
Abstract. We present an alternative method for numerical mod-
eling of topological magnetic textures using a neural network
algorithm. We discuss a model of localized spins where topolo-
gical magnetic textures are stabilized due to a delicate interplay
between the symmetric exchange interaction, and the antisym-
metric interaction caused by exchange±relativistic effects, as
well as a model of an itinerant magnet where noncoplanar spin
configurations emerge when taking multispin interactions into
account. The viability of the proposed method is illustrated with
the formation of lattices of skyrmions and antiskyrmions, mag-
netic hedgehogs, and skyrmion tubes in two-dimensional and
three-dimensional magnetic systems.

Keywords: magnets, machine learning, spin±orbit coupling,
Dzyaloshinskii±Moriya interaction, multispin interaction,
skyrmions, antiskyrmions, magnetic hedgehogs

1. Introduction

The magnetic order of 3d±4f metals and their compounds
depends on the electron subsystem state, can be captured by
either the model of localized magnetic moments or the sd-
exchange model [1]. In the first case, the subject of study is
magnetic nonmetals, all of whose electrons are localized on
atoms, with overlapping electron shells of neighboring atoms.
The magnetic moments interact via direct exchange, and the

magnetic properties of a material can be described in the
framework of the classical Heisenberg model [2, 3]. In
magnetic metals and alloys, besides localized electrons, there
are electrons that from an itinerant subsystem. The exchange
interaction between localized and itinerant electrons is
assumed in the sd-exchange model [4±6].

When the radius of the incomplete electron shell is less
than the crystal lattice parameter, the wave functions of
neighboring sites have practically no overlap, which makes
the exchange integral negligible. The exchange interaction
that stabilizes the magnetic order in the system, the Ruder-
man±Kittel±Kasuya±Yoshida (RKKY) interaction, is then
indirect, and is mediated via itinerant electrons [7±9].We note
that a similar situation arises in highly dilute magnetic alloys
where the distance between spatially separated d or f ions is
sufficiently large [10±12].

In cubic crystals, taking only the direct exchange interac-
tion between localized spins into account stabilizes the
collinear magnetic ordering. But the situation changes if the
crystal structure does not have an inversion center; in such
systems, an antisymmetric Dzyaloshinskii±Moriya interac-
tion (DMI) arises [13, 14]. The existence of spatially
modulated magnetic configurations with an incommensu-
rate period and a fixed sense of rotation directly follows
from the competition between the spin-bilinear exchange
interaction and the DMI. We also note that surface DMI
can occur at the interfaces of layered magnetic structures,
which typically contain layers of a ferromagneticmaterial and
a metal with strong spin-orbit coupling; such interfaces lead
to mirror symmetry breaking [15±21].

In two-dimensional magnetic materials placed in a uni-
form external magnetic field, the spin helix becomes unstable.
A lattice of skyrmionsÐ localized vortex-like spin statesÐ
then forms [22, 23]. The existence of such magnetic textures
and their nucleation mechanism can be explained using
continuum models [24±28], including Lifshitz invariants
corresponding to the terms in free energy that are linear in
the magnetization vector gradients [29, 30]. Theoretical
studies of two-dimensional classical spin models, including
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Monte Carlo simulations, clearly indicate the formation of a
skyrmion crystal in chiral magnets [31±39].

Experimental observations of a skyrmion lattice in three-
dimensional MnSi [40] and Fe1ÿxCoxSi2 [41] chiral magnets,
and in FeGe3 thin films [42], have attracted considerable
attention to systematic studies of noncoplanar magnetic
states and the associated magnetoelectric phenomena [43±
48]. In addition to ferromagnetic materials, skyrmions can be
found in antiferromagnetic [49±51] and ferrimagnetic struc-
tures [52], and the existence of an antiskyrmion lattice has also
been noted in Heusler alloys [53]. All of the listed spin
configurations are two-dimensional topologically protected
magnetic textures, whose stability is ensured by the presence
of an energy barrier separating them from magnetic struc-
tures with a different topology [54±56]. The possibility of
stabilizing three-dimensional topological spin configurations
was noted recently; among them, the lattice of magnetic
hedgehogs [57] and the magnetic Hopfion [58] are singled
out. Importantly, the microscopic mechanism responsible for
the formation of a magnetic hedgehog lattice in noncentro-
symmetric metals is associated with competition between the
antisymmetric DMI due to spin±orbit coupling andmultispin
interactions [59]. In contrast to the model of localized
magnetic moments, the interaction between atoms is long-
range in this case, and the effective spin Hamiltonian can
be obtained from the sd-exchange model by integrating out
the degrees of freedom associated with itinerant electrons
[60±63].

