General relativity effects in precision spin experimental tests of fundamental symmetries

S N Vergeles, N N Nikolaev, Yu N Obukhov, A Ya Silenko, O V Teryaev
DOI: https://doi.org/10.3367/UFNe.2021.09.039074

Contents

1. Introduction 110
2. $C P$ violation and electric dipole moments in the Standard Model 112
2.1 Kobayashi-Maskawa mechanism; 2.2 CP violation in quantum chromodynamics; 2.3 Beyond the StandardModel: extension of the Higgs sector and supersymmetry; 2.4 Millistrong $\boldsymbol{C P}$ violation beyond the Standard Model
3. Baryon asymmetry of the Universe117
4. Relativistic spinning particle in external fields 119
4.1 Classical theory of spin; 4.2 Interlude: gravity and inertia in particle physics; 4.3 Spin in gravitational andelectromagnetic fields5. Quantum Dirac fermion dynamics in external classical fields122
5.1 Generally covariant Dirac equation; 5.2 Foldy-Wouthuysen representation; 5.3 Quantum spin dynamics vs classical theory of spin; 5.4 Gravitoelectromagnetism and precession of spin in a gravitational field
5. Gravitational corrections to spin dynamics in storage rings 127
6.1 Spin in a cyclotron: flat space; 6.2 Gravitational corrections to cyclotron and Larmor rotation; 6.3 Gravitationalshift of a beam orbit in a storage ring; 6.4 Electric focusing effect on spin precession
6. Gravity and the search for the EDM of protons with frozen spin129
7.1 Electric bending and electric focusing: $G>0 ; 7.2$ Electrostatic bending and magnetic focusing: $G>0 ; 7.3$ Frozenspin for hybrid bending; 7.4 Main results of JEDI collaboration and proton EDM in PTR electric storage ring
7. Spin as an antenna for axion-like particles in the Universe132
8.1 Axions beyond QCD; 8.2 Detecting axions in flat spacetime; 8.3 Search for axions in storage ring experiments;
8.4 Axion effects in the dynamics of spin in a gravitational field
8. Geometric magnetic field in an electrostatic laboratory on a rotating Earth 136
9.1 Magnetic and electric fields in a noninertial laboratory; 9.2 Geometric magnetic field and experimental searchesfor the EDM
9. Gravitational quantum anomalies and dynamics of dense hadron matter 139
10. Conclusions 141
References 142

Abstract. A search for the P - and $C P(T)$-violating electric dipole moments (EDM) of atoms, particles, and nuclei with sensitivity up to 10^{-15} in units of the magnetic dipole moments, allowed by all discrete symmetries, is one of the topical problems of modern physics. According to Sakharov, CP viola-
tion is one of the three key criteria of the baryogenesis in the generally accepted paradigm of the Big Bang cosmology. All three criteria are supported by the Standard Model, but it fails to describe quantitatively the observed baryon asymmetry of the Universe. This is regarded as a strong argument in favor of the

[^0][^1]Received 12 July 2021, revised 22 September 2021
Uspekhi Fizicheskikh Nauk 193 (2) 113-154 (2023)
Translated by N N Nikolaev
existence of CP-symmetry breaking mechanisms beyond the minimal Standard Model, which can lead to measurable EDMs of atoms, particles, and nuclei. Searches for the EDM via the spin rotation in electric fields are currently underway in dozens of laboratories worldwide. Direct searches for the EDM of charged particles and nuclei are possible only in storage rings (COSY, NICA). After successful studies by the JEDI collaboration at the COSY synchrotron, at the forefront in the field is the search for the proton EDM in an electrostatic storage ring with the proton spin frozen at the magic energy with the projected sensitivity $d_{\mathrm{p}} \sim 10^{-29} e \mathrm{~cm}$. A prototype PTR storage ring is proposed as a precursor to such a dedicated storage ring, with the prospect of the frozen proton spin ring becoming a part of the physics at CERN beyond the Large Hadron Collider program. Following a brief introduction to $\boldsymbol{C P}$-violation physics and baryogenesis, the review presents a detailed discussion of significant contributions to the spin dynamics from terrestrial gravity along with new effects of Earth's rotation in ultrasensitive searches for the EDM of charged particles and neutrons. Quite remarkably, for the projected sensitivity to the proton EDM, these false EDM effects can exceed the signal of the proton EDM by one to two orders of magnitude and become comparable to the EDM contribution in experiments with ultracold neutrons. We also discuss the role of a precessing spin as a detector of axion-like dark matter, and consider applications of quantum gravitational anomalies to dense matter hydrodynamics and spin phenomena in noncentral nuclear collisions.

Keywords: $C P$ violation, spin, electromagnetic fields, gravitational fields, anomalous magnetic moment, electric dipole moment, Dirac fermions, axions, heavy ion collisions, gravitational anomalies

1. Introduction

Gravitational interaction is the weakest one of those discovered in the microworld and macroworld. Its role in high-energy processes is negligible at the available energies. The scale of energies at which gravity becomes significant is determined by the Planck mass,

$$
\begin{equation*}
M_{\mathrm{P}}=\sqrt{\frac{\hbar c}{G_{\mathrm{N}}}}=1.22 \times 10^{19} \mathrm{GeV} / c^{2} \tag{1.1}
\end{equation*}
$$

where G_{N} is Newton's constant, and c is the speed of light. It is all the more interesting that gravitational effects turn out to be quite appreciable in precision experiments, and the discussion of this new aspect of particle physics will be the main subject of this review.

First of all, we have in mind the search for new mechanisms of violation of combined $C P$ parity proposed by Landau in 1956 [1] (hereinafter, P means spatial inversion, C is the charge conjugation operation, i.e., the transition from particles to antiparticles, T is the time reversal operation). As pointed out by Ioffe, Okun, and Rudik, by virtue of the $C P T$ theorem, $C P$ noninvariance implies simultaneous violation of the T invariance in particle physics [2]. $C P$ violation was discovered experimentally in 1964 in decays of neutral K mesons [3].

In the modern minimal Standard Model (SM) of electroweak interactions, the entire set of the available experimental data on $C P$ violation in particle decays can be described in terms of one parameter, the nonzero irremovable phase of the unitary 3×3 Cabibbo-Kobayashi-Maskawa (CKM) matrix
of quark mixing in weak currents $[4,5]$. Corroborating the theoretical predictions [6-8], the decays of particles with beautiful b-quarks turned out to be especially rich in detectable $C P$ violation (see reviews $[9,10]$ and the recent result of the LHCb collaboration (Large Hadron Collider beauty experiment) [11]).

Despite the success of the Kobayashi-Maskawa (KM) mechanism, the search for deviations from the SM in the description of $C P$ nonconservation remains one of the most topical problems. The point is that the SM utterly fails to explain one fundamental observable: the density n_{B} of the observed baryon matter in the Universe. When normalized to the cosmic microwave background radiation density, it is equal to [12]

$$
\begin{equation*}
\eta_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{n_{\gamma}}=(6.12 \pm 0.04) \times 10^{-10} . \tag{1.2}
\end{equation*}
$$

The interaction of cosmic protons and high-energy nuclei in the interstellar medium and in Earth's atmosphere explains the observed antiproton fluxes [13, 14], and there are convincing arguments against the existence of galactic antimatter clusters in the observable Universe [15]. In the framework of the modern Big Bang theory, the baryon density (1.2) satisfactorily explains the data on the nucleosynthesis of light nuclei during the first minutes of the expansion of the Universe, although one still needs to refine the cross sections for a number of reactions [16, 17].

The main open issue concerns baryogenesis proper in the Big Bang paradigm with the zero initial baryon charge of the Universe. The issues of the burnup of matter in the Universe and the freeze-out of the residual density of particles with conserved charges using the example of quarks as stable particles were first raised by Zeldovich, Okun, and Pikelner in article [18], written well before the discovery of the cosmic microwave background radiation. In 1966, A D Sakharov made the first attempt in the literature to explain baryogenesis in terms of particle physics. He formulated three fundamental conditions for baryogenesis [19]: (i) violation of the baryon charge conservation (while maintaining the difference between the baryon and lepton charges); (ii) violation of the C and $C P$ invariance; (iii) absence of thermal equilibrium at the stage of processes with the nonconservation of baryon charge and $C P$ parity. One should add to this the survival condition for the initial baryon asymmetry at the stage of the equilibrium expansion of the Universe. Sakharov also raised the question of the possible decay of protons. As we will discuss below, the KM mechanism in the SM is unable by itself to explain the baryon asymmetry of the Universe. In the framework of the minimal SM, baryogenesis is possible due to phase transitions in the Higgs sector and the topological nonconservation of the baryon charge during the expansion of the Universe [20, 21].

There is still no generally accepted explanation for the observed baryogenesis. The main conclusion is that mechanisms of $C P$ nonconservation beyond the KM phase in the SM should exist, and experimental searches are in order for more $C P$-odd effects, which may prove to be appreciably larger than those expected in the SM. An example of such a $C P$-odd observable is the permanent electric dipole moment (EDM) of particles with spin. As noted by Landau, it is possible only if the $C P$ invariance is violated [1]. The observed EDM signal is spin rotation in an electric field. Allowed by all discrete symmetries, the magnetic moment of nucleons μ is of the order of the
nuclear magneton, $\mu_{\mathrm{N}}=e \hbar /\left(2 m_{\mathrm{N}}\right) \approx 10^{-14} e c \mathrm{~cm}$ (we use the SI unit system). Inherent in the KM mechanism is a change in the flavor of quarks in $C P$-odd transitions. Therefore, a flavor-diagonal nucleon EDM appears only to the second order in the weak interaction, and dimensional estimates give [22-24]

$$
\begin{equation*}
d_{\mathrm{N}}^{\mathrm{SM}}=\eta_{\mathrm{N}}^{\mathrm{EDM}} \frac{\mu_{\mathrm{N}}}{c} \sim 10^{-7} \times 10^{-10} \frac{\mu_{\mathrm{N}}}{c} \sim 10^{-31} e \mathrm{~cm} \tag{1.3}
\end{equation*}
$$

Here, the factor 10^{-7} is the characteristic scale of the amplitudes of $C P$-even flavor-changing transitions, and, similarly, 10^{-10} is the scale for the amplitudes of $C P$-odd decays of neutral K-mesons. A more detailed analysis of the neutron EDM in the KM model by Shabalin gave $d_{\mathrm{N}}^{\mathrm{SM}} \sim 10^{-32} e \mathrm{~cm}[25,26]$. In many models, the EDM of nucleons is possible already in the first order in the $C P$-odd weak interaction, and it can be of the order of [22, 24, 27]

$$
\begin{equation*}
d_{\mathrm{N}} \sim 10^{-10} \frac{\mu_{\mathrm{N}}}{c} \sim 10^{-24} e \mathrm{~cm} \tag{1.4}
\end{equation*}
$$

Experimental searches for the EDM are extremely diverse and range from neutrons to neutral diamagnetic and paramagnetic atoms and molecules, to molecular ions and charged particles (protons, deuterons, helions...). In the hadronic sector, the highest sensitivity was achieved in direct searches for the neutron EDM, $\left|d_{\mathrm{n}}\right|<1.8 \times 10^{-26} e \mathrm{~cm}$ [28]. This limit is already a record in high-energy physics in terms of the number of excluded $C P$-nonconservation models [27, 29]. An increase in sensitivity by one or two orders of magnitude to $\eta_{\mathrm{n}}^{\mathrm{EDM}} \sim 10^{-14}[30,31]$ is being actively discussed. In principle, the possibility of $d_{\mathrm{p}}>d_{\mathrm{n}}$ is not ruled out, so the search for the proton EDM in dedicated electrostatic storage rings is on the agenda with an even higher projected sensitivity up to

$$
\begin{equation*}
d_{\mathrm{p}} \sim 10^{-29} e \mathrm{~cm} \tag{1.5}
\end{equation*}
$$

i.e., the relative sensitivity $\eta_{\mathrm{p}}^{\mathrm{EDM}} \sim 10^{-15}$ [32-35].

Such an ambitious sensitivity to the EDM of a single particle has already been achieved in experiments with diamagnetic mercury atoms: $\left|d_{\mathrm{Hg}}\right|<7.4 \times 10^{-30} e \mathrm{~cm}$ [36]. Assuming that the EDM of the atom is entirely due to the EDM of the nucleus, and making use of the formalism in [37] to evaluate the EDM of nucleons from the EDM of nuclei, the authors interpret their result as an indirect restriction on the EDM of the neutron, $\left|d_{\mathrm{n}}\right|<1.6 \times 10^{-26} e \mathrm{~cm}$. The same result for the ${ }^{199} \mathrm{Hg}$ nucleus with a new calculation of Schiff's nuclear moments gives $\left|d_{\mathrm{n}}\right|<1 \times 10^{-26} e \mathrm{~cm}$ [38]. In the case of molecules, strong intramolecular electric fields [39, 40] play an important role. A search for the EDM of a paramagnetic thorium monoxide ThO molecule gave the result $d_{\text {ThO }}=\left(4.3 \pm 3.1_{\text {stat }} \pm 2.6_{\text {syst }}\right) \times 10^{-30} e \mathrm{~cm}$ [41]. If the EDM of the molecule were completely determined by the EDM of the electron, then this result would have entailed the upper bound $\left|d_{\mathrm{e}}\right|<1.1 \times 10^{-29} \mathrm{ecm}$. When compared to the Bohr magneton following Eqn (1.3), this corresponds to the remarkably small $\eta_{\mathrm{e}}^{\text {EDM }}<5.7 \times 10^{-19}$. Of special interest is the experiment with ${ }^{180} \mathrm{Hf}^{19} \mathrm{~F}^{+}$ions, confined in a radiofrequency (RF) electric Paul trap, with the result $d_{\mathrm{e}}=$ $\left(0.9 \pm 7.7_{\text {stat }} \pm 1.7_{\text {syst }}\right) \times 10^{-29} e \mathrm{~cm}$ [42].

This trap technique [42] is not applicable to charged particles ($\mathrm{p}, \mathrm{d},{ }^{3} \mathrm{He}$) though. Here, EDM searches are possible only in storage rings, where the EDM interacts with either the electric field in the comoving system in the orbit of magnetic storage rings or electric fields which are parts of
the confinement of particles in the orbit. The search for the proton EDM with the declared sensitivity (1.5) requires control of systematic background effects at the same level. The only accelerator in the world at which precision experiments on the spin dynamics are possible today is COSY (COoler SYnchrotron) at the Institute of Nuclear Physics in Jülich (now part of GSI, Darmstadt). After the completion of the MPD (Multi Purpose Detector) program of studies of superdense baryon matter in heavy ion collisions and the subsequent launch of the SPD (Spin Physics Detector) program, the leadership will be taken over by NICA (Nuclotron based Ion Collider fAcility) at JINR (Joint Institute for Nuclear Research, Dubna) with beams of polarized protons and deuterons [43-46].

The results with record-breaking accuracy obtained at COSY by the JEDI (Jülich Electric Dipole moment Investigations) collaboration motivated a proposal involving the PTR (Prototype Test Ring) storage ring by the CPEDM (Charged Particle Electric Dipole Moments) collaboration with the participation of the European Organization for Nuclear Research (CERN) [33]. The PTR will be the first ever storage ring with an electric bending of protons with the kinetic energy of 30 MeV . It will primarily be used for the study of systematic effects in the spin dynamics for this new class of accelerators. In particular, PTR will enable the first test of the operation of such storage rings with concurrent clockwise (CW) and counterclockwise (CCW) beams rotating in the same orbit. Experiments with the PTR can be sensitive to the proton EDM down to $d_{\mathrm{p}} \sim 10^{-24} e \mathrm{~cm}$ [33]. In addition, the PTR is designed to operate at an energy of 45 MeV with hybrid electric and magnetic bending, with the first implementation of the frozen spin mode. The PTR storage ring is important as a prologue to the construction of a dedicated purely electrostatic proton storage ring with the spin frozen at the kinetic energy of 233 MeV to search for the proton EDM with a sensitivity (1.5) in the framework of the postLHC (Large Hadron Collider) program of physics beyond the Standard Model at CERN. Document [33] is published by CERN as a monograph in the CERN Yellow Reports: Monographs series.

Terrestrial laboratories are located in the gravitational field of the rotating Earth. For protons with $\eta_{\mathrm{p}}^{\mathrm{EDM}} \sim 10^{-15}$, the EDM-induced spin angular velocity in the frozen spin electrostatic storage ring would be [33]

$$
\begin{equation*}
\Omega_{\mathrm{s}} \sim 10^{-9} \mathrm{rad} \mathrm{~s}^{-1} \tag{1.6}
\end{equation*}
$$

Let us cite the typical gravitational parameters for laboratories on Earth with radius $R_{\oplus}=6.378 \times 10^{8} \mathrm{~cm}$, rotating with angular velocity $\omega_{\oplus}=7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$:

- relative gravitational radius of Earth is

$$
\begin{equation*}
\eta_{\mathrm{g}}=\frac{r_{\mathrm{g}}}{R_{\oplus}}=\frac{2 G_{\mathrm{N}} M_{\oplus}}{R_{\oplus} c^{2}}=1.39 \times 10^{-9} \tag{1.7}
\end{equation*}
$$

- equatorial velocity of Earth's rotation in units of the speed of light is

$$
\begin{equation*}
\eta_{\oplus}=\frac{\omega_{\oplus} R_{\oplus}}{c}=1.55 \times 10^{-6} \tag{1.8}
\end{equation*}
$$

—in a proton storage ring with radius $\rho \sim 80 \mathrm{~m}$, the velocity in the orbit of the ring $\omega_{\oplus} \rho$ due to the rotation of Earth is of the order of

$$
\begin{equation*}
\eta_{\omega}=\frac{\omega_{\oplus} \rho}{c} \sim 2 \times 10^{-11} \tag{1.9}
\end{equation*}
$$

These small parameters are by no means negligible compared to the relative value $\eta_{\mathrm{p}}^{\text {EDM }} \sim 10^{-15}$ that we are interested in.

The influence of gravity on spin precession can be divided into direct and indirect effects. The direct effect is the geodetic precession of a classical gyroscope predicted by de Sitter in 1916 [47]. A century after de Sitter, the authors of this review were the first to point out the indirect gravitational effect of immediate importance for spin experiments with charged particles in storage rings [48]. Namely, one needs focusing electromagnetic fields to compensate for the gravitational attraction of Earth in order to keep particles in a closed orbit. Remarkably, the contribution of these focusing fields to the spin precession proves to be comparable in magnitude to the de Sitter precession [49]. In planned all electric frozen spin proton rings, coupling of the proton magnetic moment to focusing fields produces a spin precession corresponding to a false EDM signal with $\eta_{\text {fake }}^{\mathrm{EDM}} \sim 2 \times 10^{-14}$, significantly exceeding the projected sensitivity $\eta_{\mathrm{p}}^{\mathrm{EDM}} \sim 10^{-15}$ [33, 50, 51]. Remarkably, once the $C P$-odd EDM signal is separated from the $C P$-even contribution from gravity, the latter would become a unique calibrating signal to identify systematic effects in the search for the EDM.

The search for the $C P$-forbidden spin precession in an electric field with a sensitivity to $\eta_{\mathrm{p}}^{\mathrm{EDM}} \sim 10^{-15}$ requires a corresponding suppression of the spin precession in the background magnetic fields. From the point of view of an observer from distant stars, the static electric charges in the terrestrial laboratory rotate together with Earth, creating currents and magnetic fields. Would a purely electrostatic laboratory be free from these magnetic fields for an observer resting in a terrestrial laboratory? According to [52, 53], such a geometric magnetic field proportional to the angular velocity of Earth's rotation and electric field in the laboratory is possible. A peculiar feature of this magnetic field is a reversal of its sign upon inversion of the electric field, so that the coupling of the magnetic moment with the geometric magnetic field imitates the interaction of the EDM with the electric field. In the approach to the search for the EDM of ultracold neutrons [23] (see also [54]) proposed in 1968 by F L Shapiro, a false EDM signal can become significant at $d_{\mathrm{n}} \sim 10^{-27} e \mathrm{~cm}$ [53], i.e., already in the next generation of experiments on the neutron EDM [31]. These two examples thus raise the role of gravity in particle physics from the realm of purely academic discussions to the category of effects essential in laboratory experiments.

A novel development in the subject is the use of spin precession as a highly sensitive resonance detector of cosmic axion-like particles [55-58]. Axions, like pseudo-Goldstone particles, and axion-like ultralight particles are widely discussed as a plausible candidate for dark matter (the search for weakly interacting massive dark matter particles is analyzed in recent review [59]). The galactic field of the axion-like particles induces an oscillating EDM of atoms, molecules, and particles and simultaneously gives rise to an oscillating pseudomagnetic field. The observed signal of axions will be an NMR-like (NMR - nuclear magnetic resonance) rotation of the spin, provided the axion field oscillations are in resonance with the spin idle precession [58, 60, 61]. We will also discuss new interesting ideas on applications of the formalism of gravitational quantum anomalies to the hydrodynamics of dense matter formed in noncentral collisions of ultrarelativistic nuclei. Of particular interest here are the consequences for the polarization of the
produced particles, which can be studied at the NICA collider.

The further presentation is organized as follows. The review begins with two introductory sections devoted to an overview in Section 2 of the physics of $C P$ nonconservation and consequences for the EDM of particles, and a discussion of baryogenesis in Section 3. The principal conclusion from these necessarily brief sections is the incompleteness of the Standard Model and high relevance of high-precision searches for new mechanisms of $C P$ violation in spin experiments.

We turn to the main topic of the review in Section 4 on the dynamics of classical spinning particles in external fields. Section 5 is devoted to quantum spin dynamics based on the Foldy-Wouthuysen representation in external fields. In Section 6, we discuss the derivation of gravitational corrections to the spin dynamics in cyclic accelerators. The role of gravitational corrections in the search for the EDM of charged particles in the practically interesting frozen spin mode is considered in Section 7. Here, a brief review of the achievements of the JEDI collaboration in spin dynamics at the COSY synchrotron is presented, and the physics program of the planned PTR electrostatic storage ring is reviewed. The PTR in its hybrid magnetic and electric option will provide the first ever implementation of the frozen proton spin regime. In Section 8, we focus on the use of the spin of particles in a storage ring as a detector of cosmic axion-like dark matter with an eye on experiments at NICA and PTR. The geometric magnetic field in electrostatic systems on the rotating Earth and its role in high-precision searches for the EDM of neutrons and charged particles are considered in Section 9. Finally, Section 10 is devoted to applications of the formalism of gravitational quantum anomalies to the description of the hydrodynamic evolution of dense matter in ultrarelativistic heavy ion collisions. The concluding Section 11 summarizes the main results.

2. $C P$ violation and electric dipole moments in the Standard Model

Our presentation in this section will focus on the EDM of particles (electrons, nucleons, deuterons). The discussion of the subtleties of interpreting the data on the EDM of atoms and molecules in terms of the EDM of atomic electrons and nuclei, with an account of Schiff's shielding [62], and, in turn, the interpretation of the EDM of heavy nuclei in terms of the EDM of constituent nucleons, will be necessarily brief. To this end, we refer readers to specialized review [27] and selected recent work [38, 63-65] with an extensive bibliography on the subject.

2.1 Kobayashi-Maskawa mechanism

The standard electroweak model is constructed as a gauge theory with the $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$ symmetry, with three doublets of left leptons and three doublets of left quarks $(\mathrm{u}, \mathrm{d})_{\mathrm{L}},(\mathrm{c}, \mathrm{s})_{\mathrm{L}},(\mathrm{t}, \mathrm{b})_{\mathrm{L}}$ (at this level, the quantum chromodynamic color symmetry of quarks is insignificant), with a doublet of complex scalar fields Φ and with right quarks and leptons in singlet representation. ${ }^{1}$ After spontaneous symmetry breaking, the vacuum expectation value of the scalar field $\langle 0| \Phi|0\rangle=246 \mathrm{GeV}$ appears, leaving the massive scalar Higgs

[^2]particle H , the three vector mesons $\mathrm{W}^{+}, \mathrm{W}^{-}$, and Z^{0} acquire masses, and the photon with electromagnetic gauge symmetry remains massless. The interaction $\propto\left\{\bar{\Psi}_{\mathrm{L}} \Phi \Psi_{\mathrm{R}}+\right.$ h.c. $\}$ of initially massless quarks with a doublet of scalar bosons makes the quarks massive due to the vacuum expectation value $\langle 0| \Phi|0\rangle[66,67]$.

Grouping the quarks into the triplets $U_{\mathrm{L}}=(\mathrm{u}, \mathrm{c}, \mathrm{t})_{\mathrm{L}}$ and $D_{\mathrm{L}}=(\mathrm{d}, \mathrm{s}, \mathrm{b})_{\mathrm{L}}$, the weak interaction with the charged currents can be written as

$$
\begin{equation*}
L_{\mathrm{w}}=\frac{1}{\sqrt{2}} g_{\mathrm{W}} W_{\mu}^{+} \bar{U}_{\mathrm{L}} V_{\mathrm{CKM}} \gamma^{\mu} D_{\mathrm{L}}+\text { h.c. } \tag{2.1}
\end{equation*}
$$

where g_{W} is a coupling of W-bosons to the isovector weak currents, and $V_{\text {СКM }}$ is the 3×3 unitary CKM quark mixing matrix. The CKM matrix allows one phase δ_{CKM}, different from the zero and π, irremovable by unitary transformations. Such a complexity of the CKM matrix does not affect the renormalizability property of the electroweak interaction and leads to $C P$ violation in both semileptonic and nonleptonic weak decays of strange and charmed particles and B particles with beauty b quarks. To the first order in the weak interaction, all these are flavor changing weak transitions. An important consequence of $C P$ nonconservation is the difference between the partial widths of decays of particles and antiparticles noticed by Okubo back in 1958 [19, 22, 68].

In the rest frame, the Hamiltonian of the interaction of a particle with spin \mathbf{S} and the constant magnetic dipole moment (MDM) $\boldsymbol{\mu}=\mu \mathbf{S} / S$ and electric $\mathbf{d}=d \mathbf{S} / S$ dipole moments with an external electromagnetic field reads

$$
\begin{equation*}
H=-(\mu \mathbf{B}+d \mathbf{E}) \frac{\mathbf{S}}{S} \tag{2.2}
\end{equation*}
$$

The magnetic and electric fields \mathbf{B} and \mathbf{E} have opposite parities under both time reversal (T) and spatial reflection (P). The angular velocity of the spin precession is

$$
\begin{equation*}
\Omega_{\mathrm{s}}=\frac{|\mu \mathbf{B}+d \mathbf{E}|}{S} \tag{2.3}
\end{equation*}
$$

and the sought-for signal of a nonzero EDM is the change in Ω_{s} when the sign of the electric field is reversed.

In particle physics, the highest sensitivity to the EDM has been achieved in experiments with neutrons. The modern approach to the search for the EDM of ultracold neutrons (UCNs) was laid down by F L Shapiro in 1968 [23]. The possibility of storing UCNs in storage cells was pointed out by Ya B Zeldovich in 1959 [69]. A breakthrough in EDM physics was the implementation in 1980 of the UCN approach at the Leningrad Institute of Nuclear Physics (now Petersburg Nuclear Physics Institute (PNPI), National Research Center Kurchatov Institute) at the WWR-M reactor in Gatchina, when the upper limit $d_{\mathrm{n}}<6 \times 10^{-25} \mathrm{ecm}$ was obtained [70, 71] for UCN storage with, for that period, the modest UCN storage time of $\sim 5 \mathrm{~s}$. While this review was being written, in experiment [28] with UCN accumulation for 28 s and subsequent spin precession in parallel and antiparallel electric and magnetic fields for 188 s , the sensitivity to the neutron EDM of $d_{\mathrm{n}}<1.8 \times 10^{-26} \mathrm{e} \mathrm{cm}$ was reached.

At present, the search for the neutron EDM is one of the main tasks of all laboratories worldwide where UCNs are available (see $[27,31]$ for a detailed history of neutron EDM searches and prospects for new experiments). The most promising ones are dual chamber UCN storage cells,
practically free of systematic errors down to $d_{\mathrm{n}} \sim$ $10^{-26} e \mathrm{~cm}$, developed by the A P Serebrov group at PNPI [30].

The magnetic moments of baryons are satisfactorily described as the sum of the magnetic moments of the constituent quarks [72]. As pointed out by Shabalin in 1978, the KM mechanism of $C P$ nonconservation predicts extremely small quark EDMs, and the additive approximation would give $d_{\mathrm{n}} \sim 10^{-34} \mathrm{ecm}$ [25]. This was confirmed in a later paper [73], with a result for the EDM of the valence quarks:

$$
\begin{align*}
d_{\mathrm{u}} & \approx \frac{F_{\mathrm{u}}}{108 \pi^{5}} G_{\mathrm{F}}^{2} \alpha_{\mathrm{s}} \bar{\delta} m_{\mathrm{s}}^{2} m_{\mathrm{u}} \approx-0.15 \times 10^{-34} e \mathrm{~cm} \tag{2.4}\\
d_{\mathrm{d}} & \approx \frac{F_{\mathrm{d}}}{108 \pi^{5}} G_{\mathrm{F}}^{2} \alpha_{\mathrm{s}} \bar{\delta} m_{\mathrm{c}}^{2} m_{\mathrm{d}} \approx-0.7 \times 10^{-34} e \mathrm{~cm}
\end{align*}
$$

where G_{F} is the Fermi weak interaction coupling, $\alpha_{\mathrm{s}}=$ $g_{\mathrm{s}}^{2} /(4 \pi), g_{\mathrm{s}}$ is the quantum chromodynamic (QCD) color charge, and the parameter of $C P$ parity violation is the Jarlskog invariant [74]

$$
\begin{equation*}
\bar{\delta}=\operatorname{Im}\left(V_{\mathrm{us}} V_{\mathrm{cs}}^{*} V_{\mathrm{cb}} V_{\mathrm{ub}}^{*}\right) \approx 5 \times 10^{-5} \tag{2.5}
\end{equation*}
$$

which does not change under unitary rotations in the quark basis. As dictated by the generalized Glashow-IlliopoulosMaiani (GIM) mechanism [75-78], the dimensionless constants $F_{\mathrm{u}, \mathrm{d}}$ are functions of the logarithms of the b-, c-, and s-quark mass ratios and the ratio of the W -boson mass to the mass of the b-quark. This is a reflection of the fact that $C P$ violation can be eliminated if there is a degeneracy of quark masses. Namely, the complete Jarlskog determinant is equal to

$$
\begin{align*}
J_{C P} & =\bar{\delta}\left(m_{\mathrm{b}}^{2}-m_{\mathrm{c}}^{2}\right)\left(m_{\mathrm{b}}^{2}-m_{\mathrm{d}}^{2}\right)\left(m_{\mathrm{s}}^{2}-m_{\mathrm{d}}^{2}\right) \\
& \times\left(m_{\mathrm{t}}^{2}-m_{\mathrm{c}}^{2}\right)\left(m_{\mathrm{t}}^{2}-m_{\mathrm{u}}^{2}\right)\left(m_{\mathrm{c}}^{2}-m_{\mathrm{u}}^{2}\right), \tag{2.6}
\end{align*}
$$

but the specific observables, as in the above example of the EDM of quarks, include a truncated determinant.

Quantitatively, much more important are the essentially nonperturbative second-order multiquark mechanisms with weak interaction complemented by quantum chromodynamic exchange currents, including so-called penguin diagrams [79] with gluon exchange between quarks in a nucleon, which give $[26,80]$

$$
\begin{equation*}
d_{\mathrm{n}}^{\mathrm{SM}} \sim 10^{-32} e \mathrm{~cm} \tag{2.7}
\end{equation*}
$$

Similar results for the EDM of nucleons were obtained by Khriplovich and Zhitnitsky in their first evaluation of the hadronic nonperturbative large-distance contributions [81] and in recent calculations of contributions of the one-loop meson-baryon diagrams with estimates of the $C P$-odd $\pi \Sigma \mathrm{N}$ vertices from the chiral perturbation theory (see [82] and the cited literature).

The valence quark EDM estimates (2.4) should be treated as an appropriate illustration of the possibility of a strong difference between the EDM of the neutron and the proton, and thus as an illustration of the importance of the planned searches for the proton and deuteron EDM [33]. To this end, it is useful to recall the many open questions in our understanding of the spin structure of nucleons [83-85].

Let us recall that the $C P$-odd transitions in the CKM matrix are flavor nondiagonal. Therefore, the EDM of
leptons can only arise from quark loop diagrams with weak interaction to at least the second order. Just as in the case of quarks (2.4), the EDM will be proportional to the lepton mass and the Jarlskog invariant. Omitting details, we give the commonly cited estimate for the electron EDM [86]:

$$
\begin{equation*}
d_{\mathrm{e}} \sim 10^{-44} e \mathrm{~cm} \tag{2.8}
\end{equation*}
$$

The contribution of the hadron loop large-distance corrections has been discussed in recent paper [87]. The effect of GIM cancelations and proportionality to the Jarlskog determinant are preserved in the contribution of hadron loops, but the arguments are given in favor of small loop momenta, which can increase the electron EDM by four orders of magnitude as compared to (2.8).

2.2 $C P$ violation in quantum chromodynamics

$C P$ nonconservation in the SM is not limited to the KM mechanism in the electroweak sector. In the QCD sector of strong interactions proper, a renormalizable $C P$-odd $\bar{\theta}$ term in the Lagrangian density is allowed,

$$
\begin{equation*}
L_{\bar{\theta}}=-\frac{1}{32 \pi^{2}} \bar{\theta} g_{\mathrm{s}}^{2} G^{a \mu v} \tilde{G}_{\mu \nu}^{a} \tag{2.9}
\end{equation*}
$$

where $\tilde{G}_{\mu \nu}^{a}=(1 / 2) \epsilon_{\mu \nu \rho \sigma} G^{a \rho \sigma}$ is the dual stress tensor of the octet of colored gluon fields A_{μ}^{a}, with $a=1, \ldots, 8$. In terms of the field strengths, the $\bar{\theta}$ term has the form of an explicitly P and T-odd scalar product of the electric and magnetic fields $\propto(\mathbf{E B})$ (an analogy is appropriate here with the electrodynamics of gyrotropic media [88-91]). It is noteworthy that the expression $G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}$ can be rewritten as the total derivative

$$
\begin{align*}
& G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}=\partial_{\mu} K^{\mu}, \tag{2.10}\\
& K^{\mu}=\epsilon^{\mu \nu \rho \sigma}\left(A_{v}^{a} G_{\rho \sigma}^{a}-\frac{1}{3} g_{\mathrm{s}} f^{a b c} A_{v}^{a} A_{\rho}^{b} A_{\sigma}^{c}\right),
\end{align*}
$$

where K^{μ} is the topological Chern-Simons-Pontryagin current. Consequently, in the framework of the perturbation theory under the usual assumption that the fields disappear fairly fast at infinity, the $\bar{\theta}$ term can be omitted, and the problem of $C P$ nonconservation in QCD would not exist at all.

Everything was changed with the discovery by Belavin, Polyakov, Schwartz, and Tyupkin (BPST) of the instanton nonperturbative solutions of the QCD equations of motion [92], initially called pseudoparticles, which correspond to topologically nonequivalent vacua [93-95]. Referring to review [96] and textbook [97] for a pedagogical introduction to the subject, let us recall only the basic facts.

By the Gauss theorem, the contribution of the $\bar{\theta}$ term to action in the Euclidean space can be rewritten as a flux of current K^{μ} through three-dimensional hypersphere S_{3}

$$
\begin{equation*}
\int \mathrm{d}^{4} x G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}=\int \mathrm{d}^{4} x \partial_{\mu} K^{\mu}=\int_{\mathrm{S}_{3}} \mathrm{~d} \sigma_{\mu} K^{\mu} \tag{2.11}
\end{equation*}
$$

where $\mathrm{d} \sigma_{\mu}$ denotes an element of the hypersurface. In the temporal gauge, $A_{0}^{a}=0$, the instanton is a nontrivial self-dual solution of the Yang-Mills equations of the purely gauge form

$$
\begin{equation*}
A_{i}^{a} T^{a}=\frac{\mathrm{i}}{g_{\mathrm{s}}} U^{-1} \partial_{i} U \tag{2.12}
\end{equation*}
$$

with a t-time independent gauge transformation matrix U, where T^{a} are the generators of $\mathrm{SU}(3)$. The one-instanton solution of BPST corresponds to the finite minimum $8 \pi^{2} / g_{s}^{2}$ of the action [92]; a wider class of multi-instanton solutions was found by 't Hooft [98]. An algorithm for constructing solutions of a general form is given in [95]. The common term instanton emphasizes the point that in the Euclidean space these field configurations are localized in all four dimensions. The meaning of instantons is best clarified by an example of fields from the $\mathrm{SU}(2)$ subgroup of the $\mathrm{SU}(3)$ color group, when the flux (2.11) can be recognized as a mapping of the sphere S_{3} in the 4-dimensional Euclidean space onto the sphere S_{3} in isotopic space. The integer-valued winding number (mapping degree)

$$
\begin{equation*}
v=\frac{g_{\mathrm{s}}^{2}}{32 \pi^{2}} \int_{\mathrm{S}_{3}} \mathrm{~d} \sigma_{\mu} K^{\mu} \tag{2.13}
\end{equation*}
$$

is the Chern-Simons-Pontryagin (CSP) index, with the BPST solution corresponding to the winding number $v=1$. Since in the gauge $A_{0}^{a}=0$ we have $K^{i}=0$, then in the Minkowski space the mapping degree can be written as

$$
\begin{align*}
v & =\frac{g_{\mathrm{s}}^{2}}{32 \pi^{2}} \int \mathrm{~d}^{4} x \partial_{\mu} K^{\mu}=\frac{g_{\mathrm{s}}^{2}}{32 \pi^{2}} \int \mathrm{~d}^{4} x \partial_{0} K^{0} \\
& =\left.\frac{g_{\mathrm{s}}^{2}}{32 \pi^{2}}\left[\int \mathrm{~d}^{3} \mathbf{x} K^{0}(t, \mathbf{x})\right]\right|_{t=-\infty} ^{t=+\infty} \tag{2.14}
\end{align*}
$$

This is interpreted as a tunneling between the periodic vacuum configurations of the pure-gauge fields with a change in the mapping degree $n(t=+\infty)-n(t=-\infty)=v$. The physical $\bar{\theta}$-vacuum is a superposition

$$
\begin{equation*}
|\bar{\theta}\rangle=\sum_{n=-\infty}^{+\infty} \exp (\mathrm{i} n \bar{\theta})|n\rangle \tag{2.15}
\end{equation*}
$$

which provides a definition of the angle $\bar{\theta}[94,96,97]$.
The first principles of QCD do not put any restrictions on $\bar{\theta}$. We note now that the $C P$-odd $L_{\bar{\theta}}$ is related to the generalization of the Adler-Bell-Jackiw anomaly [99, 100] to the unitary-singlet $\mathrm{U}(1)_{\mathrm{A}}$ axial current in QCD ,

$$
\begin{equation*}
\partial_{\mu} J_{\mathrm{A}}^{\mu}=-\frac{N}{32 \pi^{2}} \bar{\theta} g_{\mathrm{s}}^{2} G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}+2 \mathrm{i} \bar{\Psi}_{\mathrm{R}} M \Psi_{\mathrm{L}} \tag{2.16}
\end{equation*}
$$

where M is the quark mass matrix. In the general case, in accordance with axial anomaly Eqn (2.16), one can use the chiral rotation of fermion fields $\psi \rightarrow \exp \left(-i \gamma_{5} \rho\right) \psi$ to remove $L_{\bar{\theta}}$ in favor of the complex mass matrix of the current quarks

$$
\begin{equation*}
M_{a b}=\delta_{a b} m_{a} \exp (-\mathrm{i} \bar{\theta}) \tag{2.17}
\end{equation*}
$$

Referring to the original sources [101, 102] for further technical details, we only quote the explicit form of the $C P$ odd Lagrangian $L_{C P V}$ in the quark sector:

$$
\begin{equation*}
L_{C P V}=3 m^{*} \bar{\theta}\left(\bar{\Psi} \mathrm{i} \gamma_{5} \Psi\right) \tag{2.18}
\end{equation*}
$$

If at least one of the quarks is massless, then the reduced mass (one can neglect the contribution of heavy quarks)

$$
\begin{equation*}
m^{*}=\frac{m_{\mathrm{u}} m_{\mathrm{d}} m_{\mathrm{s}}}{m_{\mathrm{u}} m_{\mathrm{d}}+m_{\mathrm{u}} m_{\mathrm{s}}+m_{\mathrm{d}} m_{\mathrm{s}}} \approx \frac{m_{\mathrm{u}} m_{\mathrm{d}}}{m_{\mathrm{u}}+m_{\mathrm{d}}} \tag{2.19}
\end{equation*}
$$

vanishes, i.e., to eliminate the $C P$ nonconservation due to the QCD $\bar{\theta}$ term, it is sufficient to make a chiral rotation of the
massless quark field only (see also the useful discussion in [103]). This yields a dimensional estimate of the EDM of nucleons [101, 102, 104],

$$
\begin{equation*}
d_{\mathrm{N}} \sim \bar{\theta} \frac{m^{*}}{\Lambda_{\mathrm{QCD}}} \mu_{\mathrm{N}} \approx \bar{\theta} \times 10^{-16} e \mathrm{~cm} \tag{2.20}
\end{equation*}
$$

where $\Lambda_{\mathrm{QCD}} \approx 330 \mathrm{MeV}$ is the QCD scale [84].
The estimate of the EDM of diamagnetic atoms and molecules in terms of the EDM of the nucleus requires a careful account of Schiff's mechanism of the shielding of the external electric field on the nucleus by the electron shell of the atom [62]. A conversion of the upper limit on the EDM of the nucleus to the EDM of the constituent nucleons of the nucleus also contains its own uncertainties [105, 106]. With these reservations, the result for the EDM of the mercury atom $d_{\mathrm{Hg}}<7.4 \times 10^{-30} e \mathrm{~cm}$ [107] can be converted into restrictions on the EDM of the neutron, $d_{\mathrm{n}}<1.6 \times 10^{-26} e \mathrm{~cm}$, and of the proton $d_{\mathrm{p}}<2 \times 10^{-25} \mathrm{ecm}$. If there are no competing sources of the EDM, then, following [38, 107-109], the upper bound on the neutron EDM [28] can be interpreted as an anomalously low upper bound $\bar{\theta} \sim 10^{-10}$.

