
Abstract. We revisit the modal analysis of small perturbations
in Keplerian ideal gas flows with a constant vertical magnetic
field leading to magnetorotational instability (MRI) using the
nonlocal approach. In the general case, MRI modes are de-
scribed by a Schr�odinger-like differential equation with some
effective potential, including `repulsive' (1/r2) and `attractive'
(ÿ1=r 3) terms, and are quantized. In shallow potentials, there
are no stationary `energy levels.' In thin Keplerian accretion
discs, the perturbation wavelengths k � 2p=kz are smaller than
the disc semi-thickness h only in `deep' potential wells. We find
that there is a critical magnetic field for the MRI to develop.
The instability arises for magnetic fields below this critical
value. In thin accretion discs, at low background Alfv�en velo-
city cA 5 �cA�cr, the MRI instability increment x is suppressed
compared to the value obtained in the local perturbation analy-
sis, x� ÿ ���

3
p

icAkz. We also investigate for the first time the
case of a radially variable background magnetic field.

Keywords: magnetorotational instability, accretion discs

1. Introduction

Shear flows in astrophysical objects, characterized by an
inhomogeneous velocity field, are a universal source and
agent of energy transport and are closely related to the
phenomena of turbulence [1±3], magnetic field generation
[4], and particle acceleration [5].

The stability of shear hydrodynamic flows with respect to
small perturbations in a magnetic field in laboratory condi-
tions was first considered in papers by E Velikhov [6] and
S Chandrasekhar [7]. In the absence of a magnetic field,
hydrodynamic instability in a rotating shear flow appears
when the angular momentum decreases outward from the
axis of rotation [8].

Velikhov and Chandrasekhar showed that, in a vertically
magnetized, axisymmetric, differentially rotating flow with
angular velocity decreasing outward, magnetorotational
instability (MRI) is possible.1

The theory ofMRI was applied to astrophysical accretion
disks in an influential paper by [10], and it is now believed that
this instability generates turbulence in accretion disks (see
review [11]). Nonlinear numerical simulations (e.g., [12±14])
confirm that MRI can indeed sustain turbulence in accretion
disks.

It is believed that, for the study ofMRI and analysis of its
properties, a local approximation in an ideal incompressible
fluid is sufficient, where small perturbations are taken in
cylindrical coordinates r, z, f in the form of plane waves
� exp �i�otÿ krrÿ kzz��. In this case, the differential MHD
equations are transformed into algebraic equations, the
dispersion relation for perturbations is found in the form of
a biquadratic equation [10, 15], and the instability increment
does not depend on the magnetic field (see Eqns (77) and (78)
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presence of gravity are subject to Parker instability [9].
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below, respectively). Taking into account nonideal effects in
this approximation slightly changes the conditions for the
occurrence of MRI but leaves qualitatively the same picture
[16, 17].

However, already in the pioneering work by Velikhov [6],
a global analysis of long-wave disturbances in the direction
perpendicular to the plane of the main flow was carried out
for flows between two rotating conducting cylinders with a
constant angular momentum over the radius,O�r�r 2 � const.
Radial perturbations were found from the solution to the
Sturm±Liouville boundary value problem (in the Wentzel±
Kramers±Brillouin (WKB) approximation). It was shown
that such an approach implies a critical magnetic field,
above which instability is suppressed, and the dependence
on the boundary conditions remains even when the outer
cylinder is extended to infinity.

Due to the potential importance ofMRI in the emergence
of turbulence in disk flows (accretion and protoplanetary
disks, gaseous disks in galaxies), extensive analytical and
numerical investigations of MRI were conducted in the
1990s±2000s in the approximation of incompressible fluid in
a homogeneous magnetic field, including a global analysis of
this instability. Nonlocal analysis shows that, in shear flows,
the dispersion equation for the mode o�k� contains a term
dependent on radius as �/ ÿ1=r 2�, which is usually neglected
in local modal analysis. As expected, a critical value of the
magnetic field appears in the global analysis, above which
MRIs are stabilized [18±22]. For accretion disks around a
central gravitational body, the obtained results depend on the
choice of boundary conditions for perturbations at the inner
and outer radii of the flow [22±24]. The choice of boundary
conditions affects the discretization of local dispersion
relations [22].

Despite the considerable previous scrutiny of this pro-
blem, in this study, we independently and comprehensively
perform a nonlocal linear analysis of MRI in Keplerian
accretion disks with angular velocity O�r� / 1=r 3=2. We
derive a dispersion equation that can be reduced to a
Schr�odinger-like equation with an `energy' E � ÿk 2

z and an
effective potentialU�r� consisting of two terms: an `attractive'
term proportional to / ÿ1=r 3 and a `repulsive' term propor-
tional to/ 1=r 2. In contrast to the local analysis, the effective
potential vanishes at a point r0, which depends on the mode
frequencyo, the wave number kz, and the backgroundAlfv�en
velocity. We examine in detail both cases where the outer
radius of the disk, rout, is greater or less than r0. We
numerically solve the boundary value problem for radial
boundary conditions corresponding to both rigid and free
flow boundaries. We emphasize the significance of the
position of the flow boundaries relative to the zero points of
the effective potential, appearing in the nonlocal analysis for
the Sturm±Liouville boundary problem.We demonstrate
that, in `shallow' effective potentials, there can be a situa-
tion, depending on the position of the inner flow boundary,
where MRIs do not occur. Such a situation is possible for
flows around normal stars with large radii. Naturally, for
flows around compact objects, the potential wells are very
deep, and the energy spectrum is nearly continuous. We
explicitly derive the critical magnetic field value that sup-
presses MRI and find the dependence of the MRI increment
on the background homogeneousmagnetic field.We consider
for the first time the case of a background magnetic field that
varies with radius in a power-law manner. We also examine
the case of an incompressible fluid with density depending on

the radial coordinate, where the equations for small perturba-
tions remain the same as for a constant density, while the
effective potential changes.

The structure of the paper is as follows. In Section 2, we
perform a linear modal analysis for small perturbations in an
ideal fluid in the form/ f �r� exp �i�otÿ kzz��. In Section 2.5,
we derive the algebraic dispersion equation o�kz� and the
critical Alfv�en velocity below which MRI occurs. In
Section 3.2, we consider for the first time MRI in the
presence of a radially varying vertical magnetic field and
demonstrate that, in this case, the effective potential can
change nontrivially. In Section 4, we compare our results with
the standard results obtained in the local modal analysis. In
Appendix A, we numerically solve the Schr�odinger equation
for nonlocal perturbations with a constant background
Alfv�en velocity when the external radius of the flow, rout, is
greater than the zero radius of the effective potential r0. In
Appendix B, we consider the case of rout < r0, when the
problem reduces to solving the standard Sturm±Liouville
problem with third-type boundary conditions.

2. Nonlocal modal analysis

2.1 Basic equations
We consider a differentially rotating ideal fluid in a homo-
geneous verticalmagnetic field. Classical results were obtained
in papers by E Velikhov and S Chandrasekhar, who studied
the stability of sheared hydromagnetic flows [6, 7].

The equations of motion of an ideal MHD fluid read:
(1) mass conservation equation

qr
qt
� H�r u� � 0 ; �1�

(2) Euler equation including gravity force and Lorentz
force

qu
qt
� �uH� u � ÿ 1

r
Hpÿ Hfg �

1

4pr
�H� B� � B �2�

(here, fg is the Newtonian gravitational potential 2);
(3) induction equation

qB
qt
� H� �u� B� : �3�

We will consider adiabatic perturbations with constant
entropy

qs
qt
� �uH� s � 0 : �4�

For such adiabatic perturbations, perturbed density varia-
tions are zero, r1 � 0, and pressure variations in the energy
equation vanish, p1 � 0 (see, e.g., Appendix A in [26]).