In this paper, we show how the methods of machine
learning can be adapted to search for noncoplanar magnetic
textures. In particular, the use of neural networks to find the
minimum energy of interacting classical spins is discussed in
detail. Before proceeding to a detailed description of the
results obtained, we give a general introduction to machine
learning methods, focusing on the structure of a multilayer
perceptron, which represents a class of feed-forward neural
networks. Next, we discuss the neural network algorithm that
we use for the study of the formation of two-dimensional
lattices of magnetic skyrmions and antiskyrmions in the
model of localized magnetic moments. For two-dimensional
magnetic systems, we also study the ground states of the
effective spin Hamiltonian with bilinear and biquadratic
interactions, obtained from the sd-exchange model by
integrating out the degrees of freedom of the itinerant
subsystem. For three-dimensional magnetic materials, simi-
larly, we obtain spin configurations in the form of skyrmion
tubes in the model of localized magnetic moments and a
magnetic hedgehog lattice for the effective spin Hamiltonian
with biquadratic interaction.

2. Overview of machine learning

The renewed interest in data mining methods in recent years,
after the so-called winter of artificial intelligence, is associated
with the widespread use of high-performance computing
systems, on the one hand, and the high volume of accumu-
lated data, on the other [64]. This naturally makes machine
learning, which allows finding general patterns from indivi-
dual posterior data, the main avenue in the development of
artificial intelligence systems [65]. In machine learning, it is
common to distinguish between supervised and unsupervised
learning [66]. The difference between them is shown in Fig. 1.
In supervised learning, the task is posed such that, given a set
of input data, the program learns to predict output data that it

has not encountered before; this relates to a classification
problem. In the case of unsupervised learning, the program is
assumed to automatically find patterns and dependences
based on a set of input data; this relates to solving the
clustering problem or creating generative models capable of
producing new output data similar to what the program saw
before. The most natural way to implement machine learning
is via artificial neural networks [67].

An artificial neural network is a set of simple computation
units, so-called neurons, that perform certain arithmetic
operations with data received from other neurons and
provide the result. Essentially, a neural network can be
represented by a directed graph whose vertices are neurons
and the connecting edges ensure directed data exchange
between them, which means that the output of some neurons
is used as input to others. In each individual neuron, the input
data received from other neurons are summed with some
specific weights, and then a nonlinear activation function is
applied to the resultant sum (Fig. 1a). We note that the choice
of weights and the activation function can vary from neuron
to neuron. Figure 1b shows one of the most important types
of artificial neural networks: a multilayer perceptron, whose
neurons are organized into layers such that the output of each
layer is used as the input to the next [68]. The first, or input,
layer of the network serves to input data into the neural
network, and the last, or output, layer delivers the result of
calculations of the entire network. Depending on the
architecture of the neural network, there may also be hidden
layers between the input and output layers, those output is not
directly observable when using the network. The number of
layers of a multilayer perceptron is called the network depth,
and the number of neurons in a layer is called the width of that
layer.

It can easily be understood that the output of a multilayer
perceptron produces a function that is a composition of the
nonlinear functions of each layer. It turns out that any
continuous function of many variables can be approximated
as accurately as desired by a multilayer perceptron. This
statement corresponds to the so-called universal approxima-
tion theorem, often also called the Tsybenko theorem [69]. In
practice, the function we want to determine using a neural
network is known only indirectly through some sampling,
and the task of machine learning is to find a sufficiently good
approximation for this function by adjusting the weights. The
data set used to train a neural network is called the training
data, and it consists of a sample distribution of the function
we want to reconstruct. In other words, the data consists of
sets fxj; yjgNj�1, where x and y denote the input data and the
target value of the function corresponding to it, for a sample
of N elements. The difference between the prediction of the
neural network and the exact one is quantified by the so-
called objective function. Typically, the objective function is
chosen in the form of the mean squared error between the
exact output value and the network prediction, but there are
many other more specialized loss functions, such as cross
entropy.