We started with the statement that QCD allows strong $C P$ violation with $\bar{\theta} \sim 1$ and ended with a mysteriously low upper limit $\bar{\theta} \sim 10^{-10}$. A possible solution to the riddle was proposed as early as 1977 by Peccei and Quinn [110, 111] and it has already been mentioned above: this is the existence of an exact $U(1)_{P Q}$ chiral symmetry in QCD when one of the quarks is massless. Namely, $\bar{\theta}$ in Lagrangian (2.9) is replaced by a dynamical pseudoscalar field $a(x)$,

$$
\begin{equation*}
\bar{\theta} \rightarrow \frac{1}{f_{(a)}} a(x) \tag{2.21}
\end{equation*}
$$

After the spontaneous $\mathrm{U}(1)_{\mathrm{PQ}}$ symmetry breaking by instantons, $a(x)$ acquires a vacuum expectation value, and a very light pseudo-Goldstone boson, called an axion, is generated. Taking into account (2.21), axions interact with gluons,

$$
\begin{equation*}
L_{(a)}=-\frac{1}{32 \pi^{2}} \frac{a(x)}{f_{(a)}} g_{\mathrm{s}}^{2} G^{a \mu v} \tilde{G}_{\mu \nu}^{a} \tag{2.22}
\end{equation*}
$$

Soon after that, in a 1978 paper, Weinberg gave an estimate of the coupling constant of an axion with fermions in a gradient interaction of the dipole type,

$$
\begin{equation*}
L_{a \bar{\psi} \psi}=-\frac{1}{2 f_{(a)}} g_{\psi} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \partial_{\mu} a(x) \tag{2.23}
\end{equation*}
$$

with the dimensionless constant $g_{\psi} \sim 1$ which depends on the specific model, and related the mass of the axion to the constant $f_{(a)}$ [112]:

$$
\begin{equation*}
m_{(a)} \approx m_{\pi} \frac{f_{\pi}}{f_{(a)}} \frac{\sqrt{m_{\mathrm{u}} m_{\mathrm{d}}}}{m_{\mathrm{u}}+m_{\mathrm{d}}}, \tag{2.24}
\end{equation*}
$$

where m_{π} and f_{π} are the pion mass and decay constant.
A discussion of different scenarios of the axion phase transition in an inflationary Universe, the question of the constant $f_{(a)}$ and the axion mass $m_{(a)}$, and the possible contribution of axions to dark matter can be found in recent comprehensive reviews, with an extensive bibliography on the subject [58, 113]. Here, we only mention that the most discussed Kim-Shifman-Vainstein-Zakharov (KSVZ) [114, 115] and Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) [116, 117] models allow for $f_{(a)}$ as large as the Planck mass, making
ultralight axions invisible. DFSZ axions directly couple to leptons, while in the KSVZ option the axion-lepton coupling are possible only via radiative corrections. In Section 8, we will dwell in more detail on the specific use of the precessing spin as an antenna for the search for relic axions and axionlike particles.

It is worthwhile to note that $C P$-odd $L_{\bar{\theta}}$ is isoscalar. However, that does not entail the equality of proton and neutron EDMs, since the electromagnetic current operator contains both isoscalar and isovector components. In the framework of the chiral perturbation theory, a natural realization of the $C P$-odd sector of the low-energy QCD appears in the form of the isospin conserving P - and T-odd $\pi N N$ vertex [81, 102]. Then, the pion-nucleon loop would contribute to the EDM of the proton and neutron with an opposite sign. A more detailed analysis of consequences of the chiral perturbation theory for the EDM of both nucleons and deuterons and helions was carried out in $[103,118]$ with the conclusion that the modern theory is unable to reliably predict the ratio of the proton and neutron EDMs. The arising $C P$-odd potentials $[24,103,119,120]$ lead to the deviation of the EDM of light nuclei from the additivity of the EDM of the nucleons constituting the nucleus. Therefore, searches for the EDM of both neutrons and protons, as well as light nuclei [33], are imperative for unraveling the mechanisms of $C P$ violation.

Expectations laid on lattice QCD calculations of the neutron and proton EDM have not been met so far. As noted in [121], a finite lattice spacing introduces chiral mixing akin to the above discussed chiral rotations in the quark mass matrix. For this reason, earlier lattice calculations of the EDM were not free of mixing with the magnetic moments of nucleons. In modern calculations, this mixing is under better control. Still another problem is that, in the lattice QCD, the nucleon EDM, as well as other static characteristics of the nucleon, are extracted from fitting a Euclidean time dependence of the corresponding lattice correlators by the sum of decaying exponents. In principle, the decrease in the nucleon contribution should be the slowest decaying one. A proximity of masses of nucleons and of the $\pi \mathrm{N}$ continuum makes the background contribution from the continuum non-negligible [122]. On the one hand, this is interpreted as indirect confirmation of the adequacy of the chiral perturbation theory. On the other hand, it suggests that a reliable separation of the nucleon contribution and a lattice measurement of the nucleon EDM requires an increase in the number of statistics by at least one more order of magnitude, since, with the existing lattice data, estimates of the nucleon EDM change by several times, depending on the modeling of the contribution of the excited states by N^{*} resonance or the $\pi \mathrm{N}$ continuum [122].

QCD-motivated nonrenormalizable models of $C P$-violation are broadly discussed in the literature. For instance, one can endow quarks with permanent chromoelectric dipole moments with an obvious interaction $\bar{\Psi} \sigma^{\mu \nu} \lambda_{a} \tilde{G}_{\mu \nu}^{a} \Psi$. Weinberg proposed in [123] the $C P$-odd three-gluon interaction $f_{a b c} G_{\mu \nu}^{a} G_{v \rho}^{b} G_{\rho \mu}^{c}$, which, for massive gluons, would correspond to the chromoelectric dipole moment of the gluons. Such an interaction could arise, in the spirit of the Heisenberg-Euler Lagrangian in quantum electrodynamics (QED), as the lowenergy limit of loop diagrams with heavy particles. For a detailed discussion of the possible contribution of such interactions to the EDM of nucleons and light nuclei, we refer to [103].

2.3 Beyond the Standard Model: extension of the Higgs sector and supersymmetry

Historically, the first renormalizable gauge model of $C P$ violation beyond the SM was proposed by Weinberg in 1976 [124]. He introduced the $C P$-odd phase into the Higgs sector of the SM with the then two generations of quarks, postulating an extension of the scalar field sector to the two Higgs boson isodoublets. In the modern version of the model, the lightest of the Higgs particles is identified with the Higgs boson discovered at the LHC. For the EDM of neutrons, Weinberg obtained the estimate $d_{\mathrm{n}} \sim 3 \times 10^{-24} e \mathrm{~cm}$ (see also [125]). The model is interesting in that it can generate the baryon asymmetry of the Universe [126]. The original version of the Weinberg model was repeatedly rejected, in particular, by restrictions on the neutron EDM (see [127] and the cited literature). Nevertheless, even in the two-doublet version of the Weinberg model, the parameter space with strong compensation of the loop contributions to the neutron EDM is not ruled out, and tests of such a model at the LHC have been proposed [128].

Tests of the three-doublet Weinberg model of $C P$ violation in t-quark decays were considered in [129]. In the three-doublet Weinberg model, of particular interest are the $C P$-odd asymmetries in the rare radiative decays of B-mesons, which are quite large in the Weinberg model and negligible in the Kobayashi-Maskawa SM [130]. In general, models with an extended Higgs sector can give a noticeable EDM of electrons due to the loop diagrams with t-quarks [131]. A very interesting discussion of the group-theoretic properties of $C P$ nonconservation in the multi-doublet Higgs sector is presented in a series of publications by Ivanov (see [132, 133] and references therein).

As Weinberg [134] emphasized in his summary report at the XXXI International Conference on High Energy Physics in 1992, "Also endemic in supersymmetry theories are $C P$ violations that go beyond the CKM matrix, and for this reason it may be that the next exciting thing to come along will be the discovery of a neutron or atomic or electron electric dipole moment." In renormalizable supersymmetric (SUSY) theories, a finite EDM is possible due to one-loop diagrams, and, unlike the KM mechanism, the answer is of the same structure for quarks and leptons (see [104] and the cited literature):

$$
\begin{equation*}
d_{i} \sim \frac{g^{2}}{16 \pi^{2}}\left(\frac{m_{i}}{\Lambda^{2}}\right)^{2} \frac{e_{i}}{m_{i}} \sin \phi \tag{2.25}
\end{equation*}
$$

where $g^{2} \sim 1$ is the coupling constant (recall that ordinary quantum chromodynamics is an integral part of the theory), Λ is the mass scale of supersymmetric particles in the loop diagram, and in the penultimate factor one recognizes the magnetic dipole moment of the quark (lepton). As a matter of fact, this form of the result was anticipated by Berestetskii, Krokhin, and Khlebnikov back in 1956 [135] and subsequently confirmed by calculations of the electroweak correction to the magnetic anomaly of the electron and muon [136138]. We reiterate that the Kobayashi-Maskawa model of $C P$ violation predicts very strong suppression of the EDM of leptons vs. the EDM of quarks (cf. the estimates in (2.7) for nucleons and (2.8) for electrons).

For the average mass $m_{\mathrm{u}, \mathrm{d}} \sim 5 \mathrm{MeV}$ of light current quarks, one finds an estimate for neutrons:

$$
\begin{equation*}
d_{\mathrm{n}} \sim 10^{-24}\left(\frac{1 \mathrm{TeV}}{\Lambda}\right)^{2} \sin \phi e \mathrm{~cm} \tag{2.26}
\end{equation*}
$$

There are no compelling reasons for the smallness of the $C P$ violating phase ϕ (there may be several such phases in different supersymmetric models). Therefore, the experimental upper bound on the neutron EDM $d_{\mathrm{n}}<1.8 \times 10^{-26} e \mathrm{~cm}$ [28] can be interpreted as a lower bound for the mass of supersymmetric particles of the order of $\Lambda>7 \mathrm{TeV}$. The proposed proton EDM searches with a sensitivity of $d_{\mathrm{p}} \sim 10^{-29} e \mathrm{~cm}$ [33] could set the lower bound $\Lambda \sim 300 \mathrm{TeV}$, so that the potential of high-precision low-energy experiments could greatly exceed the potential of direct searches for new particles in colliders.

Here, it is worth noting that the hopes of theorists that the Large Hadron Collider (LHC) from the first days of operation would become a factory of supersymmetric particles with masses of hundreds of GeV did not come true. A belief in the forthcoming era of supersymmetry has been shaken by the persistent increase in the lower bound on masses of squarks and gluinos: the recent results of the ATLAS (A Toroidal LHC ApparatuS) collaboration exclude gluinos with masses below 2.3 TeV and squarks with masses below 1.85 GeV [139]. Suppression of the predicted neutron EDM at such masses of SUSY particles by the small $C P$ violating phase $\phi \sim 10^{-2}$ is as unattractive as at the aforementioned still larger and larger masses Λ.

For a more detailed discussion of the allowed parameter space in various SUSY models and in the Weinberg twodoublet model, as well as an extensive bibliography on the subject, we refer to the exhaustive review [27].

2.4 Millistrong CP violation beyond the Standard Model

In 1965, Okun [140], Prentki and Veltman [141], and Lee and Wolfenstein [142] noticed that the $C P$ nonconservation observed in the system of neutral K-mesons [3] can be explained if, alongside the $C P$-invariant weak interaction, there existed a flavor-diagonal, P-even, but T-noninvariant and C-odd millistrong interaction with the dimensionless constant $\sim 10^{-3}$. In a fundamental distinction from the SM, dimensional estimates suggest T-odd effects of this order of magnitude in a wide spectrum of nuclear and hadronic processes. In recent years, the millistrong model of $C P$ nonconservation has been little discussed by theorists since, due to its symmetry properties, it has not been implemented in renormalizable generalizations of the SM.

Numerous experimental searches for the millistrong T nonconservation have been carried out in the β decay of the neutron [143], in the nuclear γ transitions of mixed multipolarity [144], in the comparison of cross sections for direct and inverse nuclear reactions [145, 146], in the comparison of polarization parameters in the initial and final states in nucleon-nucleon scattering [147], and in the search for the polarization null effect - the T-forbidden spin asymmetry in the total cross section for polarized neutron scattering by a tensor-polarized nucleus [148].

A significant relative phase $(-4.7+0.3) \times 10^{-3} \mathrm{rad}$ of the ratio of $M 1$ to $E 2$ amplitudes was found in the γ transition with the energy of 129 keV in the ${ }^{191}$ Ir nucleus [144]. However, the final state interaction of γ quanta with atomic electrons gives the phase $-(4.3 \pm 0.4) \times 10^{-3} \mathrm{rad}$ [149], so that the experimental data yield only the upper limit for the T violating phase $<0.9 \times 10^{-3} \mathrm{rad}$. The role of the interaction with atomic electrons in the scattering of γ quanta in magnetized ferromagnets was reliably established by Lobashov et al. back in 1971 [150].

In the nonperturbative phenomenology of meson-baryon interactions, the P-even millistrong NN interaction at low and intermediate energies is modeled by the T - and C-odd $\rho \mathrm{NN}$ vertex in the exchange of charged ρ-mesons [151],

$$
\begin{equation*}
L_{\mathrm{\rho NN}}^{\mathrm{TV}}=\mathrm{i} \sqrt{2} g_{\mathrm{TV}} g_{\rho \mathrm{NN}} \frac{k_{\mathrm{V}}}{2 m_{\mathrm{n}}} \bar{N} \sigma^{\mu v}\left(\tau^{-} \partial_{\mu} \rho_{v}^{+}-\tau^{+} \partial_{v} \rho_{\mu}^{-}\right) N \tag{2.27}
\end{equation*}
$$

where $\tau^{ \pm}$denote the isospin matrices and g_{TV} is the reduced T-odd (TV) amplitude. In addition to the expected smallness of the coupling $g_{\mathrm{TV}} \sim 10^{-3}$, one finds an extra numerical suppression in the contribution from such an interaction to the spin observables of the NN elastic scattering at intermediate energies (see [152, 153] and cited papers). Even the high accuracy $P-A=0.0047 \pm 0.0025_{\text {stat }} \pm 0.0015_{\text {sys }}$ [147], achieved in the standard verification of the equality of the analyzing power and the polarization of scattered protons in pp elastic scattering, is as yet insufficient for a critical check of the millistrong model.

The millistrong T-nonconserving interaction would generate the EDM of the nucleon in conjunction with the flavordiagonal P-odd weak interaction in the ballpark of the aforementioned dimensional estimate (1.4). But, in the spirit of the dimensional counting rules in the chiral perturbation theory, the T-odd and P-even quark-quark interactions belong to the class of higher dimension interactions. According to Kurylov et al. [151], the dimensional dressing analysis of the Simonius-type interaction in the spirit of the chiral perturbation theory leaves room for a strong suppression of the nucleon EDM as the low-energy parameter [154] (for another example of such a suppression, see [155]).

With reservations about the uncertainty of evaluations of the T-odd nuclear optical potential, the experimental result $A_{\mathrm{TV}}=(8.6 \pm 7.7) \times 10^{-6}$ for the T-odd vector-tensor asymmetry in the total cross section of interaction of a polarized neutron with a tensor polarized ${ }^{199} \mathrm{Ho}$ nucleus corresponds to $g_{\text {TV }}=(2.33 \pm 2.1) \times 10^{-2}[148]$. A similar numerical suppression of the T-odd null effect in doubly polarized protondeuteron scattering was found in [152, 153, 156]. Still, doubly polarized pd scattering has a higher sensitivity to T nonconservation [153], and it is feasible to lower the upper bound on the vector-tensor asymmetry to $A_{\text {TV }} \sim 10^{-6}$ in an accelerator experiment with a polarized beam and an internal polarized target [157-159], thus realizing the first crucial test of the millistrong model.

Experiments on pd scattering with static polarizations are subject to systematic errors due to the hard-to-eliminate vector polarization in a tensor-polarized deuteron target. As pointed out in [160], in the inverse kinematics with deuteron polarization oscillating in the plane of an accelerator ring, the T-odd polarization null effect in the pd interaction cross section has a unique Fourier component with twice the precession frequency of the vector polarization, and thus can be reliably extracted without any systematic effects. It depends on the experiment, which can be performed at the COSY accelerator in Jülich [157-159] or at the NICA accelerator facility of JINR [44].

As far as the EDM is concerned, the flavor conserving millistrong interaction, in conjunction with the P-odd component of the weak interaction, generates the P - and T violating nucleon-nucleon interaction. The prototype of such an interaction, usually modeled by a scalar $\pi \mathrm{NN}$ vertex, was introduced in $[81,161]$ and became a standard in the popular chiral perturbation theory $[29,63,103,162]$. Due to the
P - and T-odd intranuclear NN interactions, the EDM of nuclei would not reduce to the sum of the EDM of constituent nucleons, in close similarity to the effect of exchange currents in the case of magnetic moments. For light nuclei, this is discussed in detail in [103]. The EDM of heavy nuclei can be enhanced by the proximity of the levels of a nucleus with opposite parity [161, 163]. An incomplete shielding of the nuclear EDM in atoms and molecules requires a difference between the nuclear charge and EDM densities [62, 161, 164]. Both the Schiff shielding considerations and the parity degeneracy of the nuclear levels favor nuclei with the octupole deformation [38, 165]. The selection of the optimal atoms and molecules from the point of view of the EDM signal remains a considerable feat [38,63,64]. There is an exhaustive review literature on the chiral perturbation theory for the P - and T-violating nuclear forces $[29,166]$, but the issue of extraction of the P-even and T-violating millistrong coupling constants from such an analysis remains as yet open.

3. Baryon asymmetry of the Universe

To properly assess result (1.2) for baryon asymmetry η_{B}, let us start with the question of survival of baryon matter in a $C P$ invariant theory with a zero net baryon charge at the start of the Big Bang [18]. The conservation of entropy allows a reliable extrapolation of the ratio of the density of baryons and antibaryons to the density of relic photons and ensures its constancy during the expansion stage with thermodynamic equilibrium $[167,168]$. The mutual annihilation of baryons and antibaryons stops at the density [168-170]

$$
\begin{equation*}
n_{\overline{\mathrm{B}}}=n_{\mathrm{B}} \approx \frac{n_{\gamma}}{\sigma_{\mathrm{ann}} m_{\mathrm{B}} M_{\mathrm{P}}} \approx 10^{-19} \tag{3.1}
\end{equation*}
$$

where $\sigma_{\text {ann }}$ is the annihilation cross section at the freeze-out. To this we should add the problem of separation of matter and antimatter in the Universe, unsolvable in this scenario. The irrefutable conclusion is that the baryon asymmetry had to be generated already in the early Universe according to Sakharov's scenario.

The possibility of a purely electroweak baryogenesis within the framework of the well established interaction mechanisms and the known particle mass spectrum is undoubtedly quite attractive. As mentioned above, apart from the $125-\mathrm{GeV}$ Higgs boson, no new particles have been discovered so far. As first noted by Kirzhnits and Linde in 1972, electroweak phase transitions [171] are expected in the SM. The Big Bang paradigm assumes that the Universe develops from the initial state with a zero net baryon charge and with unbroken $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$ symmetry with the vanishing vacuum expectation value of the Higgs field. The original electroweak Lagrangian has the $\mathrm{U}(1)_{\mathrm{B}}$ symmetry with conserved baryon and lepton currents J_{B}^{μ} and $J_{\mathrm{L}}^{\mu}[66,67]$. The so-called sphaleron baryogenesis proposed by Kuzmin, Rubakov, and Shaposhnikov is based on the topological baryon charge nonconservation at the stage of phase transitions in the Higgs sector [20, 21]. These ideas go far beyond the scope of the minimal electroweak model per se and are worth a brief exposition.

The subsequent presentation repeats, with minor modifications, the discussion of instantons in Section 2.2. In the electroweak $\mathrm{SM}[66,67]$ with non-Abelian symmetry $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)$, one has a periodic series of classical vacua with integer CSP mapping indices $N_{\text {CSP }}=0, \pm 1, \pm 2, \ldots$
coinciding with the baryon charge, realized by the gauge nonequivalent instanton solutions of the classical Yang-Mills equations for isovector fields. In the temporal gauge $W_{0}^{a}=0$, the corresponding mapping degree of the coordinate space mapped onto the isospin space is equal to

$$
\begin{equation*}
N_{\mathrm{CSP}}=\frac{1}{96 \pi^{2}} g_{\mathrm{W}}^{2} \int \mathrm{~d}^{3} \mathbf{x} \epsilon^{i j k} \epsilon_{a b c} W_{i}^{a} W_{j}^{b} W_{k}^{c} \tag{3.2}
\end{equation*}
$$

where g_{W} is the Weinberg electroweak coupling and $\epsilon_{a b c}$ is the totally antisymmetric Levi-Civita symbol. The isovector gauge bosons W_{μ}^{a} interact only with left-handed quarks and leptons, and the conservation of classical currents is violated by the Adler-Bell-Jackiw quantum anomaly

$$
\begin{equation*}
\partial_{\mu} J_{\mathrm{B}}^{\mu}=\partial_{\mu} J_{\mathrm{L}}^{\mu}=-\frac{n_{\mathrm{f}}}{32 \pi^{2}} g_{\mathrm{W}}^{2} W_{\mu \nu}^{a} W_{a}^{\mu \nu}, \tag{3.3}
\end{equation*}
$$

where n_{f} is the number of fermions and $W_{\mu \nu}^{a}$ is the corresponding field strength tensor. Obviously, the difference between the baryon and lepton charges $B-L$ is conserved.

We are interested in the time dependence of the baryon charge $\Delta B(t)=B(t)-B(0)$ per fermion,

$$
\begin{equation*}
\Delta B(t)=-\int_{0}^{t} \mathrm{~d} t^{\prime} \int \mathrm{d}^{3} \mathbf{x} \frac{1}{32 \pi^{2}} g_{\mathrm{W}}^{2} W_{\mu \nu}^{a} W_{a}^{\mu \nu} \tag{3.4}
\end{equation*}
$$

It is expressed in terms of the divergence of the current,

$$
\begin{equation*}
K^{\mu}=\frac{g_{\mathrm{W}}^{2}}{16 \pi^{2}} W_{v}^{a} \epsilon^{\mu v \rho \tau}\left(\partial_{\rho} W_{\tau}^{a}+\frac{1}{3} g_{\mathrm{W}} \epsilon_{a b c} W_{\rho}^{b} W_{\tau}^{c}\right) \tag{3.5}
\end{equation*}
$$

As shown in Section 2.2, the change in the baryon charge during tunneling between different vacua is related to the CSP index,

$$
\begin{equation*}
\Delta B=\Delta N_{\mathrm{CSP}} \tag{3.6}
\end{equation*}
$$

The tunneling probability at zero temperature and energy can be computed exactly [93, 98]:

$$
\begin{equation*}
w_{\text {inst }} \propto \exp \left(-\frac{4 \pi}{\alpha_{\mathrm{W}}}\right) \sim 10^{-164} \tag{3.7}
\end{equation*}
$$

where $\alpha_{\mathrm{W}}=g_{\mathrm{W}}^{2} /(4 \pi)$, and, due to its extreme smallness, it has no practical consequences.

In the early Universe, before the electroweak transition with spontaneous breaking of the $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$ symmetry by the Higgs mechanism, particles remain massless and there is no barrier. After symmetry breaking during the expansion, a jump through the barrier with the Boltzmann factor $\exp \left(-E_{\mathrm{sph}} / T\right)$ is possible by means of thermal fluctuations [20]. The electroweak constants and masses of the electroweak vector bosons are known from experiments. Therefore, the height of the barrier at the unstable saddle point $E_{\text {sph }}$, described by the so-called sphaleron static solution with the half-integer N_{CSP} of the classical equations of motion [172], as well as the critical temperature $T_{\mathrm{c}} \sim 100 \mathrm{GeV}$, both depend on a single parameter - the self-coupling constant of the Higgs boson, i.e., on its mass. Such a minimalism makes the electroweak baryogenesis extremely attractive, and the ideas of paper [20], which gathered about 3000 citations, are still at the center of attention. The first decade of the development of the theory and the main scenarios of the electroweak phase transition are described in classic review [21]; the subsequent development of the approach is covered in reviews [173-175].

The crucial issue is the degree to which Sakharov's nonequilibrium criterion is fulfilled, i.e., the rate of processes with a change in the baryon charge in comparison to the rate of expansion. It is clear that, at the beginning of the phase transition, the order parameter - the vacuum expectation value of the Higgs field - starts from zero, and only with a further decrease in temperature does it take its value for the zero temperature. From the point of view of Sakharov's criterion, an ideal scenario would be the highly nonequilibrium first order phase transition with the formation of seeds from fluctuations and then bubbles with a nonzero condensate. That looked realistic for light Higgs particles with a mass below 70 GeV , but it was ruled out already by the upper limit $m_{\mathrm{H}}>114 \mathrm{GeV}$ established at the LEPII electronpositron collider [176], and even more so by the further discovery of the Higgs boson with the mass of 125 GeV at the LHC [177, 178]. The analysis of the Higgs mass region $m_{\mathrm{H}}>m_{\mathrm{W}}$ began back in 1996 with the pioneering work of Shaposhnikov [179]; this is a practically interesting smooth crossover mode. Basic points of the notable progress in the analytic understanding of this mode [179-181] have been confirmed by the recent 32^{3} lattice simulation of the crossover transition in the minimal Standard Model with the experimentally known mass of the Higgs boson [182]. Here, the dynamics of the CPS topological charge was studied in a three-dimensional effective model truncated by disregarding the insignificant contribution of the Abelian vector boson. A transition to the crossover was found to begin at $T_{\mathrm{c}}=$ $159 \pm 1 \mathrm{GeV}$. The freeze-out of the baryon asymmetry begins at temperature $T_{*}=132 \pm 2.3 \mathrm{GeV}$.

As noted above, in the minimal SM with the KobayashiMaskawa mechanism, $C P$ violation is proportional to the Jarlskog determinant (2.6). This implicitly assumes that the momentum scale F in loop diagrams for the $C P$-odd transitions is larger than the quark masses. One could then have taken [21, 183]

$$
\begin{equation*}
\delta_{C P} \sim \frac{J_{C P}}{F^{12}} \tag{3.8}
\end{equation*}
$$

for a dimensionless measure of the $C P$ nonconservation in the phase transition region. In the high-temperature phase transition with $T_{\mathrm{c}} \sim 100 \mathrm{GeV}$, we have $F \approx T_{\mathrm{c}}$, which would give $\delta_{C P} \sim 10^{-19}$, which is entirely insufficient to explain the observed baryon asymmetry (see also [184]). With allowance for the complex dynamics of the nucleation of bubbles filled by the $C P$-odd phase and their subsequent percolation into large bubbles during the phase transition, this qualitative estimate can well be amplified [185]. One mechanism of amplification of the effects of $C P$ violation, based on formation after the inflationary phase of bound states (bags) of a large, $O(1000)$, number of heavy t quarks with W and Z bosons with a suppressed vacuum expectation value of the Higgs field, was suggested by Flambaum and Shuryak [186]. Such a scenario corresponds both to a decrease in the height of the sphaleron barrier and to an effective reduction in the scale F to the mass of a b quark with a truncated Jarlskog determinant (recall the similar role of the Jarlskog determinant in the calculations of the EDM of quarks in Section 2.1).

As pointed out by Shaposhnikov [181] and discussed in detail in review [175], the baryon asymmetry generated by a smooth crossover is insufficient to explain the observed result (1.2). A popular solution to the problem is to extend the Higgs sector towards a strong coupling [187-189], which allows shifting the phase transition to higher temperatures. Various
leptogenesis scenarios at the energies in the Grand Unification region are widely discussed (see recent review [175] and the cited literature). Here, it is worth noting that, whereas the hypotheses about new particles in the generalizations of lowenergy baryogenesis allow direct experimental verification, various scenarios of leptogenesis remain, to a large extent, of academic value.

On the whole, the problem of baryogenesis still remains open. The discussion in the literature is mainly focused on the predominantly perturbative analysis of renormalizable models that allow consistent extrapolation throughout the entire period of the expansion of the Universe. The uniqueness of the millistrong P-preserving and T-violating interactions is that it is C noninvariant. The role of such interactions in baryogenesis has not yet received due attention.

We conclude this introduction to the subject with the main thesis about the undoubtedly important role of highly sensitive EDM searches in order to understand $C P$ nonconservation beyond the SM. This subject is actively developing, and encompasses the areas of atomic physics, particle physics from low energies to collider experiments, and modern cosmology. We move on to a discussion of the main topic of the role of the effects of the General Relativity theory in precision spin experiments.

4. Relativistic spinning particle in external fields

After Uhlenbeck and Goudsmit [190, 191] had introduced in 1925 the concept of spin to explain atomic spectra, Frenkel [192, 193] and Thomas [194, 195] simultaneously developed the first models for a particle with spin and magnetic moment, and a year later Dirac [196] formulated the relativistic quantum theory of a particle with spin $1 / 2$. The classical Frenkel-Thomas theory, which was further developed by Mathisson, Papapetrou, and Dixon, gives an adequate description of a particle with spin, and it underlies the analysis of the dynamics of polarized particles in accelerators and storage rings (see Bargmann, Michel, and Telegdi [197], Froissart and Stora [198], Derbenev and Kondratenko [199201]; the history of the issue is presented in Ternov's review [202]). Since a coherent review of the subject is still missing in the literature, the current Section 4 and, to some extent, the next Section 5 will give a quite technical exposition of the relevant formalism.

4.1 Classical theory of spin

The motion of classical particles with spin in a gravitational field is consistently described by the generally covariant theory of Mathisson-Papapetrou-Dixon [203-205]. In the framework of this theory, a test particle is characterized by a 4 -velocity U^{α} and a spin tensor $S^{\alpha \beta}=-S^{\beta \alpha}$. In general, the total 4-momentum is not collinear with the velocity. In [206, 207], a noncovariant approach was developed in which the main dynamical variable is the three-dimensional spin defined in the particle's rest frame. One can show that the MathissonPapapetrou theory is fully compatible with the noncovariant approach [48, 208-211]. Using the Frenkel supplementary condition $U_{\alpha} S^{\alpha \beta}=0$, which means that the spin is a purely space-like variable in the comoving reference frame, one can introduce the 4 -vector of spin

$$
\begin{equation*}
S_{\alpha}=\frac{1}{2 c} \varepsilon_{\alpha \beta \gamma \delta} U^{\delta} S^{\beta \gamma} \tag{4.1}
\end{equation*}
$$

where $\varepsilon_{\alpha \beta \gamma \delta}$ is the fully antisymmetric Levi-Civita tensor.

Thus, in the most general formulation of the FrenkelThomas model, the motion of a test spinning particle is characterized by the 4 -velocity U^{α} and the 4 -vector of spin S^{α}, which satisfy the normalization $U_{\alpha} U^{\alpha}=c^{2}$ and the orthogonality condition $S_{\alpha} U^{\alpha}=0$. Both variables are considered with respect to an orthonormal basis in which the indices are raised and lowered with the help of the Minkowski metric $g_{\alpha \beta}=\operatorname{diag}\left(c^{2},-1,-1,-1\right)$. Neglecting second-order spin effects [212, 213], the dynamic equations for these variables can be written as

$$
\begin{align*}
\frac{\mathrm{d} U^{\alpha}}{\mathrm{d} \tau} & =\mathcal{F}^{\alpha}, \tag{4.2}\\
\frac{\mathrm{d} S^{\alpha}}{\mathrm{d} \tau} & =\Phi^{\alpha}{ }_{\beta} S^{\beta} .
\end{align*}
$$

External fields of a different physical nature (electromagnetic, gravitational, scalar, etc.) determine the forces \mathcal{F}^{α} acting on the particle, as well as the spin transfer matrix $\Phi^{\alpha}{ }_{\beta}$. The normalization and orthogonality of the velocity and spin vectors impose conditions on the right-hand sides of (4.2), (4.3):

$$
\begin{equation*}
U_{\alpha} \mathcal{F}^{\alpha}=0, \quad U_{\alpha} \Phi^{\alpha}{ }_{\beta} S^{\beta}=-S_{\alpha} \mathcal{F}^{\alpha} \tag{4.4}
\end{equation*}
$$

Evidently, the spin transfer matrix should be skewsymmetric, $\Phi_{\alpha \beta}=-\Phi_{\beta \alpha}$, which automatically guarantees $S_{\alpha} S^{\alpha}=$ const.

When the particle is at rest, its spatial ${ }^{2} 3$-velocity disappears, $\widehat{v}^{a}=0$, and thus the 4 -velocity,

$$
\begin{equation*}
U^{\alpha}=\{\gamma, \gamma \widehat{\boldsymbol{v}}\}, \quad \gamma=\frac{1}{\sqrt{1-\widehat{v}^{2} / c^{2}}}, \tag{4.5}
\end{equation*}
$$

where $\widehat{v}^{2}=\delta_{a b} \widehat{v}^{a} \widehat{v}^{b}$, reduces to

$$
\begin{equation*}
u^{\alpha}=\delta_{0}^{\alpha}=\{1, \boldsymbol{0}\} . \tag{4.6}
\end{equation*}
$$

The 4 -velocity vector U^{α} in the laboratory frame (4.5) is related to its value in the rest frame (4.6) via the local Lorentz transformation $U^{\alpha}=\Lambda^{\alpha}{ }_{\beta} u^{\beta}$, where, in the block representation,

$$
\Lambda_{\beta}^{\alpha}=\left(\begin{array}{c|c}
\gamma & \gamma \widehat{v}_{b} / c^{2} \tag{4.7}\\
\hline \gamma \widehat{v}^{a} & \delta_{b}^{a}+(\gamma-1) \widehat{v}^{a} \widehat{v}_{b} / \widehat{v}^{2}
\end{array}\right) .
$$

Substituting (4.5) into the orthogonality relation $S_{\alpha} U^{\alpha}=0$, we find the zeroth component of the spin 4 -vector in terms of 3 -spatial components:

$$
\begin{equation*}
S^{0}=\frac{1}{c^{2}} \widehat{v}_{a} S^{a} \tag{4.8}
\end{equation*}
$$

The components of the vector S^{α} in the laboratory reference frame do not describe the physical spin of the particle: let us recall that the spin, as the 'internal angular momentum' of the particle, is defined with respect to the rest frame (= comoving frame). This physical spin will be denoted by s^{α} (in the general case, the lower case letters will also be used for any other objects in the rest frame). Since the transition to the rest frame ($U^{\alpha} \rightarrow u^{\alpha}$) is performed by means of the Lorentz transformation (4.7), we have $S^{\alpha}=\Lambda^{\alpha}{ }_{\beta} S^{\beta}$. Inverting this, we find the

[^3]relation between the physical spin and the 4 -vector in the lab frame:
\[

$$
\begin{align*}
& s^{\alpha}=\left(\Lambda^{-1}\right)^{\alpha}{ }_{\beta} S^{\beta}=\left\{0, s^{a}\right\}, \tag{4.9}\\
& s^{a}=S^{a}-\frac{\gamma}{\gamma+1} \frac{\widehat{v}^{a} \widehat{v}_{b}}{c^{2}} S^{b} . \tag{4.10}
\end{align*}
$$
\]

Substituting $S^{\alpha}=\Lambda^{\alpha}{ }_{\beta} S^{\beta}$ into (4.3), we find the dynamic equation for the physical spin:

$$
\begin{equation*}
\frac{\mathrm{d} s^{\alpha}}{\mathrm{d} \tau}=\Omega^{\alpha}{ }_{\beta} s^{\beta} \tag{4.11}
\end{equation*}
$$

Here, we introduced

$$
\begin{equation*}
\Omega_{\beta}^{\alpha}=\phi_{\beta}^{\alpha}+\omega_{\beta}^{\alpha}, \tag{4.12}
\end{equation*}
$$

where $\phi^{\alpha}{ }_{\beta}=\left(\Lambda^{-1}\right)^{\alpha}{ }_{\gamma} \Phi^{\gamma}{ }_{\delta} \Lambda^{\delta}{ }_{\beta}$ is the value of the spin transfer matrix $\Phi^{\alpha}{ }_{\beta}$ in the rest frame, and

$$
\begin{equation*}
\omega_{\beta}^{\alpha}:=-\left(\Lambda^{-1}\right)^{\alpha}{ }_{\gamma} \frac{\mathrm{d}}{\mathrm{~d} \tau} \Lambda^{\gamma}{ }_{\beta} . \tag{4.13}
\end{equation*}
$$

After substituting (4.7) into (4.13), with the help of the matrix algebra, we derive

$$
\begin{align*}
& \omega^{\alpha}{ }_{\beta}=\left(\begin{array}{c|c}
0 & -f_{b} / c^{2} \\
\hline-f^{a} & \omega^{a}{ }_{b}
\end{array}\right), \tag{4.14}\\
& \omega^{a}{ }_{b}=\frac{\gamma^{2}}{\gamma+1}\left(\frac{\widehat{v}^{a}}{c^{2}} \frac{\mathrm{~d} \widehat{v}_{b}}{\mathrm{~d} \tau}-\frac{\widehat{v}_{b}}{c^{2}} \frac{\mathrm{~d} \widehat{v}^{a}}{\mathrm{~d} \tau}\right) . \tag{4.15}
\end{align*}
$$

Here, the components $f^{\alpha}=\left(\Lambda^{-1}\right)^{\alpha}{ }_{\beta} \mathcal{F}^{\beta}$ of the 4 -vector of the force in the rest frame have the form

$$
\begin{equation*}
f^{0}=0, \quad f^{a}=\mathcal{F}^{a}-\frac{\gamma}{\gamma+1} \frac{\widehat{v}^{a} \widehat{v}_{b}}{c^{2}} \mathcal{F}^{b} \tag{4.16}
\end{equation*}
$$

and we used (4.2) to find the off-diagonal components in (4.15).