We analyze the case of a purely Keplerian rotation where
the unperturbed velocity is vf�uf; 0�

�������������
GM=r

p
, ur; 0�uz; 0�0.

We assume that the forces caused by the pressure gradient are
small and only appear in the perturbed equations.

2.2 Case of incompressible fluid
Let us consider small Eulerian perturbations in an ideal
incompressible fluid. The velocity components in the back-

2 In principle, one can solve the problem in the Schwarzschield metric

using the potential f��c 2=2� ln �1ÿ �rg=r��, rg�2GM=c 2 (see [25]).
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ground undisturbed flow with velocity uf; 0 will be ur, uf, uz.
The magnetic field can be expressed as B � B0 � b, and the
pressure, as p0 � p1. We will consider the poloidal back-
ground field B0. We will seek perturbations in the form of
f �r� exp �i�otÿ kzz��, noting that time t and the coordinate z
only appear in the system of equations through the derivative
sign.

The choice of perturbations with harmonic functions in
the vertical coordinate is dictated by the nature of the
problem for disk flows that are confined by the z-coordi-
nate. In such flows (accretion and protoplanetary disks, gas
disks in galaxies), the vertical pressure gradient is balanced by
the gradient of gravitational force along the z-coordinate,
distinguishing them from laboratory flows.

The integration of the unperturbed Euler equation over
the z-coordinate leads to a polytropic density distribution
r�r; z� � rc�1ÿ �z=z0�2�n, with a semi-thickness of z0 �
2�n� 1�Pc=�O 2�r�rc�, where rc and Pc are the central
density and pressure, and n is the polytropic index (n � 3=2
for a convectively stable disk). For the polytropic equation of
state, n � 1=�gÿ 1�, where g is the adiabatic index, and in the
case of an incompressible fluid, g!1 and n � 0. In this
limiting case, the vertical density gradient vanishes, and the
model flow represents a Keplerian disk with a constant
vertical density limited by the disk's semi-thickness h
(P-shaped density distribution). The density can vary radially
(see Section 3).

For infinitesimal perturbations, the approximation of
perturbations with harmonic functions in the z-coordinate is
suitable for both thin disks (h=r5 1) and thick disks (h=r91),
provided that the wavelength of the perturbations is smaller
than the disk's half-thickness: l � 2p=kz < h. Therefore, the
final equations for linear perturbations in the case of an
incompressible fluid, which will be derived below, are no
different from the equations for laboratory plasmas with a
constant density along the z-coordinate.

For the chosen perturbations, the continuity equation (1)
for an incompressible fluid, Hu � 0, can be expressed in
cylindrical coordinates as follows:

1

r

q
qr
�rur� ÿ ikzuz � qur

qr
� ur

r
ÿ ikzuz � 0 : �5�

It should be noted that, in the local approximation, the small
term ur=r in the continuity equation is typically ignored. In
this case, the perturbations can be sought in the form
/ exp �i�otÿ krrÿ kzz��. The equation of magnetic field
solenoidality, HB � 0, can be written in a similar manner:

1

r

q
qr
�rbr� ÿ ikzbz � 0 : �6�

The radial, azimuthal, and vertical components of the
Euler equation are, respectively,

iour ÿ 2O uf � ÿ 1

r0

qp1
qr
ÿ c 2A
B0

�
qbz
qr
� ikzbr

�
; �7�

iouf � K2

2O
ur � ÿi c

2
A

B0
kzbf �8�

(here, we introduced the epicyclic frequency K2 �
4O 2 � r �dO2=dr� � �1=r 3� d�O2r 4�=dr and unperturbed
Alfv�en velocity c 2A � B 2

0 =�4pr0��,

iouz � ikz
p1
r0
: �9�

The three components of the induction equation, taking into
account the solenoidality of the magnetic field HB � 0, read

iobr � ÿiB0kzur ; �10�

iobf � ÿiB0kzuf � r
dO
dr

br ; �11�

iobz � ÿB0
1

r

qrur
qr

: �12�
Let us express all perturbations in terms of the radial

perturbations of the magnetic field br. Using Eqn (5), (9), and
(10), we find

p1
r0
� ouz

kz
� i

o 2

B0k 3
z

1

r

qrbr
qr

: �13�

From Eqn (10), we find

ur � ÿ o
B0kz

br : �14�

Substituting (14), (11), and (6) into Eqn (8) yields

�c 2A k 2
z ÿ o 2�uf � i

�
o 2K 2

2OB0kz
ÿ c 2Akz

B0
r
dO
dr

�
br : �15�

Finally, using (13)±(15), from Eqn (7) we obtain a second-
order differential equation for br:�

c 2A ÿ
o 2

k 2
z

�2� q 2br
qr 2
� q
qr

�
br
r

�
ÿ brk

2
z

�
� 2O

�
o 2

k 2
z

K 2

2O
ÿ c 2A r

dO
dr

�
br � 0 : �16�

This equation should be complemented with boundary
conditions, which are determined by the problem's formula-
tion. For instance, E P Velikhov considered the flow between
two rigid conducting cylinders, where the velocity and
magnetic field perturbations were set to zero. In a more
realistic scenario applicable to thin accretion disks, bound-
ary conditions need to be chosen at the free boundary. For
magnetized disks, various formulations of such boundary
conditions are possible (see, for example, the discussion in
[21]). We will demonstrate that the boundary conditions at
the inner and outer edges of a Keplerian thin disk with a
magnetic field correspond to the vanishing of Lagrangian
variations of pressure. First, let us consider how a homo-
geneous magnetic field can be created in a thin conducting
disk.

2.3 How to create a uniform magnetic field in a thin disk
Let us discuss how to create a uniform magnetic field in an
accretion disk (Fig. 1). First, let us recall that this can be easily
achieved in the case of two infinite well-conducting cylinders
(Fig. 1a) with currents flowing in opposite directions.
However, how can we organize currents in a flat conducting
disk to obtain a uniform magnetic field inside it (Fig. 1b)? To
answer this question, let us consider the following problem.
Suppose we have a well-conducting sphere with surface
currents jf / sin y such that the field inside the sphere is
uniform. We smoothly deform the sphere into a disk while
preserving the magnetic flux dFs � B0 cos y dS, where
dS � 2pR 2

0 sin y dy is an element of the surface area of the
sphere, and y is the angle between the surface normal and the
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magnetic field lines.In the disk, we have dFd � Bd2pr dr (Bd

being the field in the disk). Preserving the fluxFs � Fd implies
2pR 2

0

�
B0 sin y cos y dy � 2p

�
Bdr dr. In the case of a uniform

field, we have R 2
0B0 sin

2 y� C � Bdr
2. The constant C must

be zero to satisfy the condition y! 0, r! 0. For uniform
fields and y � p=2, we find the radius of the outer disk:
rd � R0

�������������
B0=Bd

p
. Thus, we have constructed a disk with

surface currents that induce a bending of the magnetic field
lines on the surface and a uniform magnetic field inside.

Now, let us remove a narrow region around the vertical
axis from the considered sphere. Since the surface currents
vanish near the vertical axis, removing a small region near the
axis will not significantly alter the field inside the sphere. Of
course, such an operation changes the topology: the sphere
transforms into a torus.

Alternatively, the sphere can be deformed into a disk
while preserving the magnetic flux, but with a radially
variable magnetic field, Bd�r�. During the deformation
process, the changing magnetic field induces an electric field,
which in turn strengthens or weakens the surface currents
js (Fig. 2). It should be evident that, by deforming the sphere
while conserving themagnetic flux, any desired dependence of
the magnetic field on the radius can be obtained.