The process of training a neural network, schematically
presented in Fig. 1c, consists of minimization of the objective
function averaged over the training data set with respect to its
weights using some version of gradient descent. The version
used most commonly is stochastic gradient descent: the
gradient is then calculated not for each element of the sample
but for a randomly selected subset of the training data set at
each training step, which simplifies the calculations, although
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in general, requires more training steps to cover the entire data
set [70]. The number of training steps required to cover the
entire training data set is called an epoch and is conventionally
used as ameasure of the learning rate of a neural network.Due
to the multilayer perceptron design method, gradients can be
efficiently calculated using the backpropagation method [71].
For this, we start at the end of the network and calculate the
gradient relative to the weights of the last layer. Using the rule
for the derivative of a composite function, such gradients can
then be used to compute the gradient with respect to the
weights of the preceding layer, which can be used to compute
the next layer in the direction of the input layer, and so on.

3. Neural network algorithm

Machine learning methods, which have proven their effi-
ciency in image recognition and natural speech systems [66,
72±76], have recently become a working tool in theoretical
physics [77, 78]. Research in recent years has convincingly
demonstrated that neural networks can be used to determine
macroscopic phases of matter and associated phase transi-
tions [79, 80], and also for effective representation of quantum
states [81] and in quantum tomography problems [82, 83]. The
effectiveness of machine learning methods to describe many-
particle states lies in the use of effective approaches to
reducing the dimension of the Hilbert space formed by all
possible states of a quantum system. For example, for a wide
class of magnetic compounds, the microscopic description of
can be performed by the Heisenberg exchange model; neural
network algorithms can then be successfully used to classify
magnetic states, including magnetic skyrmions [84], and

determine phase transitions in real materials [85]. An equally
interesting direction is the use of the functional of neural
networks directly to determine the ground state of magnetic
Hamiltonians. In what follows, we describe the operation of a
corresponding algorithm using the model of localized spins
and a itinerant magnet as an example, and discuss the
advantages of the method compared with standard
approaches based, in particular, on the use of a simulated
annealing algorithm.

3.1 Localized spins
We start with the Heisenberg magnet, whose Hamiltonian is
given by

Hexch � ÿ
X
hi; j i

Ji j SiSj ÿ
X
hi; ji

Di j �Si � Sj�

ÿ A
X
i

�Sz
i �2 ÿ

X
i

h Si ; �1�

where the summation over nearest neighbors is under-
stood in the first line. The first term in (1) corresponds to
the symmetric exchange interaction, whose strength is
determined by the exchange integral Ji j; the second term
is the antisymmetric DMI, whose structure is determined
by the Dzyaloshinskii vector Di j. The third term deter-
mines the uniaxial magnetic anisotropy of a magnitude
A > 0, and the last term is the Zeeman energy in a uniform
external magnetic field h. It is assumed that localized spins
are described by a unit-length classical vector field,
jjSijj � 1.
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Figure 1. (a) Mathematical model of a neuron is given by a map Rn !R that takes input signals x1; x2; . . . ; xn to produce output y. Incoming signals xi
are summed with some weights (more precisely, synaptic weights) wi, which express the degree of suppression or amplification of the incoming signal.