Formula (4.13) provides perhaps the simplest derivation of the Thomas precession, which is explicitly computed in (4.15). For a more detailed discussion of the Thomas precession, see Silenko [214, 215].

Calculation of the components of the spin transfer matrix in the rest frame

$$
\phi_{\beta}^{\alpha}=\left(\begin{array}{c|c}
0 & \phi^{0}{ }_{b} \tag{4.17}\\
\hline \phi^{a}{ }_{0} & \phi^{a}{ }_{b}
\end{array}\right)
$$

is simple: we need to evaluate the product of the three matrices, $\phi^{\alpha}{ }_{\beta}=\left(\Lambda^{-1}\right)^{\alpha}{ }_{\gamma} \Phi^{\gamma}{ }_{\delta} \Lambda^{\delta}{ }_{\beta}$. As a result, we find $\phi^{0}{ }_{b}=$ $\delta_{a b} \phi^{a}{ }_{0} / c^{2}$ and

$$
\begin{align*}
\phi^{a}{ }_{0} & =\gamma\left(\Phi_{0}^{a}-\frac{\gamma}{\gamma+1} \frac{\widehat{v}^{a} \widehat{v}_{b}}{c^{2}} \Phi_{0}^{b}+\Phi^{a}{ }_{b} \widehat{v}^{b}\right), \tag{4.18}\\
\phi^{a}{ }_{b} & =\Phi^{a}{ }_{b}+\frac{1}{c^{2}}\left(\varphi^{a} \widehat{v}_{b}-\varphi_{b} \widehat{v}^{a}\right), \tag{4.19}\\
\varphi^{a} & =\gamma\left(\Phi^{a}{ }_{0}+\frac{\gamma}{\gamma+1} \Phi_{b}^{a} \widehat{v}^{b}\right) . \tag{4.20}
\end{align*}
$$

The physical spin is characterized by the three nontrivial spatial components (4.9), and one can show that the 0th component (4.11) is identically zero (this is equivalent to the second compatibility condition (4.4)). As a result, the
dynamic equation for the spin (4.11) reduces to the 3 -vector form

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{s}}{\mathrm{~d} \tau}=\gamma \boldsymbol{\Omega} \times \mathbf{s} \tag{4.21}
\end{equation*}
$$

Here, the components of 3 -vectors are introduced via $\mathbf{s}=\left\{s^{a}\right\}$ and $\boldsymbol{\Omega}=\left\{-\epsilon^{a b c} \Omega_{b c} /(2 \gamma)\right\}$. Recalling (4.12), we find the angular velocity of the spin precession

$$
\begin{equation*}
\boldsymbol{\Omega}=\phi+\boldsymbol{\omega} \tag{4.22}
\end{equation*}
$$

where $\boldsymbol{\phi}=\left\{-\epsilon^{a b c} \phi_{b c} /(2 \gamma)\right\}$ and $\boldsymbol{\omega}=\left\{-\epsilon^{a b c} \omega_{b c} /(2 \gamma)\right\}$. The presence of the Lorentz factor γ in (4.21) is a technical feature which is explained by the parametrization of the spin dynamics with the help of the laboratory time t used in accelerator experiments, in contrast to the generally covariant form of equations (4.2), (4.3), and (4.11), where the proper time τ is used.

General equations (4.13)-(4.21) are valid for a spinning particle interacting with any external fields. The actual dynamics of the physical spin depends on the forces acting on the particle and on the law of spin transfer.

4.2 Interlude: gravity and inertia in particle physics

For a better understanding of the dynamics of a spinning particle on arbitrary manifolds in curvilinear coordinates, we need to recall the necessary geometric tools of the general relativity (GR) theory, where the basic structures are the spacetime metric $g_{i j}$, the coframe (tetrad) e_{i}^{α}, and the connection $\Gamma_{i \alpha}{ }^{\beta}$.

From the point of view of geometry, the role of the metric is to determine the lengths and angles on the curved manifold M, the connection determines the parallel transport of geometric objects from one point of the manifold M to another, and the fields of the frame and coframe define the bases in the tangent and cotangent spaces at any point $x \in M$. From the point of view of physics, the metric $g_{i j}$ is the potential of the gravitational field, the connection provides a realization of the principles of general covariance and equivalence and introduces the covariant derivatives D_{i} of physical variables, while the (co)frame introduces the reference system of a physical observer (since the spacetime is fourdimensional, the (co)frame is usually called a tetrad). The choice of a local observer's frame is determined by the motion of the observer and the conditions for conducting physical measurements, and orthonormal frames are particularly convenient (although other options are also possible, such as isotropic or semi-isotropic tetrads), with respect to which the local Lorentz symmetry is realized, which underlies the relativistic quantum theory and particle physics.

Let $x^{i}=\left(t, x^{a}\right)$ be the local coordinates on a fourdimensional curved manifold M. The spacetime interval

$$
\begin{equation*}
\mathrm{d} s^{2}=g_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}=g_{\alpha \beta} \vartheta^{\alpha} \vartheta^{\beta} \tag{4.23}
\end{equation*}
$$

can be written equivalently either in terms of the holonomic $\mathrm{d} x^{i}$ coframe or in terms of an anholonomic (tetrad) one: $\vartheta^{\alpha}=$ $e_{i}^{\alpha} \mathrm{d} x^{i}$. Thus, from the formal mathematical point of view, the tetrad can be viewed as the 'square root' of the metric $g_{i j}=e_{i}^{\alpha} e_{j}^{\beta} g_{\alpha \beta}$, where the flat Minkowski metric is $g_{\alpha \beta}=\operatorname{diag}\left(c^{2},-1,-1,-1\right)$; however, from a physical point of view, it is important to remember that the choice of a (co)frame determines a reference system that, in general, moves in a nontrivial way, and, in particular, is noninertial.

The tetrad is defined up to a local Lorentz transformation, and this arbitrariness is eliminated by the choice of a physical gauge. The most convenient one is the Schwinger gauge; Schwinger was the first to use it [216, 217] (and independently Dirac [218] did the same). In this gauge, the coframe matrix e_{i}^{α} and its inverse matrix e_{α}^{i} are both characterized by the trivial elements in the upper right block:

$$
e_{i}^{\alpha}=\left(\begin{array}{c|c}
e_{0}^{\hat{0}} & 0 \tag{4.24}\\
\hline e_{0}^{\hat{a}} & e_{b}^{\hat{a}}
\end{array}\right), \quad e_{\alpha}^{i}=\left(\begin{array}{c|c}
e_{\hat{0}}^{0} & 0 \\
\hline e_{\hat{0}}^{a} & e_{\hat{b}}^{a}
\end{array}\right) .
$$

In order to distinguish between coordinate and tetrad indices, we will mark the latter with a hat.

It should be noted that other gauges are also used in the literature, among which we mention the Landau-Lifshitz choice [219], in which the lower left block vanishes:

$$
e_{i}^{\alpha}=\left(\begin{array}{c|c}
e_{0}^{\hat{0}} & e_{b}^{\hat{0}} \tag{4.25}\\
\hline 0 & e_{b}^{\hat{a}}
\end{array}\right), \quad e_{\alpha}^{i}=\left(\begin{array}{c|c}
e_{\hat{0}}^{0} & e_{\hat{b}}^{0} \\
\hline 0 & e_{\hat{b}}^{a}
\end{array}\right) .
$$

Finally, yet another option arises if, with the help of the Minkowski metric $g_{\alpha \beta}=\operatorname{diag}\left(c^{2},-1,-1,-1\right)$, we move the anholonomic index down: $e_{\alpha i}:=g_{\alpha \beta} e_{i}^{\beta}$. A tetrad is called symmetric if the resulting matrix does not change when transposed,

$$
\begin{equation*}
e_{\alpha i}=e_{i \alpha} \tag{4.26}
\end{equation*}
$$

The spin dynamics in the symmetric gauge was studied by Pomeransky and Khriplovich [206, 207] and Dvornikov [220].

It is convenient to parametrize the components of the coframe in the Schwinger gauge (where $e_{a}^{\hat{0}}=0$ and $e_{\hat{a}}^{0}=0$, $a=1,2,3$), as follows:

$$
\begin{equation*}
e_{i}^{\hat{0}}=V \delta_{i}^{0}, \quad e_{i}^{\hat{a}}=W^{\hat{a}}{ }_{b}\left(\delta_{i}^{b}-c K^{b} \delta_{i}^{0}\right) . \tag{4.27}
\end{equation*}
$$

Here, the functions $V=V\left(x^{i}\right)$ and $K^{a}=K^{a}\left(x^{i}\right)$, as well as the components of the 3×3 matrix $W^{\hat{a}}{ }_{b}=W^{\hat{a}}{ }_{b}\left(x^{i}\right)$ can arbitrarily depend on the local coordinates t, x^{a}. The total number of variables $\left\{V, \mathbf{K}, W^{\hat{a}}{ }_{b}\right\}$ is $1+3+3 \times 3=13=$ $16-3$, which obviously describes an arbitrary coframe, with the three of the sixteen components eliminated by the Schwinger gauge (4.24).

The coframe (4.27) gives rise to the general form of the spacetime line element (4.23) in the Arnowitt-Deser-Misner (ADM) parametrization [221]:

$$
\begin{equation*}
\mathrm{d} s^{2}=V^{2} c^{2} \mathrm{~d} t^{2}-\delta_{\hat{a} \hat{b}} W_{c}^{\hat{a}}{ }_{c} W^{\hat{b}}{ }_{d}\left(\mathrm{~d} x^{c}-K^{c} c \mathrm{~d} t\right)\left(\mathrm{d} x^{d}-K^{d} c \mathrm{~d} t\right) . \tag{4.28}
\end{equation*}
$$

The off-diagonal components $g_{0 a}=c \delta_{\hat{c} \hat{d}} W^{\hat{c}}{ }_{a} W^{\hat{d}}{ }_{b} K^{b}$ and $g^{0 a}=K^{a} /\left(c V^{2}\right)$ are related to the rotation effects.

The Riemannian (Levi-Civita) connection is uniquely determined by the metric and the coframe from the conditions of the absence of nonmetricity (vanishing of the covariant derivative of the metric $D_{i} g_{\alpha \beta}=0$) and the zero torsion assumption $D_{i} e_{j}^{\alpha}-D_{j} e_{i}^{\alpha}=0$. Then, for the ADM parametrization (4.28) of the general spacetime metric with the tetrad (4.27), the components of the local Lorentz connection $\Gamma_{i \alpha \beta}$ have an explicit form:

$$
\begin{align*}
\Gamma_{i \hat{a} \hat{0}} & =\frac{c^{2}}{V} W_{\hat{a}}^{b} \partial_{b} V e_{i}{ }^{\hat{0}}-\frac{c}{V} \mathcal{Q}_{(\hat{a} \hat{b})} e_{i}^{\hat{b}}, \tag{4.29}\\
\Gamma_{i \hat{a} \hat{b}} & =\frac{c}{V} \mathcal{Q}_{[\hat{a} \hat{b}]} e_{i}^{\hat{o}}+\left(\mathcal{C}_{\hat{a} \hat{b} \hat{c}}+\mathcal{C}_{\hat{a} \hat{c} \hat{b}}+\mathcal{C}_{\hat{c} \hat{b} \hat{a}}\right) e_{i}^{\hat{c}} \tag{4.30}
\end{align*}
$$

where we introduced (denoting by the dot, ${ }^{\circ}=\partial_{t}$, the partial time derivative with respect to t)

$$
\begin{align*}
& \mathcal{Q}_{\hat{a} \hat{b}}=g_{\hat{a} \hat{c}} W_{\hat{b}}^{d}\left(\frac{1}{c} \dot{W}_{d}^{\hat{c}}{ }_{d}+K^{e} \partial_{e} W_{d}^{\hat{c}}+W_{e}^{\hat{c}} \partial_{d} K^{e}\right), \tag{4.31}\\
& \mathcal{C}_{\hat{a} \hat{b}}{ }^{\hat{c}}=W_{\hat{a}}^{d} W_{\hat{b}}^{e} \partial_{[d} W^{\hat{c}}{ }_{e]}, \quad \mathcal{C}_{\hat{a} \hat{b} \hat{c}}=g_{\hat{c} \hat{d}} \mathcal{C}_{\hat{a} \hat{b}}{ }^{\hat{d}} \tag{4.32}
\end{align*}
$$

As usual, the parentheses ${ }_{(a b)}$ and square brackets ${ }_{[a b]}$ denote, respectively, the symmetrization and antisymmetrization of the marked indices.

4.3 Spin in gravitational and electromagnetic fields

The general formalism of the Frenkel-Thomas model describes the motion of the spin in electromagnetic and gravitational (inertial) fields, as a particular case.

Let us consider a relativistic particle with mass m, electric charge q, anomalous magnetic moment (AMM) μ^{\prime}, and $\operatorname{EDM} d$,

$$
\begin{equation*}
\mu^{\prime}=G \frac{q \hbar}{2 m}, \quad d=\eta^{\mathrm{EDM}} \frac{q \hbar}{2 m c}, \tag{4.33}
\end{equation*}
$$

where G is the magnetic anomaly, $G=(g-2) / 2, g$ is the gyromagnetic ratio, and G and η^{EDM} characterize the AMM and EDM values, respectively. The dynamics of a particle in the gravitational and electromagnetic fields is described by the system of equations [222, 223]

$$
\begin{align*}
& \frac{\mathrm{D} U^{\alpha}}{\mathrm{d} \tau}=\frac{\mathrm{d} U^{\alpha}}{\mathrm{d} \tau}+U^{i} \Gamma_{i \beta}{ }^{\alpha} U^{\beta}=-\frac{q}{m} g^{\alpha \beta} F_{\beta \gamma} U^{\gamma}, \tag{4.34}\\
& \frac{\mathrm{D} S^{\alpha}}{\mathrm{d} \tau}=\frac{\mathrm{d} S^{\alpha}}{\mathrm{d} \tau}+U^{i} \Gamma_{i \beta}{ }^{\alpha} S^{\beta}=-\frac{q}{m} g^{\alpha \beta} F_{\beta \gamma} S^{\gamma} \\
&-\frac{2}{\hbar}\left[M^{\alpha}{ }_{\beta}+\frac{1}{c^{2}}\left(M_{\beta \gamma} U^{\alpha} U^{\gamma}-M^{\alpha \gamma} U_{\beta} U_{\gamma}\right)\right] S^{\beta} . \tag{4.35}
\end{align*}
$$

Here, it was convenient to introduce the generalized polarization tensor

$$
\begin{equation*}
M_{\alpha \beta}=\mu^{\prime} F_{\alpha \beta}+c d \widetilde{F}_{\alpha \beta} \tag{4.36}
\end{equation*}
$$

(where $\widetilde{F}_{\alpha \beta}=(1 / 2) \epsilon_{\alpha \beta \mu \nu} F^{\mu v}$) with components

$$
\begin{equation*}
M_{\hat{0} \hat{a}}=c \mathcal{P}_{a}, \quad M_{\hat{a} \hat{b}}=\epsilon_{a b c} \mathcal{M}^{c} \tag{4.37}
\end{equation*}
$$

or, in the 3 -vector form,

$$
\begin{equation*}
\boldsymbol{\mathcal { M }}=\mu^{\prime} \boldsymbol{B}+d \mathfrak{E}, \quad \mathcal{P}=c d \boldsymbol{B}-\frac{\mu^{\prime} \mathbf{E}}{c} \tag{4.38}
\end{equation*}
$$

The components of the electromagnetic field strength tensor $F_{\alpha \beta}=e_{\alpha}^{i} e_{\beta}^{j} F_{i j}$ are calculated with respect to the anholonomic local Lorentz frame of reference,

$$
\begin{equation*}
\mathfrak{E}_{a}=\left\{F_{\hat{1} \hat{0}}, F_{\hat{2} \hat{0}}, F_{\hat{3} \hat{0}}\right\}, \quad \boldsymbol{B}^{a}=\left\{F_{\hat{2} \hat{3}}, F_{\hat{3} \hat{1}}, F_{\hat{1} \hat{2}}\right\}, \tag{4.39}
\end{equation*}
$$

and are related to the holonomic components $\mathbf{E}=$ $\left\{F_{10}, F_{20}, F_{30}\right\}=-\nabla \Phi-\partial_{t} \mathbf{A}$ and $\mathbf{B}=\left\{F_{23}, F_{31}, F_{12}\right\}=\boldsymbol{\nabla} \times \mathbf{A}$ of the Maxwell tensor $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}$ by means of the tetrad fields

$$
\begin{align*}
\mathfrak{E}_{a} & =\frac{1}{V} W^{b}{ }_{\hat{a}}(\mathbf{E}+c \mathbf{K} \times \mathbf{B})_{b}, \tag{4.40}\\
\boldsymbol{B}^{a} & =\frac{1}{w} W^{\hat{a}}{ }_{b} \mathbf{B}^{b}, \tag{4.41}
\end{align*}
$$

where $w=\operatorname{det} W^{\hat{a}}{ }_{b}$.

In accordance with the general formalism of the model of a particle with spin, we can write down the explicit form of the force and the spin transfer matrix for the system (4.34), (4.35):

$$
\begin{align*}
\mathcal{F}^{\alpha} & =-U^{i} \Gamma_{i \beta}{ }^{\alpha} U^{\beta}-\frac{q}{m} F^{\alpha}{ }_{\beta} U^{\beta}, \tag{4.42}\\
\Phi^{\alpha}{ }_{\beta} & =-U^{i} \Gamma_{i \beta}{ }^{\alpha}-\frac{q}{m} F^{\alpha}{ }_{\beta} \\
& -\frac{2}{\hbar}\left[M^{\alpha}{ }_{\beta}+\frac{1}{c^{2}}\left(U^{\alpha} M_{\beta \gamma} U^{\gamma}-U_{\beta} M^{\alpha \gamma} U_{\gamma}\right)\right] . \tag{4.43}
\end{align*}
$$

One can check that the compatibility conditions (4.4) are satisfied.

Substituting (4.42), (4.43), and (4.5) into (4.18)-(4.20) and (4.15), we derive

$$
\begin{equation*}
\boldsymbol{\phi}=\boldsymbol{\phi}^{(\mathrm{e})}+\boldsymbol{\phi}^{(\mathrm{g})}, \quad \boldsymbol{\omega}=\boldsymbol{\omega}^{(\mathrm{e})}+\boldsymbol{\omega}^{(\mathrm{g})} \tag{4.44}
\end{equation*}
$$

The contribution of the electromagnetic field reads

$$
\begin{align*}
\boldsymbol{\phi}^{(\mathrm{e})}= & \frac{q}{m}\left[-\boldsymbol{B}+\frac{\gamma}{\gamma+1} \frac{\widehat{\boldsymbol{v}}(\widehat{\boldsymbol{v}} \boldsymbol{B})}{c^{2}}+\frac{\widehat{\boldsymbol{v}} \times \mathfrak{F}}{c^{2}}\right] \\
& +\frac{2}{\hbar}\left[-\boldsymbol{\mathcal { M }}+\frac{\gamma}{\gamma+1} \frac{\widehat{\boldsymbol{v}}(\widehat{\boldsymbol{v}} \boldsymbol{\mathcal { M }})}{c^{2}}-\frac{\widehat{\boldsymbol{v}} \times \boldsymbol{\mathcal { P }}}{c}\right] \tag{4.45}\\
\boldsymbol{\omega}^{(\mathrm{e})}= & \frac{q}{m} \frac{\gamma-1}{\gamma}\left[\boldsymbol{B}-\frac{\widehat{\boldsymbol{v}}(\widehat{\boldsymbol{v}} \boldsymbol{B})+\widehat{\boldsymbol{v}} \times \boldsymbol{E}}{\widehat{v}^{2}}\right] \tag{4.46}
\end{align*}
$$

and the contributions of the gravitational field are

$$
\begin{align*}
& \boldsymbol{\phi}_{a}^{(\mathrm{g})}=U^{i} \epsilon_{a b c}\left[\frac{1}{2 \gamma} \Gamma_{i}^{c b}+\frac{\gamma}{\gamma+1} \frac{\widehat{v}_{d}}{c^{2}} \Gamma_{i d}^{b} \widehat{v}^{c}+\frac{1}{c^{2}} \Gamma_{i 0}^{b} \widehat{v}^{c}\right], \tag{4.47}\\
& \boldsymbol{\omega}_{a}^{(\mathrm{g})}=-\frac{\gamma}{\gamma+1} U^{i} \epsilon_{a b c}\left[\frac{\widehat{v}_{d}}{c^{2}} \Gamma_{i d}^{b} \widehat{v}^{c}+\frac{1}{c^{2}} \Gamma_{i \hat{0}}^{b} \widehat{v}^{c}\right] . \tag{4.48}
\end{align*}
$$

The physical spin precession is the sum (4.22). The result reads explicitly

$$
\begin{equation*}
\boldsymbol{\Omega}=\boldsymbol{\Omega}^{(\mathrm{e})}+\boldsymbol{\Omega}^{(\mathrm{g})} \tag{4.49}
\end{equation*}
$$

where for the electromagnetic $\boldsymbol{\Omega}^{(\mathrm{e})}=\boldsymbol{\phi}^{(\mathrm{e})}+\boldsymbol{\omega}^{(\mathrm{e})}$ and for the gravitational $\boldsymbol{\Omega}^{(\mathrm{g})}=\phi^{(\mathrm{g})}+\boldsymbol{\omega}^{(\mathrm{g})}$ parts we find, respectively,

$$
\begin{align*}
\boldsymbol{\Omega}^{(\mathrm{e})} & =\frac{q}{m}\left[-\frac{1}{\gamma} \boldsymbol{B}+\frac{1}{\gamma+1} \frac{\widehat{\boldsymbol{v}} \times \boldsymbol{\mathfrak { F }}}{c^{2}}\right] \\
& +\frac{2}{\hbar}\left[-\boldsymbol{\mathcal { M }}+\frac{\gamma}{\gamma+1} \frac{\widehat{\boldsymbol{v}}(\widehat{\boldsymbol{v}} \mathcal{M})}{c^{2}}-\frac{\widehat{\boldsymbol{v}} \times \boldsymbol{\mathcal { P }}}{c}\right] \tag{4.50}\\
\mathbf{\Omega}_{a}^{(\mathrm{g})} & =\epsilon_{a b c} U^{i}\left[\frac{1}{2 \gamma} \Gamma_{i}^{c b}+\frac{1}{\gamma+1} \Gamma_{i \hat{0}}^{b} \frac{\widehat{v}^{c}}{c^{2}}\right] \tag{4.51}
\end{align*}
$$

The exact formula (4.51) can also be used in the flat spacetime for the noninertial frames of reference and curvilinear coordinates, since the $\Gamma_{i \beta}{ }^{\alpha}$ connection contains information about both the gravitational and inertial effects.

5. Quantum Dirac fermion dynamics in external classical fields

5.1 Generally covariant Dirac equation

The study of quantum systems in a gravitational field and, in particular, the study of the generally relativistic dynamics of
fermions on a curved manifold, have a long history, which began almost immediately after the establishment of the Dirac spinor equation [218, 224-230]. The work of Kobzarev and Okun [231], who demonstrated that, unlike the electric dipole moment, there should be no anomalous 'gravitational dipole moments' even if there are $C P$-noninvariant fermion interactions, deserves special mention.

The most general description of electromagnetic interactions should take into account the possible non-minimal coupling with the AMM and EDM of the particle, and the corresponding covariant Dirac equation for the spinor field Ψ with the rest mass m, AMM μ^{\prime}, and EDM d has the form [232]

$$
\begin{equation*}
\left(\mathrm{i} \hbar \gamma^{\alpha} D_{\alpha}-m c+\frac{\mu^{\prime}}{2 c} \sigma^{\alpha \beta} F_{\alpha \beta}+\frac{d}{2} \sigma^{\alpha \beta} \widetilde{F}_{\alpha \beta}\right) \Psi=0 . \tag{5.1}
\end{equation*}
$$

The spinor covariant derivative

$$
\begin{equation*}
D_{\alpha}=e_{\alpha}^{i} D_{i}, \quad D_{i}=\partial_{i}-\frac{\mathrm{i} q}{\hbar} A_{i}+\frac{\mathrm{i}}{4} \sigma^{\alpha \beta} \Gamma_{i \alpha \beta} \tag{5.2}
\end{equation*}
$$

describes the minimal interaction of a fermion particle with external classical fields: the electromagnetic 4-potential $A_{i}=(-\Phi, \mathbf{A})$ (coupled to the electric charge q of the fermion) and the potentials of the gravitational field $\left(e_{i}^{\alpha}, \Gamma_{i}^{\alpha \beta}\right)$. The tetrad indices of the Dirac matrices reflect the definition of the three-component physical spin (pseudo) vector in the local Lorentz rest frame of a particle. In the limit of the flat Minkowski spacetime, equation (5.1) reduces to the Dirac-Pauli equation for a particle with AMM and EDM [233].

We can recast Dirac equation (5.1) into the Schrödinger form, but the corresponding 'naive' Hamiltonian is nonHermitian (see, e.g., [234]). This problem is solved by rescaling the spinor wave function $\psi=\left(\sqrt{-g} e_{\hat{0}}^{0}\right)^{1 / 2} \Psi$, and the resulting Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial \psi}{\partial t}=\mathcal{H} \psi \tag{5.3}
\end{equation*}
$$

then contains the Hermitian (and self-adjoint) Hamiltonian
$\mathcal{H}=\beta m c^{2} V+q \Phi+\frac{c}{2}\left(\pi_{b} \mathcal{F}^{b}{ }_{a} \alpha^{a}+\alpha^{a} \mathcal{F}^{b}{ }_{a} \pi_{b}\right)$

$$
\begin{equation*}
+\frac{c}{2}(\mathbf{K} \pi+\pi \mathbf{K})+\frac{\hbar c}{4}\left(\boldsymbol{\Xi} \boldsymbol{\Sigma}-\Upsilon_{\gamma_{5}}\right)-\beta V(\boldsymbol{\Sigma} \boldsymbol{\mathcal { M }}+\mathrm{i} \boldsymbol{\alpha} \boldsymbol{\mathcal { P }}) \tag{5.4}
\end{equation*}
$$

Here, as usual, $\alpha^{a}=\beta \gamma^{a}(a, b, c=1,2,3)$ and the spin matrices $\Sigma^{1}=\mathrm{i} \gamma^{2} \gamma^{\hat{3}}, \quad \Sigma^{2}=\mathrm{i} \gamma^{3} \gamma^{\hat{1}}, \quad \Sigma^{3}=\mathrm{i} \gamma^{\hat{1}} \gamma^{2}$, and $\gamma_{5}=$ $\mathrm{i} \alpha^{\hat{1}} \alpha^{2} \alpha^{3}$. The boldface font is used to denote the 3 -vectors $\mathbf{K}=\left\{K^{a}\right\}, \boldsymbol{\alpha}=\left\{\alpha^{a}\right\}, \boldsymbol{\Sigma}=\left\{\Sigma^{a}\right\}, \boldsymbol{\pi}=\left\{\pi_{a}\right\}$. The last object denotes the kinetic momentum operator, $\pi=-\mathrm{i} \hbar \boldsymbol{\nabla}-q \mathbf{A}$. The minimal coupling gives rise to the terms in (5.4) with the objects

$$
\begin{align*}
& \mathcal{F}_{a}^{b}=V W_{\hat{a}}^{b} \tag{5.5}\\
& r=V \epsilon^{\hat{a} \hat{b} \hat{c}} \Gamma_{\hat{a} \hat{b} \hat{c}}=-V \epsilon^{\hat{a} \hat{b} \hat{c}} \mathcal{C}_{\hat{a} \hat{b} \hat{c}} \tag{5.6}\\
& \Xi^{a}=\frac{V}{c} \epsilon^{\hat{a} \hat{b} \hat{c}} \Gamma_{\hat{0} \hat{b} \hat{c}}=\epsilon_{\hat{a} \hat{b} \hat{c}} \mathcal{Q}^{\hat{b} \hat{c}} \tag{5.7}
\end{align*}
$$

while the terms with \mathcal{M}^{a} and $\boldsymbol{\mathcal { P }}_{a}$, which we defined in (4.38), are responsible for the nonminimal interaction.

5.2 Foldy-Wouthuysen representation

The spin of particles is a purely quantum quantity. Accordingly, one needs to be careful in the treatment of the
interaction of the quantum spin with external classical fields, and the formalism described above requires an adequate physical interpretation. In standard textbooks on the quantum field theory, an accurate definition of the spin and angular momentum operators of a relativistic particle is missing. For example, in the excellent and popular textbook by Ryder, the author refers the reader interested in this question to the special literature ([235], reference [15] in Chapter 2). At the same time, the 'proton spin puzzle' has remained a topical issue in the physics of hard hadron processes for about 35 years: experiments on the scattering of polarized electrons and muons on polarized protons have shown that quarks in protons carry only a relatively small part $(\leqslant 30 \%)$ of the proton spin, and the orbital moments of quarks and gluons play a significant role (see reviews [83-85, 236] and references therein). Accordingly, the deep inelastic scattering on polarized protons and deuterons occupies an important place [237] in the experimental program of the new electron-ion collider eIC to be built at Brookhaven.

The question of the correct interpretation of the orbital momentum is also crucial in the recently booming physics of so-called twisted states [238-242]. Finally, it may seem quite surprising to see the very existence of such a subject as the relativistic quantum chemistry of heavy atoms, in which the relativistic description of an electron spin is of fundamental importance (see Refs [243-252] and references therein).

The key point in describing this variety of phenomena is relativistic quantum mechanics, based on the pioneering work of Foldy and Wouthuysen (FW) [253] and its further development. The simple and trivial relation between quan-tum-mechanical operators and the corresponding classical variables is a distinctive feature of Schrödinger's nonrelativistic quantum mechanics (QM). This relation among the quantum operators of the energy, momentum, and angular momentum is distorted in the naive Hamiltonian interpretation of the Dirac equation. The correct transformation of the Dirac equation to the Schrödinger representation was given in 1950 by Foldy and Wouthuysen [253]. In this approach, understanding the role of the particle position operator [206, 207, 254-256] was essential. In particular, a determination of the position operator is important for the construction of the Berry curvature [239, 240, 257-265]. Unfortunately, the corresponding achievements are not properly reflected in books on QM and are not taken into account by many authors (see, for example, monograph [244], articles [238241, 266-272], and the related criticism and literature in [273, 274]). There are also quite a number of misleading statements about the existence of a spin-orbital interaction for free Dirac particles [238-241]. We will focus here only on the fundamental behavior of the spin of relativistic particles in external fields and on the role of the gravitational field and the rotation of Earth in high-precision spin experiments.

Below, we mostly follow Ref. [274]. At the very foundation, there is the well-known 10-dimensional Poincaré algebra with the 4 -momentum p_{μ} and the angular momentum $j_{\mu \nu}=-j_{\nu \mu}$ generators, where $\mu, v=0,1,2,3[196,254,275$, 276]. Let us split the 4 -momentum and the angular momentum into the temporal and spatial components: $H=p_{0}$, $\mathbf{p}=\left\{p_{a}\right\}, \mathbf{j}=\left\{\epsilon^{a b c} j_{b c} / 2\right\}$, and $\mathbf{\kappa}=\left\{j_{0 a}\right\}$. In the resulting set, \mathbf{p}, H are the generators of the infinitesimal spatial and temporal translations, and \mathbf{j} and $\mathbf{\kappa}$ generate the infinitesimal rotations and the Lorentz transformations (boosts) that satisfy the known commutation relations [254, 275-279]. They should be complemented by operators of the orbital
angular momentum (OAM) and the spin part of the total angular momentum:

$$
\begin{equation*}
\mathbf{j}=\mathbf{l}+\mathbf{s}, \quad \mathbf{l} \equiv \mathbf{q} \times \mathbf{p} . \tag{5.8}
\end{equation*}
$$

The coordinates q_{a} should satisfy the commutation relations [254, 275, 276]

$$
\begin{align*}
& {\left[q_{a}, p_{b}\right]=\mathrm{i} \hbar \delta_{a b}, \quad\left[q_{a}, j_{b}\right]=\mathrm{i} \hbar \epsilon_{a b c} q_{c}} \tag{5.9}\\
& {\left[q_{a}, \kappa_{b}\right]=\frac{1}{2 c^{2}}\left(q_{b}\left[q_{a}, H\right]+\left[q_{a}, H\right] q_{b}\right)-\mathrm{i} \hbar t \delta_{a b}}
\end{align*}
$$

and thus

$$
\begin{equation*}
\left[l_{b}, p_{b}\right]=\mathrm{i} \hbar \epsilon_{a b c} p_{c}, \quad\left[s_{a}, p_{b}\right]=0 \tag{5.10}
\end{equation*}
$$

The commutativity of the particle coordinates

$$
\begin{equation*}
\left[q_{a}, q_{b}\right]=0 \tag{5.11}
\end{equation*}
$$

turns out to be a very nontrivial condition [254, 276]. The separation of the spin and the orbital angular momentum is fixed by the commutation relations [254, 276, 280]

$$
\begin{align*}
& {\left[q_{a}, l_{b}\right]=\mathrm{i} \hbar \epsilon_{a b c} q_{c}, \quad\left[q_{a}, s_{b}\right]=0, \quad\left[p_{a}, s_{b}\right]=0} \tag{5.12}\\
& {\left[l_{a}, l_{b}\right]=\mathrm{i} \hbar \epsilon_{a b c} l_{c}, \quad\left[s_{a}, s_{b}\right]=\mathrm{i} \hbar \epsilon_{a b c} s_{c}, \quad\left[l_{a}, s_{b}\right]=0 .}
\end{align*}
$$

For a free spinning particle, we have [276]

$$
\begin{align*}
& \mathbf{j}=\mathbf{l}+\mathbf{s}, \quad \mathbf{l} \equiv \mathbf{q} \times \mathbf{p}, \\
& \mathbf{\kappa}=\frac{1}{2 c^{2}}(\mathbf{q} \mathcal{H}+\mathcal{H} \mathbf{q})-\frac{\mathbf{s} \times \mathbf{p}}{\beta m c^{2}+\mathcal{H}}-t \mathbf{p}, \tag{5.13}\\
& \mathcal{H}=\beta \epsilon, \quad \epsilon=\sqrt{m^{2} c^{4}+c^{2} \mathbf{p}^{2}},
\end{align*}
$$

where \mathbf{q} is the position operator. The last term in the formula for $\boldsymbol{\kappa}$ is missing in Refs [276, 277, 281, 282]. The spin is a threecomponent (pseudo) vector defined here in the particle's rest frame [274], whereas the OAM is always defined in the laboratory frame. Evidently, Hamiltonian (5.13) commutes with the OAM and spin operators. However, in the set of Dirac operators $\mathbf{p}, \mathcal{H}_{\mathrm{D}}, \mathbf{j}, \mathbf{\kappa}, \mathbf{q}, \mathbf{s}_{\mathrm{D}}$, where $\mathbf{s}_{\mathrm{D}}=\hbar \mathbf{\Sigma} / 2$ and the Dirac radius vector \mathbf{r} is the position operator, we find that all the Poincaré algebra relations are satisfied, except for the commutators containing $\boldsymbol{\kappa}$.

One can construct the total angular momentum from the spatial parts of the two antisymmetric tensors $L^{\mu \nu}$ and $S^{\mu \nu}$:

$$
\begin{equation*}
J^{\mu v}=L^{\mu v}+S^{\mu v}=x^{\mu} p^{v}-x^{v} p^{\mu}+S^{\mu v} \tag{5.14}
\end{equation*}
$$

Let us turn to the widely accepted description of the spin by the four-component operator [234, 256]

$$
\begin{equation*}
a^{\mu}=\left(a^{0}, \mathbf{a}\right)=\left(\frac{\mathbf{p s}}{m}, \mathbf{s}+\frac{\mathbf{p}(\mathbf{s p})}{m\left(\epsilon+m c^{2}\right)}\right), \tag{5.15}
\end{equation*}
$$

obtained from \mathbf{s} by a Lorentz transformation. Then, one can define the antisymmetric tensor

$$
\begin{equation*}
S^{\mu \nu}=\frac{1}{m c} \varepsilon^{\mu \nu \alpha \beta} a_{\alpha} p_{\beta}, \tag{5.16}
\end{equation*}
$$

in terms of which

$$
\begin{equation*}
a^{\mu}=\frac{1}{2 m c} \varepsilon^{\alpha \beta v \mu} p_{\alpha} S_{\beta v} \tag{5.17}
\end{equation*}
$$

The orbital angular momentum operator \mathbf{I} is the spatial part of the antisymmetric tensor $L^{\mu \nu}=(-\boldsymbol{\kappa},-\mathbf{l})$, where $\mathbf{\kappa}=$ $(\mathbf{q} \mathcal{H}+\mathcal{H} \mathbf{q}) / 2 c^{2}-t \mathbf{p}$. The explicit form of \mathbf{I} is invariant with respect to Lorentz transformations. Similarly, the spatial part of $S^{\mu v}$ is [274]

$$
\begin{equation*}
\zeta=\mathbf{s}-\frac{\mathbf{p} \times(\mathbf{p} \times \mathbf{s})}{m\left(\epsilon+m c^{2}\right)} \tag{5.18}
\end{equation*}
$$

and it would be logical to use it as a definition of the spin operator.

In the FW representation, the unnecessary components of tensor (5.16) can be removed by a redefinition of the particle position operator [254, 281, 283],

$$
\begin{equation*}
\boldsymbol{X}=\mathbf{x}+\frac{\mathbf{s} \times \mathbf{p}}{m\left(\epsilon+m c^{2}\right)} \tag{5.19}
\end{equation*}
$$

where \mathbf{x} is the usual position operator of the center of charges. The angular momentum operator in the FW representation has the usual form [254, 281, 283]

$$
\begin{equation*}
\mathcal{L}=\boldsymbol{\mathcal { X }} \times \mathbf{p} \tag{5.20}
\end{equation*}
$$

and the total angular momentum operator retains the standard form

$$
\begin{equation*}
\mathbf{j}=\mathbf{l}+\mathbf{s}=\mathcal{L}+\zeta \tag{5.21}
\end{equation*}
$$

We emphasize that $\boldsymbol{\mathcal { X }}$ and ζ correspond to case (d) in Pryce's classification [254] and are defined in the laboratory frame. Additional arguments for this choice of operators of \mathcal{X} and $\boldsymbol{\zeta}$ are presented in Refs [206, 207, 284-288].