It is worth noting that, in the obtained configuration, the
surface current on the inner boundary of the disk becomes
zero, and, consequently, the Lorentz force acting on the
surface element, js � B, also vanishes. At the outer bound-
ary, as the magnetic field changes sign when transitioning
from the disk to the outside, there is a jump in the magnetic
field, and a surface current must flow. The Lorentz force will
be determined by the sum of two forces acting on the surface
current from the inner and outer magnetic fields. Since, by
construction, the outer and inner fields are equal but
oppositely directed near the boundary, the total Lorentz
force applied to the outer boundary of the disk will be zero
(Fig. 3).

2.4 Differential equation for small perturbations
Following [6] and [7], it is straightforward to show that in
Eqn (16) o 2 must be a real number for a wide range of
boundary conditions, i.e., only oscillations (o 2 > 0) or
exponential growth or decay (o 2 < 0) of perturbations is
allowed. It is convenient to eliminate the first derivative from
(16) using the substitution C � br

��
r
p

in order to obtain a
second-order differential equation:

d2C
dr 2
�
�
ÿk 2

z ÿ
3

4

1

r 2
� 2O

��o 2=k 2
z �K 2=�2O�ÿc 2Ar �dO=dr�

�
�c 2A ÿ o 2=k 2

z �2
�

�C � 0 : �17�

The boundary conditions for this equation are selected
based on physical considerations, ensuring that the Lagran-
gian pressure perturbations vanish on the free boundary
(recall that, as shown earlier, the surface Lorentz force is
zero on both boundaries):

Dp � dp� �nH� p � 0 ; �18�

where n is the vector of infinitesimal displacement and
dp�p1 is the Eulerian pressure variation. Since, in our
problem formulation, Keplerian unperturbed flow is
assumed, in which the gravitational force is balanced by
the centrifugal force, for small displacements n, the
second term in the expression for the Lagrangian
variation can be disregarded (up to terms of order �h=r�2
in a thin accretion disk with semi-thickness h), and
Dp � p1. After dividing by the differential of time dt,
equation (18) can be written as

Dp

Dt
� qp

qt
� �uH� p � 0 ;

where D=Dt represents the Lagrangian derivative, and q=qt
represents the Eulerian derivative.

At the outer and inner boundaries of the accretion diskwith
a magnetic field, the boundary conditions can be expressed as
p1jrin ; rout � 0. As implied by Eqn (13), these boundary condi-
tions lead to homogeneous third-type boundary conditions for
the functionC at the flow boundaries rin; rout:

dC
dr

����
rin

� 1

2

C
r

����
rin

� 0;
dC
dr

����
rout

� 1

2

C
r

����
rout

� 0 : �19�

It is worth noting that, in E P Velikhov's work (see [6] and
[22]), a boundary value problem with homogeneous first-type
conditions at the boundaries (Cjrin � 0;Cjrout � 0) was con-
sidered.

z

z

r rr2 r2
r1 r1

r2 ÿ r1 5 z

r2 ÿ r1 4Dz

?
a b

Figure 1. (a) Flow in a uniformmagnetic field within a narrow gap between

two cylinders. (b) Thin extended accretion disk in a uniform vertical

magnetic field.

Figure 2.Deformation of a conducting sphere onto a disk. Surface Lorentz

force js � B transforms the sphere into an elongated disk in the absence of

other forces.

a b

Figure 3. Schematic illustrating the cancellation of Lorentz force js � B at

the outer boundary of the accretion disk. (a) Unperturbed configuration,

with surface current js flowing perpendicular to the plane of the image.

(b) Perturbed case, showing only the projection of the field onto the r, z

plane. Perturbed component of the field bf is not shown.
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Equation (17) can be interpreted as a Schr�odinger-like
equation with `energy'

E � ÿk 2
z �20�

and `potential'

U � 3

4

1

r 2
ÿ �o

2=k 2
z �K 2 ÿ c 2Ar �dO2=dr�
�c 2A ÿ o 2=k 2

z �2
: �21�

As is well known (see, for example, [27, 28]), in the region of
negative potential values U, there exist eigenvalues (`energy
levels') with negative energy E < 0. The existence of levels
with negative energy, i.e., solutions for b, for real kz and
o 2 < 0, indicates the instability of the flow. Thus, the form of
the potential U determines the region in the flow and the
range of values of B that allow the development of MRI.

Let us highlight the properties of potential U that are
relevant to our problem. For the Keplerian law with
O 2 � GM=r 3 and K 2 � O 2, the potential takes the form

U � 3

4

1

r 2
ÿ GM

r 3
o 2=k 2

z � 3c 2A

�c 2A ÿ o 2=k 2
z

�2 : �22�

For unstable modes (o 2 < 0), the numerator in the second
term of equation (22) is positive only for perturbations with
o 2 > ÿ3c 2Ak 2

z . Otherwise, potential U is strictly positive, and
there are no stable states with negative energy. For o 2 < 0,
the denominator in equation (22) does not vanish. In our
problem (Fig. 4), there are several characteristic points: the
inner radius of the disk rin, the turning point r1 for a given
negative energy E � ÿk 2

z , the zero point of the potential r0,
and rmax � �3=2�r0, where the potential is maximal. It is
evident that rin 4 r1 4 r0.

The potential turns to zero at the point

r0�4

3
GM

o 2=k 2
z � 3c 2A

�c 2A ÿ o 2=k 2
z �2
�4

3

GM

c 2A

o 2=�k 2
z c

2
A� � 3�

1ÿ o 2=�k 2
z c

2
A�
�2 : �23�

It is convenient to introduce a dimensionless variable
x � r=r0. Then, the dimensionless potential can be written
as

~U � Ur 20 �
3

4

1

x 2
ÿ 3

4

1

x 3
: �24�

The dimensionless energy in the Schr�odinger equation (17) is
equal to

~E � ÿk 2
z r

2
0 : �25�

The turning point of the potential U is determined by the
equation

ÿk 2
z ÿU�r1� � 0 �26�

(see Fig. 4). Beyond the radius r1, the perturbations decay
quasiexponentially. In dimensionless units, the turning point
x1 � r1=r0 of the potential ~U is determined by the equation

4 ~Ex 3
1 ÿ 3x1 � 3 � 0 ; x1 4 1 : �27�

For negative energy ~E, this cubic equation has one real root
x1 � r1=r0 < 1:

x1�
�

3

ÿ8 ~E

�1=3��
1ÿ

��������������
1ÿ 1

9 ~E

r �1=3

�
�
1�

��������������
1ÿ 1

9 ~E

r �1=3 �
:

�28�

Numerical solutions of Eqn (17) can be found in Appendix A.
It should be noted that the global nonlocal analysis of MRI,
leading to an equation of the form of one-dimensional
Schr�odinger Eqn (17), has been investigated by [21, 24] with
different boundary conditions.

2.5 Derivation of the dispersion equation
and critical Alfv�en velocity
Thus, in dimensionless variables, the problem reduces to a
Sturm±Liouville problem for the equation

C 00 ÿ ~UC� ~EC � 0 �29�

with the potential (24) and boundary conditions

dC
dx

����
xin

� 1

2

C
x

����
xin

� 0 ;
dC
dx

����
xout

� 1

2

C
x

����
xout

� 0 : �30�

Since potential ~U changes sign at x � 1 (r � r0), when
solving this problem, it is necessary to distinguish between
two cases: (1) the outer radius of the flow is located beyond
the zero point of the potential xout > 1 (rout > r0), and (2) the
flow terminates before reaching the zero point of the potential
xout < 1 (rout < r0) (see details in Appendices A and B,
respectively). From the solution of the boundary value
problem, a discrete set of eigenvalues ~En, n � 0; 1; 2; . . . ; is
obtained:

~En � ÿk 2
z r

2
0 : �31�

In the case of xout > 1, the number n corresponds to the
number of zeros of the eigenfunctions in the interval between
the inner boundary and the turning point of the potential for a
given level �xin; x1� ~En��.