Threshold nature of signal generation by a neuron is usually implemented by introducing so-called nonlinear activation function f. In its simplest form,

this is a step function: neuron then calculates weighted sum s and generates an output signal if the value of s exceeds a threshold. (a) Artificial neural

network is a software implementation of a mathematical model and can be regarded as a sequence of neurons connected by synapses. (b) Multilayer

perceptron is structured as input and output layers, with one ormore hidden layers in between. (c) Typical scheme for training an artificial neural network:

elements from the data set are fed to neural network input, and initially the neural networkweights are initialized randomly. Depending on themagnitude

of error between the neural network prediction and the exact value expected at neural network output, the network is considered trained or the cycle

repeats with a new sample and new values of the neural network weights adjusted so as to minimize the error. Neural network algorithms are widely used

in machine learning problems, including both (d) supervised learning and (e) unsupervised learning.
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We use a neural network algorithm based on [86±88] to
find the spin configuration of the ground state of model (1),
depending on the parameters of magnetic interactions.
Recall that an artificial neural network is a mathematical
implementation of a model organized in accordance with the
principle of functioning of a biological neural network (see
Fig. 1a, b); in other words, a sequence of neurons connected
to each other by synapses is implemented at the software
level. Depending on the architecture of the neural network,
there may also be hidden layers between the input and
output layers; information is fed to the input layer neurons,
the neurons of the hidden layers perform simple computa-
tions with it, and the output layer neurons deliver the result
of the calculation. In turn, a synapse is characterized by a
single parameter, the synaptic weight, which shows how
much input information changes when transmitted from
one neuron to another. In this paper, we use a fully
connected neural network without hidden layersÐwith the
stipulations that each neuron of a fully connected neural
network be connected to all other neurons located in the
neighboring layers, and all connections be directed strictly
from input to output neurons.

In Figure 2, we show a block diagram of the neural
network algorithm that we use. The input and output layers
respectively contain n and 3N neurons, withN being the total
number of lattice sites.We feed to the neural network amatrix
X with each of its nb columns representing an n-dimensional
vector of normally distributed random numbers. At the
output of the neural network, we have a set of nb configura-
tions of the form �S1; . . . ;SN�, where each three-dimensional
vector Si is normalized to unity.

In what follows, we regard the nb resulting configurations
�S1; . . . ;SN� as N spins living on the original lattice and use
them to calculate the average over the nb energy realizations
in the effective magnetic field h eff created by the localized
magnetic moments:

heinb � ÿ
1

N

XN
i�1



Si h

eff
i

�
nb
: �2�

It is worth noting that finding the minimum energy from
Eqn (2) is equivalent to searching for stationary solutions of
the Landau±Lifshitz equation [89, 90]. The effective magnetic
field for each localized spin is defined as h eff

a � ÿqHexch=qSa

(a � x; y; z), and Eqn (2) represents the objective function of
the problem under consideration. It is easy to see that the
Hilbert space dimension of the original problem defined by
Hamiltonian (1) is reduced in the neural network representa-
tion, because we go from the parameterization in terms of the
vector components of localized magnetic moments to para-
meterizing the magnetic energy by the neural network
weights. The values of the neural network weights that
minimize objective function (2) provide the set �S1; . . . ;SN�
at the output that is the best approximation of the ground-
state spin configuration.

Recalling the antisymmetry of the Dzyaloshinskii vector
Dj i � ÿDi j, we can write the effective field in the form

h eff
i � 2

X
j

Wjÿi Sj � 2ASz
i êz � h ; �3�

where êz is the unit vector along the z-axis. The first term on
the right-hand side is the convolution of spins Sj with the
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Figure 2.Block diagram of neural network algorithm. Numerical calculations use fully connected neural network without hidden layers: each n neuron of

the input layer is connected to the 3N neurons of the output layer, where N is the total number of localized magnetic moments in the system, coinciding

with the number of lattice sites. Process of neural network training begins with generating a matrix of random numbers n� nb in size, which means

initializing a set of nb vectors, each containing n random numbers. Neural network weights, representing a matrix n� 3N in size, are also chosen

randomly at the first stage. In the output layer, because hidden layers are absent, we have a linear combination of input vector components. We regroup

neurons of the output layer into N three-dimensional vectors �S1;S2; . . . ;SN� and normalize each Si vector to unity. This method of normalizing input

data is a realization of the activation function. We consider resulting N unit-length vectors as if they represent a distribution of localized magnetic

moments on the lattice. From input matrix X, we obtain nb such spin configurations. For each of them, in the case of a model with localized spins, we

calculate the effective field h eff in accordance with Eqn (3) and magnetic energy (2) averaged over nb realizations, and, for the itinerant magnet model, we

move to spins in the momentum representation and directly calculate Hamiltonian (5) averaged over nb. Expressions heinb or hHitininb obtained in this

way are implicit functions of synaptic weights; neural network training process consists in determining weights that minimize these functions and is

implemented using the gradient descent method. Each iteration ends with updating neural network weights; loop repeats until a stable solution is

reached, and at each iteration we use a newly generated random matrix X, which avoids falling into a local minimum.
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whose parameters depend on the distance between the spins at
sites i and j and are determined by model Hamiltonian (1).