It is easy to understand why just \mathbf{x}, \mathbf{l}, and \mathbf{s} are the generally accepted operators of the position, OAM, and spin. The commutativity of the coordinates $x_{a}(a=1,2,3)$ allows one to use the ordinary geometry. The operators I and \mathbf{s}, despite the fundamental difference between their definitions, satisfy the familiar commutation relations (see Eqn (5.12)), providing their consistent quantization. In contrast, in the alternative set of the basic operators $\boldsymbol{\mathcal { X }}, \boldsymbol{\mathcal { L }}$, and ζ, the coordinates $\mathcal{X}_{a}(a=1,2,3)$ do not commute, and one should use the noncommutative geometry. In addition, the OAM and spin operators, \mathcal{L} and ζ, do not satisfy the commutation relations (5.12) and are not quantized.

The problem of the correspondence between the nonrelativistic and relativistic quantum mechanics in the FW representation is rigorously solved in Ref. [289]. By making use of the FW representation, the transition to the classical limit in the relativistic QM for particles with an arbitrary spin corresponds to the Wentzel-Kramers-Brillouin approximation in the zeroth order of \hbar, which is similar to the nonrelativistic QM. As a result, when the conditions of this approximation are satisfied, the use of the FW representation allows one to reduce the construction of the classical limit in the relativistic QM to a replacement of operators in the Hamiltonian and in the quantum-mechanical equations of motion by the corresponding classical quantities [289].

Let us now return to the analysis of the quantum dynamics of a fermion particle in external fields. To determine the physical content of the Schrödinger equation (5.3), one should move to the FW representation. A purely gravitational case without the electromagnetic field was studied in Refs [209, 210, 290], and here we consider the general case taking into account both the gravity and the electromagnetism.

The exact FW transformation is discussed in detail in Refs [253, 291, 292]. We can construct the FW transformation for the Dirac Hamiltonian (5.4) with the general method developed in Refs [293-295]. This allows us to obtain the FW Hamiltonian, which is exact in all terms of the zeroth and the first orders in the Planck constant \hbar and also includes the second-order terms that describe the contact interactions. Here, it is sufficient for us to take into account only the firstorder terms in $\boldsymbol{\Xi}, \Upsilon, \mathcal{P}, \boldsymbol{\mathcal { M }}$. Omitting nonessential technical details (see Refs [209, 210, 232, 290] for the computational methods), we find the FW Hamiltonian:

$$
\begin{equation*}
\mathcal{H}_{\mathrm{FW}}=\beta \epsilon^{\prime}+q \Phi+\frac{c}{2}(\mathbf{K} \boldsymbol{\pi}+\boldsymbol{\pi} \mathbf{K})+\frac{\hbar}{2} \boldsymbol{\Pi} \boldsymbol{\Omega}_{(1)}+\frac{\hbar}{2} \boldsymbol{\Sigma} \boldsymbol{\Omega}_{(2)} \tag{5.22}
\end{equation*}
$$

Here, $\boldsymbol{\Pi}=\beta \boldsymbol{\Sigma}$, and we have in the semiclassical limit

$$
\begin{align*}
\epsilon^{\prime} & =\sqrt{m^{2} c^{4} V^{2}+c^{2} \delta^{c d} \mathcal{F}^{a}{ }_{c} \mathcal{F}^{b}{ }_{d} \pi_{a} \pi_{b}}, \tag{5.23}\\
\Omega_{(1)}^{a} & =\frac{c^{2}}{\epsilon^{\prime}} \mathcal{F}^{d}{ }_{c} \pi_{d}\left[\frac{1}{2} r \delta^{a c}-\epsilon^{a b e} V \mathcal{C}_{b e}{ }^{c}\right. \\
& +\frac{\epsilon^{\prime}}{\epsilon^{\prime}+m c^{2} V} \epsilon^{a b c} W^{e}{ }_{b} \partial_{e} V \\
& \left.+\frac{e V^{2}}{\epsilon^{\prime}+m c^{2} V} \epsilon^{a c b} \mathfrak{E}_{b}-\frac{2 V}{c \hbar} \epsilon^{a c b} \boldsymbol{\mathcal { P }}_{b}\right], \tag{5.24}\\
\Omega_{(2)}^{a} & =\frac{c}{2} \Xi^{a}-\frac{c^{3}}{\epsilon^{\prime}\left(\epsilon^{\prime}+m c^{2} V\right)} \epsilon^{a b c} \mathcal{Q}_{(b d)} \delta^{d n} \mathcal{F}^{k}{ }_{n} \pi_{k} \mathcal{F}_{c}^{l} \pi_{l} \\
& -\frac{e c^{2} V^{2}}{\epsilon^{\prime}} \mathfrak{B}^{a}+\frac{2 V}{\hbar}\left[-\mathcal{M}^{a}+\frac{c^{2}}{\epsilon^{\prime}\left(\epsilon^{\prime}+m c^{2} V\right)}\right. \\
& \left.\times \delta^{a n} \mathcal{F}^{c}{ }_{n} \pi_{c} \mathcal{F}^{d}{ }_{b} \pi_{d} \mathcal{M}^{b}\right] . \tag{5.25}
\end{align*}
$$

5.3 Quantum spin dynamics vs classical theory of spin

To analyze the spin dynamics, it is necessary to evaluate the commutator of the polarization operator $\boldsymbol{\Pi}=\beta \boldsymbol{\Sigma}$ with the FW Hamiltonian (5.22). This yields the dynamic equation describing the spin precession in external gravitational and electromagnetic fields:

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{\Pi}}{\mathrm{~d} t}=\frac{\mathrm{i}}{\hbar}\left[\mathcal{H}_{\mathrm{FW}}, \boldsymbol{\Pi}\right]=\boldsymbol{\Omega}_{(1)} \times \boldsymbol{\Sigma}+\boldsymbol{\Omega}_{(2)} \times \boldsymbol{\Pi} . \tag{5.26}
\end{equation*}
$$

For practical problems in high-energy particle physics in accelerators and storage rings, it is sufficient to work with quasiclassical quantities and equations. This results in the following explicit quasiclassical equation describing the precession of the mean spin 3 -vector \mathbf{s} :

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{s}}{\mathrm{~d} t}=\boldsymbol{\Omega} \times \mathbf{s}=\left(\boldsymbol{\Omega}_{(1)}+\boldsymbol{\Omega}_{(2)}\right) \times \mathbf{s} \tag{5.27}
\end{equation*}
$$

Using Eqn (5.22), we also obtain the velocity operator in the quasiclassical approximation:

$$
\begin{align*}
\frac{\mathrm{d} x^{a}}{\mathrm{~d} t} & =\frac{\mathrm{i}}{\hbar}\left[\mathcal{H}_{\mathrm{FW}}, x^{a}\right]=\beta \frac{\partial \epsilon^{\prime}}{\partial \pi_{a}}+c K^{a} \\
& =\beta \frac{c^{2}}{\epsilon^{\prime}} \mathcal{F}^{a}{ }_{b} \delta^{b c} \mathcal{F}^{d}{ }_{c} \pi_{d}+c K^{a} \tag{5.28}
\end{align*}
$$

Let us compare this with the relation between the holonomic and anholonomic components of the particle velocity. It is convenient to parametrize the anholonomic 4-velocity com-
ponents by the spatial 3 -velocity $\widehat{v}^{a}(a=1,2,3)$, as shown in (4.5). We then have

$$
\begin{align*}
& U^{a}=\frac{\mathrm{d} x^{a}}{\mathrm{~d} \tau}=e_{\alpha}^{a} U^{\alpha}=\frac{\gamma}{V}\left(c K^{a}+V W_{\hat{b}}^{a} \widehat{v}^{b}\right), \tag{5.29}\\
& U^{0}=\frac{\mathrm{d} t}{\mathrm{~d} \tau}=e_{\alpha}^{0} U^{\alpha}=\frac{\gamma}{V} \tag{5.30}
\end{align*}
$$

and, therefore, we derive for the components of the holonomic velocity

$$
\begin{equation*}
\frac{\mathrm{d} x^{a}}{\mathrm{~d} t}=\frac{U^{a}}{U^{0}}=\mathcal{F}^{a}{ }_{b} \widehat{v}^{b}+c K^{a} . \tag{5.31}
\end{equation*}
$$

Comparing this equation with Eqn (5.28), we thus can identify the velocity operator in the Schwinger gauge (4.27) with

$$
\begin{equation*}
\beta \frac{c^{2}}{\epsilon^{\prime}} \mathcal{F}^{b}{ }_{a} \pi_{b}=\widehat{v}_{a} . \tag{5.32}
\end{equation*}
$$

From this, we find $\delta^{c d} \mathcal{F}^{a}{ }_{c} \mathcal{F}^{b}{ }_{d} \pi_{a} \pi_{b}=\epsilon^{\prime 2} \widehat{v}^{2} / c^{2}$, and, by making use of this in Eqn (5.23), we obtain $\epsilon^{\prime 2}=m^{2} c^{4} V^{2}+$ $\epsilon^{\prime 2} \widehat{v}^{2} / c^{2}$, and, consequently,

$$
\begin{equation*}
\epsilon^{\prime}=\gamma m c^{2} V . \tag{5.33}
\end{equation*}
$$

The two equations, (5.32) and (5.33), are crucial for demonstrating the full consistency between the quantum and the classical spin dynamics. Namely, from Eqns (5.32) and (5.33), we derive

$$
\begin{align*}
& \frac{\epsilon^{\prime}}{\epsilon^{\prime}+m c^{2} V}=\frac{\gamma}{1+\gamma}, \tag{5.34}\\
& \frac{c^{3}}{\epsilon^{\prime}\left(\epsilon^{\prime}+m c^{2} V\right)} \mathcal{F}^{b}{ }_{a} \pi_{b} \mathcal{F}^{d}{ }_{c} \pi_{d}=\frac{\gamma}{1+\gamma} \frac{\widehat{v}_{a} \widehat{v}_{c}}{c}, \tag{5.35}
\end{align*}
$$

and that makes it possible to finally establish the quantumclassical correspondence and to compare the classical model of a spinning particle in external fields with the quantum dynamics of a Dirac fermion.

Substituting Eqns (4.29) and (4.30), we can recast Eqn (4.51) into

$$
\begin{equation*}
\boldsymbol{\Omega}^{(\mathrm{g})}=-\frac{1}{\gamma} \boldsymbol{B}+\frac{1}{\gamma+1} \frac{\widehat{\boldsymbol{v}} \times \boldsymbol{\mathcal { E }}}{c^{2}} \tag{5.36}
\end{equation*}
$$

where the generalized gravitoelectric and gravitomagnetic fields are defined by

$$
\begin{align*}
\mathcal{E}^{a} & =\frac{\gamma}{V} \delta^{a c}\left(c \mathcal{Q}_{(\hat{b} \hat{b})} \widehat{v}^{b}-c^{2} W^{b}{ }_{\hat{c}} \partial_{b} V\right) \tag{5.37}\\
\mathcal{B}^{a} & =\frac{\gamma}{V}\left(-\frac{c}{2} \Xi^{a}-\frac{1}{2} r \widehat{v}^{a}+\epsilon^{a b c} V \mathcal{C}_{b c}{ }^{d} \widehat{v}_{d}\right) \tag{5.38}
\end{align*}
$$

The remarkable similarity of Eqn (5.36) and the first term in Eqn (4.50) suggests an introduction of the effective magnetic and electric fields

$$
\begin{align*}
& \mathfrak{B}_{\mathrm{eff}}=\boldsymbol{B}+\frac{m}{q} \boldsymbol{\mathcal { B }} \tag{5.39}\\
& \mathfrak{E}_{\mathrm{eff}}=\boldsymbol{\mathfrak { E }}+\frac{m}{q} \boldsymbol{\mathcal { E }} \tag{5.40}
\end{align*}
$$

One can easily understand the presence of the factor m / q (the ratio of the gravitational 'charge' to the electric charge) from the dimensional arguments. Accordingly, the general precession velocity (4.49) is rewritten as follows:

$$
\begin{align*}
\boldsymbol{\Omega} & =\frac{q}{m}\left[-\frac{1}{\gamma} \boldsymbol{B}_{\text {eff }}+\frac{1}{\gamma+1} \frac{\widehat{\boldsymbol{v}} \times \boldsymbol{\mathfrak { E }}_{\text {eff }}}{c^{2}}\right] \\
& +\frac{2}{\hbar}\left[-\boldsymbol{\mathcal { M }}+\frac{\gamma}{\gamma+1} \frac{\widehat{\boldsymbol{v}}(\widehat{\boldsymbol{v}} \boldsymbol{\mathcal { M }})}{c^{2}}-\frac{\widehat{\boldsymbol{v}} \times \boldsymbol{\mathcal { P }}}{c}\right] . \tag{5.41}
\end{align*}
$$

Using equations (5.32)-(5.34), we thereby finally demonstrate the full agreement between the classical limit of the quantum-mechanical dynamics (5.27), (5.24), (5.25) and the corresponding equation of motion of the classical spin (4.21) and (5.41) in the most general case of an arbitrary gravitational (inertial) and electromagnetic field acting on a particle. Note that it is necessary to use Eqn (5.30) to relate the derivatives with respect to the proper and coordinate time, $\mathrm{d} / \mathrm{d} \tau=(\gamma / V) \mathrm{d} / \mathrm{d} t$. This result, which represents one of the characterizations of the equivalence principle (EP) for spin as a substantially quantum object [296], was established in the pioneering work of Kobzarev and Zakharov [228] for the case of a weak gravitational field. Later results for arbitrary strong fields [209, 210] can therefore be considered a consistent generalization of EP for spin.

5.4 Gravitoelectromagnetism and precession of spin in a gravitational field

In the absence of the electromagnetic field, the dynamics of spin is determined by the angular velocity (5.36) of its precession under the action of the gravitoelectric (5.37) and gravitomagnetic (5.38) fields. Depending on the form of these fields, one can study in the framework of the developed formalism the spin effects in any physical and astrophysical situations, including the case of strong fields in the vicinity of binary systems of ultracompact objects such as neutron stars and black holes. However, in experiments and observations in terrestrial laboratories and in the solar system, we can confine ourselves to a consideration of the linear approximation in the framework of so-called gravitoelectromagnetism (GEM), when metric (4.28) is described by

$$
\begin{align*}
V & =1-\frac{\Phi}{c^{2}}, \quad W=1+\frac{\Phi}{c^{2}}, \quad W_{b}^{\hat{a}}=W \delta_{b}^{a} \tag{5.42}\\
\mathbf{K} & =\frac{2 \mathcal{A}}{c^{2}} \tag{5.43}
\end{align*}
$$

Although the quantities (Φ, \mathcal{A}) do not form a 4 -vector, they are in many ways a formal analogue of the electromagnetic 4 -potential ($\Phi, \mathbf{A})$. In particular, substituting (5.42) and (5.43) into (4.31), (4.32) and (5.5)-(5.7), we find that the gravitoelectric (5.37) and gravitomagnetic (5.38) fields have an 'almost Maxwellian' form:

$$
\begin{equation*}
\boldsymbol{\mathcal { E }}=\gamma \boldsymbol{\nabla} \Phi, \quad \mathcal{B}=-\frac{\gamma}{c} \boldsymbol{\nabla} \times \boldsymbol{\mathcal { A }}-\frac{\gamma}{c^{2}} \widehat{\boldsymbol{v}} \times \boldsymbol{\nabla} \Phi . \tag{5.44}
\end{equation*}
$$

As a consequence, for the case of gravitoelectromagnetism, the precession angular velocity (5.36) reduces to

$$
\begin{equation*}
\mathbf{\Omega}^{(\mathrm{g})}=\frac{1}{c} \boldsymbol{\nabla} \times \boldsymbol{A}+\frac{2 \gamma+1}{(\gamma+1) c^{2}} \widehat{\boldsymbol{v}} \times \boldsymbol{\nabla} \Phi . \tag{5.45}
\end{equation*}
$$

It is interesting to note that, although the spin of a Dirac particle precesses in a magnetic field twice as fast as the
classical orbital momentum (resulting in the same precession of spin and velocity and in the conservation of helicity, which is used, for example, in the search for an anomalous magnetic moment of muons [297]), for the case of the gravitomagnetic field, the precession values coincide, which is a manifestation of the equivalence principle and yields the nonconservation of the helicity [296, 298]. This, in particular, can lead to the transformation of a neutrino into a (Majorana) antineutrino or a sterile (Dirac) neutrino [296, 298-300].

From the practical point of view of the physics on Earth and in the solar system, of greatest interest is the case of the gravitational field created by a body with mass M and angular momentum \mathbf{J}. The exact solution of the Einstein equations for such a source, which for the case of a nonrotating body $\mathbf{J}=0$ reduces to the Schwarzschild metric, was obtained by Kerr [301]. The Kerr metric has a fairly complicated structure, but it reduces to a special case of the gravitoelectromagnetic field (5.42), (5.43) far from a massive source, with

$$
\begin{equation*}
\Phi=\frac{G_{\mathrm{N}} M}{r}, \quad \mathcal{A}=\frac{G_{\mathrm{N}} \mathbf{J} \times \mathbf{r}}{c r^{3}} \tag{5.46}
\end{equation*}
$$

Curiously, long before the discovery of Kerr's exact solution, this configuration was derived by Lense and Thirring in 1918 [302-304] as a weak gravitational field of a slowly rotating massive body.

Substituting (5.46) into (5.45), we recast the spin precession in the gravitational field of a rotating massive body into the sum of two terms:

$$
\begin{align*}
& \mathbf{\Omega}^{(\mathrm{g})}=\mathbf{\Omega}^{(\mathrm{dS})}+\mathbf{\Omega}^{(\mathrm{LT})} \tag{5.47}\\
& \mathbf{\Omega}^{(\mathrm{dS})}=\frac{2 \gamma+1}{\gamma+1} \frac{G_{\mathrm{N}} M \mathbf{r} \times \widehat{\boldsymbol{v}}}{c^{2} r^{3}} \tag{5.48}\\
& \mathbf{\Omega}^{(\mathrm{LT})}=\frac{G_{\mathrm{N}}}{c^{2} r^{3}}\left[\frac{3(\mathbf{J} \mathbf{r}) \mathbf{r}}{r^{2}}-\mathbf{J}\right] \tag{5.49}
\end{align*}
$$

Sometimes, one can read in the literature that the first and second terms arise as a gravitoelectric and as a gravitomagnetic effect, respectively. This is not quite true though, since, as we see from (5.45), both the gravitoelectric and gravitomagnetic fields (5.44) contribute to expression (5.48).

The first term (5.48), known as the de Sitter precession or the geodetic precession, persists also for the static Schwarzschild field, while the second term (5.49) is nontrivial only for stationary fields generated by a rotating source. The latter is often found in the literature under the name Lense-Thirring precession, although, to avoid misunderstanding, it should be clarified that these physicists have nothing to do with the derivation of the precession formula (5.49). In their work, the spacetime metric was found as an approximate solution of the Einstein equations, which is a special case of the gravitoelectromagnetic field in the form (5.46), and, much later, the actual spin dynamics in the Lense-Thirring metric was investigated by Schiff [305, 306], Kobzarev and Zakharov [228], and Schwinger [307] (a collection of the original and review papers [308] is a useful resource on this topic).

At the same time, it is fair to attribute result (5.48) to de Sitter, who was the first to obtain it by analyzing the celestial dynamics of the Sun-Earth-Moon system [309, 310]. Soon, however, de Sitter's original derivation was substantially generalized and improved by Schouten [311, 312], Kramers [313], and, in particular, Fokker [314], justifying an alternative name, 'de Sitter-Fokker precession,' which is also encountered in the literature. This effect is reliably estab-
lished, as a confirmation of Einstein's general relativity theory, in observations of the Sun-Earth-Moon system, in which we can treat the Earth-Moon pair as a gyroscope (or as a particle with spin angular momentum that arises from the Moon's rotation around Earth) moving in the orbit of Earth in the gravitational field of the Sun. Taking into account that the mass of the Sun is $M_{\odot}=1.9 \times 10^{30} \mathrm{~kg}$, the radius of Earth's orbit is equal to the astronomical unit $R=1$ a.u. $=$ $1.49 \times 10^{11} \mathrm{~m}$, and the speed of motion can be found as $v=\sqrt{G_{\mathrm{N}} M_{\odot} / R}$ (obviously, the motion is nonrelativistic, so the Lorentz factor is $\gamma=1$), we find for the magnitude of the precession of the Moon's orbit in its motion around Earth

$$
\begin{equation*}
\Omega^{(\mathrm{dS})}=\frac{3}{2} \frac{G_{\mathrm{N}} M_{\odot}}{c^{2} R^{2}} \sqrt{\frac{G_{\mathrm{N}} M_{\odot}}{R}}=2.8 \times 10^{-15} \mathrm{~s}^{-1} \tag{5.50}
\end{equation*}
$$

which is approximately 1.9 arcseconds per century. This value, found back in studies by de Sitter, was confirmed experimentally [315] based on the analysis of laser ranging data for the Moon with an accuracy of about 2%.

In contrast to the geodetic precession effect, experimental verification of the Lense-Thirring precession had to await for the Gravity Probe B space mission, which was based on Schiff's theoretical work [305, 306] and independent proposals by Pugh, outlined in memorandum [316], first made public in [308].

In the course of the Gravity Probe experiment [317, 318], a spacecraft was launched on April 20, 2004 into a near-Earth polar orbit at an altitude of 642 km , with four classical gyroscopes on board, the dynamics of which was observed from August 28, 2004 to 14 August 2005. The task was to test both de Sitter and Lense-Thirring effects of the spin precession of a particle moving at a nonrelativistic velocity v in an orbit with radius R in Earth's gravitational field. The net effect, in accordance with (5.47)-(5.49), is described by

$$
\begin{equation*}
\mathbf{\Omega}^{(\mathrm{g})}=\frac{3 G_{\mathrm{N}} M_{\oplus}}{2 c^{2} R^{3}} \mathbf{R} \times \boldsymbol{v}+\frac{G_{\mathrm{N}} I_{\oplus}}{c^{2} R^{3}}\left[3 \frac{\left(\boldsymbol{\omega}_{\oplus} \mathbf{R}\right) \mathbf{R}}{R^{2}}-\boldsymbol{\omega}_{\oplus}\right] \tag{5.51}
\end{equation*}
$$

Earth, as the source of the gravitational field, is characterized here by mass M_{\oplus}, angular velocity $\boldsymbol{\omega}_{\oplus}$, and moment of inertia I_{\oplus} (so that $\mathbf{J}=I_{\oplus} \boldsymbol{\omega}_{\oplus}$), where, taking into account the nonsphericity of Earth, $I_{\oplus}=C_{\oplus} M_{\oplus} R_{\oplus}^{2}$ relative to the polar axis with coefficient $C_{\oplus}=0.3307$ [319].

For the conditions of the Gravity Probe B experiment, the theoretical calculation predicts the angular velocity of the de Sitter precession and the angular velocity of the LenseThirring precession, respectively (in units of milliarcseconds (mas) per year (y)):

$$
\begin{align*}
& \Omega^{(\mathrm{dS})}=-6606.1 \mathrm{mas}^{-1} \tag{5.52}\\
& \Omega^{(\mathrm{LT})}=-39.2 \mathrm{mas}^{-1}
\end{align*}
$$

Measurements confirmed both values [317, 318]:

$$
\begin{align*}
& \Omega^{(\mathrm{dS})}=-6601.8 \pm 18.3 \mathrm{mas}^{-1} \tag{5.53}\\
& \Omega^{(\mathrm{LT})}=-37.2 \pm 7.2 \mathrm{mas} \mathrm{y}^{-1}
\end{align*}
$$

The accuracy of the Gravity Probe B result corresponds, in terms of the angular velocity of Earth's rotation, to the notable sensitivity

$$
\begin{equation*}
\frac{\Delta \Omega^{(\mathrm{dS})}}{\omega_{\oplus}} \approx 4 \times 10^{-11}, \frac{\Delta \Omega^{(\mathrm{LT})}}{\omega_{\oplus}} \approx 1.5 \times 10^{-11} \tag{5.54}
\end{equation*}
$$

6. Gravitational corrections to spin dynamics in storage rings

The following discussion will be primarily linked to plans concerning ultrasensitive searches for the EDM of protons [32-34] and neutrons [27, 31]. In the former case, we are talking about dedicated storage rings in which spin rotation due to the magnetic moment of the proton is eliminated. In the latter case, we discuss UCNs in storage cells. Terrestrial laboratories rest in a noninertial frame of reference attached to the gravitating and rotating Earth. We will analyze the subtle effects, a consistent description of which requires the tools of the general relativity theory (GR).

6.1 Spin in a cyclotron: flat space

The dynamics of spin in the orbit of a cyclic accelerator in the flat Minkowski space is well known [193, 194, 197, 222, 223]. In accelerator experiments, the angle of rotation of the spin with respect to the momentum of the particle is measured, that is, the difference $\boldsymbol{\Omega}_{\mathrm{s}}=\boldsymbol{\Omega}_{\mathrm{L}}-\boldsymbol{\Omega}_{\mathrm{c}}$ between the angular velocity of the Larmor precession $\boldsymbol{\Omega}_{\mathrm{L}}$ of spin and the cyclotron angular velocity $\boldsymbol{\Omega}_{\mathrm{c}}$.

The Minkowski spacetime geometry is defined by $V=1$, $W^{\hat{a}}{ }_{b}=\delta_{b}^{a}, \mathbf{K}=0$, and hence the coframe and connection are trivial: $e_{i}^{\alpha}=\delta_{i}^{\alpha}, \Gamma_{i \beta}{ }^{\alpha}=0$. The equation of motion of a charged particle in an electromagnetic field (4.34) then reduces to

$$
\begin{equation*}
m \frac{\mathrm{~d} U^{\alpha}}{\mathrm{d} \tau}=-q F^{\alpha \beta} U_{\beta} \tag{6.1}
\end{equation*}
$$

and gives the familiar cyclotron angular velocity

$$
\begin{equation*}
\mathbf{\Omega}_{\mathrm{c}}^{(\mathrm{e})}=\frac{q}{m \gamma}\left(-\mathbf{B}+\frac{(\mathbf{B} \boldsymbol{v}) \boldsymbol{v}+\boldsymbol{v} \times \mathbf{E}}{v^{2}}\right) \tag{6.2}
\end{equation*}
$$

of rotation $\mathrm{d} \mathbf{N} / \mathrm{d} \tau=\gamma \mathbf{\Omega}_{\mathrm{c}}^{(\mathrm{e})} \times \mathbf{N}$ of a unit vector that determines the direction of a particle's motion, $\mathbf{N}=\mathbf{p} / p=\boldsymbol{v} / v[49]$.

The spin of a particle with the 4 -velocity U^{α} in the laboratory frame is described by the 4 -vector $S^{\alpha}=\left(S^{0}, \mathbf{S}\right)$ (orthogonal to the velocity $U_{\alpha} S^{\alpha}=0$), and, inverting relations (4.8), (4.9),

$$
\begin{equation*}
S^{0}=\frac{\gamma}{c^{2}}(\mathbf{s} \boldsymbol{v}), \quad \mathbf{S}=\mathbf{s}+\frac{\gamma^{2}}{c^{2}(\gamma+1)}(\mathbf{s} \boldsymbol{v}) \boldsymbol{v} \tag{6.3}
\end{equation*}
$$

where \mathbf{s} is the spin vector in the comoving frame. Taking into account the EDM contribution, the 4 -vector of spin S^{α} of a particle with charge q, magnetic dipole moment (MDM) μ_{0}, anomalous magnetic moment μ^{\prime}, and electric dipole moment $d_{\text {EDM }}$ (4.33) satisfies the generalized Frenkel-Thomas-Barg-mann-Michel-Telegdi (FT-BMT) equation (4.35) in the laboratory system. According to this dynamical equation, the physical 3 -spin vector \mathbf{s} precesses (4.21) in the electromagnetic field with an angular velocity (4.50). Combining (4.50) with (6.2), we get the precession angular velocity $\boldsymbol{\Omega}_{\mathrm{s}}=\boldsymbol{\Omega}^{(\mathrm{e})}-\boldsymbol{\Omega}_{\mathrm{c}}^{(\mathrm{e})}$ with respect to the detectors, which is conveniently represented as the sum of the MDM and EDM contributions:

$$
\begin{align*}
& \mathbf{\Omega}_{\mathrm{s}}=\mathbf{\Omega}_{\mathrm{s}}^{\mathrm{MDM}}+\mathbf{\Omega}_{\mathrm{s}}^{\mathrm{EDM}} \tag{6.4}\\
& \mathbf{\Omega}_{\mathrm{s}}^{\mathrm{MDM}}=\frac{q}{m}\left\{-G \mathbf{B}+\left(G-\frac{1}{\gamma^{2}-1}\right) \frac{\boldsymbol{v} \times \mathbf{E}}{c^{2}}\right. \\
& \left.\quad+\frac{\gamma}{\gamma+1}\left(G-\frac{1}{\gamma-1}\right) \frac{(\boldsymbol{v} \mathbf{B}) \boldsymbol{v}}{c^{2}}\right\} \tag{6.5}
\end{align*}
$$

$$
\begin{equation*}
\mathbf{\Omega}_{\mathrm{s}}^{\mathrm{EDM}}=-\frac{\eta^{\mathrm{EDM}} q}{m c}\left\{\mathbf{E}+\boldsymbol{v} \times \mathbf{B}-\frac{\gamma}{\gamma+1} \frac{(\boldsymbol{v} \mathbf{E}) \boldsymbol{v}}{c^{2}}\right\} . \tag{6.6}
\end{equation*}
$$

Optimization for an ultra-small EDM signal requires the suppression of the spin rotation due to the magnetic moment, that is, it is necessary to provide

$$
\begin{equation*}
\mathbf{\Omega}_{\mathrm{s}}^{\mathrm{MDM}}=0 . \tag{6.7}
\end{equation*}
$$

Then, in the absence of an EDM, the spin would retain its orientation with respect to the momentum, i.e., be tangential to the orbit in the storage ring. This is the frozen spin mode, when the spin would rotate only due to the EDM, and the storage rings with frozen proton spin are the focus of attention [32-34]. We will discuss different frozen spin options in Section 7.

6.2 Gravitational corrections to cyclotron and Larmor rotation

The influence of terrestrial gravity on the spin dynamics in accelerator searches for the EDM was first considered for the special case of the magnetic focusing of a beam by the authors of reviews [48, 49, 208].

Before analyzing the possible effects of external fields in particle physics, it is worth recalling the physical conditions on Earth's surface where accelerators and storage rings are located: Earth rotates at an angular velocity (assuming the sidereal day $T_{\oplus}=23 \mathrm{~h} 56 \mathrm{~min} 4.1 \mathrm{~s}=86,164.1 \mathrm{~s}$)

$$
\begin{equation*}
\omega_{\oplus}=\frac{2 \pi}{T_{\oplus}}=7.29 \times 10^{-5} \mathrm{~s}^{-1} \tag{6.8}
\end{equation*}
$$

and thus experiments are carried out in a non-inertial frame of reference. In addition, Earth is a massive source of a gravitational field with mass $M_{\oplus}=5.97 \times 10^{24} \mathrm{~kg}$. Despite such a mass, on the surface of Earth, which has an average radius $R_{\oplus}=6.378 \times 10^{6} \mathrm{~m}$, the gravitational field is rather weak: the corresponding value of the gravitational potential is equal to

$$
\begin{equation*}
\frac{G_{\mathrm{N}} M_{\oplus}}{c^{2} R_{\oplus}}=6.95 \times 10^{-10} \tag{6.9}
\end{equation*}
$$

Accordingly, for the spacetime geometry in which particle physics experiments take place, an approximate description of Earth's gravitational field as a gravitoelectromagnetic field (5.42), (5.43) is valid to a very good accuracy, where, however, instead of (5.46), we have

$$
\begin{equation*}
\Phi=\frac{G_{\mathrm{N}} M_{\oplus}}{r}, \quad \mathcal{A}=\left(\frac{G_{\mathrm{N}} \mathbf{J}_{\oplus}}{c r^{3}}-\frac{c \boldsymbol{\omega}_{\oplus}}{2}\right) \times \mathbf{r} . \tag{6.10}
\end{equation*}
$$

The spatial local coordinates are chosen as a Cartesian system (x, y, z) with the origin at the center of Earth, where, without loss of generality, z is the axis of rotation, so that the angular velocity vectors $\boldsymbol{\omega}_{\oplus}=\left(0,0, \omega_{\oplus}\right)$ and the angular momentum $\mathbf{J}_{\oplus}=\left(0,0, J_{\oplus}\right)$, respectively. From the formal point of view, (6.10) describes the Lense-Thirring metric of the gravitational field of a slowly rotating massive body, taking into account the noninertiality of the local spatial system that rotates relative to distant fixed stars.

From potentials (6.10), we obtain the gravitoelectric and the gravitomagnetic (5.44) fields of Earth:

$$
\begin{align*}
\mathcal{E} & =\gamma \mathbf{g}_{\oplus}, \tag{6.11}\\
\mathcal{B} & =\gamma\left(\boldsymbol{\omega}_{\oplus}+\frac{\mathbf{g}_{\oplus} \times \widehat{\boldsymbol{v}}}{c^{2}}\right)+\frac{\gamma G_{\mathrm{N}}}{c^{2} r^{3}}\left(\mathbf{J}_{\oplus}-\frac{3\left(\mathbf{J}_{\oplus} \mathbf{r}\right) \mathbf{r}}{r^{2}}\right), \tag{6.12}
\end{align*}
$$

where, as usual, the 3-vector of the Newtonian acceleration is given by

$$
\begin{equation*}
\mathbf{g}_{\oplus}=-\frac{G_{\mathrm{N}} M_{\oplus}}{r^{3}} \mathbf{r} \tag{6.13}
\end{equation*}
$$

Since the angular momentum of Earth is $J_{\oplus}=I_{\oplus} \omega_{\oplus}=$ $5.85 \times 10^{33} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ (where we estimate the moment of inertia as $I_{\oplus}=C_{\oplus} M_{\oplus} R_{\oplus}^{2}$ with empirical coefficient $C_{\oplus}=0.3307$), in a laboratory on its surface we have

$$
\begin{equation*}
\frac{2 G_{\mathrm{N}} J_{\oplus}}{c^{2} R_{\oplus}^{3}}=3.31 \times 10^{-14} \mathrm{~s}^{-1} \tag{6.14}
\end{equation*}
$$

Comparing this with (6.8), we find that the first term in the gravitomagnetic potential (6.10) is smaller than the second one by 9 orders of magnitude. Therefore, for all practical purposes, one can assume in all calculations that the gravitomagnetic potential of Earth's field is $\mathcal{A}=$ $-c \boldsymbol{\omega}_{\oplus} \times \mathbf{r} / 2$.