~U

~E�ÿ�kzr0�2
xin xoutx1

� 1=x2

� ÿ1=x3

x � r=r0

n � 2

n � 1

n � 0

1

Figure 4. Schematic of effective potential ~U with characteristic points xin
(inner boundary of the flow), x1 (turning point in the potential for a given

energy level), x � 1 (point where the potential becomes zero), and xout
(outer radius of the flow). First three energy levels (n � 0; 1; 2) and their

corresponding eigenfunctions of the problem are shown in green color,

where xout > 1.
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From Eqn (31), for each level with negative energy ~En, we
obtain a dispersion equation

r0 �
���������
ÿ ~En

p
kz

� 4

3

GM

c 2A

o 2=�k 2
z c

2
A� � 3�

1ÿ o 2=�k 2
z c

2
A�
�2 : �32�

In dimensionless units normalized by r0, Eqn (32)
becomes a quadratic equation for the dimensionless quantity
o 2=�k 2

z c
2
A�:

3

4

�
cA

vf�r0�
�2�

1ÿ o 2

k 2
z c

2
A

�2

ÿ o 2

k 2
z c

2
A

ÿ 3 � 0 ;

v 2
f�r0� �

GM

r0
� GMkz���������

ÿ ~En

p : �33�

Its solution is as follows:

o 2 � c 2Ak
2
z

 
1�

1�
���������������������������������������
1� 12

�
cA=vf�r0�

�2q
�3=2� �cA=vf�r0��2

!
: �34�

Note that this dispersion equation involves the flow
velocity at radius r0 and does not explicitly depend on the
boundaries of the flow where the boundary conditions are
satisfied; the boundary conditions determine the set of
eigenvalues ~En.

The critical magnetic field corresponding to the neutral
mode o 2 � 0 is given by�

cA
vf�r0�

�2

cr

� 4 ; �35�

which can be rewritten as

�cA�2cr �
4GM

r0
� 4GMkz���������

ÿ ~En

p : �36�

Thus, in a sufficiently strong magnetic field, the shear flow is
stabilized by the Lorentz force (o 2 � 0), as first noted in [6]
for flow in a narrow gap between two conducting cylinders.

Using Eqn (35), we rewrite Eqn (34) in the form

o 2

�cA�2cr k 2
z

�
�

cA
�cA�cr

�2
 
1�

1�
���������������������������������������
1� 48

ÿ
cA=�cA�cr

�2q
6
ÿ
cA=�cA�cr

�2
!
:

�37�

Below, only the unstable modes with o 2 < 0 are considered,
corresponding to the minus sign in Eqn (37). For small
�cA=�cA�cr�2 5 1, Eqn (37) can be approximated as

o 2

�cA�2cr k 2
z

�
�

cA
�cA�cr

�2�
ÿ 3� 48

�
cA
�cA�cr

�2�
: �38�

In other words, o 2 ! 0 as c 2A ! 0. This behavior of o 2

differs from the result of local analysis, where theMRI occurs
even for an arbitrarily small (but nonzero!) background
magnetic field (see, for example, [26]).

It is evident that there is a maximum growth rate of the
MRI and its corresponding Alfv�en speed (Fig. 5):�

cA
�cA�cr

�2

max

� 5

16
;

o2
max

�cA�2cr k 2
z

� ÿ 3

16
: �39�

In real flows, there is always an inner radius rin. For
sufficiently large outer radius rout 4 rin, it is possible to solve
the problem exactly and find the eigenvalues ~En � ÿk 2

z r
2
0 (see

Appendix A), from which the location of the zero point r0 of
the effective potential U�r� can be calculated. In the
quasiclassical approximation, the solution ~En�xin�, where
xin � rin=r0, is expressed through integral (85) (see Appen-
dix A). Then, the position of r0 in the flow can be calculated
from the solution to the problem with a given rin using the
formula r0 � rin=xin. In the special case of small kz � 0 (i.e.,
~En � 0), there is an analytical solution (see (87), (88)):

r0 � rin

��
p���
3
p
�
n� 3

4

�
� p

2

�2
� 1

�
: �40�

In the case of rout < r0, the potential between the
boundaries does not change sign, and the problem of finding
the eigenvalues of Eqn (29) is simplified (see Appendix B).

2.6 Application to thin accretion disks
In accretion disks, the wavelength of perturbations l � 2p=kz
in the vertical coordinate must be smaller than the disk semi-
thickness h. This condition limits the allowed `energy levels.'
Indeed, at the turning point x1, we have

~E � ÿk 2
z r

2
0 � ÿ4p2

�
h

l

�2�
r1
h

�2
1

x 2
1

: �41�

Therefore, the requirement�
l
h

�2

� ÿ 4p 2

x 2
1

~E

�
r1
h

�2

< 1 �42�

gives the permissible energy levels that satisfy the following
condition:

x 2
1 j ~Ej >

4p 2

�h=r1�2
: �43�

For a typical value of the relative thickness of a geometrically
thin disk, h=r90:1, in thin accretion disks, this yields
x 2
1 j ~E j > 4� 103. Considering that, for large j ~E j4 1,

x1 � �3=�4j ~E j��1=3 (see Eqn (28)), the corresponding energy
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Figure 5. Solution of dispersion equation (37) with a minus sign in front of

the square root for unstable modes o 2 < 0.
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levels must have j ~E j > 7� 1010. Such levels are only possible
for very small xin 5 1 (see Appendix A, Fig. 13).

The critical magnetic field, above which the MRI is
suppressed, can be expressed in terms of the Keplerian
velocity at the inner boundary of the flow, vf�rin�:

�cA�2cr �
4GM

r0
� xin

4GM

rin
� 4xinv

2
f �rin� : �44�

It is easy to obtain an upper limit on the possible value of the
dimensionless parameter xin � rin=r0. Indeed, all possible
energy levels can take values

ÿ ~En � r 2in k
2
z

x2in
< ÿ ~U�xin� � 3

4

1

x 3
in

ÿ 3

4

1

x 2
in

; �45�

from which

xin <
1

1� �4=3� r 2in k 2
z

: �46�

Note that this inequality (46) gives an obvious upper limit
xin < 1 for kz ! 0, while, as shown in Appendix A, energy
levels with n � 0 exist only when xin < 0:8116. Substituting
inequality (46) into (44), we obtain an upper limit for the
critical magnetic field:

�cA� 2cr <
4v 2f �rin�

1� �4=3� r 2in k 2
z

: �47�

Using the condition for thin disks with the wavelength of
perturbations in the z-coordinate l=h � 2p=�kzh� < 1 and
considering h=rin < 1, we transform (47) into the form

�cA�cr
vf�rin� <

���
3
p

2p

�
h

rin

� ���
l
h

r
;
�cA�cr
cs�rin� <

���
3
p

2p

���
l
h

r
: �48�

(In the last inequality, we used the relation between the
Keplerian velocity and the sound speed at the inner
boundary of the thin accretion disk cs�rin� � vf�rin��h=rin�:�

Thus, in thin accretion disks, MRI perturbations with a
wavelength l < h in the z-coordinate can be significantly
suppressed.

Depending on the type of accretor (regular stars or
relativistic compact objects), the inner radius of the flow can
vary greatly from a few ten tomillions of kilometers, while the
outer radius is determined by the physical situation, such as
being limited by the size of the Roche lobe in the case of
binary systems. Since in thin disks h=r � 0:05, the upper limit
of the critical magnetic field that suppressesMRI in thin disks
(48) is� 1=

�����
rin
p

and significantly differs for different types of
accretors.