At each iteration in the neural network training process,
effective field (3) is calculated using the vectors �S1; . . . ;SN�
obtained at the neural network output. The gradient descent
method is used to minimize objective function (2); upon
completion of an iteration, the weights of the neural network
take new values, and the cycle is repeated until a stable
solution is obtained. We note that, at each new iteration, a
newly generated randommatrixX is fed to the neural network
input. This technique is used to avoid falling into a local
minimum.

3.2 Itinerant magnet
In an itinerant magnet, in contrast to the model of localized
spins with short-range magnetic interactions, the indirect
RKKY interaction between localized magnetic moments is
long range. The RKKY interaction stabilizes the spin helix
with an incommensurate period, while taking multispin
interactions into account leads to a rearrangement of this
state into a noncoplanar magnetic texture. The effective spin
Hamiltonian is then given by [59, 62]

Hitin � ÿ2
X
Z

�
~JSQZ

SÿQZ
ÿ K

N
�SQZ

SÿQZ
�2

� i~DZ �SQZ
� SÿQZ

�
�
ÿ
X
i

h Si ; �5�

where Sq��1=
����
N
p �Pi Si exp �ÿiq ri� is the Fourier transform

of a localized spin Si. We note that Eqn (5) arises as an
effective spin Hamiltonian when integrating out conduction
electrons in the sd-exchange model on a cubic lattice and
subsequently expanding in powers of the sd-exchange inter-
action [59±63]. The first nonvanishing term represents the
RKKY interaction of strength ~J. Among various multispin
interactions that arise in the subsequent expansion, we keep
only the biquadratic exchange coupling of magnitude K [91],
determined by the second term. In a cubic noncentrosym-
metric crystal, the presence of spin-orbit coupling gives rise to
the DMI, determined in this case by the vectors ~DZ. All
exchange interactions in (5) are long-range in real space, but
the form of writing (5) corresponds to an effective spin
Hamiltonian where the wave vectors QZ are determined by
the maxima of the spin susceptibility of the itinerant
subsystem [62].

We show how a neural network algorithm can be adapted
to analyze models with long-range action like (5). The main
part of the algorithm remains the same, but instead of
calculating the effective field, we apply the fast Fourier
transform to obtain a set of nb spin configurations in
momentum space �Sq1 ; . . . ;SqN�, as shown in Fig. 2. Next,
we extract the Fourier components SQZ

determined by the set
of wave vectors QZ, calculate the conjugate SÿQZ

� �SQZ
, and

substitute the result directly into Eqn (5). Note that all
calculations are performed for two-dimensional and three-
dimensional lattices with periodic boundary conditions. The
numerical results presented below were obtained with the
hyperparameters nb � 1024 and n � 64, by implementing

104 steps of the Adam optimizer [92] with a learning rate of
10ÿ3. The algorithm for finding the ground-state spin
configuration for the Hamiltonian was implemented using
the TensorFlow machine learning library, and the calcula-
tions were performed on a GPU. It is worth noting that, in
machine learning, hyperparameters are usually understood
as parameters whose values are set prior the start of the
learning process. In our case, hyperparameters include the
number n of neurons in the input layer and the number nb of
vectors at the neural network input. They should not be
confused with the parameters calculated during the train-
ing: synaptic weights and the value of the minimized
function. These parameters are optimized during the
training of a neural network.