The general-relativistic system of equations (4.34), (4.35) of a particle's motion with the 4-velocity $U^{\alpha}=\{\gamma, \gamma \widehat{\boldsymbol{v}}\}$, spin $S^{\alpha}=\left\{S^{0}, \mathbf{S}\right\}$, and dipole moments in terms of components has the explicit form

$$
\begin{align*}
& \frac{\mathrm{d} \gamma}{\mathrm{~d} \tau}=\frac{q}{m c^{2}} \gamma \mathfrak{E}_{\text {eff }} \widehat{\boldsymbol{v}}, \tag{6.15}\\
& \frac{\mathrm{d}(\gamma \widehat{\boldsymbol{v}})}{\mathrm{d} \tau}=\frac{q}{m} \gamma\left(\mathfrak{E}_{\text {eff }}+\widehat{\boldsymbol{v}} \times \boldsymbol{B}_{\text {eff }}\right), \tag{6.16}\\
& \frac{\mathrm{d} S^{\hat{0}}}{\mathrm{~d} \tau}=\mathbf{S}\left\{\frac{q}{m c^{2}} \mathfrak{E}_{\text {eff }}-\frac{2 \gamma^{2}}{c^{2} \hbar} \widehat{\boldsymbol{v}} \times \boldsymbol{\Delta}\right\}, \tag{6.17}\\
& \frac{\mathrm{d} \mathbf{S}}{\mathrm{~d} \tau}=S^{\hat{0}}\left\{\frac{q}{m} \boldsymbol{\mathfrak { E }}_{\text {eff }}-\frac{2 \gamma^{2}}{\hbar} \widehat{\boldsymbol{v}} \times \boldsymbol{\Delta}\right\} \\
& \tag{6.18}\\
& +\mathbf{S} \times\left\{\frac{q}{m} \boldsymbol{B}_{\text {eff }}+\frac{2 \gamma^{2}}{\hbar}\left(\boldsymbol{\Delta}-\widehat{\boldsymbol{v}} \frac{\Delta \widehat{\boldsymbol{v}}}{c^{2}}\right)\right\} .
\end{align*}
$$

The two effective objects, $\boldsymbol{B}_{\text {eff }}$ and $\mathfrak{E}_{\text {eff }}$, which were introduced in (5.39) and (5.40), encode in a compact form the electromagnetic, inertial, and gravitational fields acting on the particle (where (6.11) and (6.12) should be used for terrestrial conditions), and the effects of the magnetic and electric dipole moments are encoded in yet another effective entity

$$
\begin{equation*}
\boldsymbol{\Delta}:=\boldsymbol{\mathcal { M }}+\frac{1}{c} \widehat{\boldsymbol{v}} \times \boldsymbol{\mathcal { P }} \tag{6.19}
\end{equation*}
$$

The Larmor angular velocity of the spin precession encompasses the electromagnetic and the gravitational contributions

$$
\begin{equation*}
\boldsymbol{\Omega}_{\mathrm{L}}=\mathbf{\Omega}^{(\mathrm{e})}+\boldsymbol{\Omega}^{(\mathrm{g})}, \tag{6.20}
\end{equation*}
$$

where the electromagnetic part $\boldsymbol{\Omega}^{(\mathrm{e})}$ is given by (4.50) and the gravitational part $\boldsymbol{\Omega}^{(\mathrm{g})}$ is obtained by substituting the gravitoelectromagnetic potential (6.10) into (5.45):

$$
\begin{align*}
& \boldsymbol{\Omega}^{(\mathrm{g})}=-\boldsymbol{\omega}_{\oplus}+\mathbf{\Omega}^{(\mathrm{dS})}+\boldsymbol{\Omega}^{(\mathrm{LT})}, \tag{6.21}\\
& \boldsymbol{\Omega}^{(\mathrm{dS})}=\frac{2 \gamma+1}{\gamma+1} \frac{\widehat{\boldsymbol{v}} \times \mathbf{g}_{\oplus}}{c^{2}}, \tag{6.22}\\
& \boldsymbol{\Omega}^{(\mathrm{LT})}=\frac{G_{\mathrm{N}}}{c^{2} r^{3}}\left[\frac{3\left(\mathbf{J}_{\oplus} \mathbf{r}\right) \mathbf{r}}{r^{2}}-\mathbf{J}_{\oplus}\right] . \tag{6.23}
\end{align*}
$$

The cyclotron angular velocity $\widehat{\boldsymbol{\Omega}}_{\mathrm{c}}$ describes the rotation $\mathrm{d} \widehat{\mathbf{N}} / \mathrm{d} \tau=\gamma \widehat{\boldsymbol{\Omega}}_{\mathrm{c}} \times \widehat{\mathbf{N}}$ of the unit vector that determines the direction of the particle's motion, $\widehat{\mathbf{N}}=\widehat{\boldsymbol{v}} / \widehat{v}$. Using equations of motion (6.16) and (6.15), we find in [49] the cyclotron velocity, which includes the corrections from Earth's gravity and rotation:

$$
\begin{equation*}
\widehat{\boldsymbol{\Omega}}_{\mathrm{c}}=\frac{q}{m \gamma}\left\{-\boldsymbol{B}+\frac{\widehat{\boldsymbol{v}}}{\widehat{v}^{2}} \times \boldsymbol{\mathfrak { E }}\right\}-\boldsymbol{\omega}_{\oplus}+\frac{2 \gamma^{2}-1}{\gamma^{2}} \frac{\widehat{\boldsymbol{v}} \times \mathbf{g}_{\oplus}}{\widehat{v}^{2}} . \tag{6.24}
\end{equation*}
$$

Combining (6.20) and (6.24), we obtain the precession angular velocity $\boldsymbol{\Omega}_{\mathrm{s}}=\boldsymbol{\Omega}_{\mathrm{L}}-\boldsymbol{\Omega}_{\mathrm{c}}$ with respect to the detectors:

$$
\begin{equation*}
\boldsymbol{\Omega}_{\mathrm{s}}=-\frac{1}{\gamma^{2}-1} \frac{q}{m} \frac{\widehat{\boldsymbol{v}} \times \mathfrak{E}_{\mathrm{eff}}}{c^{2}}+\boldsymbol{\Omega}^{(\mathrm{LT})}-\frac{2}{\hbar}\left\{\boldsymbol{\Delta}-\frac{\gamma}{\gamma+1} \widehat{\boldsymbol{v}} \frac{\boldsymbol{\Delta} \widehat{\boldsymbol{v}}}{c^{2}}\right\}, \tag{6.25}
\end{equation*}
$$

or, in expanded form:

$$
\begin{align*}
\boldsymbol{\Omega}_{\mathrm{s}} & =-\frac{\gamma}{\gamma^{2}-1} \frac{\widehat{\boldsymbol{v}} \times \mathbf{g}_{\oplus}}{c^{2}}+\frac{G_{\mathrm{N}}}{c^{2} r^{3}}\left[\frac{3\left(\mathbf{J}_{\oplus} \mathbf{r}\right) \mathbf{r}}{r^{2}}-\mathbf{J}_{\oplus}\right] \\
& +\frac{q}{m}\left(G-\frac{1}{\gamma^{2}-1}\right) \frac{\widehat{\boldsymbol{v}} \times \mathfrak{E}}{c^{2}}-\frac{q G}{m}\left(\boldsymbol{B}-\frac{\gamma}{\gamma+1} \widehat{\boldsymbol{v}} \frac{\mathfrak{B} \widehat{\boldsymbol{v}}}{c^{2}}\right) \\
& -\frac{q \eta^{\mathrm{EDM}}}{m c}\left\{\mathfrak{E}+\widehat{\boldsymbol{v}} \times \boldsymbol{B}-\frac{\gamma}{\gamma+1} \widehat{\boldsymbol{v}} \frac{\mathfrak{E} \widehat{\boldsymbol{v}}}{c^{2}}\right\} . \tag{6.26}
\end{align*}
$$

Remarkably, the explicit contribution of Earth's rotation $\boldsymbol{\omega}_{\oplus}$ cancels out. However, one should keep in mind the noninertial contributions to the anholonomic velocity $\widehat{\boldsymbol{v}}=\boldsymbol{v}+\boldsymbol{\omega}_{\oplus} \times \mathbf{r}$ and the anholonomic electric and magnetic fields (4.40), (4.41), which for terrestrial conditions are reduced to $\mathfrak{E}=\mathbf{E}-\left(\boldsymbol{\omega}_{\oplus} \times \mathbf{r}\right) \times \mathbf{B}, \boldsymbol{B}=\mathbf{B}$. Here, the term proportional to the cross product of the anholonomic velocity and the electric field describes the rotation of the spin of the particle moving in the electric field, while the term proportional to the magnetic anomaly G describes the precession of the magnetic moment in the magnetic field in the ring. It is instructive to compare Eqn (6.26) with Eqns (6.5) and (6.6) for the flat space.

6.3 Gravitational shift of a beam orbit in a storage ring

The explicit gravitational corrections obtained above should be supplemented with an indirect correction to the Larmor precession due to the focusing fields. Before proceeding to the discussion, let us recall that in accelerator physics it is common to introduce a local basis associated with the motion of a particle beam along a circular orbit, defining $\mathbf{e}_{x}=\mathbf{e}_{\rho}$ as a unit vector along the radius $\boldsymbol{\rho}$ from the center of the accelerator to a point in the orbit, \mathbf{e}_{y}, as a vertical unit vector, and finally $\mathbf{e}_{z}=\mathbf{e}_{x} \times \mathbf{e}_{y}$ as a tangential unit vector. From the equations of particle motion (6.15), (6.16), we find the gravitational force

$$
\begin{equation*}
\mathbf{F}_{\mathrm{g}}=\frac{2 \gamma^{2}-1}{\gamma} m \mathbf{g}_{\oplus}, \quad \mathbf{g}_{\oplus}=-\left|g_{\oplus}\right| \mathbf{e}_{y} \tag{6.27}
\end{equation*}
$$

and, in order to prevent the accumulated beam from falling to Earth, this force must be compensated [48-50] by the focusing fields, which are created by magnetic or electric quadrupoles.

Beam particles make radial and vertical betatron oscillations in the storage ring with an angular velocity $\omega_{x, y}=$ $Q_{x, y} \Omega_{\mathrm{c}}$, where the dimensionless $Q_{x, y}$ are called betatron tunes. The cyclotron angular velocity Ω_{c} depends only on the
particle's velocity and the storage ring circumference. In the first approximation, we can assume that the particle moves in an oscillatory potential with a 'spring constant' $\langle k\rangle$, which can be expressed in terms of the betatron frequency as

$$
\begin{equation*}
\langle k\rangle \approx \gamma m \omega_{y}^{2} . \tag{6.28}
\end{equation*}
$$

Then, the gravitational vertical coherent displacement of the beam trajectory will be equal to [320, 321]

$$
\begin{equation*}
\Delta y \approx \frac{\left(2 \gamma^{2}-1\right)\left|g_{\oplus}\right|}{\gamma Q_{y}^{2} \Omega_{\mathrm{c}}^{2}} \tag{6.29}
\end{equation*}
$$

For the search for the EDM of protons, a storage ring with the electric bending of protons with kinetic energy $T_{\mathrm{p}}=233 \mathrm{MeV}$ is of interest. Historically, the first proposed device was a storage ring with electric focusing and a circumference of $500 \mathrm{~m}, \Omega_{\mathrm{c}}=2.26 \times 10^{6} \mathrm{~s}^{-1}$, and $Q_{y}=0.45$ [32, 33]. In this case, estimate (6.29) gives the gravitational coherent shift of a beam in the storage ring:

$$
\begin{equation*}
\Delta y_{E} \approx 1.3 \times 10^{-11} \mathrm{~m} \tag{6.30}
\end{equation*}
$$

Recently [34], a hybrid version with magnetic focusing, 800 m circumference, with $\Omega_{\mathrm{c}}=1.4 \times 10^{6} \mathrm{~s}^{-1}$ and $Q_{y}=2.3$ was proposed, for which

$$
\begin{equation*}
\Delta y_{B} \approx 1.3 \times 10^{-12} \mathrm{~m} \tag{6.31}
\end{equation*}
$$

Such a microscopic gravitational displacement of a beam in a storage ring has rightly been of no concern to accelerator physicists, yet it leads to observable effects in precision spin dynamics.

6.4 Electric focusing effect on spin precession

We now discuss in more detail the most interesting case of electric focusing in a purely electric storage ring [32, 33]. Let us split the electric field into two terms $\mathbf{E}=\mathbf{E}_{\rho}+\mathbf{E}_{\mathrm{f}}$, where the purely radial field \mathbf{E}_{ρ} keeps the particle in orbit in the storage ring plane. The particle velocity is orthogonal to \mathbf{E}_{ρ}. The focusing field \mathbf{E}_{f} is required to compensate the gravitational contribution to the particle acceleration in order for the orbit to be closed in the storage ring plane. Using the explicit form of the equations of particle motion (6.15), (6.16),

$$
\begin{equation*}
\frac{\mathrm{d} \widehat{\boldsymbol{v}}}{\mathrm{~d} t}=\frac{q}{\gamma m} \mathbf{E}_{\rho}+\left\{\frac{q}{\gamma m} \mathbf{E}_{\mathrm{f}}+\frac{2 \gamma^{2}-1}{\gamma^{2}} \mathbf{g}_{\oplus}-\boldsymbol{\omega}_{\oplus} \times \widehat{\boldsymbol{v}}\right\} \tag{6.32}
\end{equation*}
$$

we find the focusing field from the condition that the expression in the curly brackets vanishes:

$$
\begin{equation*}
\mathbf{E}_{\mathrm{f}}=-\frac{m}{q} \frac{2 \gamma^{2}-1}{\gamma} \mathbf{g}_{\oplus}+\frac{\gamma m \boldsymbol{\omega}_{\oplus} \times \widehat{\boldsymbol{v}}}{q} \tag{6.33}
\end{equation*}
$$

The contour integral for a single revolution in the storage ring

$$
\begin{equation*}
\oint \mathbf{E}_{\mathrm{f}} \mathrm{~d} \mathbf{r}=0 \tag{6.34}
\end{equation*}
$$

and the field \mathbf{E}_{f} can be realized electrostatically [52].
The focusing makes an indirect gravitational contribution to the precession angular velocity of the spin,

$$
\begin{equation*}
\mathbf{\Omega}_{\mathrm{s}}^{\mathrm{f}}=\frac{q}{m}\left(G-\frac{1}{\gamma^{2}-1}\right) \frac{\widehat{\boldsymbol{v}} \times \mathbf{E}_{\mathrm{f}}}{c^{2}} \tag{6.35}
\end{equation*}
$$

(see the second line in (6.26)). Importantly, this precession corresponds to the rotation of the magnetic moment, just like the de Sitter geodetic precession.

Taken together, and taking into account the closedness of the beam trajectory, the sum of (6.35) with the first term in (6.26) gives the total gravitational correction

$$
\begin{align*}
\boldsymbol{\Omega}_{\mathrm{s}} & =\frac{1-G\left(2 \gamma^{2}-1\right)}{\gamma} \frac{\widehat{\boldsymbol{v}} \times \mathbf{g}_{\oplus}}{c^{2}} \\
& +\frac{G_{\mathrm{N}}}{c^{2} r^{3}}\left[\frac{3\left(\mathbf{J}_{\oplus} \mathbf{r}\right) \mathbf{r}}{r^{2}}-\mathbf{J}_{\oplus}\right]+\gamma \frac{\widehat{\boldsymbol{v}} \times\left(\boldsymbol{\omega}_{\oplus} \times \widehat{\boldsymbol{v}}\right)}{c^{2}} . \tag{6.36}
\end{align*}
$$

Only the first term, which combines the geodetic effect and the focusing effect, is of practical importance for accelerator experiments on the proton EDM:

$$
\begin{equation*}
\boldsymbol{\Omega}_{\mathrm{g}}^{\mathrm{rel}}=\frac{1-G\left(2 \gamma^{2}-1\right)}{\gamma} \frac{\widehat{\boldsymbol{v}} \times \mathbf{g}_{\oplus}}{c^{2}} \tag{6.37}
\end{equation*}
$$

This result was obtained in 2016 by Obukhov et al. [49] for arbitrary energies. The remaining contributions in (6.36) are merely of methodological value. It is worth noting that this answer is universal for electric focusing, regardless of the nature of the particle's bending in the orbit.

7. Gravity and the search for the EDM of protons with frozen spin

7.1 Electric bending and electric focusing: $\boldsymbol{G}>\mathbf{0}$

A convenient quantity is the spin tune $v_{\mathrm{s}}=\Omega_{\mathrm{s}} / \Omega_{\mathrm{c}}$. The angle of rotation of the spin relative to the momentum per revolution is equal to $\theta_{\mathrm{s}}=2 \pi v_{\mathrm{s}}$. When the Larmor frequency is a multiple of the cyclotron frequency, i.e.,

$$
\begin{equation*}
v_{\mathrm{s}}=k=0, \pm 1, \pm 2, \ldots \tag{7.1}
\end{equation*}
$$

the spin orientation with respect to the momentum at the detection point, at the local spin rotator, or at the collision point of colliding beams is retained after each revolution of the beam, i.e., local spin freezing is realized. For $v_{\mathrm{s}}=0$, the spin is frozen globally. Only in this case is the EDM signal accumulated coherently, i.e., the bending radial electric field acts as an EDM rotator along the entire storage ring.

On the other hand, condition (7.1) corresponds to the integer spin resonance, when the beam polarization becomes unstable due to an imperfection of the magnetic fields in the storage ring. This is a real problem, and special methods have been developed for the rapid crossing of the integer resonances during the acceleration of stored particles [322, 323]. In 2014, a novel method of compensating the polarization instabilities at the integer resonance by solenoidal spin navigators was proposed [324] and is being actively developed [45, 46, 325] for the NICA collider at JINR. The practical implementation of this method is important for precision spin experiments, including the search for the EDM of protons and deuterons, within the framework of the SPD spin program at the NICA facility [44]. The local freezing is especially important for deuterons, for which maintaining the longitudinal polarization by the standard approach with Siberian snakes is impractical because unrealistically large snake field integrals are required. In the physical program of the electron-nucleus collider eIC, which is under construction at the Brookhaven National Laboratory, the deep inelastic
scattering on longitudinally polarized deuterons is one of the key items, and precisely the integer spin resonance is being discussed as a working point for the deuteron beams [325, 326].

Let us consider protons in a storage ring with purely electrostatic bending, $\mathbf{B}=0$. According to (6.5), the global frozen spin condition, $v_{\mathrm{s}}=0$, corresponds to

$$
\begin{equation*}
\boldsymbol{\Omega}_{\mathrm{s}}^{\mathrm{MDM}}=\frac{q}{m}\left(G-\frac{1}{\gamma^{2}-1}\right) \frac{\widehat{\boldsymbol{v}} \times \mathbf{E}}{c^{2}}=0, \tag{7.2}
\end{equation*}
$$

which requires

$$
\begin{equation*}
\gamma^{2}=\frac{1+G}{G} . \tag{7.3}
\end{equation*}
$$

The solution exists only for $G>0$, which for protons corresponds to the so-called magic kinetic energy $T_{\mathrm{p}}=233 \mathrm{MeV}[32,33]$. Under condition (7.3), result (6.37) becomes

$$
\begin{equation*}
\boldsymbol{\Omega}_{\mathrm{fake}}^{\mathrm{GR}}=\boldsymbol{\Omega}_{\mathrm{g}}^{\mathrm{rel}}=\frac{1-G\left(2 \gamma^{2}-1\right)}{\gamma} \frac{\widehat{\boldsymbol{v}} \times \mathbf{g}_{\oplus}}{c^{2}}=-\frac{\left|g_{\oplus}\right|}{c} \sqrt{G} \mathbf{e}_{\rho} \tag{7.4}
\end{equation*}
$$

and reproduces [51] the result of Orlov et al. [50] obtained in 2012 by solving the spin equations of motion in the Schwarzschild metric with the magic energy condition (7.3) imposed.

As mentioned above, formula (7.4) corresponds to the spin precession in a radial 'magnetic field' of gravitational origin and generates a false EDM signal. This should be compared to

$$
\begin{equation*}
\mathbf{\Omega}_{\mathrm{s}}^{\mathrm{EDM}}=-\frac{q \eta^{\mathrm{EDM}}}{m c} \mathbf{E} \tag{7.5}
\end{equation*}
$$

For the radial bending electric field $E=8 \times 10^{6} \mathrm{~V} \mathrm{~m}^{-1}$, the resulting gravity-induced false EDM yields [33]

$$
\begin{align*}
& d_{\mathrm{p}}^{\text {fake }} \approx 1.8 \times 10^{-28} e \mathrm{~cm} \tag{7.6}\\
& \eta_{\mathrm{p}}^{\text {fake }} \approx 1.7 \times 10^{-14}
\end{align*}
$$

A unique feature of the electrostatic storage ring is that it can be run with concurrent clockwise and counterclockwise beams in the same orbit. In contrast to the EDM signal, which does not depend on the sign of the beam velocity, the gravityinduced false EDM is of the opposite sign for the CW and CCW beams. As a result, the two effects can be unambiguously separated, and an interesting opportunity arises to use the measured gravitational effect as a reference signal for checking the presence or absence of poorly understood systematic effects in the operation of the storage ring.

The requirements for the accuracy of checking the identity of the trajectories of the counter-rotating beams at the level of $\sim 5 \mathrm{pm}$ are discussed in [33, 327]. In a recent experiment by the JEDI collaboration at the COSY accelerator, equipped with far from optimal beam position monitors, it was demonstrated that the position of a deuteron beam centroid with a diameter of the order of 1 mm can be controlled with an accuracy of $1 \mu \mathrm{~m}$ or even better [328]. It is noteworthy that this is only one order of magnitude higher than the amplitude of the zero quantum oscillations of beam particles in an approximately harmonic profile, in which individual particles in the COSY perform betatron oscillations. A theory of
collective oscillations with amplitudes below one-particle zero quantum oscillations was developed in [321]. In a static ring, the quantum limit for monitoring the centroid of a bunch of N particles by static beam position monitors scales with $\propto 1 / \sqrt{N}$.

7.2 Electrostatic bending and magnetic focusing: $\boldsymbol{G}>\mathbf{0}$

A new version of an electrostatic proton storage ring with focusing by magnetic quadrupoles was recently proposed by Semertzidis et al. [34, 329]. It is claimed that, compared to electric focusing, magnetic focusing makes it possible to increase the sensitivity in the search of the EDM of the proton. It is important for us that in this case the gravitational attraction of Earth will be compensated by the Lorentz force due to the focusing radial magnetic field \mathbf{B}_{f},

$$
\begin{equation*}
q \widehat{\boldsymbol{v}} \times \mathbf{B}_{\mathrm{f}}=-\frac{2 \gamma^{2}-1}{\gamma} m \mathbf{g}_{\oplus} \tag{7.7}
\end{equation*}
$$

from which we find

$$
\begin{equation*}
\mathbf{B}_{\mathrm{f}}=\frac{m}{q} \frac{2 \gamma^{2}-1}{\gamma} \frac{\widehat{\boldsymbol{v}} \times \mathbf{g}_{\oplus}}{\widehat{v}^{2}} \tag{7.8}
\end{equation*}
$$

The rotation of the magnetic moment of the proton in this focusing magnetic field gives rise to a false EDM effect.

Since the focusing effect does not depend on the mechanism of the bending in orbit, the problem completely reduces to the one solved in [49]. Substituting (7.8) into the third line of (6.26) in combination with the first term that includes the geodetic de Sitter effect, we find

$$
\begin{equation*}
\boldsymbol{\Omega}_{\text {fake }}^{\mathrm{GR}}=-\frac{\gamma\left[1+G\left(2 \gamma^{2}-1\right)\right]}{\gamma^{2}-1} \frac{\widehat{\boldsymbol{v}} \times \mathbf{g}_{\oplus}}{c^{2}} \tag{7.9}
\end{equation*}
$$

The frozen spin condition (7.3) yields [33]

$$
\begin{equation*}
\boldsymbol{\Omega}_{\mathrm{fake}}^{\mathrm{GR}}=-(3+G) \frac{\left|g_{\oplus}\right|}{c} \sqrt{G} \mathbf{e}_{\rho} \tag{7.10}
\end{equation*}
$$

As compared to the case of electric focusing (7.4), for magnetic focusing the proton false EDM is thus enhanced by the factor $(3+G) \approx 4.8$.

The magnetic focusing in an electric storage ring does not prevent a concurrent accumulation of counter-rotating beams with the same energy. However, in quadrupole magnets, the focusing of a clockwise beam changes to the defocusing of a counterclockwise beam, and vice versa. In contrast to purely electric storage rings, the trajectories of the two beams will not be locally the same, with the irradicable gravitational separation of the trajectories at the level of $2 \Delta y_{B} \approx 3 \mathrm{pm}$ (6.31). The issue of the separation of signals of the true EDM and quite an enhanced gravity-induced false EDM, endangering the targeted proton EDM $d_{\mathrm{p}}<10^{-29} e \mathrm{~cm}$ in the regime of the magnetic focusing, remains open.

7.3 Frozen spin for hybrid bending

For particles with a negative magnetic anomaly, $G<0$, for example, for a deuteron with $G_{\mathrm{d}}=-0.1416$, the frozen spin condition (6.7) can only be satisfied under hybrid bending with crossed vertical magnetic and radial electric fields. In this case, according to equation (6.5), the two fields are related via

$$
\begin{equation*}
\mathbf{B}=\frac{G\left(\gamma^{2}-1\right)-1}{G\left(\gamma^{2}-1\right)} \frac{\widehat{\boldsymbol{v}} \times \mathbf{E}}{c^{2}} \tag{7.11}
\end{equation*}
$$

Hybrid confinement in orbit is also required for protons with a nonmagic energy.

An example is provided by the prototype ring PTR proposed by the CPEDM collaboration [33]. A purely electrostatic version with the radial electric field $E_{\mathrm{r}}=$ $7 \times 10^{6} \mathrm{~V} \mathrm{~m}^{-1}$ is designed for the accumulation of protons with energy $T_{\mathrm{p}}=30 \mathrm{MeV}$. An additional vertical magnetic field $B_{y}=0.0327 \mathrm{~T}$ in the same ring increases the rigidity of the ring and provides the frozen spin of protons with the energy of 45 MeV [33]. In the hybrid storage ring, the angular velocity of rotation of the EDM is equal to

$$
\begin{equation*}
\mathbf{\Omega}_{\mathrm{s}}^{\mathrm{EDM}}=-\frac{\eta^{\mathrm{EDM}} q}{m c} \frac{1+G}{G \gamma^{2}} \mathbf{E} \tag{7.12}
\end{equation*}
$$

The result for the false EDM gravitational signal depends only on the kind of focusing. For focusing with electric quadrupoles at a generic energy, it is given by equation (6.37) [49], and for magnetic focusing, by equation (7.9) [48].

With hybrid bending, the accumulation of counterrotating beams of the same energy is impossible. Long-term control of the drift of electric and magnetic fields and the constancy of their ratio (7.11) become quite nontrivial tasks. An additional problem is the elimination of the rotation of the magnetic moment in the parasitic radial component of the magnetic field [330, 331]. One of the key objectives of experiments on the prototype ring PTR will be to study precisely these systematic effects.

As a possible solution to these problems, without necessarily being attached to a specific PTR ring, Koop proposed the simultaneous accumulation in a hybrid ring in the same orbit of either counter- or co-rotating beams with either different masses or different energies [332, 333] (see also the interesting development of these ideas by Talman [334]). These beams with a rational ratio of velocities can be either counter-propagating or rotating in the same direction. One beam will be polarized with a globally frozen spin and will measure the EDM of these particles. The second beam will be a comagnetometer and can be either polarized with a locally frozen spin or unpolarized. The parasitic radial magnetic field can be controlled by the vertical separation of the beams. For co-magnetometry purposes, i.e., for tracking the bending fields in a storage ring, it may be sufficient to control the cyclotron frequency of the second beam. Koop found possible solutions for the counterotating pairs (p, p) and ($\mathrm{p},{ }^{3} \mathrm{He}$), and the co-rotating ones (p, d) and ($\mathrm{p},{ }^{6} \mathrm{Li}$) (see also [334] for a discussion of the time reversal invariance tests in such rings in the collider mode when both beams are polarized). It is worth mentioning the existence of solutions with table-top storage rings with radii of several meters [333].

The case of hybrid focusing by a combination of electric and magnetic quadrupoles is discussed in $[33,51]$.

7.4 Main results of JEDI collaboration and proton EDM in PTR electric storage ring

The main task of the PTR will be a study of systematic effects as an imperative for the subsequent transition to an ultimate all-electric frozen-spin proton storage ring operating at the magic energy of 233 MeV . Such a dedicated machine with an extremely high sensitivity to the proton EDM (1.5) is viewed as part of the CERN post-LHC program. In the all-electric mode with the proton energy of 30 MeV , the work will focus
on the study of suppression of systematic effects running the storage ring with concurrent counter-rotating beams. In the hybrid bending mode with the proton energy of 45 MeV , the central topic will be the spin dynamics in the first ever implementation of the frozen spin mode. A detailed presentation of this program and the technical details can be found in the PTR conceptual design study [33] prepared by the CPEDM collaboration. In addition to solving the above problems, it is possible to conduct a direct search for the proton EDM on the PTR with an already interesting sensitivity $d_{\mathrm{p}} \sim 10^{-24} e \mathrm{~cm}$. But, to begin with, we summarize here the main achievements of the JEDI collaboration.

Before the start of the spin program at the NICA collider, the COSY Synchrotron in Jülich will have been the only machine in the world fully equipped for precision polarization experiments [335-337]. In a series of experiments at COSY, the JEDI collaboration obtained recordbreaking results:

- a demonstration of measuring the polarization of deuterons to an accuracy of 10^{-6} [338];
- a technique developed for measuring the deuteron spin precession frequency with an accuracy of 10^{-10} [339, 340];
- a feedback technique developed for continuous control of the spin phase to an accuracy of 0.15 rad [341, 342];
- coherence time exceeding 1000 s for deuteron spins idly precessing in the horizontal plane achieved [343, 344]. The previous record result of 0.5 s for electrons and positrons was obtained at the Budker Institute of Nuclear Physics (INP) [345];
- a new method of spin tune mapping developed, allowing for the first time the experimental evaluation of the integral systematic impact on the spin precession of unwanted magnetic fields due to the imperfection of the magnetic system in the COSY plane [330];
- beam-based alignment to ensure the passage of the orbit through the center of the quadrupole magnets realized [346];
- a radio-frequency Wien filter as a novel spin rotator proposed, commissioned, and in operation at COSY [347349].

This is a very incomplete list of important JEDI results that were recognized as a sufficient foundation for preparation of the PTR project [33].

A novel approach to the search for the proton EDM at the all electric PTR, based on running the RF WF operating at the cyclotron frequency, was proposed by the CPEDM collaboration (see Appendix H in [33]). Here, the RF WF acts as a static device. When a clockwise (CW) bunch passes through the Wien filter, the counterclockwise (CCW) bunch must be at the diametrically opposite point of the ring. Since the magnetic field in the Wien filter changes sign by the time of the arrival of the CCW bunch with the opposite velocity sign, the Wien filter (WF) condition imposed on the CW bunch is also satisfied for the CCW bunch:

$$
\begin{equation*}
\mathbf{E}_{\mathrm{WF}}+\boldsymbol{v} \times \mathbf{B}_{\mathrm{WF}}=\mathbf{E}_{\mathrm{WF}}+(-\boldsymbol{v}) \times(-\mathbf{B})_{\mathrm{WF}}=0 \tag{7.13}
\end{equation*}
$$

It follows from equation (6.6) that, due to the contribution of the EDM, the axis of the stable spin $\mathbf{c}=\boldsymbol{\Omega}_{\mathrm{c}} / \Omega_{\mathrm{c}}$ is tilted by an angle $\xi_{\text {EDM }}$,

$$
\begin{equation*}
\tan \xi_{\mathrm{EDM}}=\frac{\eta_{\mathrm{EDM}} \beta}{2\left[1-\beta^{2}(1+G)\right]} \tag{7.14}
\end{equation*}
$$

The spin rotation in the Wien filter changes the spin tune [330],

$$
\begin{align*}
\cos \left[\pi\left(v_{\mathrm{s}}+\Delta v_{\mathrm{s}}\right)\right] & =\cos \left(\pi v_{\mathrm{s}}\right) \cos \left(\frac{1}{2} \psi\right) \\
& -\mathbf{c w} \sin \left(\pi v_{\mathrm{s}}\right) \sin \left(\frac{1}{2} \psi\right) \tag{7.15}
\end{align*}
$$

where ψ is the angle of the spin rotation in the Wien filter. With the vertically aligned magnetic axis \mathbf{w} of the WF, the scalar product $\mathbf{c w}= \pm \sin \xi_{\mathrm{EDM}}$ has the opposite sign for the two bunches. Thus, the difference between the spin precession frequencies of the two bunches would yield the EDM signal

$$
\begin{equation*}
v_{\mathrm{s}}^{\mathrm{cw}}-v_{\mathrm{s}}^{\mathrm{ccw}}=\frac{1}{2} \xi_{\mathrm{EDM}} \psi \tag{7.16}
\end{equation*}
$$

The described experiment in the all-electric PTR run for one year would enable setting the upper limit on the proton EDM $d_{\mathrm{p}}<2 \times 10^{-24} e \mathrm{~cm}$ [33].

8. Spin as an antenna for axion-like particles in the Universe

8.1 Axions beyond QCD

Quite paradoxically, axion physics is surprisingly diverse. The existence of axion phenomena was first theoretically predicted in electrodynamics by Tellegen [350, 351], who proposed the concept of a gyrator in the electric network theory as an element of a physical system that has the property of 'rotating' the field strengths into the field excitations. ${ }^{3}$ The corresponding constitutive relation has the form $\mathbf{E}=-s \mathbf{H}, \mathbf{B}=s \mathbf{D}$, where s is the gyrator, or, in modern terminology, its reciprocal is called the axion $a=1 / s$. In such a system, the spatial parity is obviously violated, and the object a itself is a pseudoscalar from a geometric point of view. Although there are no material substances in nature with such a constitutive law, Lindell and Sihvola [355] suggested that such a system could be artificially constructed as a metamaterial, which they called a perfect electromagnetic conductor (PEMC), since it can be considered a natural generalization of an ideal electric conductor. Tretyakov's group [356] demonstrated the possibility of manufacturing such an artificial metamaterial and investigated its properties.

The unusual constitutive law of Tellegen/PEMC metamaterial, however, is not something completely exotic, if we notice that in fact this is a very special case of a real material medium with magnetoelectric properties. A characteristic property of such a substance (as a rule, of a crystalline nature) is the occurrence of an electric polarization in it in an external magnetic field, or its magnetization in an external electric field. Such crystals are anisotropic media, which are characterized by nontrivial electric permittivity and magnetic permeability tensors, as well as by the magnetoelectric susceptibility tensor (as a specific example, we can mention magnetoelectric $\mathrm{Cr}_{2} \mathrm{O}_{3}$). The isotropic part of the magnetoelectric susceptibility tensor can be naturally identified with the axion, the existence and magnitude of which were already established in Astrov's classic experiments [357] with uniaxial

[^4]$\mathrm{Cr}_{2} \mathrm{O}_{3}$ crystals (proposed by Dzyaloshinskii [358] from the magnetic symmetry analysis) and later confirmed in the more accurate studies by Rado and Folen [359] and Wiegelmann et al. [360]. In this sense, the axion was reliably measured in condensed matter physics [361, 362].

Speaking of axions in condensed matter physics, one should not forget topological materials, first of all so-called topological insulators [363-365], the theoretical and experimental studies of which have been developing in an avalanche-like manner recently. Such materials are threedimensional dielectric crystalline structures which have conducting states localized on the surface of the crystal. The existence of such nondissipative metallic surface states stems from the nontrivial topological properties of the band structure of the crystal, and their topological nature determines the stability of such states against defects and inhomogeneities of the conducting boundary of the material. The electromagnetic response of a three-dimensional topological insulator is described by the axion electrodynamics of an isotropic medium, the polarization and magnetic properties of which are given by the effective electric permittivity and magnetic permeability, as well as by the pseudoscalar magnetoelectric susceptibility parameter a. They are determined by the microscopic model of a topological insulator [366-371]. In particular, the nontrivial axion a is calculated as an integral in the momentum space of a topological Chern-Simons 3 -form constructed from the Berry connection in the space of periodic Bloch functions of a crystal [372, 373].

The axion electrodynamics [374-379] is a remarkable theoretical laboratory for studying systems with broken fundamental (P, C, T) symmetries, which builds a kind of bridge from condensed matter physics, where axions have already been discovered, to high-energy physics and cosmology, where axions still have the status of hypothetical fields and particles. In this regard, it is worth quoting Wilczek, who, in one of his pioneering papers [375], astutely noted that "...it is...not beyond the realm of possibility that fields whose properties partially mimic those of axion fields can be realized in condensed-matter systems," thereby emphasizing the unity of physical science in apparently rather distant areas. A detailed discussion of the fundamental connections of particle physics and cosmology with condensed matter physics can be found in Volovik's book [380] (see also [381] for realization of the axion in superfluid ${ }^{3} \mathrm{He}-\mathrm{A}$ by sound waves in a fermionic system).

In continuation of Section 2.2, we now turn to the practical issue of observation of cosmic axions, which have been elusive to date.

8.2 Detecting axions in flat spacetime

The axion-matter coupling constant $f_{(a)}$, the axion mass, and the contribution of cold axions to dark matter depend on the time when the axion phase transition occurred in the expanding inflationary Universe. According to [382-384], when the angular frequency of the axion field is about three times the expansion rate of the Universe, coherent oscillations of the cold cosmological axion field start. This determines the potential and prospects for the active experimental search for axions (for extensive literature on the subject, we refer to reviews [57, 58, 113, 385]). Attributing the local energy density of dark matter $\rho_{\mathrm{DM}} \approx 400 \mathrm{MeV} \mathrm{cm}^{-3}$ [386] to axions in the invisible halo of our Galaxy, the amplitude of the classical axion field $a(x)=a_{0} \cos \left(\omega_{(a)} t-\mathbf{k}_{(a)} \mathbf{x}\right)$ can
be evaluated as [56]

$$
\begin{equation*}
a_{0}=\frac{1}{m_{(a)}} \sqrt{\frac{2 \rho_{\mathrm{DM}} \hbar}{c^{3}}} . \tag{8.1}
\end{equation*}
$$

Recent searches for interactions between solar axions and matter in the Baksan underground laboratory have yielded the upper bounds $m_{(a)} \leqslant 320 \mathrm{eV} / c^{2}$ and $m_{(a)} \leqslant 4.6 \mathrm{eV} / c^{2}$ for the KSVZ and DFSZ axions, respectively [387].

The astrophysical upper bounds on the axion mass, $m_{(a)}<10^{-2} \mathrm{eV} / c^{2}$, are based on particle physics methods. We estimate contributions to the fluxes of gamma rays due to the decay of axions produced via the bremsstrahlung mechanism [388, 389] in nucleon-nucleon collisions in pulsars [390] and in the explosion of the supernova SN1987A [391]. The question of the lower limit on the axion mass remains open. In the focus of our discussion will be the minimal axion model with the Weinberg relation (2.24) between the axion mass and the nucleon coupling constant, and we do not dwell on more speculative axion-like particles, for example, in supersymmetric models (see reviews [58, 113, 385, 392-394]).

Quite naturally, in the $\mathrm{U}(1)_{\mathrm{PQ}}$ current, in addition to the chromodynamic anomaly, there is also an electromagnetic anomaly which generates, by analogy with the axion-gluon $L_{(a)}(2.22)$, the axion-photon interaction

$$
\begin{equation*}
L_{\mathrm{a} \gamma \gamma}=-g_{\mathrm{a} \gamma \gamma} \frac{1}{f_{(a)} c} \frac{\alpha}{\pi} a(x) \mathbf{E}(x) \mathbf{B}(x) \tag{8.2}
\end{equation*}
$$

with the constant $g_{\text {ary }} \sim 1$ [114-117]. The most remarkable manifestation of this interaction is the inverse Primakoff effect - the conversion of axions in a static external magnetic field into a photon with the energy equal to the mass of the axion, i.e., with the angular frequency $[395,396]$

$$
\begin{equation*}
\omega_{(a)}=\frac{m_{(a)} c^{2}}{\hbar} \tag{8.3}
\end{equation*}
$$

The count of single microwave photons excited in the magnetic field of the superconducting resonator of the Sikivie haloscope depends on the so-called axion wind - the flux of galactic relic axions in a terrestrial laboratory, caused by the motion of Earth in the Galaxy. Sometimes, it is more convenient to talk about the motion of the detector through the field of cold axions with the nonrelativistic velocity $v_{(a)} \approx 10^{-3} c$. The inverse Primakoff effect was and remains the basis of numerous searches in experiments with haloscopes. In recent experiments of the CAPP (Center for Axion and Precision Physics) [397] and ADMX (Axion Dark Matter eXperiment) [398] collaboration, the sensitivity of cryogenic axion haloscopes was already close to the level sufficient to begin the critical test of the existence of dark matter, consisting of KSVZ axions [114, 115], and it can exceed the observational threshold with continuous progress in the superconducting resonator technique in the gigahertz region corresponding to the axion masses $m_{(a)} \sim 10 \mu \mathrm{~V} / c^{2}$. Unfortunately, the axion mass is unknown and one is bound to resort to frequency scanning, and a sufficiently high sensitivity is possible only under slow scanning, which limits the covered mass interval [399]. Detailed coverage of the extensive program of the experiments ADMX [400], ADMX-HF (ADMX-High Frequency) [401], HAYSTAC (Haloscope at Yale Sensitive to Axion CDM) [402], CAPP [397, 403, 404], and RADES (Relic Axion Detector Experimental Setup) [405] is beyond the scope of this article, and we
refer readers to the detailed discussion of the issue and planned new experiments in reviews [57, 58, 113, 385, 392394, 406].

Still another application of the direct and inverse Primakoff effect is in the "shining laser light through a wall" approach [396], when an intermediate axion is produced in a magnetic field by the Primakoff mechanism, then penetrates through a wall opaque to the light, and subsequently regenerates back into a photon in the magnetic field [407]. A number of experiments were carried out with helioscopes, which make it possible to detect ultrarelativistic axions emitted by the Sun in the X-ray range (see, for example, [387, 408, 409]).