Previous studies on the critical magnetic field for suppres-
sing MRI in the context of global analysis with different
boundary conditions can be found, for example, in [18, 22]. In
[18], the critical magnetic field was derived using the energy
method. Only an upper estimate was obtained, according to
which (equation (41) in the cited work) the critical magnetic
field in thin disks is determined by the Alfv�en velocity, which
is equal to the Keplerian velocity of the flowmultiplied by the
square root of the ratio of the disk's semi-thickness to its
radius. It should also be noted that the critical Alfv�en velocity
in the local analysis by [10] is, to within amultiplicative factor,
equal to the Keplerian velocity multiplied by the ratio of the

wavelength of a perturbation in the z-coordinate to the
radius. As can be seen from a comparison of these statements
with (48), our result provides a much more definite value for
the critical field.

3. Magnetorotational instability with radially
dependent Alfv�en velocity

Until now, our consideration of MRI has been limited to the
case of a constant background Alfv�en velocity. However, in
real astrophysical situations, the Alfv�en velocity should
decrease with radius as fast as the angular velocity of the
flow or even faster. Below, we will consider two cases: (1) c 2A
depends on radius as v 2f / 1=r due to the variable density with
a constant background magnetic field, and (2) c 2A / 1=r q for
a variable background magnetic field with the density
constant over radius.

3.1 Case of constant background magnetic field
The square of the Alfv�en velocity can decrease linearly with
radius when the background magnetic field is constant, but
the density of the flow increases linearly with radius. It should
be noted that the density varying with radius still implies the
use of the continuity equation in the form of Eqn (5). Let us
rewrite Eqn (1) as follows:

1

r

�
qr
qt
� uHHr

�
� Hu � D

Dt
lnr� Hu � 0 :

Now, locally, density r varies (Eulerian derivative
qr=qt 6� 0), but the substantial (Lagrangian) derivative of
density with timeDr=Dt � qr=qt� uHr � 0,D ln r=Dt � 0.
Thus, for an incompressible fluid in the case of density
varying with coordinates, the continuity equation becomes
Hu � 0 [29, 30]. Therefore, for a variable background density
r0, equations (5)±(12) for linear perturbations remain
unchanged. However, instead of the potential Eqn (22) with
c 2A � const, the effective potential takes the form

Ue � 3

4

1

r 2
ÿ GM

r 3c 2A

o 2=�k 2
z c

2
A� � 3�

1ÿ o 2=�k 2
z c

2
A�
�2

� 3

4

1

r 2
ÿ GM

r 3

o 2=k 2
z � 3Ev 2

f�r��
Ev 2

f�r� ÿ o 2=k 2
z

�2 : �49�

Here, E � c 2A=v
2
f � const is a parameter. The potential (49)

has the same characteristic points as in the previous case (see
Section 2.4): r0, whereUe�r0� � 0, the turning point r1, where
EÿUe�r1� � 0, and the inner radius of the flow rin.

The potential Ue becomes zero at the point

r0 � 4

3
GM

o 2=k 2
z � 3Ev 2

f �r0��
Ev 2

f �r0� ÿ o 2=k 2
z

�2 : �50�

From the last equation, we obtain the dispersion equation
o�kz�:

3

4
E
�
1ÿ o 2

k 2
z Ev

2
f �r0�

�2

ÿ o 2

k 2
z Ev

2
f �r0�

ÿ 3 � 0 �51�

with the solution

o 2 � Ev 2f �r0� k 2
z

�
1� 1� ���������������

1� 12E
p

3E=2

�
: �52�
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The unstableMRImode corresponds to theminus sign before
the square root. As in Section 2.5, the critical magnetic field
corresponds to the neutral mode o 2 � 0:

Ecr �
�
cA�r0�
vf�r0�

�2

� 4 : �53�

For small E5 1,

o 2 � Ev 2f�r0� k 2
z �ÿ3� 12E� : �54�

It can be seen that Eqn (52) yields the same maximum growth
rate of MRI and the corresponding value of the Alfv�en
velocity as before (cf. Eqn (39)):

E �
�
cA�r0�
vf�r0�

�2

max

� 5

4
; o 2

max � ÿ
3

4
k 2
z v

2
f �r0� : �55�

Clearly, the critical Alfv�en velocity is the same as derived
earlier (see Eqn (35)).

Let us now consider the turning point r1 in the potential
Ue, determined by the equation ÿk 2

z ÿUe�r1� � 0. In
dimensionless variables ~E � ÿk 2

z r
2
0 and x � r=r0, the equa-

tion for x1 reads

~Eÿ ~Ue � ~Eÿ 3

4

1

x 2
1

� 1

Ex 2
1

3� x1 K �E��
1ÿ x1 K �E�

�2 � 0 ; �56�

where

K �E� � o 2

k 2
z c

2
A�r0�

� 1� 1ÿ ���������������
1� 12E
p

3E=2
: �57�

It should be noted that the `attractive' part of the potential in
Eqn (56) depends on the parameter E. Also, in this case, for
small x5 1, the `repulsive' potential behaves as 1=x 2

compared to 1=x 3 in the case of Eqn (24). Equation (56) is a
fourth-degree equation for x1 (in contrast to the cubic
equation, Eqn (27), for x1 in the case of constant c 2A). For
small x1 5 1, the solution takes the form

x 2
1 � ÿ

3

~E

�
1

4
� 1

E

�
�58�

(cf. Eqn (28) for constant Alfv�en velocity).

3.2 Case of radially dependent background magnetic field
If the background magnetic field depends on the radius,
B � �0; 0;Bz �r��, the linearized MHD equations become
more complex. The radial and vertical components of Euler
equations (7) and (9) are now expressed as follows, respec-
tively:

iour ÿ 2Ouf � ÿ 1

r0

qp1
qr
ÿ 1

4pr0

�
q�bzBz�

qr
� ikzbrBz

�
; �59�

iouz � ikz
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� 1

4pr0
br

qBz

qr
: �60�

The vertical component of the induction equation (12)
turns into

iobz � ÿ 1

r

q�rurBz�
qr

: �61�

Following a similar procedure as in Section 2.4, after some
algebraic manipulations, we obtain the equation for br in the

form�
c 2A ÿ
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The r.h.s. of the above equation vanishes for c 2A � const.
Here, we will consider the case of a power-law dependence
of the Alfv�en velocity on radius. Substituting c 2A / rÿq into
Eqn (62), we obtain, for Keplerian flow (K 2 � O 2 � GM=r 3),
the following expression:

q 2br
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Equation (63) can be rewritten as

b 00r � g�r� b 0r � f �r� � 0 ; �64�
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The first derivative can be excluded in a standard way by the
substitution z � br exp �ÿ1=2

� r
g�s� ds�, yielding the equation

z 00 �
�
fÿ g 0

2
ÿ g 2

4

�
z � 0 : �67�

Substituting the functions f and g into Eqn (67), we obtain the
equation
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Clearly, it reduces to Eqn (17) for q � 0 for the case of a
constant magnetic field.When q 6� 0, the effective potential in
the Schr�odinger-like Eqn (68) reads

Uq � 3
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For each value of q, the potential Uq becomes zero at

r0 � GM

c 2A
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2
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2
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2
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The dispersion equation at the point r0 reads
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�71�
The unstableMRImode corresponds to theminus sign before
the square root. The zero mode o 2 � 0 occurs at the critical
magnetic field
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Using the identity�
vf
cA

�2

�
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�cA�cr
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we rewrite the dispersion equation (71) in a form similar to
Eqn (37), as a function of a dimensionless value ��cA�cr=cA�2:
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(see Fig. 6). In Eqn (74), value �vf=cA�2 can be expressed in
terms of Eqns (72) and (73).

Let us use, as above, the dimensionless variables x�r=r0,
c 2A�c 2A�r0�xÿq, and the parameter E�c 2A�r0�=v 2f�r0� and
denote the r.h.s. of Eqn (71) as o 2=�k 2

z c
2
A�r0�� � K �E�.