4. Two-dimensional magnetic systems

We consider the results obtained using a neural network
algorithm in the case where localized spins interacting in
accordance with exchange Hamiltonian (1) are located at the
sites of a square lattice. We focus on the formation of a lattice
of magnetic skyrmions and antiskyrmions. Here and here-
after, we use magnetization, the structure factor, and scalar
spin chirality to quantify magnetic textures. For each of the
obtained spin configurations, the magnetization

M � 1

N

�����X
i

Si

�����
nb

�6�

is obtained by averaging over the set nb; the structure factor

S�Q� � 1

N 2

X
i j

hSi Sjinb exp
�ÿiQ �ri ÿ rj�

� �7�

is found from the Fourier transform of the spin-spin
correlation function; and the scalar spin chirality

w � 1

4pN

X
D



Si �Sj � Sk�

�
nb

�8�

is calculated by summing the mixed spin products over
triangular plaquettes. Importantly, the structure factor
allows detecting long-range magnetic order in the system,
and a nonzero scalar spin chirality guarantees the noncopla-
narity of the spin configuration.

4.1 Skyrmions
We start with the Hamiltonian of localized spins Hexch on a
24� 24 lattice. We choose the Dzyaloshinskii vector
Di j � Dri j in accordance with the symmetry of the system
under consideration, where D determines the DMI strength
and the unit vector ri j connects the ith and jth lattice sites; we
also ignore the contribution from uniaxial magnetic aniso-
tropy (assumingA � 0).We further assume that the exchange
interaction J � 1 determines the energy scale, fix D=J � 1:4,
and take the magnetic field to be directed along the êz-axis.
The phase diagram depending on the DMI parameter,D, and
the magnetic field strength h are presented, for example,
in [93].

Magnetic configurations in real space determined by the
machine learning method are shown in Fig. 3. Competition
between the symmetric exchange interaction and the anti-
symmetric DMI leads to the stabilization of the spin helix, as
shown in Fig. 3a. According to the conventional classifica-
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tion, a multi-Q state is understood as a spatially modulated
magnetic structure with several coexisting Q vectors [30].
Notably, the spin helix in Fig. 3a corresponds to a 1Q state; its
structure factor (7) contains two symmetric peaks (twists in
opposite directions) and is shown separately in the inset to
Fig. 3a. In a uniform magnetic field, the helical order is
unstable with respect to the formation of a hexagonal lattice
of skyrmions, and S�Q� exhibits a distinct structure of six
peaks (Fig. 3b) representing a superposition of three spin
helices (the so-called 3Q state).We note that the trivial peak at
Q � 0 is due to the appearance of uniform magnetization
along the field direction.

In Figure 3c, we plot magnetization (6) and scalar spin
chirality (8) as functions of the external magnetic field
strength h. For small external fields h4 0:5J, the chirality w
is zero, which indicates a coplanar ordering of spins
corresponding to a spin helix. As the magnetic field
increases, a noncoplanar spin texture (w 6� 0) appears in the
form of a skyrmion lattice, which exists up to h � 1:3J.
Finally, in high fields h5 1:3J, the magnetization reaches
saturation: the magnetic system enters a spin-polarized state.
We note that choosing the directions of the Dzyaloshinskii
vectors Di j allows stabilizing not only the Bloch skyrmions
shown in Fig. 3b but also the N�eel skyrmions and anti-
skyrmions (see, e.g., [94]), as shown in Fig. 3d.

4.2 Biquadratic interaction
We consider a two-dimensional spin model with bilinear and
biquadratic spin interactions, defined by the Hamiltonian
Hitin under the assumption that the antisymmetric DMI is
absent (~DZ � 0). In real space, multispin interaction in the
form of biquadratic exchange corresponds to the �SiSj�2
coupling between magnetic moments localized at the ith and
jth sites. In Eqn (5), following [63], we fix a pair of wave
vectors Q1 � �p=3; p=3� and Q2 � �p=3;ÿp=3�, which corre-
sponds to a square lattice, a 24� 24 one as previously, and
~J � 1.

