead) [94, 219, 224, 225] (Fig. 17), which agrees with field
measurements in Ref. [58]. Such an asymmetry is manifested
only under conditions of intense waves and becomes stronger
with the broadening of the angular spectrum [225], which
does not conform with the mechanism of modulation
instability and still calls for an explanation.

Scanties is the view on the volume portrait which is
obtained in three-dimensional numerical simulations [94,

333]. References [217, 226] mention that anomalously high
waves typically appear at zigzag-type patterns of surface
waves which propagate at the optimum angle to the wave
fronts. A more diverse picture of rogue waves in wave fields
with a broadband spectrum was observed in Ref. [227].

Eyewitnesses usually mention the transience of rogue
wave events, which can also be a consequence of large wave
propagation speeds (during one period, 10-second waves
cover about 80 m on deep water). By following the evolution
of an intense wave in numerical experiments, characteristic
`lifetimes' of rogue waves were estimated. On the whole,
larger wave amplification is observed in lengthier events, as
shown in Fig. 18; the unexpectedly large duration of extreme
events can be pointed out. References [225, 227, 228]
construct probability distributions for the time span of
rogue waves. If the width of the angular spectrum is not too
large, waves in the intense wave background may exceed the
thresholdAI � 2 during several ten periods. Roguewaves live
substantially less time in conditions of a wide angular
spectrum and weak nonlinearity, even in comparison with a
linear solution.

100

E
xc
ee
d
an

ce
p
ro
b
ab

il
it
y

10ÿ1

10ÿ2

10ÿ3

10ÿ4

10ÿ5

10ÿ6

10ÿ7

10ÿ8
0 2 4 6 8

�H=H1=3�2

Rayleigh distribution

Standard
deviation

Standard
deviation

Standard
deviation

100 realizations

300 realizations

999 realizations

Figure 16. Height probability distribution for unidirectional waves based

on numerical modeling results (JONSWAP spectrum), Tp � 10 s,

Hs � 3:5 m, g � 3) in comparison with the Rayleigh distribution (2).

Three lines correspond to ensembles of 100, 300, and 999 random

realizations; color shading is an estimate of significance range [250].

43%

42%

8%

7%

a

34%

61%

2% 3%

b

Figure 17. Characteristic distribution of wave forms with AI > 2 via data

from direct numerical simulation of irregular waves with moderate (a) and

strong (b) nonlinearity [225]. Arrow shows the wave propagation direct-

ion.

February 2023 Rogue waves in the sea: observations, physics, and mathematics 167



5.5 Strongly nonlinear solitons
and breathers on the water surface
Soliton-like wave groups with a steepness approaching the
breaking threshold were discovered in Ref. [229] in the
framework of a numerical solution of hydrodynamical
equations on deep water in conformal variables. Because of
strong shape variability (the group contained a couple of
waves propagating twice as fast as the group proper), such
solutions are sometimes referred to as breathers. Reference
[230] showed that such groups are satisfactorily described in
the framework of the weakly nonlinear theory of modulated
waves (64) for values of steepness up to k0jAj � 0:2, where jAj
is the maximum amplitude and k0 is the characteristic wave
number.

The discovered `limiting' envelope solitons were repro-
duced in laboratory experiments [231, 232], and it has been
shown that a soliton solution of the standard NSE (36) can be
used for their generation. Instrumental records of the most
intense and shortest laboratory envelope soliton are displayed
in Fig. 19a (time sequences). The respective instantaneous
profiles are plotted in Fig. 19b from the results of direct
numerical computations. The steepness of the envelope
soliton in Fig. 19 is estimated as k0jAj � 0:3 by maximum
surface displacement or as k0H=2 � 0:25 by wave height.
Thus, structurally stable solitary nonlinear trains of collinear
waves on a deep water surface exist in practically the entire
range of wave steepnessÐup to reaching the local breaking
threshold. In laboratory experiments [232], it is shown that
intense soliton groups can interact in almost an elastic way,
similar to envelope solitons of the integrable NSE. Propaga-
tion and numerous interactions of intense envelope solitons in
numerical simulations based on compact and full equations
were also explored and compared with the results of
integrable theory in Refs [199, 233±235].