The interaction of axions with fermions leads to a rich variety of phenomena. First, we will discuss this by neglecting the rotation of Earth. Inverting (2.21), we obtain an estimate of the oscillating contribution to the EDM of nucleons [55, 56],

$$
\begin{equation*}
d_{\mathrm{N}}^{(a)}(x)=\eta^{(a)} \frac{\mu_{\mathrm{N}}}{c}=\frac{a(x)}{f_{(a)}} \kappa_{(a)} \frac{\mu_{\mathrm{N}}}{c} \tag{8.4}
\end{equation*}
$$

where the chiral suppression of the EDM [101, 102] is shown explicitly:

$$
\begin{equation*}
\kappa_{(a)} \sim \frac{m^{*}}{\Lambda_{\mathrm{QCD}}} \approx 10^{-2} \tag{8.5}
\end{equation*}
$$

The Weinberg interaction (2.23) makes a new contribution to the nonminimal dipole terms in the generalized Dirac equation (5.1):
$\frac{\mu^{\prime}}{2 c} \bar{\Psi} \sigma^{\alpha \beta} \Psi F_{\alpha \beta}+\frac{d}{2} \bar{\Psi} \sigma^{\alpha \beta} \Psi \widetilde{F}_{\alpha \beta}-\frac{\hbar}{2 f_{(a)}} g_{f} \partial_{\mu} a(x) \bar{\Psi} \gamma^{\mu} \gamma_{5} \Psi$.
The role of the EDM in spin precession was discussed in Section 6.1. The oscillating axion contribution (8.4) must be included in $d(x)=d^{\text {EDM }}+d^{(a)}(x)$. The EDM enters (8.6) with the dual electromagnetic field strength $\widetilde{F}_{\alpha \beta}$. From the point of view of the spin dynamics, the interaction of the oscillating axion contribution $d^{(a)}(x)$ in the EDM with an external electric field is equivalent to the action of a radiofrequency spin rotator. In NMR-type experiments, when the frequencies do coincide, such a rotator obviously induces detectable rotation and depolarization of a spin precessing in an external magnetic field [198, 330]. This underlies, for example, the program of the CASPEr (Cosmic Axion Spin Precession Experiment) [57] experiment (see also [392, 410413]).

We now focus on the Weinberg interaction (2.23). For nonrelativistic fermions f, the corresponding Hamiltonian of a direct interaction with the axion field reads

$$
\begin{equation*}
\mathcal{H}_{\mathrm{aff}}=\frac{\hbar c}{2} \frac{g_{\mathrm{f}}}{f_{(a)}} \boldsymbol{\sigma}\left(\nabla a(t, \mathbf{x})+\frac{\mathbf{p}_{\mathrm{f}}}{m_{\mathrm{f}} c^{2}} \dot{a}(t, \mathbf{x})\right) \tag{8.7}
\end{equation*}
$$

where $\boldsymbol{\sigma}$ are the Pauli matrices, $\mathbf{p}_{\mathrm{f}}=m_{\mathrm{f}} \boldsymbol{v}_{(a)}$ is the momentum of the fermion in its motion relative to the axion field (recall that the constant $f_{(a)}$ has the dimension of the axion field $a(t, \mathbf{x})$, see (2.21)). In typical laboratory experiments, the cold axion field can be treated as homogeneous, and only the second term in the parentheses is of practical importance. As first proposed by Kolokolov et al. in [414-416], it can be reinterpreted as interaction with a (pseudo)magnetic field, referred to also as axion wind. Later on, it was reintroduced in
[417, 418] and became generally accepted. It can be derived from classical considerations, but a correct quantummechanical derivation is possible only on the basis of the FW transformation (see Section 5).

An oscillating P-odd interaction of axions with electrons, proportional to $\boldsymbol{\sigma} \boldsymbol{v}_{\mathrm{e}}$, leads to various phenomena in atomic and molecular physics [418]. Note that the speed of atomic electrons v_{e} can significantly exceed $v_{(a)}$. The relevant experiments on this topic are discussed in the detailed review [419]. On the other hand, for static spins, the same Hamiltonian has the meaning of interaction with an oscillating external pseudomagnetic field proportional to velocity $v_{(a)}$ of the spin motion with respect to the galactic axion field. One can search for manifestations of this pseudomagnetic field in magnetic media, for example, via magnon excitations (see [$411,412,415,416,420,421]$ and the cited literature) and via the resonant spin rotation using the NMR methods mentioned above, when, with proper correction for the rotation of Earth [410], the frequency of the pseudomagnetic field oscillations coincides with the frequency of spin precession in the laboratory [57, 392, 411-413]. The search for the axion signal by analyzing the neutron EDM data, accumulated over a decade, on the spin precession of ultracold neutrons in a storage cell with a mercury, ${ }^{199} \mathrm{Hg}$, comagnetometer (see Section 9.2.2) was carried out in [60]. Here, what was looked for was a temporal variation of the ratio of the precession frequencies of the neutron spin and the ${ }^{199} \mathrm{Hg}$ comagnetometer, expected in view of the strong Schiff suppression of the axion contribution to the EDM of an atom as compared to the contribution to the EDM of a neutron. Then, the observed signal must be treated as the contribution of the axion field directly to the neutron EDM. The sensitivity achieved is at least six orders of magnitude lower than one needs to observe the QCD axion (the sensitivity estimates were criticized for insufficient accounting for the randomness of the phase of the axion field, see [422]). Still, this analysis for the first time demonstrated the possibility of a laboratory study in the interval of record-low axion masses $10^{-24} \mathrm{eV} / c^{2} \leqslant m_{(a)} \leqslant 10^{-17} \mathrm{eV} / c^{2}$. A similar analysis of 2016-2017 data on the search for the EDM of the ${ }^{180} \mathrm{Hf}^{19} \mathrm{~F}^{+}$ion [42], discussed above, was carried out in [422]. In this case, the theory predicts that the oscillation of the $C P$ odd electron-nucleon coupling constant dominates in the axion signal in the low-mass region [63, 64]. With due attention to the phase uncertainty of the axion field, the axion mass region $10^{-22} \mathrm{eV} / c^{2} \leqslant m_{(a)} \leqslant 10^{-15} \mathrm{eV} / c^{2}$ has been studied. In the covered mass interval, the sensitivity is even lower than that in the neutron experiment [60].

However, one must bear in mind that the common axion [114-117] is only one of the possible candidates for dark matter, and any new look at the manifestations of dark matter is of interest in a range of observables as broad as possible. Thus, in connection with axions, new interest arose in revisiting the Schiff shielding in oscillating external fields [423-425]. Among the new topics that grew out of axion physics are fresh looks at the possible time dependence of fundamental constants and masses due to interaction with dark matter [426]; see also [427, 428] for a discussion of oscillating fundamental constants due to the galactic halo of scalar fields (relaxions). Let us also mention a possible detection of the electron-axion interaction by observing the recoil electrons in liquid xenon as a part of a XENON collaboration program for the search for weakly interacting dark matter [429].

8.3 Search for axions in storage ring experiments

Using the spin of particles in storage rings as an axion antenna falls into the NMR class of experiments, albeit with a unique setup. The first such experimental search for axions has been proposed by the JEDI collaboration at the synchrotron COSY [61, 430, 431], and the results were released in 2022 [432]. The novelty of this approach is that spins in the accelerator move with ultra-relativistic velocities, so that one can expect an enhancement of the pseudomagnetic field in the accelerator orbit by the factor $c / v_{(a)} \approx 10^{3}$, as compared to fields acting on static spins. This was pointed out in [433], but without elaborating on the implications for the search for axions. The first complete solution to the problem of using the spin as an axion antenna in this mode was given in [434], with the FW transformation playing a crucial role.

The Hamiltonian corresponding to equations (5.1) and (8.6) in the Dirac representation has the form

$$
\begin{align*}
\mathcal{H} & =\beta m c^{2}+c \boldsymbol{\alpha} \pi+q \Phi+\mu^{\prime}(\mathrm{i} \boldsymbol{\gamma} \mathbf{E}-\boldsymbol{\Pi} \mathbf{B}) \\
& -d(\boldsymbol{\Pi} \mathbf{E}+\mathrm{i} \boldsymbol{\gamma} \mathbf{B})+\frac{\hbar g_{\mathrm{f}}}{2 f_{(a)}}\left(c \mathbf{\Sigma} \boldsymbol{\nabla} a-\gamma_{5} \dot{a}\right), \tag{8.8}
\end{align*}
$$

where the notation is the same as in equations (5.4), (5.22). We have already discussed the role of the axion contribution to the EDM. A new element is the contribution of the Weinberg interaction describing the axion wind. After a relativistic transformation to the FW representation, following the method [295, 435, 436], we find in the semiclassical approximation the corresponding contribution to the Larmor angular velocity of the spin rotation [434]:

$$
\begin{equation*}
\mathbf{\Omega}^{(a)}=\frac{g_{\mathrm{f}}}{f_{(a)}}\left[\frac{c \boldsymbol{\nabla} a}{\gamma}+\frac{\boldsymbol{v}}{c}\left(\dot{a}+\frac{\gamma}{\gamma+1} v \nabla \boldsymbol{\nabla} a\right)\right] . \tag{8.9}
\end{equation*}
$$

As far as the cold axion field in the galactic halo is concerned, the terms $\propto \nabla a(x)$ can be omitted. Then, the total axion contribution, including the effects of the oscillating EDM and the pseudomagnetic field, to the instantaneous angular velocity of the spin rotation with respect to the momentum of the particle in a purely magnetic storage ring takes the form

$$
\begin{equation*}
\boldsymbol{\Omega}^{(a)}=\frac{a_{0}}{f_{(a)}}\left[g_{\mathrm{f}} \omega_{(a)} \sin \left(\omega_{(a)} t\right) \frac{\boldsymbol{v}}{c}-\kappa_{(a)} \gamma \cos \left(\omega_{(a)} t\right) \frac{\boldsymbol{v}}{c} \times \boldsymbol{\Omega}_{\mathrm{c}}\right] \tag{8.10}
\end{equation*}
$$

Here, we have rewritten the EDM contribution $\propto \boldsymbol{v} \times \mathbf{B}$ in the FT-BMT equation (6.6) by substituting \mathbf{B} in terms of the cyclotron angular velocity (6.2). The unambiguous relation of the two contributions in (8.10) is explained by a simple kinematic relationship, evident from (6.6), between the electric field in the comoving particle's system and the magnetic field in a purely magnetic storage ring.

The sum (8.10) is tantamount to endowing the static storage ring with two radio-frequency spin rotators, which do not affect the orbital motion of the particle. The pseudomagnetic field rotates the spin from the vertical orientation to the horizontal one about the particle's momentum, and, as a spin rotator, it imitates a radiofrequency solenoid operating at a frequency of $\omega_{(a)} /(2 \pi)$. The spin rotation rate is proportional to the field integral in the rotator [198, 330, 331]. In this case, the longitudinal pseudomagnetic field acts along the entire circumference of
the ring. The EDM contribution, which is expressed in terms of the cyclotron angular velocity $\boldsymbol{\Omega}_{\mathrm{c}}$, also rotates the spin from the vertical to the horizontal position and vice versa, but about the radial axis. It is equivalent to an RF Wien filter with a radial magnetic field.

Consider first the simplest example of axion spin resonance for the purely magnetic bending of protons or deuterons. The axion signal during the slow energy scan, i.e., the cyclotron frequency $\Omega_{\mathrm{c}} /(2 \pi)$, will be a spontaneous spin rotation in the vertical plane when the resonance condition is satisfied:

$$
\begin{equation*}
\Omega_{\mathrm{s}}=G \gamma \Omega_{\mathrm{c}}=\omega_{(a)} . \tag{8.11}
\end{equation*}
$$

In the scheme adopted in the JEDI experiment, the spin of the bunch of deuterons lies in the ring plane, and the linear in time accumulation of the vertical polarization serves as an axion signal [61, 430, 431, 437]. All the other RF spin rotators in the ring, including the RF Wien filter discussed in [438], are better switched off.

In the spin resonance mode (8.11), the ratio of the two frequencies in the square brackets (8.10) reads

$$
\begin{equation*}
\frac{g_{\mathrm{f}} \omega_{(a)}}{\kappa_{(a)} \gamma \Omega_{\mathrm{c}}}=g_{\mathrm{f}} \frac{G}{\kappa_{(a)}} \sim 10^{2} G \gg 1 . \tag{8.12}
\end{equation*}
$$

The coupling of the spin with the axion pseudomagnetic field turns out to be much more significant than the coupling of the axion contribution to the particle's EDM with the comoving electric field. To this end, we note that this impact of the pseudomagnetic field was overlooked in the early simulations of the sensitivity of spin in storage rings as an axion antenna [61], so that the sensitivity to axions in such experiments was substantially underestimated.

As we see from (8.10), the phases of the radial and longitudinal axion spin rotators differ by $\pi / 2$. The description of the spin evolution induced by the axion pseudomagnetic field is simplified in a precession-linked reference system, which is rotating with the angular velocity $\Omega_{\mathrm{s}}=G \gamma \Omega_{\mathrm{c}}$. The spin precession is frozen in this rotating system; a description of the resonance evolution of the spin envelope is found in [61, 330, 439, 440]. The amplitude of the axion signal would depend on the difference Δ between the axion field oscillation and the spin precession phases, while the angular velocity of the resonance rotation of the spin in the vertical plane is equal to

$$
\begin{equation*}
\Omega_{\mathrm{res}}=\frac{a_{0}}{2 f_{(a)}} \frac{v}{c} \gamma\left|g_{\mathrm{f}} G-\kappa_{(a)}\right| \Omega_{\mathrm{c}} \tag{8.13}
\end{equation*}
$$

and does not depend on the phase Δ.
In the usually discussed scheme with the in-plane initial polarization [61, 430, 431, 437], the axion signal will be proportional to $\sin \Delta[330,331]$. There is no way to control the phase Δ, and a buildup of the vertical polarization by interaction with the axion field would be irreproducible from one beam fill to another. As a practical remedy, the JEDI collaboration resorted to filling the ring with four bunches with different polarizations [61, 432, 437]. Ramping the magnetic field of the ring while keeping a constant beam orbit, the JEDI experiment covered the spin precession frequency range from 119.997 kHz to 121.457 kHz , or an axion mass range of $4.95-5.02 \mathrm{neV} / c^{2}$. No signal of the axioninduced spin rotation has been observed. When interpreted in terms of the oscillating EDM of the deuteron, JEDI has set the upper bound $d^{(a)}<5 \times 10^{-23} e \mathrm{~cm}$ [432].

Here, we note that the problem of the phase Δ would not arise at all if one tracks the rotation of the initial vertical polarization caused by the axion in the direction of the ring plane [441]. In this case, the axion field signal will be a linear in time growth of the amplitude of the precessing horizontal polarization, which can be measured by the method developed in [339]. Because of the short proton spin coherence time $\tau_{\text {SCT }}$ [442], the JEDI scheme can not be used for protons, while, in the scheme with initial vertical polarization, a signal of the oscillating horizontal polarization accumulated for the time $\sim \tau_{\text {SCT }}$ can still be detected experimentally.

Only a limited range of spin precession frequencies above 110 kHz is accessible at the magnetic storage ring COSY. To this end, the hybrid version of the PTR will be a unique broadband axion antenna in the low frequency domain. Specifically, one starts here with the zero proton spin precession frequency at the frozen spin point. Beyond this point, the electric and magnetic fields must be varied synchronously to preserve the orbit radius and the injection energy. The angular velocity of the spin precession will be proportional to the change in the magnetic field from the frozen spin value [441]:

$$
\begin{equation*}
\Omega_{\mathrm{s}}=-\frac{q}{m c} \frac{1+G}{\gamma^{2}}|\Delta B| . \tag{8.14}
\end{equation*}
$$

The attainable band of frequencies will depend on the range of magnetic fields tolerated by the air magnetic winding of PTR and electric fields in the electrostatic deflectors [33]. The same mechanism of variation of the spin precession frequency with orbit retention might work in all magnetic storage rings if a straight section is converted into a static Wien filter. A practical solution for NICA, suggested recently in [443], would be complementing the ring with long, $\sim 100 \mathrm{~m}$, bypasses which can be operated without affecting the equipment in the main rings. Here, one can approximate the Wien filter with alternating magnetic dipoles and electrostatic deflectors suggested in the quasi-frozen spin approach [444]. The crucial point is that this way the attainable band of spin precession frequencies can be expanded by more than one order in magnitude compared to what was achieved by JEDI at COSY.

Active experiments on the subject have not yet resulted in a direct observation of axions or axion-like particles. But the intertwining of the most fundamental problems, from $C P$ nonconservation in the quantum chromodynamics to the nature of dark matter, justifies all efforts. Only the combined search for axions in astrophysical observations, in electromagnetic interactions, in experiments with static spins, and in storage ring physics makes it possible to cover the entire interesting spectrum of axion masses. It is gratifying that the sensitivity of a number of experimental techniques approaches the threshold for testing the basic theoretical concepts and may exceed this threshold in the foreseeable future, albeit in narrow frequency intervals, for the time being.

8.4 Axion effects in the dynamics of spin in a gravitational field

Since the gravitational interaction is universal, it should be taken into account in the context of spin-axion problems. In Sections 4 and 5 above, we considered the quantum and classical spin dynamics in external electromagnetic, gravitational, and inertial fields. The corresponding results can be generalized by adding an axion field to this list, with a
minimal extension of the geometric formalism. Let us write down the generalization of Dirac equation (5.1) for a fermionic particle in external fields:

$$
\begin{align*}
\left(\mathrm{i} \hbar \gamma^{\alpha} D_{\alpha}-m c\right. & +\frac{\mu^{\prime}}{2 c} \sigma^{\alpha \beta} F_{\alpha \beta}+\frac{d}{2} \sigma^{\alpha \beta} \widetilde{F}_{\alpha \beta} \\
& \left.-\frac{\hbar}{2 f_{(a)}} g_{\mathrm{f}} e_{\alpha}^{i} \partial_{i} a(t, \mathbf{x}) \gamma^{\alpha} \gamma_{5}\right) \Psi=0, \tag{8.15}
\end{align*}
$$

taking into account the direct interaction of the particle with the axion field, which is described by the last term.

Quite remarkably, one can reformulate (8.15) as the Dirac equation in the Riemann-Cartan space-time, in which the gravitational field is described by the two independent geometric structures, the curvature and the torsion, if we identify the torsion pseudovector with the covariant gradient of the axion field [445]:

$$
\begin{equation*}
\check{T}_{\alpha}=\frac{2 g_{f}}{f_{(a)}} e_{\alpha}^{i} \partial_{i} a \tag{8.16}
\end{equation*}
$$

An analysis of the general-relativistic Dirac theory in such a geometry [211, 446] shows that equation (8.15) reduces to Schrödinger equation (5.3) with Hamilton operator (5.4), in which the two key objects (5.6), (5.7) are redefined as $\boldsymbol{\Xi} \rightarrow \mathbf{\Xi}+\mathbf{\Xi}^{(a)}$ and $\Upsilon \rightarrow \Upsilon+\Upsilon^{(a)}$, getting additional contributions from the axion field:

$$
\begin{align*}
& \mathbf{\Xi}_{a}^{(a)}=\frac{2 g_{\mathrm{f}}}{f_{(a)}} \mathcal{F}^{b}{ }_{a} \partial_{b} a, \tag{8.17}\\
& r^{(a)}=\frac{2 g_{\mathrm{f}}}{c f_{(a)}}\left(\partial_{t} a+c K^{b} \partial_{b} a\right) . \tag{8.18}
\end{align*}
$$

The gravitational field manifests its presence here through the components of the Schwinger tetrad, also encoded in the form of the object (5.5).

This leads, in turn, to the generalization of both the gravitoelectric $\mathcal{E} \rightarrow \mathcal{E}+\mathcal{E}^{(a)}$ and the gravitomagnetic $\mathcal{B} \rightarrow$ $\boldsymbol{B}+\boldsymbol{B}^{(a)}$ fields in which the axion field adds to the usual expressions (5.37) and (5.38) the contributions

$$
\begin{align*}
\mathcal{E}_{a}^{(a)} & =\frac{\gamma c g_{\mathrm{f}}}{f_{(a)} V} \epsilon^{a b c} \widehat{v}_{b} \mathcal{F}^{d}{ }_{c} \partial_{d} a \tag{8.19}\\
\mathcal{B}_{a}^{(a)} & =-\frac{\gamma c g_{\mathrm{f}}}{f_{(a)} V}\left\{\mathcal{F}^{b}{ }_{a} \partial_{b} a+\frac{\widehat{v}_{a}}{c^{2}}\left(\partial_{t} a+c K^{b} \partial_{b} a\right)\right\} \tag{8.20}
\end{align*}
$$

As a consequence, after the FW transformation, the spin precession angular velocity (5.41) is modified to $\boldsymbol{\Omega} \rightarrow$ $\boldsymbol{\Omega}+\boldsymbol{\Omega}^{(a)}$ by the specific axion term [445]

$$
\begin{equation*}
\boldsymbol{\Omega}^{(a)}=-\frac{1}{\gamma} \boldsymbol{B}^{(a)}+\frac{1}{1+\gamma} \frac{\widehat{\boldsymbol{v}} \times \boldsymbol{\mathcal { E }}^{(a)}}{c^{2}} \tag{8.21}
\end{equation*}
$$

It is important to emphasize that all these results are valid for any configurations of the electromagnetic, gravitational, and axion fields, which makes them applicable to any physical or astrophysical problem, including the case of strong fields (for example, in the vicinity of compact massive objects).

The results obtained allow an equivalent formulation in the framework of the classical Frenkel-Thomas-BMT spin theory, in which the action of an axion field on the spin vector in curved spacetime is described by the general-relativistic covariant equation

$$
\begin{equation*}
\frac{D S^{\alpha}}{\mathrm{d} \tau}=\frac{g_{\mathrm{f}}}{f_{(a)}}\left(e_{\gamma}^{i} \partial_{i} a\right) \varepsilon^{\alpha \beta \gamma} S_{\beta}, \tag{8.22}
\end{equation*}
$$

where $\varepsilon^{\alpha \beta \gamma}=\varepsilon^{\alpha \beta \gamma \delta} U_{\delta}$ (cf. Balakin, Popov [447] and Dvornikov [448]). In the presence of the electromagnetic field, one should also add the usual terms from the right-hand side of Eqn (4.35).

In the context of experiments in high-energy physics in accelerator laboratories located on Earth, one needs to specialize from the general formalism to the conditions of terrestrial gravity and rotation. In this case, the gravitational field is adequately described in the gravitoelectromagnetism approximation (5.42), (5.43), and (6.10). Using this approximation (and also taking into account the fact that, for Earth's gravity, we can put $V=W=1$ with very good accuracy), we derive

$$
\begin{equation*}
\mathbf{\Xi}^{(a)}=\frac{2 g_{\mathrm{f}}}{f_{(a)}} \boldsymbol{\nabla} a, \quad r^{(a)}=\frac{2 g_{\mathrm{f}}}{c f_{(a)}}\left\{\dot{a}+\boldsymbol{\omega}_{\oplus}(\mathbf{r} \times \nabla a)\right\}, \tag{8.23}
\end{equation*}
$$

and simplify (8.19) and (8.20) to

$$
\begin{align*}
\boldsymbol{\mathcal { E }}^{(a)} & =\frac{\gamma c g_{\mathrm{f}}}{f_{(a)}} \widehat{\boldsymbol{v}} \times \boldsymbol{\nabla} a, \tag{8.24}\\
\boldsymbol{\mathcal { B }}^{(a)} & =-\frac{\gamma c g_{\mathrm{f}}}{f_{(a)}}\left[\boldsymbol{\nabla} a+\frac{\widehat{\boldsymbol{v}}}{c^{2}}\left\{\dot{a}+\boldsymbol{\omega}_{\oplus}(\mathbf{r} \times \boldsymbol{\nabla} a)\right\}\right] . \tag{8.25}
\end{align*}
$$

As a result, we find that the axion field under terrestrial conditions leads to a correction in the spin motion [445]

$$
\begin{equation*}
\mathbf{\Omega}^{(a)}=\frac{g_{\mathrm{f}}}{f_{(a)}}\left[\frac{c}{\gamma} \boldsymbol{\nabla} a+\frac{\widehat{\boldsymbol{v}}}{c}\left\{\dot{a}+\boldsymbol{\omega}_{\oplus}(\mathbf{r} \times \boldsymbol{\nabla} a)+\frac{\gamma}{\gamma+1} \widehat{\boldsymbol{v}} \boldsymbol{\nabla} a\right\}\right] \tag{8.26}
\end{equation*}
$$

The peculiar 'mixing' of axion effects with inertial/gravitational ones is noteworthy.

In general, the conclusions for flat space are confirmed, with a correction due to Earth's rotation. In particular, the nonrelativistic Hamiltonian for the axion contribution, which we get in the FW picture for (8.15),

$$
\begin{equation*}
\mathcal{H}_{\mathrm{FW}}^{(a)}=-\frac{\hbar}{2} \boldsymbol{\Pi} \boldsymbol{B}^{(a)}=\frac{\hbar c g_{\mathrm{f}}}{2 f_{(a)}} \beta \mathbf{\Sigma}\left[\nabla a+\frac{\mathbf{p}_{\mathrm{f}}}{m_{\mathrm{f}} c^{2}} \mathrm{\partial}_{t}^{(\mathrm{m})} a\right] \tag{8.27}
\end{equation*}
$$

agrees with (8.7); however, the rate of change of the axion field is given by the material derivative $\partial_{t}^{(\mathrm{m})} a=\partial_{t} a+\boldsymbol{v}^{\mathrm{rot}} \nabla a$, where $\boldsymbol{v}^{\text {rot }}=\boldsymbol{\omega}_{\oplus} \times \mathbf{r}$ is the dragging velocity due to the motion of the frame, located on the rotating Earth. Thus, a longitudinal pseudomagnetic field acting on a spin can be generated not only by a time-dependent axion configuration but also by a static inhomogeneous axion field.

Note that, in addition to the direct influence of Earth's gravity and rotation through the spacetime metric and the coframe components in the structure of the gravitomagnetic and gravitoelectric fields, the gravitational field implicitly manifests its presence also through the form of the axion field obtained as a solution of the scalar wave equation in curved spacetime. The corresponding analysis of such effects was carried out by Stadnik and Flambaum [418] without, however, taking into account Earth's rotation.

9. Geometric magnetic field in an electrostatic laboratory on a rotating Earth

9.1 Magnetic and electric fields in a noninertial laboratory So far, we have considered the spin dynamics in the prearranged external electric and magnetic fields. We now turn to a
discussion of these fields as such in non-inertial reference frames under special boundary conditions. From the point of view of searches for the EDM, we are interested in the case of an electrostatic storage ring in the coordinate system K , attached to the rotating Earth, with a static distribution of electric charges and zero currents. It is clear that these charges move and create a magnetic field in the reference frame K^{\prime} of fixed distant stars. It needs to be found out whether the magnetic field, measured in the terrestrial physical laboratory, would be nonzero.

Maxwell's theory of an arbitrary curved manifold in the most compact form is formulated in terms of differential forms [354]: 2-forms of the field strength $F=F_{i j} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j} / 2$, 2-forms of the field excitations $F=F_{i j} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j} / 2,2$-forms of the field excitations $H=H_{i j} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j} / 2$, and a 3 -forms of the electric current $J=J_{i j k} \mathrm{~d} x^{i} \wedge \mathrm{~d} x^{j} \wedge \mathrm{~d} x^{k} / 6$:
where the star * denotes the Hodge dualization operation. This formulation goes back to Gustav Mie [352] and Arnold Sommerfeld [353], and its great advantage is its universality: Maxwell's theory has the same form in all coordinates and frames of reference, and the general covariance is obvious. System (9.1) encompasses the homogeneous equation (the first equality), the inhomogeneous equation (the second equality), and finally the constitutive law (the last equality), which establishes the relationship between the components of the field strength tensor $F_{i j}$ and the excitation tensor $H_{i j}$. In the components, the constitutive relation reads

$$
\begin{equation*}
H^{i j}=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \frac{\sqrt{-g}}{2} \varepsilon^{i j k l} F_{k l} \tag{9.2}
\end{equation*}
$$

As usual, ε_{0}, μ_{0} are the electric and magnetic constants of the vacuum, and the quantity $\sqrt{\mu_{0} / \varepsilon_{0}} \approx 377 \Omega$ characterizes the so-called vacuum impedance. Note also that $c=1 / \sqrt{\varepsilon_{0} \mu_{0}}$.

In practice, the use of the local coordinates $x^{i}=(t, \mathbf{x})$ leads to the identification of the components of the field strength tensor $F_{i j}=(\mathbf{E}, \mathbf{B})$ and the excitation tensor $H_{i j}=(\mathbf{D}, \mathbf{H})$ as the electric and magnetic fields, and the current component $J_{i j k}=(\rho, \mathbf{J})$ as the charge density and the electric current density, which turns system (9.1) into the familiar Maxwell equations

$$
\begin{array}{ll}
\boldsymbol{\nabla} \times \mathbf{E}+\dot{\mathbf{B}}=0, & \boldsymbol{\nabla B}=0 \\
\boldsymbol{\nabla} \times \mathbf{H}-\dot{\mathbf{D}}=\mathbf{J}, & \boldsymbol{\nabla} \mathbf{D}=\rho \tag{9.4}
\end{array}
$$

Here, the dot denotes the partial derivative with respect to the coordinate time t, and the components of the vector operator ∇ have the usual meaning of partial derivatives with respect to the spatial coordinates \mathbf{x}.

Remarkably, Maxwell's equations in the gravitational field have the form (9.3), (9.4) of electrodynamics in a medium ${ }^{4}$; however, the properties of this inhomogeneous and anisotropic 'medium' are determined not by physical matter but by the spacetime geometry. In particular, the electric permittivity and magnetic permeability tensors are constructed from the metric components (4.28), and their explicit form is encoded in the constitutive relation (9.2). In addition, the off-diagonal components of the metric (that is,

[^5]$\mathbf{K} \neq 0$) play a special role, being responsible for the magnetoelectric phenomena which are described by the emergence of the electric polarization in response to an applied magnetic field and the magnetization caused by an applied electric field. The possibility of magnetoelectric effects was first predicted by Landau and Lifshitz (see § 51 in [449]) and experimentally confirmed in experiments by Astrov [357] for the class of material substances identified by Dzyaloshinskii [358] from a magnetic symmetry analysis.

Here, we will focus, based on the results of [52, 53], on the theoretical discussion of specific magnetoelectric effects under the conditions of terrestrial gravity and rotation, when the spacetime geometry is described by the metric (4.28) in the gravitoelectromagnetic approximation (5.42), (5.43).

Local coordinates, as such, do not have a direct physical meaning, and, as a consequence, the components of the electric and magnetic fields E, B with respect to the coordinate basis are not observable quantities. In the laboratory, only the field components (4.39) are measurable with respect to the (anholonomic, in general) basis of the local Lorentz frame of reference, which is determined by the corresponding tetrad. To distinguish the coordinate objects from the physical objects, we use a different font $\mathfrak{E}, \mathfrak{B}$ for the anholonomic components of the electromagnetic field strength tensor $F_{\alpha \beta}=e_{\alpha}^{i} e_{\beta}^{j} F_{i j}$. For the class of problems under consideration, it is more convenient to switch from the Schwinger gauge (4.24) to a tetrad in the Landau-Lifshitz gauge (4.25). They differ by a Lorentz transformation, and a direct calculation yields

$$
\begin{align*}
& e_{0}^{\hat{0}}=\widetilde{V}, \quad e_{a}^{\hat{0}}=\widetilde{W} \frac{2 \mathcal{A}_{a}}{c^{3}}, \quad e_{a}^{\hat{b}}=W \delta_{a}^{b}+2 \frac{\mathcal{A}^{b} \mathcal{A}_{a}}{c^{4}}, \tag{9.5}\\
& \widetilde{V}=1-\frac{\Phi}{c^{2}}+\frac{2|\mathcal{A}|^{2}}{c^{4}}, \quad \widetilde{W}=1+\frac{3 \Phi}{c^{2}}-\frac{2|\mathcal{A}|^{2}}{c^{4}} .
\end{align*}
$$

Here, $|\mathcal{A}|^{2}=\delta^{a b} \mathcal{A}_{a} \mathcal{A}_{b}$, and the gravitoelectromagnetic potentials for the terrestrial conditions are given by expressions (6.10).

Using this coframe, we obtain a relation between the anholonomic physical fields and the coordinate ones,

$$
\begin{align*}
& \mathfrak{E}_{a}=\frac{1}{\widetilde{V}} e_{\tilde{a}}^{b} \mathbf{E}_{b}, \tag{9.6}\\
& \boldsymbol{B}^{a}=\frac{1}{\operatorname{det} e} e_{b}^{\hat{a}}\left(\mathbf{B}^{b}-\frac{2 \widetilde{W}}{c^{3} \widetilde{V}}[\mathbf{E} \times \boldsymbol{\mathcal { A }}]^{b}\right), \tag{9.7}
\end{align*}
$$

where det $e=\operatorname{det} e_{b}^{\hat{a}}$, and $e_{\hat{a}}^{b}$ is the inverse 3 -frame of $e_{b}^{\hat{a}}$.
The constitutive relation (9.2) has the most transparent form in terms of the physical fields:

$$
\begin{align*}
& \mathbf{D}^{a}=\varepsilon_{0}\left(\operatorname{det} e e_{\hat{b}}^{a} \mathfrak{E}^{b}-\frac{\widetilde{W}}{c} \epsilon^{a b c} e_{b}^{\hat{d}} \boldsymbol{B}_{d} \mathcal{A}_{c}\right), \tag{9.8}\\
& \mathbf{H}_{a}=\frac{1}{\mu_{0}} \widetilde{V} \operatorname{det} e e_{a}^{\hat{b}} \boldsymbol{B}_{b} \tag{9.9}
\end{align*}
$$

The last terms in (9.8) and in (9.7) as well are responsible for the magnetoelectric effect induced by the non-inertiality (due to the rotation of Earth) of the laboratory reference frame: the electric field generates a magnetic field [52,53]. If there is no rotation $(\boldsymbol{\mathcal { A }}=0)$, the effect disappears. The corresponding magnetic field in the terrestrial laboratory (9.7) we will call the geometric magnetic field \boldsymbol{B}_{ω} (where the symbol ' ω ' is not an index, but shows the origin of the field).

The qualitative conclusion is confirmed by analyzing Maxwell's equations. Let us consider the case of static configurations for zero currents $\mathbf{J}=0$. The first of the equations of inhomogeneous system (9.4) can then be easily integrated by the ansatz

$$
\begin{equation*}
\mathbf{H}=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \boldsymbol{\nabla} \psi \tag{9.10}
\end{equation*}
$$

where the constant factor is introduced for convenience. Substituting this into (9.9), we then use (9.7) to find the coordinate magnetic field

$$
\begin{equation*}
\mathbf{B}=\frac{1}{c \widetilde{V}}\left(\nabla \psi+\frac{2 \widetilde{W}}{c^{2}} \mathbf{E} \times \mathcal{A}\right) \tag{9.11}
\end{equation*}
$$

and then from homogeneous system (9.3) we derive the equation for the scalar function

$$
\begin{equation*}
\boldsymbol{\nabla} \frac{\boldsymbol{\nabla} \psi}{\widetilde{V}}-\frac{2}{c^{2}} \mathbf{E} \boldsymbol{\nabla} \times \frac{\mathcal{A} \widetilde{W}}{\widetilde{V}}=0 \tag{9.12}
\end{equation*}
$$

Substituting here the gravitomagnetic potential (6.10), taking into account the smallness of Earth's gravitational radius (see (1.7)), the last equation can be simplified to the Poisson equation

$$
\begin{equation*}
\Delta \psi=-\frac{2}{c} \mathbf{E} \boldsymbol{\omega}_{\oplus} \tag{9.13}
\end{equation*}
$$

This result was obtained in [52, 53], and the above general approach was developed in [450]. The electric field \mathbf{E} entering the right-hand side can be calculated in the first approximation neglecting the rotation of Earth. The complete system of equations should be solved perturbatively, using Earth's angular velocity as a small parameter. In the lowest order, from (9.6) and (9.9), (9.10) we have $\mathfrak{E}=\mathbf{E}$ and $\boldsymbol{B}_{\omega}=\boldsymbol{\nabla} \psi / c$.

For what follows, the symmetry properties of the geometric magnetic field are of primary importance. As an axial vector, it changes sign upon an inversion of another axial vector, the angular velocity $\boldsymbol{\omega}_{\oplus}$. Of course, we cannot force Earth to rotate in the opposite direction. But the geometric field $\boldsymbol{B}_{\omega}=\boldsymbol{\nabla} \psi / c$ also changes sign when the polar vector of the electric field in the terrestrial laboratory changes sign, which can have practical consequences.

9.2 Geometric magnetic field and experimental searches for the EDM

9.2.1 Charged sphere on rotating Earth. As an illustration, let us consider the case of a charged conducting sphere with radius a and total electric charge Q resting on a rotating Earth. Using the electric field $\mathbf{E}(\mathbf{r})$ of such a sphere, equation (9.13) is solved exactly. The corresponding geometric magnetic field is

$$
\begin{align*}
& \boldsymbol{B}_{\omega}(\mathbf{r})=\mathfrak{B}_{\text {dip }}-\frac{\mathbf{E}(\mathbf{r}) \times\left(\boldsymbol{\omega}_{\oplus} \times \mathbf{r}\right)}{c^{2}}, \tag{9.14}\\
& \boldsymbol{B}_{\text {dip }}=\frac{\mu_{0}}{4 \pi} \times \begin{cases}3 \frac{(\mathbf{m r}) \mathbf{r}}{r^{5}}-\frac{\mathbf{m}}{r^{3}}, & r>a \\
\frac{2 \mathbf{m}}{a^{3}}, & r<a\end{cases} \tag{9.15}
\end{align*}
$$

Here, the first term in (9.14) describes configuration (9.15) created by the magnetic dipole moment

$$
\begin{equation*}
\mathbf{m}=\frac{Q a^{2} \boldsymbol{\omega}_{\oplus}}{3} \tag{9.16}
\end{equation*}
$$

of the charged sphere rotating with Earth. The second term in (9.14) is identifiable as the result of the Lorentz transformation with the local velocity $\boldsymbol{\omega}_{\oplus} \times \mathbf{r}$ from the inertial frame K^{\prime} to the rotating Earth frame K. Here, the smallness parameter of the geometric field is $\omega_{\oplus} r / c$ (cf. (1.9)).

9.2.2 Fake EDM in the search for the EDM of ultracold

 neutrons. In searches for of the EDM of neutrons, UCNs are contained in a storage cell in uniform and parallel electric and magnetic fields. In this case, the EDM is extracted from the frequency shift Δf of the neutron spin precession (2.3) after inversion of the electric field \mathbf{E}_{0},$$
\begin{equation*}
d_{\mathrm{n}}=\frac{\pi \hbar \Delta f}{2\left|\mathbf{E}_{0}\right|}, \tag{9.17}
\end{equation*}
$$

under the assumption that the inversion of the electric field does not affect the magnetic field. But this is clearly violated by the geometric magnetic field.

The UCN storage cell can be considered to be a flat capacitor. The one-dimensional problem has a simple solution (the z-axis is chosen along the electric field inside the cell, in the median plane $z=0$),

$$
\begin{equation*}
\boldsymbol{B}_{\omega}=\left(0,0,-\frac{2 \omega_{\oplus}^{z} E_{0}}{c^{2}} z\right)=-\frac{2 \omega_{\oplus}^{z} z}{c^{2}} \mathbf{E}_{0} \tag{9.18}
\end{equation*}
$$

with the constant gradient inside the cell

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{B}_{\omega}}{\mathrm{d} z}=-\frac{2 \omega_{\oplus}^{z}}{c^{2}} \mathbf{E}_{0} \tag{9.19}
\end{equation*}
$$

Here, ω_{\oplus}^{z} is the projection of the angular velocity vector onto the z-axis (= direction of the electric field).