Using a neural network algorithm in the form shown in
Fig. 2, we can easily verify that the RKKY interaction
stabilizes the spin helix. Taking the multispin interaction
K > 0 into account gives rise to a 2Q 0 spatially modulated
magnetic structure. It is worth noting that Q 0 means that the

components of Q1 and Q2 in the structure factor S�Q�
correspond to peaks of different intensities (Fig. 4a). In the
presence of an externalmagnetic field, competition betweenK
and h allows stabilizing four different states [63]: 1Q, a pair of
2Q 0, and 2Q spatially modulated magnetic structures. The
last is of greatest interest, because it can be represented as a
periodic array of vortices and antivortices (Fig. 4b). The
structure factor S�Q� contains two pairs of equal-intensity
peaks at�Q1 and�Q2, and a peak atQ � 0 coming from the
magnetization induced by the external magnetic field.

5. Three-dimensional magnetic systems

We now proceed to the analysis of numerical results obtained
using a neural network algorithm in the case of three-
dimensional magnetic systems, focusing on the formation of
skyrmion tubes in the model of localized magnetic moments
and a magnetic hedgehog lattice for an effective spin
Hamiltonian with bilinear and biquadratic couplings. Deter-
mining the microscopic mechanism responsible for the
stability of the magnetic hedgehog lattice is of independent
academic interest in light of recent experimental data on the
existence of two different types of lattices in MnSi chiral
magnets doped with germanium, depending on the concen-
tration of the dopant [57]. In the calculations in what follows,
we use a simple cubic lattice with the total number of sites
16� 16� 16 and periodic boundary conditions.

5.1 Skyrmion tubes
As an example of a three-dimensional topological spin
texture, we consider a lattice of skyrmion tubes. As in the
two-dimensional case, we start from the Hamiltonian of
localized magnetic moments, Eqn (1), on a simple cubic
lattice. We note that the presence of uniaxial anisotropy is
an essential factor that allows stabilizing this magnetic
structure [95]. We again choose J � 1 as the unit of
measurement of energy in the system; similarly to the two-
dimensional case, we parameterize the antisymmetric DMI
by the vectors Di j�Dri j. We fix D � J and K � 0:16J and
demonstrate the formation of skyrmion tubes in an external
uniform magnetic field along the [001] direction of the
crystal.
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To quantify the noncoplanarity of spin configurations, we
use the scalar spin chirality, which is defined in the three-
dimensional case as follows. First, we define the spin chirality
at site i as the sum of mixed products of spins located on
triangular plaquettes covering Si,

wg
i �

1

2

X
a;b; na;nb

E abgnanb Si�Si�na êa � Si�nb êb� ; �9�

where E abg is the totally antisymmetric tensor, a; b; g � x; y; z
and na; b � �1. Summing over all sites and g and averaging
over the nb, we obtain the spin chirality of the system
w � Nÿ1

P
g; ihwg

i inb .
Spin configurations in the form of skyrmion tubes in real

space, calculated using the neural network algorithm, are
shown in Fig. 5a. Evidently, a uniaxial anisotropy A > 0
along the z-axis allows the Bloch-type skyrmion lattice to be

stabilized in the xy plane. This state is stable at external
magnetic field strengths 0:27J < h < 0:45J, where the scalar
spin chirality w is nonzero, which indicates the noncoplanar
nature of spin ordering (Fig. 5b). In magnetic fields
h4 0:27J, the spin configuration of the ground state
corresponds to a spin helix, and at h5 0:45J the system
goes into a fully spin-polarized state where the magnetization
reaches saturation.

5.2 Magnetic hedgehog lattice
Another example of a three-dimensional topological spin
texture is the magnetic hedgehog lattice, which represents a
periodic array of spin monopoles and antimonopoles. We
consider the effective spin Hamiltonian in Eqn (5) and choose
the wave vectors QZ corresponding to so-called 4Q magnetic
hedgehogs (the 3Q case was considered in [88]). For this, we
fix the vectors Q1��Q;ÿQ;ÿQ�, Q2��ÿQ;Q;ÿQ�,
Q3 � �ÿQ;ÿQ;Q�, and Q4 � �Q;Q;Q�, which form a tetra-
hedron. Following [59], we chooseQ � p=4 (the period of the
structure then corresponds to eight lattice sites) and assume
~DZ k QZ (under the condition jj~DZjj � ~D). The magnetic field
h is chosen along the [001], [110], and [111] directions in
accordance with [59].