The NSE breathers, proposed as prototypes of rogue
waves, including solutions of a higher order, were modeled
in the framework of full hydrodynamical equations and in
laboratory conditions [236±241] (see also Section 4). As a
general conclusion, one can say that weakly nonlinear
breather solutions of the NSE are reproduced with satisfac-
tory accuracy at certain finite time intervals and demonstrate
the emergence of a large-amplitude wave `out of nowhere'
with subsequent (incomplete) demodulation. When several

unstable modes compete, the wave evolution at large times
can strongly differ from the analytical solution. The forms of
rogue waves which correspond to maximum amplification of
modulationally unstable wave packets up to the threshold of
breaking were explored in Ref. [240]. The emerging extreme
waves turned out to be very similar in shape for various seed
conditions [239], with narrower crests than in uniform Stokes
waves (Fig. 20).

Wave groups in fields of random waves, similar to
envelope solitons and Peregrine breathers, and their link to
extreme events have been mentioned in many publications
(see, for example, Refs [238, 242±249]). Recent paper [250]
performed an analysis of the evolution of irregular waves
through numerical simulations of Euler's equations, where
the formation of a long-lived group of soliton-like intense
waves was observed. Despite the strong nonlinearity of the
solution and a broadband wave spectrum, the parameters of
the soliton (speed and amplitude) varied weakly during more
than 200 periods. The majority of high-amplitude waves
appeared on its background.
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5.6 Reconstruction of sea rogue waves
Direct numerical simulations is used to reconstruct anom-
alously high waves based on displacement measurement data
at a point and also to reproduce the state of the sea when such
waves were observed. In the first case, the problem consists in
finding hydrodynamical fields near the observation place.
Given a temporal series of surface displacement Z�x � x0; t�,
one can recover the surface potential F�x0; t� under the
assumption of unidirectional waves in the framework of
approximate nonlinear dispersive models. To compute the
wave evolution along, x > x0, and against, x < x0, the spatial
versions of asymptotic equations are used [184, 251]. The
fidelity of the resulting reconstruction of instrumentally
measured sea rogue waves was confirmed in Ref. [184]
through juxtaposition with the results obtained by integra-
tion of full hydrodynamical equations.

The fundamental importance of taking into account
three-dimensional dynamics in the formation of the New
Year Wave (see Fig. 1) was asserted in Ref. [252] on the basis
of mean upward displacement of the group containing the
New Year Wave, which is not typical of the NSE theory. A
qualitative difference in time records of extreme waves which
arise in collisions of co- and oppositely moving envelope
solitons was mentioned in Ref. [232]. Thus, using the results
of nonlinear theory, the dynamics of anomalous waves can be
recovered based on indirect evidence.

Reconstructions of measured rogue waves were also
carried out in laboratory tanks with the use of weakly
nonlinear theory to compute the boundary condition of a
wavemaker, with subsequent refinement in an iterative
procedure. For example, the New Year Wave was re-created
in the field of unidirectional waves [253] and under the
assumption of a bi-modal characterÐas the result of waves
propagating at an angle to each other [254].

In the framework of the second direction, dangerous sea
states were reconstructed by direct numerical simulations of
hydrodynamical equations with initial conditions in the form
of irregular waves with a given frequency-angular spectrum
[213, 255±259]. Wave spectra used to specify the initial
conditions were determined from reanalysis results for
respective basins and time intervals. In numerical experi-
ments, waves with large amplitudes were created which, as
concluded by the authors, were in relatively good agreement
with profiles of measured waves.

6. Conclusions

The question of the nature of anomalously high waves seen in
sea wave field records has motivated studies of a much wider
range of problems over the last 20 years. Rogue waves have
appeared in optics and mathematics, while the problem itself
is often treated more broadly as extreme events in the fields of
nonlinear waves of a different nature.

Several hundred million instrumentally measured waves
are available, including thousands rogue waves; absolute
heights of sea waves can reach 30 m. Statistical processing
of field measurements has led to contradictory results.
Apart from technical questions (a significant number of
measured rogue waves have been rejected through formal
quality control), the field data processing results can be
doubted due to a number of factors: inhomogeneity of
data, sampling variability, relatively small size of data
arrays, etc. The recording of the instantaneous sea sur-
face, in contrast to classical oceanographic measurements

at a single point, offers much richer information, but
requires new approaches.

As a result of the studies carried out, the mechanisms of
anomalous wave generation have been identified and new
physical-mathematical models have been proposed that
account for them. A set of basic solutions of integrable
equations describing the interaction of soliton structures
and the nonlinear stage of modulation wave instability has
been constructed and studied. Soliton and breather solutions
of the NSE are proposed as standard waveforms for sea-
keeping tests [260±262].