In searches for the EDM of neutrons, the frequency of the neutron spin precession is measured relative to that of the mercury atoms serving as a comagnetometer. The mercury Hg atoms are uniformly distributed in the cell volume, and for the mercury comagnetometer the mean geometric magnetic field is equal to zero: $\left\langle\mathfrak{B}_{\omega}^{\mathrm{Hg}}\right\rangle=0$. On the other hand, the center of mass of the neutron gas is displaced with respect to the center of mass of the mercury by $\langle z\rangle$, which leads to a nonvanishing mean geometric magnetic field acting on the magnetic moments of neutrons,

$$
\begin{equation*}
\left\langle\boldsymbol{B}_{\omega}^{(\mathrm{n})}\right\rangle=-\frac{2\langle z\rangle \omega_{\oplus}^{z}}{c^{2}} \mathbf{E}_{0} \tag{9.20}
\end{equation*}
$$

It changes sign when the electric field in the cell is inverted and generates a false EDM signal [53]

$$
\begin{equation*}
d_{\mathrm{fake}}=-\frac{2\langle z\rangle \omega_{\oplus}^{z}}{c^{2}} \mu_{\mathrm{n}} \tag{9.21}
\end{equation*}
$$

In experiment [451], the displacement of the neutron center of mass was $\langle z\rangle \simeq 2.8 \mathrm{~mm}$, while in recent experiment [28] it was $\langle z\rangle \simeq 3.9 \mathrm{~mm}$. Using the latter value, we find $d_{\text {fake }} \approx$ $2.5 \times 10^{-28} \mathrm{ecm}$. This is still small compared to the most accurate experimental result $d_{\mathrm{n}}=\left(0.0 \pm 1.1_{\text {stat }} \pm 0.2_{\text {sys }}\right) \times$ $10^{-26} e \mathrm{~cm}$ [28], but it will become significant in the nextgeneration experiments under discussion with a sensitivity up to $d_{\mathrm{n}} \sim 10^{-28} e \mathrm{~cm}$ [31]. Note also that, in neutron cells with a typical height $h \sim 15 \mathrm{~cm}$, the contribution of the false EDM along the cell height varies in a broad interval:

$$
\begin{equation*}
\Delta d_{\mathrm{fake}}= \pm \frac{h \omega_{\oplus}^{z}}{c^{2}} \mu_{\mathrm{n}} \simeq \pm 6 \times 10^{-27} e \mathrm{~cm} \tag{9.22}
\end{equation*}
$$

9.2.3 Geometric magnetic field in electrostatic proton storage

 ring. The electrostatic proton storage ring is a cylindrical capacitor-deflector with a narrow gap $\delta \ll h$, where h is the height of the electrodes [32, 33]. The radius of the storage ring is negligibly small compared to the radius of Earth. The solution to the two-dimensional electrostatic problem in the gap between the electrodes is well known,$$
\begin{equation*}
\mathbf{E}_{0}=-\nabla \Phi(r)=-\mathcal{E}_{0} \frac{\rho \mathbf{r}}{r^{2}}, \quad \Phi(r)=\mathcal{E}_{0} \rho \ln \frac{r}{\rho} \tag{9.23}
\end{equation*}
$$

where ρ is the median radius. Outside the gap between the electrodes, the electric field disappears. From the point of view of an observer in the K^{\prime} system of distant stars, static charges in the laboratory create opposite currents in the K^{\prime} system and generate a magnetic field in the gap between the electrodes. The speed of the charge's motion determines the small parameter (1.9), which is four orders of magnitude greater than $\eta_{\mathrm{p}}^{\mathrm{EDM}} \sim 10^{-15}$ in the planned proton storage rings [32-34].

In a storage ring located at the north or south pole of Earth in a system of distant stars, the geometric magnetic field is equal to

$$
\begin{equation*}
\mathfrak{B}_{\omega}^{\prime}(\mathbf{r})=\frac{\boldsymbol{v}(\mathbf{r}) \times \mathbf{E}_{0}(\mathbf{r})}{c^{2}} \tag{9.24}
\end{equation*}
$$

where $\boldsymbol{v}(\mathbf{r})=\boldsymbol{\omega} \times \mathbf{r}$. For an experimentalist in the terrestrial laboratory, it is compensated by the Lorentz transformation to the laboratory system. But such a complete compensation is absent at an arbitrary latitude.

Referring to $[52,53]$ for the complete solution, we write out the final result for the geometric magnetic field between the storage ring electrodes:

$$
\begin{align*}
\boldsymbol{B}_{\omega} & =\frac{\mathcal{E}_{0} \rho}{c^{2}}\left\{\boldsymbol{\omega}_{\mathrm{T}} \ln \frac{r}{\rho}+\frac{1}{2} \boldsymbol{\omega}_{\mathrm{T}}-\frac{\left(\mathbf{r} \boldsymbol{\omega}_{\mathrm{T}}\right) \mathbf{r}}{r^{2}}\right\} \\
& \simeq \frac{\mathcal{E}_{0} \rho}{2 c^{2}}\left(\boldsymbol{\omega}_{\mathrm{T}}-\frac{2\left(\mathbf{r} \boldsymbol{\omega}_{\mathrm{T}}\right) \mathbf{r}}{r^{2}}\right), \tag{9.25}
\end{align*}
$$

where $\boldsymbol{\omega}_{\mathrm{T}}$ is the projection of the angular velocity of the rotation of Earth onto the plane of the storage ring. Here, at the last step, we neglected the value of $|\log (r / \rho)|<$ $\delta /(2 \rho) \ll 1$.

The background magnetic fields are the main headache in the planned experiments to search for the EDM of protons in all-electric storage rings with the frozen proton spin $[32,33]$. Modern technologies allow for the very radical shielding of Earth's magnetic field \mathbf{B}_{\oplus}, which is directed along the magnetic meridian and on the scale of the storage ring can be considered homogeneous with constant projection onto the ring plane.

Earth's magnetic field \mathbf{B}_{\oplus} and the geometric magnetic field \boldsymbol{B}_{ω} differ significantly in that the geometric magnetic field cannot be protected by magnetic shields. We take the magnetic meridian as the y-axis, so that the projection of the field onto the plane of the accelerator ring $\mathbf{B}_{\oplus}^{\mathrm{T}}=\left(0, B_{\oplus}^{\mathrm{T}}\right)$. Unlike Earth's magnetic field, the geometric magnetic field is quadrupole along the particle's orbit, $\mathfrak{B}_{\omega}=\mathfrak{B}_{\omega}(\sin (2 \theta), \cos (2 \theta))$. The position of the particle in the orbit is determined by the angle θ, so that $\mathbf{r}=r(\cos \theta,-\sin \theta)$.

In all-electric rings, the most dangerous ones are the radial magnetic fields in the comoving system. In the above two cases, they are $B_{\oplus}^{(r)}=\left(\mathbf{r} \mathbf{B}_{\oplus}\right) / r=-B_{\oplus} \sin \theta$ and $\mathfrak{B}_{\omega}^{(r)}=$ $\mathbf{r} \mathfrak{B}_{\omega} / r=\mathfrak{B}_{\omega} \sin \theta$. According to [33], the rotation of a
proton's spin per revolution in the first approximation is proportional to the integral $\oint \mathrm{d} \theta B_{\oplus}^{(r)}$. Both Earth's magnetic field and the geometric magnetic field have the property

$$
\begin{equation*}
\oint \mathrm{d} \theta B_{\oplus}^{(r)}=\oint \mathrm{d} \theta \mathfrak{B}_{\omega}^{(r)}=0 \tag{9.26}
\end{equation*}
$$

To the first approximation, the geometric magnetic field does not give rise to a false EDM signal, but the question of a possible geometric Berry phase, discussed in [33], calls for scrutiny.

10. Gravitational quantum anomalies and dynamics of dense hadron matter

Noncentral heavy ion collisions are the source of quarkgluon and hadron matter, which has a huge angular momentum [452] and moves with high accelerations [453].

To estimate the scale of the quantities corresponding to these phenomena, it is useful to compare them with the macroscopic inertial effects, which are the focus of this review. It turns out that the (local) angular velocity of rotation of strongly interacting matter is 25 orders of magnitude higher than the angular velocity of rotation of Earth, and the acceleration is several orders of magnitude higher than the acceleration of free fall [454].

Indeed, one can estimate the local angular velocity Ω by assuming that the velocity change is about the speed of light c on scales the size of nucleus R_{A}. Its ratio to the angular velocity of Earth's rotation (6.8) can be conveniently represented,

$$
\begin{equation*}
\eta_{\mathrm{rot}}=\frac{\Omega}{\omega_{\oplus}}=\frac{c}{R_{\mathrm{A}}} \frac{T_{\oplus}}{2 \pi}=\frac{1}{2 \pi} \frac{c T_{\oplus}}{R_{\mathrm{A}}} \approx 10^{27} \tag{10.1}
\end{equation*}
$$

as the ratio of a light day (the distance traveled by light during Earth's revolution around its axis T_{\oplus}, and approximately 150 times greater than its distance from the Sun) to the size of the nucleus.

As noted above, the noncentral collision of heavy ions leads to the generation of a large (on a microscopic scale) angular momentum of the order of $10^{4} \hbar$ [452], about 10% of which is accumulated in the resulting quark-gluon medium (or in the hadronic one, depending on the collision energy) [455]. At the same time, it is precisely the differential rotation described by the local angular velocity (vorticity) that is essential for the transfer of the angular orbital momentum into the spin one.

One can relate the estimate of acceleration to the angular velocity estimate by multiplying and dividing the obvious expression for it by $T_{\oplus} / 2 \pi$:

$$
\begin{equation*}
\eta_{\mathrm{acc}}=\frac{c}{R_{\mathrm{A}}} \frac{c}{g_{\oplus}}=\eta_{\mathrm{rot}} \frac{2 \pi c}{T_{\oplus} g_{\oplus}} \approx 10^{30} \tag{10.2}
\end{equation*}
$$

An additional factor of ~ 2000 is proportional to the ratio of the speed of light to the speed acquired during the day when moving with acceleration g_{\oplus}.

Another representation of the quantity $\eta_{\text {acc }}$ can be obtained by using the relation between the free fall acceleration and the first cosmic velocity v_{\oplus} :

$$
g_{\oplus}=\frac{v_{\oplus}^{2}}{R_{\oplus}}
$$

so that

$$
\begin{equation*}
\eta_{\mathrm{acc}}=\frac{c}{R_{\mathrm{A}}} \frac{c}{g_{\oplus}}=\frac{c^{2}}{v_{\oplus}^{2}} \frac{R_{\oplus}}{R_{\mathrm{A}}} \tag{10.3}
\end{equation*}
$$

According to the equivalence principle, the presence of large accelerations and angular velocities corresponds to the study of huge gravitational fields, while it can be added that the above estimate for the acceleration [454] corresponds to an 'effective' gravitational energy of the order of the rest energy, analogous to a black hole or to the (flat) Universe born from the vacuum. In this sense, the effects of gravity and cosmology can be studied not only in condensed matter physics [456] but also in the physics of heavy ion collisions. In other words, in order to obtain comparable accelerations due to gravity, the Planck mass should become of the order of the hadron mass.

Of significant interest is the key question of how a rotating and accelerated medium that exists at small distances during small periods of time can manifest itself in the measurements carried out by a detector at rest. The first possibility is related to the quantum measurement which plays quite a practical role in the case of the motion of the spin. Indeed, if we consider the spin simply to be a directed segment in a rotating frame of reference, then it obviously rotates in this frame with an angular velocity equal in magnitude to the angular velocity of the rotation of the frame, so that the equivalence principle (one of the formulations of which is the identity of the classical and quantum rotators) is trivially satisfied. The situation changes if one takes into account the quantum nature of spin and its measurement by a device located in a rotating reference frame [454]. In this case, the dynamics of quantum spin, which coincides with the classical one, is a nontrivial consequence of the equivalence principle. Thus, the consideration of the spin dynamics in a noninertial frame of reference, besides being of practical value, connects such fundamental areas of physics as gravity and the theory of quantum measurements.

Can the spin of a particle be considered 'measured' in a rotating quark-gluon medium? A typical process, used in polarization measurements in a detector, is weak decay resulting in a characteristic anisotropy of its products. The most important one in this case is the decay of $\Lambda \rightarrow p \pi^{-}$, since the yield of Λ hyperons in heavy ion collisions is quite large.

A possible influence of the rotation of the medium on this decay, in which this rotation is manifested, can be viewed similarly to the influence of an external, in particular, magnetic field. At the moment, there is no reason to regard this influence, if it exists, as significant. At the same time, the relation of the rotation of the medium, treated as a classical system, with quantum spin, controlled by the angular momentum conservation law, can apparently be considered to be a measurement.

The establishment of a thermodynamic equilibrium of the spin with the rotating medium is one of the main methods for calculating the polarization [457]. In this case, the treatment in terms of the 4 -velocity v_{μ} of the local equilibrium and the relativistic invariance underlies the interpretation of the fourdimensional tensor $\partial_{\mu} v_{v}-\partial_{\nu} v_{\mu}$ as the relativistic angular velocity, which, in addition to the vorticity $\boldsymbol{\omega}=\boldsymbol{\nabla} \times \boldsymbol{v}$, also includes the acceleration a which is usually not considered in the case of global equilibrium. Since the corresponding quantities enter the Gibbs distribution in combination with the temperature, the latter is taken into account in terms of the so-called thermal vorticity containing the four-dimen-
sional temperature vector $\beta^{\mu} \equiv v^{\mu} / T$. The use in computations of essentially quantum objects, such as the Wigner function and the Zubarev density matrix, in essence, allows one to consider the establishment of the local equilibrium a kind of quantum-mechanical measurement. One can also recall here the proposal found in the classic textbook [458] (§8) that the increase in entropy and the irreversibility of time are related to the processes of the quantum-mechanical measurement.

Another way to describe the effect of rotation on spin is to consider the hydrodynamics to be an effective theory, with the relativistic invariance leading to the treatment of fourdimensional velocity as a gauge field [459]. Indeed, the presence of a conserved charge with density ρ and corresponding chemical potential μ leads to the appearance of a term in the Lagrangian

$$
\begin{equation*}
\mu \rho=\mu j^{0} \rightarrow \mu v_{\alpha} j^{\alpha} \tag{10.4}
\end{equation*}
$$

The above analogy between the gauge field and μv^{α} should not be taken literally. By virtue of gauge invariance, in QED and QCD, the observable quantities are the field strengths rather than the field potentials. In contrast, μv^{α} is in principle a measurable quantity.

The corresponding vertex leads to the appearance of new diagrams, among which the triangle anomaly so often mentioned in the review [459, 460], plays a special role. This is related to its protection against the perturbative (according to the Adler-Bardeen theorem) and the nonperturbative (due to the 't Hooft correspondence principle) corrections. As a result, one can derive the corresponding contribution for hadrons ${ }^{5}$ by considering the triangle diagram at the quark level.

In particular, it was proposed in [461] to apply this effect to the description of the polarization of hyperons in heavy ion collisions, which is a natural analogue of the anomalous gluon contribution [85], manifested in the analysis of the socalled 'spin crisis.' In this case, the four-dimensional velocity of the medium starts to play the role of the gluon field, with the vorticity playing the role of the (color)magnetic field. The emergence of the chemical potential as a coupling constant made it possible to make a qualitative prediction [461] about the rapid decrease in polarization with energy. Later, the magnitude of this effect was estimated [455] to be of the order of 1% for the energies at the NICA collider. This value is in agreement with the experimental result published 4 years later [462], obtained by the STAR (Sklenoidal Tracker At RHIC) collaboration during beam energy scanning at the RHIC (Relativistic Heavy Ion Collider) collider.

We derive the polarization by using from $[455,463]$ the axial charge, calculated at the quark level,

$$
\begin{equation*}
Q_{5}^{s}=N_{\mathrm{c}} \int \mathrm{~d}^{3} x c_{V} \gamma^{2} \boldsymbol{v}(\boldsymbol{\nabla} \times \boldsymbol{v}) \tag{10.5}
\end{equation*}
$$

where the coefficient c_{V} contains the contribution of the chemical potential of strange quarks μ_{s} :

$$
\begin{equation*}
c_{V}=\frac{\mu_{\mathrm{s}}^{2}}{2 \pi^{2}}+\frac{T^{2}}{6} \tag{10.6}
\end{equation*}
$$

[^6]In hydrodynamics, the role of the topological current is played by the hydrodynamic helicity, related to the topological properties of flows and chaos [464]. The quark-hadron duality (or the 't Hooft principle) in this case puts forward an alternative (complementary, in Bohr's sense) possibility of calculating this charge by considering all the strange hadrons (hyperons and vector mesons) with spin, among which it is distributed. At the same time, since the axial current and the charge are charge-even, while the number of antihyperons is significantly smaller than the number of hyperons, one finds in [465] a natural explanation for an excess [462] of the $\bar{\Lambda}$ polarization over the Λ polarization. It should be emphasized that, in this approach, the local thermodynamic equilibrium is applicable to the charge described by the corresponding chemical potential, whereas the spin dynamics is described by the effective theory, and their thermodynamic equilibrium with the medium does not arise.

The anomaly mechanism described above results in a contribution proportional to μ_{s}^{2} in (10.6), while the term proportional to T^{2} is associated with the holographic gravitational anomaly [466]. The nonrenormalization arguments do not apply to it, and, notably, the lattice calculations [467] indicate the suppression of the coefficient by an order of magnitude due to collective effects. This makes it possible to explain the smallness of the polarization at high energies and to achieve a better description at low energies [465].

One of the dynamic mechanisms in realizing the generation of an axial current in a medium is the quantized vortices in a superfluid pion liquid, near the axis of which baryon degrees of freedom should be excited, which leads to the polarization of baryons [468]. The dissipation characteristic of such a process is analogous to the absorbing phases needed for the polarization generation. Since this effect is ('naively') T-odd, the phases mimic the true $T(C P)$ invariance violation, and special care must be taken to avoid them in experiments, as in the case of the total cross section for scattering on tensorpolarized deuterons in Section 2.4. In QCD, such phases can arise due to contributions from the higher twist [469, 470] or the Wilson lines [471-473].

Since the pion field is formally quite similar to the axion one, it can be assumed that the appearance of vortices in an axion fluid can lead to the polarization of fermions, similar to the effects discussed in Section 8.

The existence of different mechanisms for describing the polarization (statistical and anomalous) raises a question of the correspondence between them. In this regard, the problem of calculating the axial current in the statistical approach arises. Using the Wigner function method [457], one can obtain an expression [474] corresponding to the anomalous current. Such a relation between the statistical physics and the field theory may seem unexpected. However, it should be noted that the pioneering derivation of the corresponding expression by A Vilenkin [475] makes use of Green's functions in a noninertial reference frame, and it does not appear to be directly related to the anomaly.

The statistical approach to the anomalous current [476, 477], which is also based on Zubarev's density matrix, allows one to consider the angular velocity and acceleration to be the real and imaginary chemical potentials, respectively. In this case, the characteristic for the chemical potential threshold effect for the angular velocity indicates a decrease in polarization when the vorticity is of the order of the (effective) mass. At the same time, when the vorticity is much larger than the fermion mass, an anomalous current is
reproduced. The anomalous contribution can therefore be compared to the statistical one for massless quarks.

It should also be emphasized that, while the statistical calculation of the polarization yields a result that depends directly on the momentum of the polarized particle, to derive the current, one needs integration over the momentum, which yields an expression that depends on the coordinate. This explains the need to integrate also over this coordinate and to use the axial charge to establish the quark-hadron duality. One can therefore say that, in addition to the quark-hadron duality (complementarity), there is also a complementarity between the coordinate and momentum pictures. While the statistical method should lead to polarizations of hyperons of the same sign and close magnitude, the sign and magnitude in the anomaly method depend on their quark structure, which opens up fundamental possibilities for experimental verification, which is part of the research program at the NICA facility.

The statistical approach also allows one to study such a characteristic quantum field-theoretic phenomenon as the Unruh effect [453, 478, 479]. It is interesting that the use of the acceleration (related to the temperature as $T=a /(2 \pi))$ as an independent variable in (10.6) results in the same degree of the π factor in the T and μ terms. At the same time, an independent treatment of a and T leads to an instability [480] for $T<a /(2 \pi)$. This is natural, since the equilibrium temperature in the accelerated reference frame must be greater than the Unruh temperature. An unstable state can arise at high accelerations in heavy ion collisions and, in a certain sense, this corresponds to a fall into a black hole, concluded by a decay into thermal states.

The statistical formulas (let us emphasize, in flat spacetime!) also correspond in [481] to effects caused by conical singularities, and the instability can be interpreted as a transformation of a cone into a plane.

Thus, the study of heavy ion collisions provides an opportunity to indirectly investigate the extremely strong effective gravity and its dual description in statistical physics and effective field theory. One can use the polarization of different hadrons (to compare the field-theoretic and the thermal mechanisms) as an appropriate observable, along with the thermalization dynamics in different regions of the phase space (to study possible instability at high accelerations).

Gravity thereby manifests itself in accelerator physics as a genuine field (in precision experiments due to terrestrial gravity and rotation) and as an effective disguise [453] (due to the rotation and acceleration of quark-gluon matter), also modeling physics near the black hole horizon [479] and even a fall into a black hole [480]. The investigations of these manifestations in heavy-ion collision experiments present a new challenging problem.

11. Conclusions

Precision spin experiments for testing fundamental symmetries provide unique perspectives for the investigation of a variety of topical physical problems, from solving the riddle of baryogenesis to establishing the nature of dark matter in the Universe. The focus is on the search for $C P$ - and T noninvariant EDMs of neutral atoms and ultracold neutrons, molecules, charged particles, and nuclei. These searches have already achieved a spectacular sensitivity to the EDM that is 12 orders of magnitude in the case of neutrons and 18 orders
of magnitude in the case of electrons lower than the respective dipole moments allowed by all discrete symmetries. A target of the next generation experiments is a further increase in sensitivity by another one or two orders of magnitude.

The search for the EDM of charged protons and nuclei is possible only in accelerator experiments. After a series of studies on precision spin dynamics by the JEDI collaboration at the COSY storage ring, at the forefront is the construction of a PTR prototype storage ring with both all electric and hybrid bending of protons with an energy of $30-45 \mathrm{MeV}$. This will be a prologue to the construction of an electrostatic proton storage ring with the spin frozen at the magic energy of 233 MeV and with a potential sensitivity to the proton EDM of $d_{\mathrm{p}} \sim 10^{-29} \mathrm{e} \mathrm{cm}$, which will exceed the sensitivity of experiments with ultracold neutrons. An active analysis of possible searches is under way for the EDM of protons and deuterons at the NICA collider at JINR. All these efforts are aimed at searches for new mechanisms of $C P$ invariance violation beyond the minimal Standard Model, which failed to describe quantitatively the observed baryon asymmetry of the Universe. As a rule, these new mechanisms imply an expansion of the spectrum of particles. At the discussed levels of accuracy, precision searches for EDM can significantly exceed the sensitivity of direct searches for new particles using colliders.

The direct influence of gravity on EDMs is negligible. However, given that our laboratories are located on a gravitating and rotating Earth, the role of gravitational effects in the spin dynamics, at the anticipated levels of accuracy, even exceeds the role of the proton EDM. The similar interweaving of the problems of cosmology and $C P$ nonconservation takes place in the physics of an axion as the most probable explanation for the nature of dark matter, and here the particle spin in accelerators can act as a kind of axion antenna.

It is noteworthy that some of the discussed spin effects have analogues in condensed matter physics. Analyzing these new aspects of the spin dynamics was the main subject of our review.

Acknowledgments. The authors are grateful to the Russian Federation Foundation for Basic Research for the support of this review with the grant 20-12-50190 Expansion. N N N and AJS thank the participants in the srEDM, JEDI, and CPEDM collaborations for the many years of joint work on the subject of the review. We would like to specially mention the fruitful discussions with V I Zakharov, A A Starobinsky, F Rathmann, R Talman, A Wirzba, P Leniza, J Pretz, Y Semertzidis, A Saleev, Y Senichev, and J Slim. A great stimulus for interest in the topic was the NICA collider program at JINR. The research of Y N O was supported by the Russian Federation Foundation for Basic Research under grant 18-02-40056-mega (NICA); the studies of OVT were supported by the Russian Federation Science Foundation under grant 21-12-00237; the research of A Y S was supported by the Chinese Academy of Sciences under PIFI grant 2019VMA0019.