As a result of the competition between the antisymmetric
DMI and the multispin (in this case, biquadratic) interaction,
the magnetic system defined by Hamiltonian (5) for the
chosen QZ has a nontrivial phase diagram [59]. For example,
depending on a different relation between K and ~D, a 1Q spin
helix, a 2Q spatially modulated magnetic texture, or a 4Q
magnetic hedgehog lattice can be stabilized.

Let us discuss the spin configuration corresponding to
the magnetic hedgehog lattice in somewhat greater detail.
Figure 6a shows a 4Qmagnetic hedgehog lattice in real space
obtained using the neural network algorithm in the absence of
an external field. The scalar spin chirality w depending on the
external field strength h along the [001], [110], and [111]
directions is shown in Fig. 6b. For these field directions, as
can be seen, the magnetic hedgehog lattice is, respectively,
stable up to h

�001�
c ' 2~J, h

�110�
c ' 1:5~J, and h

�111�
c ' 1:1~J. We

note that the presented results based on a neural network
algorithm are consistent with standard calculation methods
using a simulated annealing algorithm [59].

6. Conclusions

We have demonstrated the possibility of using neural net-
works to search for the ground state of magnetic systems,
focusing on topological spin textures. In the model of
localized magnetic moments, the formation of topologically
protected magnetic textures is the result of competition
between interactions that are bilinear in spins. We illustrated
this statement by demonstrating the formation of a lattice of
magnetic skyrmions and antiskyrmions in two-dimensional
magnetic systems, and of skyrmion tubes in three-dimen-
sional magnets in the framework of numerical minimization
of the classical spin Hamiltonian in the presence of the
symmetric exchange interaction and the antisymmetric
DMI. On the other hand, in the framework of effective spin
models with long-range magnetic interactions, the formation
of topological spin textures is caused by competition between
the antisymmetricDMI andmultispin interactions.Using our
neural network algorithm for a spin model with biquadratic
exchange, we demonstrated the formation of a 2Q spatially
modulated magnetic structure in a two-dimensional system,
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Figure 4. Spin structures in real space obtained for the effective spin model

(5) using a neural network algorithm on a 24� 24 square lattice at fixed

K � 0:6~J, corresponding to (a) 2Q 0 for h � 0 and (b) 2Q for h � ~J spatially
modulated magnetic textures. Insets also show structure factor S�Q�.
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as well as the stabilization of a magnetic hedgehog lattice in
three-dimensional magnets.

To conclude, we compare the neural network algorithm
with standard methods for finding the ground-state spin
configurations of magnetic Hamiltonians. Most popular
among the standard methods are various versions of the
Monte Carlo method, for example, in the form of a simulated
annealing algorithm [96], and so-called greedy algorithms
(sometimes also parsimonious search algorithms) [97], well
known from graph theory and amounting to the adoption of
locally optimal strategies. Following [86], we consider a
skyrmion on a square lattice. The parsimonious search
algorithm minimizes the classical spin Hamiltonian (1) by
locally aligning some selected ith spin along the direction of
the effective magnetic field h eff

i . This process is repeated with
updated magnetic moments until the system reaches a stable
state. This algorithm has a sufficiently high convergence, but
its solution is not accurate; in fact, the system may find itself
in a local minimum [86]. This difficulty can be overcome in the

framework of simulating the annealing algorithm by tem-
perature fluctuations. In the neural network algorithm,
falling into a local minimum state is ruled out by the
construction: at each iteration, we use newly generated
random matrices X (see Fig. 2). Obviously, the accuracy of
the neural network algorithm is strongly dependent on the
number of neurons in the input layer. However, even for a
sufficiently small number of input neurons, the solution with
the neural network algorithm is more accurate in less
computation time than with the Monte Carlo method [86].
As an illustration, we consider the spin configurations
obtained at the neural network output, depending on the
number of iterations (Fig. 7): it is clear that the neural
network finds a solution in the form of a lattice of magnetic
skyrmions in 103 to 104 iterations. The simplicity of the
chosen neural network architecture (see Fig. 2), which does
not involve hidden layers, is explained by the fact that a linear
map suffices for obtaining different spin configurations from
the random matrix X at each iteration.
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