Then, the dimensionless potential ~Uq � Uqr
2
0 is as follows:

~Uq�x; E; q�� 1

x 2

�
3

4
� q 2=16� q=2ÿK�E�xq�q 2=4�q=2�ÿ
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�2 �

ÿ 1

x 3ÿq
3� K �E�xq

E
ÿ
1ÿ K �E�xq

�2 : �75�

It should be noted that, in the case of q 6� 0, both the
`repulsive' and `attractive' parts of the effective potential
depend on E.

Let us discuss some features of the potential ~Uq.
(1) By construction, ~Uq�1; E; q� � 0 for any E; q.
(2) For E! Ecr, see Eqn (72), K�E� ! 0:

~Uq�x; E! Ecr; q� �
�
3

4
� q 2

16
� q

2

��
1

x 2
ÿ 1

x 3ÿq

�
: �76�

The potential ~Uq�x; E! Ecr; q � 1� � 0 for any x. For
q < 1, ~Uq changes sign from negative to positive at x � 1,
and vice versa for q > 1.

(3) For q < 1, only one zero point of the potential exists:
~Uq�x � 1; E; q < 1� � 0.

(4) For q > 1, the second zero point x2 appears at x < 1
with limE!0 x2�0 and limx!0

~Uq�x; E; q� !�1. That is, the
potential reaches a minimum at a certain point xmin:
x2 < xmin < 1.

These features of the effective potential ~Uq for different
values of q and E are shown in Figs 7±11. It can be seen that,
for q4 1, the effective potential ~Uq has the same shape as for
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Figure 6. MRI dispersion curves described by Eqn (74) for various values

of q. In the limit of cA=�cA�cr 5 1, the dispersion equation takes the form

of Eqn (38) for all values of q.
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Figure 8. The same as in Fig. 7, for q � 1.
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Figure 9. The same as in Fig. 7, for q � 2. Note the appearance of the second zero point of the potential as parameter E decreases.
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Figure 11. The same as in Fig. 7, for q � 4.
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q � 0 (see Fig. 4), and the analysis of theMRImodes remains
unchanged. For q > 1, a minimum of the effective potential
appears with x2 < xmin < 1, and the unstable energy levels
should be sought between the two turning points for the
corresponding effective energies ~E � ÿkz r 20 . In contrast to
the q � 0 case, a minimum energy ~Emin � ~Uq�xmin; E; q� exists.

It is important to note that, for cases with q > 1 and
xin 5 1, there can be two turning points in the effective
potential ~Uq for the energy levels ~E � ÿk 2

z r
2
0 (�x1�min and

�x1�max). It is also possible that ~E < � ~Uq�min, and stable
negative energy levels (corresponding to MRI modes) do not
exist. If the dimensionless radius of the inner disk xin falls
between the roots of the effective potential ~Uq, then a free
boundary of the flow occurs at the point xin, as in the
previously considered q � 0 case.

Thus, the analysis of the shape of the effective potential ~Uq

indicates the need to take it into account when considering
global MRI in specific physical cases.

4. Summary and discussion

4.1 Nonlocal modal analysis
with constant background magnetic field
Wehave revisited the development ofMRI inKeplerian flows
of an ideal fluid. We have shown that taking into account
radial nonlocality in the analysis of perturbations in the form
of f �r� exp �i�otÿ kzz�� leads to the appearance of the term
ÿ�3=4��1=r 2� in Eqn (17) for small perturbations. The
equation for small perturbations takes the form of a
stationary Schr�odinger equation with an effective potential
that determines (in the form of a dispersion equation) the
region of negative o 2 valuesÐ the region of MRI growth.
The neutral modeo 2 � 0 corresponds to the critical magnetic
field (36). The critical field in terms of the Alfv�en velocity c 2A is
given by �cA� 2cr � 4GM=r0, where r0 is the zero point of the
potential U (22) in Eqn (17).

The second important result is the significant reduction
(compared to the local analysis) in the MRI instability
increment for the case of c 2A 5 �cA�2cr (see Eqn (38)). Indeed,
ignoring the termÿ�3=4��1=r 2� in equation (17) and replacing
the derivative q=qr! ÿikr, equation (17) transforms into a
fourth-degree algebraic equation with the solution

o 2 �
�
kz
k

�2
"
c 2Ak

2
z �

O 2

2
ÿ

�������������������������������
O 4

4
� 4O 2c 2A k 2

s #
�77�

(here, k2 � k2r � k2z). The maximal instability increment in
this case is independent of the magnetic field strength:

o 2
max � ÿ

9

16

�
kz
k

�2

O 2 : �78�

We stress the difference between the local result (78) and
the nonlocal result (39). In the nonlocal approach, a critical
magnetic field that suppresses MRI appears, which was
absent in the local modal analysis (see, for example, [10,
31]). In the global analysis, themaximum increment ofMRI is
achieved at a specific value of the Alfv�en velocity,
�cA=�cA�cr�2�5=16 (see Fig. 5 and Eqn (39)). The fact that
MRI arises only in sufficiently weak magnetic fields was
already noted in the seminal work [10] (see also, for
example, subsequent studies [32, 33], etc.). For small
magnetic fields, cA 5 �cA�cr, the instability increment is
suppressed by a factor of 3�cA=�cA�cr�, as shown by Eqn (38).

We emphasize that, as shown by numerical analysis (see
Appendix A), in `shallow' potential wells with the dimension-
less inner radius of the flow xin � rin=r0 > 0:8, there are no
stationary eigenmodes (17), i.e., MRI is absent there. For
xin � rin=r0 < 0:8, stationary levels arise, corresponding to
very small kz and large perturbation wavelengths. The
number of stationary levels increases as xin decreases. In
thin Keplerian accretion disks, perturbations with wave
lengths l � 2p=kz smaller than the disk's semi-thickness h
exist only in `deep' potential wells with log xin < ÿ3:756.
Therefore, the standard formulation of MRI (shearing flow
immersed in a constant poloidal magnetic field) does not
always work in thin accretion disks. For example, in accretion
disks around ordinary stars (shallow potentials), the inner
disk radius may be too large for the appearance of short-
wavelength unstable modes, while, in accretion disks around
compact stars (deep potentials), unstable modes with wave-
lengths smaller than the disk thickness are possible.

4.2 Nonlocal modal analysis with a radially changing
background magnetic field
We have performed, for the first time, a nonlocal modal
analysis of MRI with a variable background Alfv�en
velocity cA�r� and extensively studied the case of a
power-law dependence c 2A�r� / rÿq in Keplerian flows
(equations for small perturbations of the magnetic field
(62) and (63), respectively). We have found that the
maximum growth rate of MRI increases with increasing
q (Fig. 6). Furthermore, in this case, the dimensionless
potential ~Uq (75) depends on both q and the parameter
E � c 2A�r0�=v 2

f�r0�. For q > 1, the potential ~U�q; E� qualita-
tively changes with decreasing E from the critical value
(corresponding to the zero mode o 2 � 0, Eqn (72)): two
turning points appear to the right and left of the zero
point r0 (see Figs 9±11). Clearly, the result of the nonlocal
analysis of MRI will depend on the position of the inner
boundary of the flow xin relative to the zero points of the
effective potential.

Thus, the nonlocal analysis ofMRI demonstrates the need
to consider specific features of the flow. Here, we have only
considered the poloidal background magnetic field. In real
situations, there may be poloidal components as well as
toroidal components of the background magnetic field. A
global analysis of nonaxisymmetric perturbations for MRI
has been conducted, for example, in [34]. The toroidal
magnetic field in the disk plane should be subject to the
Parker instability [9], which arises in the presence of gravity
(Fig. 12). A detailed description of the Parker instability in
accretion disks can be found, for example, in [15]. The Parker
instability in accretion disks can be dubbed `magneto-
gravitational instability.'