The understanding of the role of nonlinear self-modula-
tion processes in stochastic sea wave fields and the importance
of accounting for high-order nonlinearity in statistical models
have been revisited, and new controlling parameters char-
acterizing the behavior of wave systems have been proposed.
In laboratory experiments carried out in hydrodynamical
tanks, high-precision equipment has been used which allowed
reproducing nonlinear analytical solutions and carrying out
wave modeling at large distances. The elaborated fast
hydrodynamical models facilitated the accumulation of a
large volume of realistic sea wave computations.

Despite the obtained results of a fundamental and applied
nature, moving beyond oceanography on a cross-disciplinary
level, the problem of sea rogue waves cannot be considered
solved. In particular, the significance of the mechanism of
wave self-modulation which operates within the framework
of physical modeling remains unproven for realistic condi-
tions, and some publications argue that rogue waves can be
explained without modulation instability [213]. Twenty years
ago, the Norwegians S Haver and O Andersen posed the
question whether rogue waves are rare events caused by usual
physical mechanisms or are typical manifestations of rarely
realizable mechanisms [263]. Based on the data presented in
this review, the answer with respect to sea waves is more likely
to be the latter. It can explain the disagreement between the
conclusions from theoretical modeling, including laboratory
experiments, and data from statistical analyses of long-term
measurements. The statistical contribution from a rare class
of events that correspond to `anomalous' sea states with a
high probability of very high waves might not be very large.
Nevertheless, the ability to predict such conditions would be
of great practical use.

Several approaches can be proposed for predicting the
occurrence of anomalously high waves. With the advent of
fast codes for the integration of full and approximate
hydrodynamical equations and the increase in the power of
computing facilities, real-time forecasting is becoming a
reality. The technical realization of simulations of wave
evolution for the following few minutes based on radar
information on the wave state within a radius of several
kilometers seems to be indeed possible [264±266]. Taking into
account the relatively narrow horizons of prognostic model-
ing, crude but fast models can be used, including equations
for the envelope and linear equations [267]. The fundamental
reliazability of deterministic forecasting follows from the
good agreement between the evolution of nonlinear waves in
laboratory tanks and the results of computer modeling for
times up to 101ÿ102 wave periods. An estimate of the
theoretical limit for deterministic forecasting is about 103

wave periods for characteristic sea conditions [268]; forecast-
ing for longer times is only possible in a probabilistic sense.

Another group of approaches is based on numerical
indices used to estimate the probability of the occurrence of
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extreme waves. For integration with the existing models of
operational forecasting, the indicators of hazardous wave
states should be computed from spectral data (the BFI and its
variants). BFI fields are already being computed at the
European Centre for Medium-Range Weather Forecasts
(ECMWF); they have been analyzed in Ref. [269]. For
nonequilibrium conditions (including the threshold of mod-
ulation instability), the link between spectral and statistical
characteristics is nonlocal in time, which has not been
accounted for so far. Another major difficulty is the short
temporal scale of dangerous wave events (the dynamic scale
Tnl � oÿ1p eÿ2, which is tens of minutes or less) and respec-
tively the shorter prediction interval compared to a classical
prediction based on kinetic models (several hours or more).

Approaches based on the estimation of wave group
properties can be classified as the intermediate, third type of
prediction. References [270, 271] proposed and then tested on
laboratory data an algorithm to determine the trend of the
wave group dynamics through the approximation by the sech
profile (which coincides with the shape of envelope solitons of
the NSE). A more rigorous and accurate, but also more
complicated, way of predicting the wave group dynamics is
based on the application of the inverse scattering transform
under the assumption that the wave dynamics are approxi-
mated by an integrable model. Loosely speaking, in this case,
a dynamical analog of the BFI is computed at the scales of
individual groups. Several variations of this approach have
been proposed by different authors for deep water conditions
(for the most recent work, see Refs [245, 246, 250, 272, 273]).
Soliton analysis of wave fields on shallow water has also been
carried out in Ref. [274]. The theoretical description of the
probabilistic properties of irregular nonlinear waves based on
the data of the spectrum of the associated scattering problem
is yet another attractive goal, towardwhich only the first steps
have been made [102, 106].

There are isolated examples of neural networks being used
to predict the occurrence of dangerous waves on coasts, but
thus far they are not very convincing in our opinion.
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assignment (topic no. 0030-2021-007) and RFBR grant
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