References

. Landau L Nucl. Phys. 3127 (1957)
2. Ioffe B L, Okun' L B, Rudik A P Sov. Phys. JETP 5328 (1957); Zh. Eksp. Teor. Fiz. 32396 (1957)
3. Christenson J H et al. Phys. Rev. Lett. 13138 (1964)
4. Cabibbo N Phys. Rev. Lett. 10531 (1963)
5. Kobayashi M, Maskawa T Prog. Theor. Phys. 49652 (1973)
6. Azimov Ya I, Ural'tsev N G, Khoze V A JETP Lett. 43409 (1986); Pis'ma Zh. Eksp. Teor. Fiz. 43317 (1986)
7. Azimov Ya I, Uraltsev N G, Khoze V A Sov. J. Nucl. Phys. 45878 (1987); Yad. Fiz. 451412 (1987)
8. Bigi I I, Sanda A I Nucl. Phys. B 28141 (1987)
9. Bondar A E, Pakhlov P N, Poluektov A O Phys. Usp. 50669 (2007); Usp. Fiz. Nauk 177697 (2007)
10. Zhukova V I et al. Phys. Usp. 64468 (2021); Usp. Fiz. Nauk 191492 (2021)
11. Aaij R et al. (The LHCb Collab.) J. High Energy Phys. 2021081 (2021)
12. Aghanim N et al. (Planck Collab.) Astron. Astrophys. 641 A6 (2020); arXiv:1807.06209
13. Aguilar M et al. (AMS Collab.) Phys. Rev. Lett. 117091103 (2016)
14. Cuoco A, Krämer M, Korsmeier M Phys. Rev. Lett. 118191102 (2017)
15. Cohen A G, De Rújula A, Glashow S L Astrophys. J. 495539 (1998); astro-ph/9707087
16. Fields B D et al. JCAP 2020 (03) 010 (2020); arXiv:1912.01132; Fields B D et al. JCAP 2020 (11) E02 (2020) Erratum
17. Yeh T-H, Olive K A, Fields B D JCAP 2021 (03) 046 (2021); arXiv:2011.13874
18. Zel'dovich Ya B, Okun' L B, Pikel'ner S B Sov. Phys. Usp. 8702 (1966); Usp. Fiz. Nauk 87113 (1965)
19. Sakharov A D JETP Lett. 524 (1967); Pis'ma Zh. Eksp. Teor. Fiz. 532 (1967); Sov. Phys. Usp. 34392 (1991); Usp. Fiz. Nauk 161 (5) 61 (1991)
20. Kuzmin V A, Rubakov V A, Shaposhnikov M E Phys. Lett. B $\mathbf{1 5 5}$ 36 (1985)
21. Rubakov V A, Shaposhnikov M E Phys. Usp. 39461 (1996); Usp. Fiz. Nauk 166493 (1996)
22. Okun'L B Sov. Phys. Usp. 9574 (1967); Usp. Fiz. Nauk 89603 (1966)
23. Shapiro F L Sov. Phys. Usp. 11345 (1968); Usp. Fiz. Nauk 95145 (1968)
24. Khriplovich I B, Lamoreaux S K CP Violation without Strangeness: Electric Dipole Moments of Particles, Atoms, and Molecules (Berlin: Springer-Verlag, 1997)
25. Shabalin E P Sov. J. Nucl. Phys. 2875 (1978); Yad. Fiz. 28151 (1978)
26. Shabalin E P Sov. Phys. Usp. 26297 (1983); Usp. Fiz. Nauk 139561 (1983)
27. Chupp T E et al. Rev. Mod. Phys. 91015001 (2019)
28. Abel C et al. Phys. Rev. Lett. 124081803 (2020)
29. Wirzba A, Bsaisou J, Nogga A Int. J. Mod. Phys. E 261740031 (2017); arXiv:1610.00794
30. Serebrov A P et al. Phys. Rev. C 92055501 (2015)
31. Ayres N J et al. (n2EDM Collab.) Eur. Phys. J. C 81512 (2021); arXiv:2101.08730
32. Anastassopoulos V et al. Rev. Sci. Instrum. 87115116 (2016)
33. Abusaif F et al. (CPEDM Collab.) "Storage ring to search for electric dipole moments of charged particles. Feasibility study", CERN Yellow Reports: Monographs, CERN-2021-003 (Geneva: CERN, 2021) https://doi.org/10.23731/CYRM-2021-003
34. Omarov Z et al. Phys. Rev. D 105032001 (2022); arXiv:2007.10332
35. Alarcon R et al., in 2022 Snowmass Summer Study, 17-26 July 2022, Seattle, WA, United States; arXiv:2203.08103
36. Graner B et al. Phys. Rev. Lett. 116161601 (2016); Phys. Rev. Lett. 119119901 (2017) Erratum; arXiv:1601.04339
37. Dmitriev V F, Sen'kov R A Phys. Rev. Lett. 91212303 (2003); nuclth/0306050
38. Flambaum V V, Dzuba V A Phys. Rev. A 101042504 (2020)
39. Sandars P G H Phys. Lett. 14194 (1965)
40. Sandars P G H Phys. Rev. Lett. 191396 (1967)
41. Andreev V et al. (ACME Collab.) Nature 562355 (2018)
42. Cairncross W B et al. Phys. Rev. Lett. 119153001 (2017); arXiv:1704.07928
43. Agapov N N et al. Phys. Usp. 59383 (2016); Usp. Fiz. Nauk 186405 (2016)
44. Koop I A et al. Phys. Part. Nucl. 52549 (2021); Fiz. Elem. Chastits Atom. Yadra 52887 (2021)
45. Filatov Yu N et al. Phys. Rev. Lett. 124194801 (2020); arXiv:2003.11469
46. Filatov Y N et al. Eur. Phys. J. C 80778 (2020)
47. de Sitter W Mon. Not. R. Astron. Soc. 77155 (1916)
48. Silenko A J, Teryaev O V Phys. Rev. D 76061101 (2007); gr-qc/ 0612103
49. Obukhov Yu N, Silenko A J, Teryaev O V Phys. Rev. D 94044019 (2016); arXiv:1608.03808
50. Orlov Yu, Flanagan E, Semertzidis Y Phys. Lett. A 3762822 (2012); arXiv:1904.00339
51. Nikolaev N N et al. (JEDI Collab.), in Proc. of the 23rd Intern. Symp. on Spin Physics, SPIN2018, Ferrara, Italy, September 10-14, 2018; PoS SPIN2018 089 (2019)
52. Vergeles S N, Nikolaev N N J. Exp. Theor. Phys. 129541 (2019); Zh. Eksp. Teor. Fiz. 156638 (2019)
53. Nikolaev N N, Vergeles S N J. High Energy Phys. 2020191 (2020); arXiv:1906.07548
54. Okun L B Comments Nucl. Part. Phys. 3133 (1969)
55. Graham P W, Rajendran S Phys. Rev. D 84055013 (2011)
56. Graham P W, Rajendran S Phys. Rev. D 88035023 (2013); arXiv:1306.6088
57. Budker D et al. Phys. Rev. X 4021030 (2014); arXiv:1306.6089
58. Sikivie P Rev. Mod. Phys. 93015004 (2021); arXiv:2003.02206
59. Aleksandrov A B et al. Phys. Usp. 64861 (2021); Usp. Fiz. Nauk 191 905 (2021)
60. Abel C et al. Phys. Rev. X 7041034 (2017); arXiv:1708.06367
61. Pretz J et al. Eur. Phys. J. C 80107 (2020); arXiv:1908.09678
62. Schiff L I Phys. Rev. 1322194 (1963)
63. Flambaum V V et al. Phys. Rev. D 102035001 (2020)
64. Flambaum V V, Samsonov I B, Tran Tan H B J. High Energy Phys. 202077 (2020); arXiv:2004.10359
65. Flambaum V V, Samsonov I B, Tran Tan H B Phys. Rev. D 102 115036 (2020)
66. Weinberg S Phys. Rev. Lett. 191264 (1967)
67. Salam A Conf. Proc. C 680519367 (1968)
68. Okubo S Phys. Rev. 109984 (1958)
69. Zel'dovich Ya B Sov. Phys. JETP 91389 (1959); Zh. Eksp. Teor. Fiz. 361952 (1959)
70. Altarev I S et al. Nucl. Phys. A 341269 (1980)
71. Altarev I S et al. Phys. Lett. B 10213 (1981)
72. Brekke L, Rosner J L Comments Nucl. Part. Phys. 1883 (1988)
73. Czarnecki A, Krause B Phys. Rev. Lett. 784339 (1997); hep-ph/ 9704355
74. Jarlskog C Z. Phys. C 29491 (1985)
75. Ioffe B L, Shabalin E P JETP Lett. 6390 (1967); Pis'ma Zh. Eksp. Teor. Fiz. 6978 (1967)
76. Ioffe B L, Shabalin E P Sov. J. Nucl. Phys. 6603 (1968); Yad. Fiz. 6 828 (1967)
77. Mohapatra R N, Rao J S, Marshak R E Phys. Rev. 1711502 (1968)
78. Glashow S L, Iliopoulos J, Maiani L Phys. Rev. D 21285 (1970)
79. Vainshtein A I, Zakharov V I, Shifman M A JETP Lett. 23602 (1976); Pis'ma Zh. Eksp. Teor. Fiz. 23656 (1976)
80. Shabalin E P Sov. J. Nucl. Phys. 31864 (1980); Yad. Fiz. 311665 (1980)
81. Khriplovich I B, Zhitnitsky A R Phys. Lett. B $\mathbf{1 0 9} 490$ (1982)
82. Seng C-Y Phys. Rev. C 91025502 (2015); arXiv:1411.1476
83. Ji X, Yuan F, Zhao Y Nat. Rev. Phys. 327 (2021); arXiv:2009.01291
84. Deur A, Brodsky S J, de Téramond G F Rep. Prog. Phys. 82076201 (2019)
85. Efremov A V, Soffer J, Teryaev O V Nucl. Phys. B 34697 (1990)
86. Pospelov M, Ritz A Phys. Rev. D 89056006 (2014); arXiv:1311.5537
87. Yamaguchi Y, Yamanaka N Phys. Rev. D 103013001 (2021); arXiv:2006.00281
88. Mandel'tsveig V B, Shapiro I S Sov. Phys. JETP 291114 (1969); Zh. Eksp. Teor. Fiz. 562069 (1969)
89. Fedorov F I Teoriya Girotropii (Theory of Gyrotropy) (Minsk: Nauka i Tekhnika, 1976)
90. Fedorov F I Optika Anizotropnykh Sred (Optics of Anisotropic Media) (Moscow: URSS, 2004)
91. Agranovich V M, Ginzburg V L Crystal Optics with Spatial Dispersion, and Excitons (Berlin: Springer-Verlag, 1984); Translated from Russian: Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teoriya Eksitonov (Moscow: Nauka, 1979)
92. Belavin A A et al. Phys. Lett. B 5985 (1975)
93. 't Hooft G Phys. Rev. D 143432 (1976); Phys. Rev. D 182199 (1978) Erratum
94. Jackiw R, Rebbi C Phys. Rev. Lett. 37172 (1976)
95. Atiyah M F et al. Phys. Lett. A 65185 (1978)
96. Vainshtein A I et al. Sov. Phys. Usp. 25195 (1982); Usp. Fiz. Nauk 136553 (1982)
97. Rubakov V Classical Theory of Gauge Fields (Princeton, NJ: Princeton Univ. Press, 2002); Translated from Russian: Klassicheskie Kalibrovochnye Polya (Moscow: Editorial URSS, 1999)
98. 't Hooft G Phys. Rev. Lett. 378 (1976)
99. Adler S L Phys. Rev. 1772426 (1969)
100. Bell J S, Jackiw R Nuovo Cim. A 6047 (1969)
101. Baluni V Phys. Rev. D 192227 (1979)
102. Crewther R J et al. Phys. Lett. B 88123 (1979); Phys. Lett. B 91487 (1980) Erratum
103. Bsaisou J et al. Ann. Physics 359317 (2015); arXiv:1412.5471
104. Pospelov M, Ritz A Ann. Physics 318119 (2005); hep-ph/0504231
105. Dmitriev V F, Sen’kov R A Phys. Atom. Nucl. 661940 (2003); Yad. Fiz. 661988 (2003); nucl-th/0304048
106. Dmitriev V F, Sen’kov R A Phys. Rev. Lett. 91212303 (2003); nuclth/0306050
107. Graner B et al. Phys. Rev. Lett. 116161601 (2016); Phys. Rev. Lett. 119119901 (2017) Erratum; arXiv:1601.04339
108. de Vries J, Mereghetti E, Walker-Loud A Phys. Rev. C 92045201 (2015); arXiv:1506.06247
109. Bsaisou J et al. J. High Energy Phys. 2015104 (2015); J. High Energy Phys. 201583 (2015) Erratum; arXiv:1411.5804
110. Peccei R D, Quinn H R Phys. Rev. Lett. 381440 (1977)
111. Peccei R D, Quinn H R Phys. Rev. D 161791 (1977)
112. Weinberg S Phys. Rev. Lett. 40223 (1978)
113. Di Luzio L et al. Phys. Rep. 8701 (2020); arXiv:2003.01100
114. Shifman M A, Vainshtein A I, Zakharov V I Nucl. Phys. B 166493 (1980)
115. Kim J E Phys. Rev. Lett. 43103 (1979)
116. Zhitnitskii A R Sov. J. Nucl. Phys. 31260 (1980); Yad. Fiz. 31497 (1980)
117. Dine M, Fischler W, Srednicki M Phys. Lett. B 104199 (1981)
118. Wirzba A, Bsaisou J, Nogga A Int. J. Mod. Phys. E 261740031 (2017); arXiv:1610.00794
119. Bernard V, Kaiser N, Meißner U-G Int. J. Mod. Phys. E 4193 (1995); hep-ph/9501384
120. de Vries J, Gnech A, Shain S Phys. Rev. C 103 L012501 (2021); arXiv:2007.04927
121. Abramczyk M et al. Phys. Rev. D 96014501 (2017)
122. Bhattacharya T et al. Phys. Rev. D 103114507 (2021)
123. Weinberg S Phys. Rev. Lett. 632333 (1989)
124. Weinberg S Phys. Rev. Lett. 37657 (1976)
125. Zhitnitskii A R, Khriplovich I B Sov. J. Nucl. Phys. 3495 (1981); Yad. Fiz. 34167 (1981)
126. Cohen A G, Kaplan D B, Nelson A E Annu. Rev. Nucl. Part. Sci. 43 27 (1993); hep-ph/9302210
127. Chang D, He X-G, McKellar B H J Phys. Rev. D 63096005 (2001); hep-ph/9909357
128. Cheung K et al. Phys. Rev. D 102075029 (2020); arXiv:2003.04178
129. Ivanov I P, Obodenko S A Universe 7 (6) 197 (2021)
130. Akeroyd A G et al. Phys. Rev. D 103015035 (2021); arXiv:2009.05779
131. Espinosa J R et al. JCAP 2012 (01) 012 (2012); arXiv: 1110.2876
132. Ivanov I P, Nishi C C Phys. Rev. D 101015023 (2020); arXiv:1910.08316
133. Ivanov I P, Laletin M Phys. Rev. D 98015021 (2018); arXiv:1804.03083
134. Weinberg S AIP Conf. Proc. 272346 (1992)
135. Berestetskii V B, Krokhin O N, Khlebnikov A K Sov. Phys. JETP 3 761 (1956); Zh. Eksp. Teor. Fiz. 30788 (1956)
136. Jackiw R, Weinberg S Phys. Rev. D 52396 (1972)
137. Fujikawa K, Lee B W, Sanda A I Phys. Rev. D 62923 (1972)
138. Bars I, Halpern M B, Yoshimura M Phys. Rev. Lett. 29969 (1972)
139. Aad G et al. (The ATLAS Collab.) J. High Energy Phys. 2021143 (2021); arXiv:2010.14293
140. Okun' L B Sov. J. Nucl. Phys. 1670 (1965); Yad. Fiz. 1938 (1965)
141. Prentki J, Veltman M J G Phys. Lett. 1588 (1965)
142. Lee T D, Wolfenstein L Phys. Rev. 138 B1490 (1965)
143. Mumm H P et al. Phys. Rev. Lett. 107102301 (2011); arXiv:1104.2778
144. Gimlett J L et al. Phys. Rev. C 24620 (1981)
145. Blanke E et al. Phys. Rev. Lett. 51355 (1983)
146. Mitchell G E, Richter A, Weidenmüller H A Rev. Mod. Phys. 82 2845 (2010); arXiv:1001.2422
147. Davis C A et al. Phys. Rev. C 331196 (1986)
148. Huffman P R et al. Phys. Rev. C 552684 (1997)
149. Goldwire H C, Hannon J P Phys. Rev. B 161875 (1977)
150. Lobashov V M et al. JETP Lett. 14251 (1971); Pis'ma Zh. Eksp. Teor. Fiz. 14373 (1971)
151. Simonius M Phys. Lett. B 58147 (1975)
152. Uzikov Yu N, Haidenbauer J Phys. Rev. C 94035501 (2016); arXiv:1607.04409
153. Uzikov Yu N, Temerbayev A A Phys. Rev. C 92014002 (2015); arXiv:1506.08303
154. Kurylov A, McLaughlin G C, Ramsey-Musolf M J Phys. Rev. D 63 076007 (2001); hep-ph/0011185
155. El-Menoufi B K, Ramsey-Musolf M J, Seng C-Y Phys. Lett. B 765 62 (2017); arXiv:1605.09060
156. Uzikov Yu N, Haidenbauer J Phys. Rev. C 94035501 (2016); arXiv:1607.04409
157. Valdau Y PoS STORI11 013 (2011)
158. Eversheim D, Valdau Yu, Lorentz B PoS INPC2016 177 (2017)
159. Lenisa P et al. EPJ Tech. Instrum. 62 (2019)
160. Nikolaev N N et al. Phys. Lett. B 811135983 (2020)
161. Sushkov O P, Flambaum V V, Khriplovich I B Sov. Phys. JETP 60 873 (1984); Zh. Eksp. Teor. Fiz. 871521 (1984)
162. Dekens W et al. J. High Energy Phys. 2014069 (2014); arXiv:1404.6082
163. Flambaum V V, Khriplovich I B, Sushkov O P Phys. Lett. B $\mathbf{1 6 2} 213$ (1985)
164. Khriplovich I B Parity Nonconservation in Atomic Phenomena (Philadelphia: Gordon and Breach Sci. Publ., 1991)
165. Auerbach N, Flambaum V V, Spevak V Phys. Rev. Lett. 764316 (1996); nucl-th/9601046
166. de Vries J et al. Front. Phys. 8218 (2020); arXiv:2001.09050
167. Dolgov A D, Zeldovich Ya B Rev. Mod. Phys. 531 (1981)
168. Dolgov A D Surv. High Energy Phys. 1383 (1998)
169. Zel'dovich Ya B Sov. Phys. JETP 21656 (1965); Zh. Eksp. Teor. Fiz. 48986 (1965)
170. Chiu H-Y Phys. Rev. Lett. 17712 (1966)
171. Kirzhnits D A, Linde A D Phys. Lett. B 42471 (1972)
172. Klinkhamer F R, Manton N S Phys. Rev. D 302212 (1984)
173. Bernreuther W, in Workshop of the Graduate College of Elementary Particle Physics Berlin, Germany, April 2-5, 2001; Lect. Notes Phys. 591237 (2002)
174. Dine M, Kusenko A Rev. Mod. Phys. 761 (2003); hep-ph/0303065
175. Bödeker D, Buchmüller W Rev. Mod. Phys. 93035004 (2021); arXiv:2009.07294
176. Barate R et al. (ALEPH Collab., DELPHI Collab., L3 Collab., OPAL Collab., The LEP Working Group for Higgs Boson Searches), Rolandi L (Ed.) Phys. Lett. B 56561 (2003); hep-ex/ 0306033
177. Chatrchyan S et al. (CMS Collab.) Phys. Lett. B 71630 (2012); arXiv:1207.7235
178. Aad G et al. (ATLAS Collab.) Phys. Lett. B 7161 (2012); arXiv:1207.7214
179. Kajantie K et al. Phys. Rev. Lett. 772887 (1996); hep-ph/9605288
180. Kajantie K et al. Nucl. Phys. B 493413 (1997); hep-lat/9612006
181. Burnier Y, Laine M, Shaposhnikov M JCAP 2006 (02) 007 (2006); hep-ph/0511246
182. D'Onofrio M, Rummukainen K, Tranberg A Phys. Rev. Lett. 113 141602 (2014)
183. Shaposhnikov M E JETP Lett. 44465 (1986); Pis'ma Zh. Eksp. Teor. Fiz. 44364 (1986)
184. Huet P, Sather E Phys. Rev. D 51379 (1995)
185. Farrar G R, Shaposhnikov M E Phys. Rev. D 50774 (1994); hep-ph/ 9305275
186. Flambaum V V, Shuryak E Phys. Rev. D 82073019 (2010); arXiv:1006.0249
187. Baldes I, Servant G J. High Energy Phys. 201853 (2018); arXiv:1807.08770
188. Niemi L et al. Phys. Rev. Lett. 126171802 (2021); arXiv:2005.11332
189. Biekötter T et al. JCAP 2021018 (2021); arXiv:2103.12707
190. Uhlenbeck G E, Goudsmit S Naturwissenschaften 13953 (1925)
191. Uhlenbeck G E, Goudsmit S Nature 117264 (1926)
192. Frenkel J Nature $\mathbf{1 1 7} 653$ (1926)
193. Frenkel J Z. Phys. 37243 (1926)
194. Thomas L H Philos. Mag. 731 (1927)
195. Thomas L H Nature 117514 (1926)
196. Dirac P A M Proc. R. Soc. Lond. A 117610 (1928)
197. Bargmann V, Michel L, Telegdi V L Phys. Rev. Lett. 2435 (1959)
198. Froissart M, Stora R Nucl. Instrum. Meth. 7297 (1960)
199. Derbenev Ya S, Kondratenko A M, Skrinskii A N Sov. Phys. Dokl. 15583 (1970); Dokl. Akad. Nauk SSSR 1921255 (1970)
200. Derbenev Ya S, Kondratenko A M Sov. Phys. Dokl. 20562 (1975); Dokl. Akad. Nauk SSSR 223830 (1975)
201. Derbenev Ya S, Kondratenko A M Sov. Phys. JETP 37968 (1973); Zh. Eksp. Teor. Fiz. 641918 (1973)
202. Ternov I M, Bordovitsyn V A Sov. Phys. Usp. 23679 (1980); Usp. Fiz. Nauk 132345 (1980)
203. Mathisson M Acta Phys. Polon. 6163 (1937); Republication in: Gen. Relativ. Gravit. 42989 (2010)
204. Papapetrou A Proc. R. Soc. Lond. A 209248 (1951)
205. Dixon W G Nuovo Cim. 34317 (1964)
206. Pomeranskii A A, Khriplovich I B J. Exp. Theor. Phys. 86839 (1998); Zh. Eksp. Teor. Fiz. 1131537 (1998)
207. Pomeranskii A A, Sen'kov R A, Khriplovich I B Phys. Usp. 431055 (2000); Usp. Fiz. Nauk 1701129 (2000)
208. Silenko A J, Teryaev O V Phys. Rev. D 71064016 (2005); gr-qc/ 0407015
209. Obukhov Yu N, Silenko A J, Teryaev O V Phys. Rev. D $\mathbf{8 0} 064044$ (2009)
210. Obukhov Yu N, Silenko A J, Teryaev O V Phys. Rev. D 84024025 (2011)
211. Obukhov Yu N, Silenko A J, Teryaev O V Phys. Rev. D 96105005 (2017)
212. Chicone C, Mashhoon B, Punsly B Phys. Lett. A 3431 (2005)
213. Mashhoon B, Singh D Phys. Rev. D 74124006 (2006); astro-ph/ 0608278
214. Silenko A J Phys. Scr. 90065303 (2015); arXiv:1410.6906
215. Silenko A J Phys. Rev. D 93124050 (2016)
216. Schwinger J Phys. Rev. 130800 (1963)
217. Schwinger J Phys. Rev. 1301253 (1963)
218. Dirac P A M, in Recent Developments in General Relativity (Oxford: Pergamon Press, Warsaw: Państwowe Wydawnictwo Naukowe, 1962) pp. 191-200
219. Landau L D, Lifshitz E M The Classical Theory of Fields (Oxford: Pergamon Press, 1971); Translated from Russian: Teoriya Polya (Moscow: Nauka, 1973)
220. Dvornikov M Int. J. Mod. Phys. D 151017 (2006)
221. Arnowitt E, Deser S, Misner C W, in Gravitation: an Introduction to Current Research (New York: John Wiley and Sons Inc., 1962) pp. 227-265; Republication: Gen. Rel. Grav. 401997 (2008)
222. Nelson D F et al. Phys. Rev. Lett. 2492 (1959)
223. Fukuyama T, Silenko A J Int. J. Mod. Phys. A 281350147 (2013)
224. Tetrode H Z. Phys. 50336 (1928)
225. Weyl H Proc. Natl. Acad. Sci. USA 15323 (1929)
226. Bade W L, Jehle H Rev. Mod. Phys. 25714 (1953)
227. de Oliveira C G, Tiomno J Nuovo Cim. 24672 (1962)
228. Kobzarev I Yu, Zakharov V I Ann. Physics 371 (1966)
229. Hehl F W, Ni W-T Phys. Rev. D 422045 (1990)
230. Kiefer C, Weber C Ann. Physik 14253 (2005)
231. Kobzarev I Yu, Okun' L B Sov. Phys. JETP 161343 (1963); Zh. Eksp. Teor. Fiz. 431904 (1962)
232. Obukhov Yu N, Silenko A J, Teryaev O V Phys. Rev. D 90124068 (2014)
233. Commins E D Annu. Rev. Nucl. Part. Sci. 62133 (2012)
234. Berestetskii V B, Lifshitz E M, Pitaevskii L P Quantum Electrodynamics (Oxford: Pergamon Press, 1982); Translated from Russian: Kvantovaya Elektrodinamika (Moscow: Nauka, 1980)
235. Ryder L H Quantum Field Theory (Cambridge: Cambridge Univ. Press, 1996); Translated into Russian: Kvantovaya Teoriya Polya (Moscow: Mir, 1987)
236. Anselmino M, Efremov A, Leader E Phys. Rep. 2611 (1995); Anselmino M, Efremov A, Leader E Phys. Rep. 281399 (1997) Erratum; hep-ph/9501369
237. Accardi A et al. Eur. Phys. J. A 52268 (2016); arXiv:1212.1701
238. Bliokh K Y et al. Phys. Rep. 6901 (2017)
239. Bliokh K Y, Dennis M R, Nori F Phys. Rev. Lett. 107174802 (2011)
240. Bliokh K Y, Dennis M R, Nori F Phys. Rev. A 96023622 (2017)
241. Smirnova D A et al. Phys. Rev. A 97043840 (2018)
242. Silenko A J, Zhang P, Zou L Phys. Rev. A 100030101 (2019)
243. Dyall K G, Fægri K (Jr.) Introduction to Relativistic Quantum Chemistry (New York: Oxford Univ. Press, 2007) https://doi.org/ 10.1093/oso/9780195140866.001.0001
244. Reiher M, Wolf A Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science (Weinheim: Wiley-VCH, 2009)
245. Peng D, Reiher M Theor. Chem. Acc. 1311081 (2012)
246. Autschbach J Coord. Chem. Rev. 2511796 (2007)
247. Reiher M Theor. Chem. Acc. 116241 (2006)
248. Liu W Mol. Phys. 1081679 (2010)
249. Peng D, Reiher M J. Chem. Phys. 136244108 (2012)
250. Nakajima T, Hirao K Chem. Rev. 112385 (2012)
251. Reicher M, in Handbook of Relativistic Quantum Chemistry (Ed. W Liu) (Berlin: Springer, 2017)
252. Reiher M WIREs Comput. Mol. Sci. 2139 (2012)
253. Foldy L L, Wouthuysen S A Phys. Rev. 7829 (1950)
254. Pryce M H L Proc. R. Soc. Lond. A 19562 (1948)
255. Newton T D, Wigner E P Rev. Mod. Phys. 21400 (1949)
256. Fradkin D M, Good R H (Jr.) Rev. Mod. Phys. 33343 (1961)
257. Xiao D, Shi J, Niu Q Phys. Rev. Lett. 95137204 (2005)
258. Duval C et al. Mod. Phys. Lett. B 20373 (2006)
259. Chang M-C, Niu Q J. Phys. Condens. Matter 20193202 (2008)
260. Bérard A, Mohrbach H Phys. Lett. A 352190 (2006)
261. Gosselin P, Bérard A, Mohrbach H Phys. Lett. A 368356 (2007)
262. Gosselin P, Mohrbach H Eur. Phys. J. C 64495 (2009)
263. Gosselin P, Hanssen J, Mohrbach H Phys. Rev. D 77085008 (2008)
264. Bliokh K Yu Europhys. Lett. 727 (2005)
265. Bliokh K Y et al. Phys. Rev. A 82063825 (2010)
266. Mastalerz R, Lindh R, Reiher M Chem. Phys. Lett. 465157 (2008)
267. Baerends E J et al. J. Phys. B 233225 (1990)
268. Kellö V, Sadlej A J Int. J. Quantum Chem. 68159 (1998)
269. Lloyd S M et al. Rev. Mod. Phys. 89035004 (2017)
270. Bialynicki-Birula I, Bialynicka-Birula Z Phys. Rev. Lett. 119029501 (2017)
271. Bialynicki-Birula I, Bialynicka-Birula Z Phys. Rev. Lett. 118114801 (2017)
272. Bialynicki-Birula I, Bialynicka-Birula Z Phys. Rev. Lett. 122159301 (2019)
273. Silenko A J, Zhang P, Zou L Phys. Rev. Lett. 122159302 (2019)
274. Zou L, Zhang P, Silenko A J Phys. Rev. A 101032117 (2020)
275. Currie D G, Jordan T F, Sudarshan E C G Rev. Mod. Phys. 35350 (1963)
276. Jordan T F, Mukunda N Phys. Rev. 1321842 (1963)
277. Bakamjian B, Thomas L H Phys. Rev. 921300 (1953)
278. Foldy L L Phys. Rev. 102568 (1956)
279. Foldy L L Phys. Rev. 122275 (1961)
280. Acharya R, Sudarshan E C G J. Math. Phys. 1532 (1960)
281. Suttorp L G, De Groot S R Nuovo Cim. A 65245 (1970)
282. Bacry H Ann. Inst. H Poincaré Phys. Theor. 49245 (1988)
283. De Kerf E A, Bäuerle G G A Physica 57121 (1972)
284. Khriplovich I B, Pomeransky A A Phys. Lett. A 2167 (1996); gr-qc/ 9602004
285. Bauke H et al. New J. Phys. 16043012 (2014)
286. Céleri L C, Kiosses V, Terno D R Phys. Rev. A 94062115 (2016)
287. Deriglazov A A, Pupasov-Maksimov A M Eur. Phys. J. C 743101 (2014)
288. Deriglazov A A, Ramírez W G Adv. Math. Phys. 20177397159 (2017)
289. Silenko A Ya Phys. Part. Nucl. Lett. 1091 (2013); Pis'ma Fiz. Elem. Chastits Atom. Yadra 10144 (2013)
290. Obukhov Yu N, Silenko A J, Teryaev O V Phys. Rev. D 88084014 (2013)
291. Eriksen E Phys. Rev. 1111011 (1958)
292. Eriksen E, Kolsrud M Nuovo Cim. 181 (1960)
293. Silenko A J Phys. Rev. A 77012116 (2008)
294. Silenko A J Phys. Rev. A 91012111 (2015)
295. Silenko A J Phys. Rev. A 91022103 (2015)
296. Teryaev O V Front. Phys. 11111207 (2016)
297. Abi B et al. (Muon g - 2 Collab.) Phys. Rev. Lett. 126141801 (2021)
298. Teryaev O V "Spin structure of nucleon and equivalence principle", hep-ph/9904376
299. Kamenshchik A Yu, Teryaev O V Phys. Part. Nucl. Lett. 13298 (2016)
300. Kamenshchik A Yu, Teryaev O V Eur. Phys. J. C 76293 (2016); arXiv: 1510.08253
301. Kerr R P Phys. Rev. Lett. 11237 (1963)
302. Lense J, Thirring H Phys. Z. 19156 (1918)
303. Mashhoon B, Hehl F W, Theiss D S Gen. Relat. Gravit. 16711 (1984)
304. Pfister H Gen. Relat. Gravit. 391735 (2007)
305. Schiff L I Phys. Rev. Lett. 4215 (1960)
306. Schiff L I Proc. Natl. Acad. Sci. USA 46871 (1960)
307. Schwinger J Am. J. Phys. 42510 (1974)
308. Ruffini R, Sigismondi C (Eds) Nonlinear Gravitodynamics. The Lense-Thirring Effect (Singapore: World Scientific, 2003) https:// doi.org/10.1142/5255
309. de Sitter W Mon. Not. R. Astron. Soc. 77155 (1916)
310. de Sitter W Proc. Kon. Ned. Akad. Wetensch. 19367 (1917)
311. Schouten J A Proc. Kon. Ned. Akad. Wetensch. 21533 (1919)
312. Schouten J A Proc. Kon. Ned. Akad. Wetensch. 231108 (1922)
313. Kramers H A Proc. Kon. Ned. Akad. Wetensch. 231052 (1921)
314. Fokker A D Proc. Kon. Ned. Akad. Wetensch. 23729 (1921)
315. Shapiro I I et al. Phys. Rev. Lett. 612643 (1988)
316. Pugh G E, WSEG Research Memorandum No. 11 (1959); The memorandum was first published in the book: Pugh G E, in Nonlinear Gravitodynamics. The Lense-Thirring Effect (Eds R Ruffini, C Sigismondi) (Singapore: World Scientific, 2003) pp. 414-426
317. Everitt C W F et al. Phys. Rev. Lett. 106221101 (2011); arXiv: 1105.3456
318. Everitt C W F et al. Class. Quantum Grav. 32224001 (2015)
319. Williams J G Astron. J. 108711 (1994)
320. Nikolaev N N "General relativity effects in storage ring searches for EDM", in Towards Storage Ring Electric Dipole Moment Measurements. Talk at 744 WE-Heraeus-Seminar, 29 March-31 March 2021
321. Slim J, Nikolaev N N, Rathmann F, Wirzba A Phys. Rev. Accel. Beams 26014201 (2023); arXiv:2111.08444
322. Lee S Y Spin Dynamics and Snakes in Synchrotrons (Singapore: World Scientific, 1997)
323. Mane S R, Shatunov Yu M, Yokoya K Rep. Prog. Phys. 681997 (2005)
324. Kondratenko A M et al., in Proc. of the 20th Intern. Symp. on Spin Physics, SPIN 2012, Dubna, Russia, September 17-22, 2012; Phys. Part. Nucl. 45323 (2014)
325. Filatov Yu N et al. Phys. Rev. Accel. Beams 24061001 (2021)
326. Huang H et al. Phys. Rev. Accel. Beams 23021001 (2020)
327. Haciömeroğlu S et al. PoS ICHEP2018 279 (2019)
328. Slim J et al. (JEDI Collab.) Phys. Rev. Accel. Beams 24124601 (2021)
329. Haciömeroğlu S, Semertzidis Y K Phys. Rev. Accel. Beams 22 034001 (2019); arXiv:1806.09319
330. Saleev A et al. (JEDI Collab.) Phys. Rev. Accel. Beams 20072801 (2017); arXiv:1703.01295
331. Rathmann F, Nikolaev N N, Slim J Phys. Rev. Accel. Beams 23 024601 (2020); arXiv:1908.00350
332. Koop I, in Proc. of the 4th Intern. Particle Accelerator Conf., IPAC2013, Shanghai, China, May 12-17, 2013 (Eds Z Dai et al.) (Geneva: JACoW, 2013) p. 1961
333. Koop I A, in Proc. of the 9th Intern. Conf. on Nuclear Physics at Storage Rings, STORI 2014, St. Goar, Germany, September $28-$ October 3, 2014 (Eds P Egelhof, Yu Litvinov, M Steck) (Bristol: IOP Publ., 2015); Phys. Scr. 2015 (T166) 014034 (2015)
334. Talman R M J. Instrum. 16 P09006 (2021)
335. Maier R Nucl. Instrum. Meth. Phys. Res. A 3901 (1997)
336. Felden O et al. PoS PSTP2013 068 (2014)
337. Wilkin C Eur. Phys. J. A 53114 (2017)
338. Brantjes N P M et al. Nucl. Instrum. Meth. Phys. Res. A 66449 (2012)
339. Eversmann D et al. (JEDI Collab.) Phys. Rev. Lett. 115094801 (2015)
340. Bagdasarian Z et al. (JEDI Collab.) Phys. Rev. ST Accel. Beams 17 052803 (2014)
341. Hempelmann N et al. (JEDI Collab.) Phys. Rev. Lett. 119014801 (2017); arXiv:1703.07561
342. Hempelmann N et al. (JEDI Collab.) Phys. Rev. Accel. Beams 21 042002 (2018)
343. Guidoboni G et al. (JEDI Collab.) Phys. Rev. Lett. 117054801 (2016)
344. Guidoboni G et al. (JEDI Collab.) Phys. Rev. Accel. Beams 21 024201 (2018); arXiv:1710.09068
345. Vasserman I B et al. Phys. Lett. B 187172 (1987)
346. Wagner T et al. J. Instrum. 16 T02001 (2021); arXiv:2009.02058
347. Slim J et al. Nucl. Instrum. Meth. Phys. Res. A 828116 (2016)
348. Slim J et al. J. Instrum. 15 P03021 (2020)
349. Slim J (for the JEDI Collab.) Hyperfine Interact. 2407 (2019)
350. Tellegen B D H Philips Res. Rep. 381 (1948)
351. Tellegen B D H Philips Res. Rep. 18120 (1956-1957)
352. Mie G Lehrbuch der Elektrizität und des Magnetismus, Eine Experimentalphysik des Weltäthers für Physiker, Chemiker und Elektrotechniker 3. umgearb. Aufl. (Stuttgart: F. Enke, 1948)
353. Sommerfeld A Elektrodynamik (Leipzig: Geest und Portig, 1949); Translated into Russian: Elektrodinamika (Moscow: IL, 1958)
354. Hehl F W, Obukhov Yu N Foundations of Classical Electrodynamics: Charge, Flux, and Metric (Progress in Mathematical Physics, Vol. 33) (Boston: Birkhäuser, 2003)
355. Lindell I V, Sihvola A H IEEE Trans. Antennas Propag. 533005 (2005)
356. Tretyakov S A et al. Electromagnetics 23665 (2003)
357. Astrov D N Sov. Phys. JETP 11708 (1960); Zh. Eksp. Teor. Fiz. 38 984 (1960)
358. Dzyaloshinskii I E Sov. Phys. JETP 10628 (1959); Zh. Eksp. Teor. Fiz. 37881 (1959)
359. Rado G T, Folen V J Phys. Rev. Lett. 7310 (1961)
360. Wiegelmann H et al. Ferroelectrics 162141 (1994)
361. Hehl F W et al. Phys. Rev. A 77022106 (2008)
362. Hehl F W et al. Eur. Phys. J. B 71321 (2009)
363. Tarasenko S A Phys. Usp. 611026 (2018); Usp. Fiz. Nauk 1881129 (2018)
364. Pankratov O A Phys. Usp. 611116 (2018); Usp. Fiz. Nauk 1881226 (2018)
365. Kvon Z D et al. Phys. Usp. 63629 (2020); Usp. Fiz. Nauk 190673 (2020)
366. Qi X-L, Hughes T L, Zhang S-C Phys. Rev. B 78195424 (2008)
367. Qi X-L et al. Science 3231184 (2009)
368. Qi X-L, Zhang S-C Rev. Mod. Phys. 831057 (2011)
369. Karch A Phys. Rev. Lett. 103171601 (2009)
370. Nenno D et al. Nat. Rev. Phys. 2682 (2020)
371. Sekine A, Nomura K J. Appl. Phys. 129141101 (2021)
372. Malashevich A et al. New J. Phys. 12053032 (2010)
373. Li R et al. Nat. Phys. 6284 (2010)
374. Ni W-T Phys. Rev. Lett. 38301 (1977)
375. Wilczek F Phys. Rev. Lett. 581799 (1987)
376. Carroll S M, Field G B, Jackiw R Phys. Rev. D 411231 (1990)
377. Jackiw R Comments Mod. Phys. A 11 (1999); hep-ph/9811322
378. Itin Y Phys. Rev. D 70025012 (2004)
379. Kostelecký V A Phys. Rev. D 69105009 (2004)
380. Volovik G E The Universe in a Helium Droplet (Oxford: Oxford Univ. Press, 2009)
381. Volovik G E Physica B 25586 (1998)
382. Preskill J, Wise M B, Wilczek F Phys. Lett. B 120127 (1983)
383. Abbott L F, Sikivie P Phys. Lett. B 120133 (1983)
384. Dine M, Fischler W Phys. Lett. B 120137 (1983)
385. Adams C B et al., in 2022 Snowmass Summer Study, 17-26 July 2022, Seattle, WA, United States, arXiv:2203.14923
386. Read J J. Phys. G 41063101 (2014)
387. Gavrilyuk Yu M et al. JETP Lett. 11611 (2022); Pis'ma Zh. Eksp. Teor. Fiz. 11613 (2022)
388. Turner M S Phys. Rev. Lett. 601797 (1988)
389. Kolb E W, Turner M S Phys. Rev. Lett. 62509 (1989)
390. Lloyd S J, Chadwick P M, Brown A M Phys. Rev. D 100063005 (2019)
391. Chang J H, Essig R, McDermott S D J. High Energy Phys. 20181 (2018)
392. Graham P W et al. Annu. Rev. Nucl. Part. Sci. 65485 (2015); arXiv:1602.00039
393. Kim J E, Carosi G Rev. Mod. Phys. 82557 (2010); Kim J E, Carosi G Rev. Mod. Phys. 91049902 (2019) Erratum; arXiv:0807.3125
394. Semertzidis Y K, Youn S Sci. Adv. 8 eabm9928 (2022); arXiv:2104.14831
395. Sikivie P Phys. Rev. Lett. 511415 (1983); Sikivie P Phys. Rev. Lett. 52695 (1984) Erratum
396. Anselm A A Sov. J. Nucl. Phys. 42936 (1985); Yad. Fiz. 421480 (1985)
397. Kwon O et al. (CAPP Collab.) Phys. Rev. Lett. 126191802 (2021); arXiv:2012.10764
398. Boutan C et al. (ADMX Collab.) Phys. Rev. Lett. 121261302 (2018); arXiv:1901.00920
399. Ahn S et al. J. High Energy Phys. 2021297 (2021); arXiv:2004.08011
400. Asztalos S J et al. Phys. Rev. Lett. 104041301 (2010)
401. Mallet F et al. Phys. Rev. Lett. 106220502 (2011)
402. Backes K M et al. Nature 590238 (2021)
403. Lee S et al. Phys. Rev. Lett. 124101802 (2020); arXiv:2001.05102
404. Jeong J et al. Phys. Rev. Lett. 125221302 (2020); arXiv:2008.10141
405. Melcón A Á et al. JCAP 2018 (05) 040 (2018)
406. Semertzidis Y PoS ICHEP2018 729 (2019)
407. Ballou R et al. Phys. Rev. D 92092002 (2015)
408. Anastassopoulos V et al. (CAST Collab.) Nat. Phys. 13584 (2017); arXiv:1705.02290
409. Abeln A et al. (IAXO Collab.) J. High Energy Phys. 2021137 (2021)
410. Graham P W et al. Phys. Rev. D 97055006 (2018); arXiv:1709.07852
411. Gramolin A V et al. Nat. Phys. 1779 (2021)
412. Aybas D et al. Phys. Rev. Lett. 126141802 (2021); arXiv:2101.01241
413. Fadeev P et al. Quantum Sci. Technol. 6024006 (2021)
414. Vorob'ev P V, Kolokolov I V, Fogel' V F JETP Lett. 5065 (1989); Pis'ma Zh. Eksp. Teor. Fiz. 5058 (1989)
415. Kakhidze A I, Kolokolov I V Sov. Phys. JETP 72598 (1991); Zh. Eksp. Teor. Fiz. 991077 (1991)
416. Vorob'ev P V, Kakhidze A I, Kolokolov I V Phys. Atom. Nucl. 58 959 (1995); Yad. Fiz. 581032 (1995)
417. Pospelov M, Ritz A, Voloshin M Phys. Rev. D 78115012 (2008); arXiv:0807.3279
418. Stadnik Y V, Flambaum V V Phys. Rev. D 89043522 (2014)
419. Safronova M S et al. Rev. Mod. Phys. 90025008 (2018); arXiv:1710.01833
420. Vorobyov P V, Kolokolov I V Grav. Cosmol. Suppl. 462 (1998)
421. Vorob'ev P, Kolokolov I, astro-ph/9501042
422. Roussy T S et al. Phys. Rev. Lett. 126171301 (2021); arXiv:2006.15787
423. Flambaum V V, Samsonov I B Phys. Rev. A 98053437 (2018); arXiv:1810.02601
424. Tran Tan H B, Flambaum V V, Samsonov I B Phys. Rev. A 99 013430 (2019); arXiv:1812.03312
425. Flambaum V V, Tran Tan H B Phys. Rev. D 100111301 (2019); arXiv:1904.07609
426. Stadnik I V, Flambaum V V Phys. Rev. Lett. 115201301 (2015); arXiv:1503.08540
427. Antypas D et al. Phys. Rev. Lett. 123141102 (2019); arXiv:1905.02968
428. Antypas D et al. Quantum Sci. Technol. 6034001 (2021); arXiv:2012.01519
429. Aprile E et al. (XENON Collab.) Phys. Rev. D 102072004 (2020)
430. Stephenson E PoS PSTP2019 018 (2020)
431. Karanth S "New method to search for axion-like particles demonstrated with polarized beam at the cosy storage ring", DPG Spring Meeting, Dortmund, 15-19 March 2021
432. Karanth S et al. (JEDI Collab.), arXiv:2208.07293
433. Graham P W et al. Phys. Rev. D 103055010 (2021); arXiv:2005.11867
434. Silenko A J Eur. Phys. J. C 82856 (2022); arXiv:2109.05576
435. Silenko A J J. Math. Phys. 442952 (2003)
436. Silenko A J Phys. Rev. A 77012116 (2008); arXiv:0710.4218
437. Chang S P et al. Phys. Rev. D 99083002 (2019); arXiv:1710.05271
438. Kim O, Semertzidis Y K Phys. Rev. D 104096006 (2021); arXiv:2105.06655
439. Silenko A J Eur. Phys. J. C 77341 (2017); arXiv:1508.00742
440. Silenko A J Europhys. Lett. 11861003 (2017)
441. Nikolaev N N JETP Lett. 115639 (2022); Pis'ma Zh. Eksp. Teor. Fiz. 115683 (2022)
442. Lehrach A et al., arXiv: 1201.5773
443. Senichev Y et al., in Proc. of the 13th Intern. Particle Accelerator Conf., IPAC-22 (Eds F Zimmermann et al.) (Geneva: JACoW Publ., 2022) p. 492
444. Valetov E, Senichev Y, Berz M, in 22nd Intern. Symp. on Spin Physics, SPIN 2016, 25-30 September 2016, Urbana, IL, United States (Urbana, IL: Univ. of Illinois Press, 2016) arXiv:2001.07062
445. Obukhov Yu N "Axions in general relativity" (2022) in preparation
446. Obukhov Yu N, Silenko A J, Teryaev O V EPJ Web Conf. 20410007 (2019)
447. Balakin A B, Popov V A Phys. Rev. D 92105025 (2015)
448. Dvornikov M Phys. Rev. D 99116021 (2019)
449. Landau L D, Lifshitz E M Electrodynamics of Continuous Media (Oxford: Pergamon Press, 1984); Translated from Russian: Elektrodinamika Sploshnykh Sred (Moscow: Nauka, 1982)
450. Obukhov Yu N Eur. Phys. J. C 81919 (2021); arXiv:2110.06767
451. Pendlebury J M et al. Phys. Rev. D 92092003 (2015)
452. Kharzeev D Phys. Lett. B 633260 (2006); hep-ph/0406125
453. Kharzeev D, Tuchin K Nucl. Phys. A 753316 (2005); hep-ph/ 0501234
454. Teryaev O Symmetry 121409 (2020)
455. Baznat M, Gudima K, Sorin S, Teryaev O Phys. Rev. C $\mathbf{8 8} 061901$ (2013); arXiv:1301.7003
456. Volovik G E Phys. Rep. 351195 (2001); gr-qc/0005091
457. Becattini F, Lisa M A Annu. Rev. Nucl. Part. Sci. 70395 (2020); arXiv:2003.03640
458. Landau L D, Lifshitz E M Statistical Physics Pt. 1 (Oxford: Pergamon Press, 1980); Translated from Russian: Statisticheskaya Fizika Pt. 1 (Moscow: Nauka, 1976)
459. Sadofyev A V, Shevchenko V I, Zakharov V I Phys. Rev. D 83 105025 (2011); arXiv:1012.1958
460. Son D T, Surówka P Phys. Rev. Lett. 103191601 (2009); arXiv:0906.5044
461. Rogachevsky O V, Sorin A S, Teryaev O V Phys. Rev. C 82054910 (2010); arXiv:1006.1331
462. Adamczyk L et al. (STAR Collab.) Nature 54862 (2017); arXiv:1701.06657
463. Sorin A, Teryaev O Phys. Rev. C 95011902 (2017); arXiv:1606.08398
464. Baznat M, Gudima K, Sorin A, Teryaev O EPJ Web Conf. 126 02030 (2016)
465. Baznat M, Gudima K, Sorin A, Teryaev O Phys. Rev. C 97041902 (2018); arXiv:1701.00923
466. Landsteiner K, Megías E, Pena-Benitez F Phys. Rev. Lett. 107 021601 (2011); arXiv:1103.5006
467. Braguta V et al. Phys. Rev. D 89074510 (2014); arXiv:1401.8095
468. Teryaev O V, Zakharov V I Phys. Rev. D 96096023 (2017)
469. Efremov A V, Teryaev O V Phys. Lett. B 150383 (1985)
470. Qiu J, Sterman G Phys. Rev. Lett. 672264 (1991)
471. Brodsky S J, Hwang D S, Schmidt I Phys. Lett. B 53099 (2002); hepph/0201296
472. Collins J C Phys. Lett. B 53643 (2002); hep-ph/0204004
473. Boer D, Mulders P J, Pijlman F Nucl. Phys. B 667201 (2003); hepph/0303034
474. Prokhorov G, Teryaev O Phys. Rev. D 97076013 (2018); arXiv:1707.02491
475. Vilenkin A Phys. Rev. D 223080 (1980)
476. Prokhorov G Y, Teryaev O V, Zakharov V I Phys. Rev. D 98071901 (2018); arXiv:1805.12029
477. Prokhorov G I, Teryaev O V, Zakharov V I J. High Energy Phys. 2019146 (2019); arXiv:1807.03584
478. Becattini F Phys. Rev. D 97085013 (2018); arXiv:1712.08031
479. Prokhorov G I, Teryaev O V, Zakharov V I Phys. Rev. D 99071901 (2019); arXiv:1903.09697
480. Prokhorov G I, Teryaev O V, Zakharov V I Phys. Rev. D 100125009 (2019); arXiv:1906.03529
481. Prokhorov G I, Teryaev O V, Zakharov V I J. High Energy Phys. 2020137 (2020); arXiv: 1911.04545

[^0]: $\mathbf{S} \mathbf{N}$ Vergeles ${ }^{(1,2, *)}$, $\mathbf{N} \mathbf{N}$ Nikolaev ${ }^{(1,2, \dagger)}$, Yu \mathbf{N} Obukhov ${ }^{(3, \ddagger)}$,
 A Ya Silenko ${ }^{(4,5,6,8)}$, O V Teryaev ${ }^{(4,7,8,9,9)}$
 ${ }^{(1)}$ Landau Institute for Theoretical Physics, Russian Academy of Sciences, prosp. Akademika Semenova, 124432 Chernogolovka, Moscow region, Russian Federation
 ${ }^{(2)}$ Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, 141701 Dolgoprudny, Moscow region, Russian Federation
 ${ }^{(3)}$ Nuclear Safety Institute, Russian Academy of Sciences, ul. Bol'shaya Tul'skaya 52, 115191 Moscow, Russian Federation
 ${ }^{(4)}$ Joint Institute for Nuclear Research,
 Bogoliubov Laboratory of Theoretical Physics, ul. Joliot-Curie 6, 141980 Dubna, Moscow region, Russian Federation
 ${ }^{(5)}$ Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Rd. 509, Lanzhou, 730000, China
 ${ }^{(6)}$ Research Institute for Nuclear Problems, Belarusian State University, ul. Bobruiskaya 11, 220030 Minsk, Belarus

[^1]: ${ }^{(7)}$ Joint Institute for Nuclear Research,
 Veksler and Baldin Laboratory of High Energy Physics, ul. Joliot-Curie 6, 141980 Dubna, Moscow region, Russian Federation
 ${ }^{(8)}$ National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russian Federation
 ${ }^{(9)}$ Dubna University, ul. Universitetskaya 19, 141980 Dubna, Moscow region, Russian Federation
 E-mail: ${ }^{(*)}$ vergeles@itp.ac.ru, ${ }^{(\dagger)}$ nikolaev@itp.ac.ru,
 ${ }^{(\ddagger)}$ obukhov@ibrae.ac.ru, ${ }^{(8)}$ alsilenko@mail.ru,
 ${ }^{(\uparrow)}$ teryaev@jinr.ru

[^2]: ${ }^{1}$ In Sections 2 and 3, we use the system of units $\hbar=c=1$ as is common in high-energy physics.

[^3]: ${ }^{2}$ Hereinafter, the letters from the beginning of the Latin alphabet are used for spatial indices: $a, b, c, \ldots=1,2,3$.

[^4]: ${ }^{3}$ We follow the terminology of Mie [352] and Sommerfeld [353] to distinguish the electric and magnetic field strengths \mathbf{E}, \mathbf{B} from the electric and magnetic excitations D, H (see [354]).

[^5]: ${ }^{4}$ See the corresponding discussion in $\S 90$ of book [219].

[^6]: ${ }^{5}$ We are talking about the anomalous contribution to the current, while there is no corresponding contribution from the effective theory in the expression of its divergence, related to the behavior of the fundamental theory at small distances.