Plasma fall

B

z

g

Buoyancy

Figure 12. Schematic of the Parker instability.
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5. Appendix

A. Numerical solution of Equation (17) for rout > r0
It is instructive to directly solve Eqn (17) for the case when the
outer boundary of the flow lies beyond the point r0, where the
potential U�r0� � 0. In dimensionless variables x � r=r0 and
~E � ÿk 2

z r
2
0 , Eqn (17) reads

d2C
dx 2
� f ~Eÿ ~UgC � 0 ; ~U � 3

4

1

x 2
ÿ 3

4

1

x 3
: �79�

The amplitude of the function C is arbitrary, and we choose
jC�x1�j � 1. Conditions at the boundaries of the flow are
imposed according to (30).

We can simplify the numerical solution by imposing a
condition not at the outer boundary point xout>1 but at the
turning point x1 < 1. At the turning point x1, the condition
C 00�x1� � 0 is automatically satisfied due to the nature of the
turning point, where ~U�x1� � ~E. Therefore, as a boundary
condition at the turning point, we should take the value of the
first derivativeC 0�x1�. It can be easily found by noticing that,
for small x � xÿ x1 5 1, Eqn (79) reduces to the Airy

equation

C 00�z� � zC � 0 ; �80�
where

z �
�
3

2

1

x 3
1

ÿ 9

4

1

x 4
1

�1=3

x : �81�

The general solution of Eqn (80) is

C�z� � C1 Ai �ÿz� � C2 Bi �ÿz� : �82�
It should be clear that, if the outer boundary xout !1, then
C! 0, and the constant in the general solution C2 must be
equal to zero. For a finite xout, the constantC2 is nonzero, and
the value of the first derivative C 0�x1� should be determined
from the conditions at the outer and inner boundaries (30).
Below, we present solutions for the case of xout 4 1 with the
constant C2 � 0.

At the point x1, where x � z � 0, the first derivative reads

dC
dx

����
x1

� dC
dz

dz

dx

����
x1

� C1 Ai 0�0�
�
3

2

1

x 3
1

ÿ 9

4

1

x 4
1

�1=3
; �83�

where Ai 0�0� � 0:25882 . . . :
Integrating Eqn (79) with the boundary conditions (30)

C 0jxin �C=�2xin� � 0 and Eqn (83) for various values of xin
yields a family of solutions with discrete (nonequidistant)
`energy levels' ~En (or, equivalently, according to Eqn (27),
with discrete turning points x1) corresponding to the integer
number n � 0; 1; 2; 3; . . . of the zeros of the function C. It
should be noted that, for a given xin, a different number of
possible energy levels exists, and there is a maximum value
�xin�max � 0:8116 that allows the existence of a single level for
n � 0. The solutions, normalized to themaximumvalue of the
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Figure 13. Normalized solutions of Eqn (79), plotted as C=Cmax, with boundary condition (30), C 0jxin �C=�2xin� � 0 at xin, and (83) on C 0�x1� at x1,
corresponding to limx!1C�x� � 0, for xin � 10ÿ1 (a), 10ÿ2 (b), and 10ÿ3 (c). As xin decreases (indicating a deeper potential well), the number of

stationary negative energy levels increases. Exponentially decaying part of the solution for x > x1 is not shown.
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function C, are shown in Fig. 13. The discrete `energy levels'
~E � ÿ�kzr0�2 of Eqn (79) for different inner boundaries xin
are shown in Fig. 14. The values of the energy ~E for different
levels at fixed xin under various boundary conditions on the
functionC are presented in Table 1. It is evident that the type
of boundary conditions has a weak influence on the energy
values of the `lower' levels in deep potential wells for xin 5 1.

It should be noted that Eqn (79) can be solved using the
quasiclassical (WKB) approximation, employing the Bohr±
Sommerfeld condition for discrete energy levels E � ÿk 2

z < 0
with index n � 0; 1; 2; . . . in the potential U for rigid
boundaries [27, 28]:� r1

rin

�������������
EÿU
p

dr � p
�
n� 3

4

�
; n � 0; 1; 2; . . . : �84�

Here, r1 is the turning point in the potential U, which can be
found from Eqn (26). The existence of stationary levels with
negative energy and o 2 < 0 indicates the instability of the
flow. A similar equation, but with a constant slightly different
from 3=4, can be obtained for a free boundary. However, for
large n4 1, all three boundary conditions (Cjxin � 0,
C 0jxin�0, �C 0 �C=�2x��jxin�0) yield the same result.

In dimensionless units with energy ~E � ÿk 2
z r

2
0 and

potential ~U, Eqn (84) takes the form� x1

xin

������������������������������
~Eÿ 3

4x 2
� 3

4x 3

r
dx � p

�
n� 3

4

�
: �85�

In the case of a large perturbation wavelength, ~E �
ÿk 2

z r
2
0 5 1. At low energies ~E � 0, the turning point tends

to the zero of the potential, r1 ! r0, and the integral in
Eqn (85) is� 1

xin

���������������������������
ÿ 3

4x 2
� 3

4x 3

r
dx � p

�
n� 3

4

�
: �86�

This integral is taken as follows:���
3
p � ��������������

1

xin
ÿ 1

r
� arcsin

������
xin
p ÿ p

2

�
� p

�
n� 3

4

�
�87�

(compare with equation (2.24) for the case of isomoment
rotation with circular velocity vf / 1=r in the original paper
by [6]; here, we consider the Keplerian case with vf / 1=

��
r
p

).
FromEqn (87), we find the first xin for n � 0: xin � 0:575. The
exact value, which we obtained numerically (see Fig. 14), is
�xin�max � 0:8116. Furthermore, under the given third-type
boundary conditions, the energy value for the mode with
n � 0 is approximately ~E��xin�max� � ÿ0:2644, and for modes
n � 1; 2; . . ., there is always a discrete value of xin for which
~E � 0. For first- and second-type boundary conditions,
E��xin�max� � 0 (see Table 1 and 2 for different conditions at
the inner boundary). For xin > �xin�max, the potential well
becomes so shallow that there are no stationary `energy
levels.' It is worth noting that the accuracy of the WKB
approximation increases for large n. In our case, for
xin � rin=r0 5 1, the discrete values of xin are given by

xin � 1��p= ���
3
p ��n� 3=4� � p=2

�2 � 1
: �88�

In principle, the integral in Eqn (85) can be numerically
computed for any value of ~E to find the discrete energy levels
~En at fixed xin (especially for large j ~Ej corresponding to thin
accretion disks, as mentioned above) for any n. However,
precise numerical solutions of Eqn (79) have already been
obtained.

It is worth noting that, if we disregard the term 3=�4x 2� in
Eqn (85), it can be solved analytically (see [22]). The WKB
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Figure 14. (a) Discrete `energy levels' ~E � ÿ�kz r0�2 of Eqn (79) for

different inner boundaries xin. As xin decreases, number of discrete

`energy levels' n � 0; 1; 2; 3; . . . of function C increases. Deep `energy

levels' with ÿ ~Ex 2
1 > 4� 103 appear when log xin < ÿ3:756. A maximum

value of xin � 0:8116 with ~E0 � ÿ0:2644 exists for the eigenmode with

n � 0. Other modes n � 1; 2; . . . can have ~E � 0 at certain values of xin.

(b) Region of `deep levels' and boundary l � 2p=kz � h � 0:1r for thin
accretion discs (see Section 2.6).

Table 1. Examples of energy levels ~E of Eqn (79) for xin � 0:1, 0:01, 0:001
and different conditions at the inner boundary xin.
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solution is found to be in excellent agreement with the
numerical results.

B. For rout < r0
If the outer boundary of the flow, denoted as rout, is smaller
than r0 (the point at which the potential becomes zero,
U�r0� � 0, see Eqn (23)), then the problem of finding the
stationary energy levels of Eqn (79) needs to be numerically
solved with the boundary conditions given by (30). In the case
of a narrow flow (when the outer radius is close to the inner
radius), the problem has an analytical solution. A similar
problem, with a different rotational law and zero boundary
conditions for magnetic field perturbations (br � 0, corre-
sponding to the condition C � 0), was solved by [6]. Let us
introduce the following notations:

�r � rin � rout ÿ rin
2

; D � rout ÿ rin 5 �r : �89�

When the parameter �r is fixed, Eqn (79) transforms into a
Sturm±Liouville problem with homogeneous boundary con-
ditions of the third kind in the interval x 2 �a; b�:

C 00 � lC � 0 ;

C 0ja �
C
2a
� 0 ;

C 0jb �
C
2b
� 0 ;

8>>><>>>: �90�

where

l � ÿk 2
z ÿ

3

4

1

�r 2
� GM

�r 3
o 2=k 2

z � 3c 2Aÿ
c 2A ÿ o 2=k 2

z

�2 : �91�

This problem allows the existence of only positive nontrivial
eigenvalues ln > 0, corresponding to oscillating eigenfunc-
tionsCn. Then, the general solution of Eqn (90) is given by

C � C1 sin �
���
l
p

x� � C2 cos �
���
l
p

x� : �92�
The constants C1 and C2 are determined by the boundary
conditions. By excluding the trivial solution l � 0, we obtain

the following system of equations:

C1
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2
���
l
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a
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���
l
p

a�
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�C2
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���
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���
l
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C1

�
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l
p

b
tan �

���
l
p

b�
�
�C2

�
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2
���
l
p

b
ÿ tan �

���
l
p

b�
�
�0 :

8>><>>:
�93�

System (93) has a nontrivial solution when the determinant is
equal to zero. This leads to a transcendental equation for
finding the eigenvalues l:�

1

2
���
l
p

b
ÿ 1

2
���
l
p

a

�ÿ
1� tan �

���
l
p

a� tan �
���
l
p

b��
�
�
1� 1

4lab

�ÿ
tan �

���
l
p

a� ÿ tan �
���
l
p

b�� � 0 : �94�

Equation (94) has two families of solutions:

1� tan � ���lp a� tan � ���lp b� � 0 ;

ÿtan ÿ ���
l
p �bÿ a�� � ���

l
p �bÿ a�
1� 4lab

:

8>><>>: �95�

The first family of solutions to Eqn (94) is given by

cos
ÿ ���

l
p
�aÿ b�� � 0 : �96�

From this, we obtain the set of eigenvalues

ln �
ÿ
p=2� np

�2
D 2

; n � 0; 1; 2; 3; . . . : �97�

For small values of n � 1; 2; 3; . . . ; the second family of
solutions (95) can be found numerically. However, for large
argument values, it quickly converges to ln � p 2n 2=D 2 for
n4 1. Therefore, for large n, both solutions can be combined
into a single expression: ln � �p 2=4��1� n�2=D 2. It should be
noted that, under first-kind homogeneous boundary condi-
tions Cja; b � 0 or second-kind homogeneous boundary
conditions C 0ja; b � 0, the following solutions are obtained:

sin
���
l
p
�bÿ a� � 0! ln � p 2n 2

D 2
;

sin
���
l
p
�a� b� � 0! ln � p 2n 2

�a� b�2 ;
�98�

n � 1; 2; 3; . . . :

From (97), we obtain a set of equations for each
eigenvalue ln:

ÿ k 2
z ÿ

3

4

1

�r 2
� GM

�r 3
o 2=k 2

z � 3c 2Aÿ
c 2A ÿ o 2=k 2

z

�2 � ln � p 2�n� 1�2
4D 2

;

n � 0; 1; 2; 3; . . . : �99�
Hence, we obtain the dispersion equations in the following
form:

o 2

c 2Ak
2
z

�
�
1� K

2

�"
1�

�����������������������������
1� 4�3Kÿ 1�

�K� 2�2
s #

;

K �
�
v 2
f��r�
c 2A

�
1

�p 2=4��n� 1�2ÿ�r=D�2 � k 2
z �r 2 � 3=4

:

�100�
For unstable modes with o 2 < 0, in the dispersion equation
(100), we keep the minus sign before the square root and
require K > 1=3, which leads to the appearance of a critical

Table 2. Values of the dimensionless inner flow boundary for zero energy
xinj ~E�0 under different choices of boundary conditions. Value of xinj ~E�0 in
the WKB approximation is given by (87) and (88). It is noteworthy that
under the third-type boundary condition (free boundary) the zero energy
level is reached at a finite value of ~E � ÿ0:2644 corresponding to
xin � 0:8116. Refer to Fig. 14 for further details.

n ~E �C 0�C=�2x��jxin �0 C 0jxin � 0 Cjxin � 0

. . . . . . . . . . . .

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

1:02496� 10ÿ3

1:15546� 10ÿ3

1:31260� 10ÿ3

1:50417� 10ÿ3

1:74105� 10ÿ3

2:03875� 10ÿ3

2:42010� 10ÿ3

2:91976� 10ÿ3

3:59244� 10ÿ3

4:52880� 10ÿ3

5:88807� 10ÿ3

7:97202� 10ÿ3

1:14131� 10ÿ2

1:77392� 10ÿ2

3:15576� 10ÿ2

7:39693� 10ÿ2

0:8116j ~E�ÿ0:2644

1:02426� 10ÿ3

1:15457� 10ÿ3

1:31145� 10ÿ3

1:50266� 10ÿ3

1:73903� 10ÿ3

2:03598� 10ÿ3

2:41620� 10ÿ3

2:91407� 10ÿ3

3:58384� 10ÿ3

4:51513� 10ÿ3

5:86497� 10ÿ3

7:92969� 10ÿ3

1:13263� 10ÿ2

1:75298� 10ÿ2

3:08961� 10ÿ2

7:03546� 10ÿ2

5:87626� 10ÿ1

ì
1:08531� 10ÿ3

1:22775� 10ÿ3

1:40021� 10ÿ3

1:61176� 10ÿ3

1:87519� 10ÿ3

2:20897� 10ÿ3

2:64061� 10ÿ3

3:21255� 10ÿ3

3:99300� 10ÿ3

5:09744� 10ÿ3

6:73423� 10ÿ3

9:31161� 10ÿ3

1:37231� 10ÿ2

2:22593� 10ÿ2

4:24509� 10ÿ2

1:14244� 10ÿ1
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magnetic field for the MRI mode:

c 2A < �c 2A�cr �
4v 2

f��r�
�1=3� p 2�n� 1�2��r=D�2 � �4=3� k 2

z �r 2 � 1
:

�101�
It should be noted that, for the first- and second-kind
boundary conditions, the critical field values are given by

�c 2A�cr �
4v 2

f ��r�
�4=3� p 2n 2 ��r=D�2��4=3� k 2

z �r 2 � 1
; Cja; b � 0 ;

�c 2A�cr �
4v 2f��r�

�1=3� p _2n 2 � �4=3� k 2
z �r 2 � 1

; C 0ja; b � 0 :

8>>>><>>>>:
�102�

The similarity of results between the first- and third-kind
boundary conditions is notable.

Lastly, it is noteworthy that, for rout < r0 (when the
potential has the same sign over the entire interval �rin; rout�),
the asymptotic behavior of eigenvalues is given by
ln � p 2n 2=�rout ÿ rin�2 for large n4 1, which follows from
the general theorems of the Sturm±Liouville problem for any
continuous potential with a consistent sign (see, for example,
[35]).
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