
Abstract. Fundamental theoretical studies on laminar axisym-
metric submerged jets are considered. The problems associated
with jets with a flow rate through the initial cross section and
with swirling jets are investigated. Some erroneous results of the
theory of laminar jets have been discovered and corrected.

Keywords: submerged jet, laminar jet, swirling jet, invariants,
momentum flux

1. Introduction

The theory of laminar jets in incompressible fluids has been
developed in numerous papers. Among the researchers who
have made fundamental contributions to the development of
this theory should be mentioned G Schlichting, L D Landau,
N A Slezkin, V I Yatseev, M A Gol'dshtik, N I Yavorsky,
L G Loytsyansky, Yu B Rumer, J Squire, and many others.

This study has two aims. The first is to collect funda-
mental papers on the theory of laminar axisymmetric jets. The
second aim is perhaps more important than the first. It
concerns the following point: although many well-known
fluid dynamicists have contributed to the creation of the
theory of jets, this branch of fluid dynamics, perhaps more
than any other, abounds with erroneous statements, many of
which, over time, are taken as truths by the scientific
community. This situation is aggravated by the fact that

errors on the subject permeate well-known monographs and
widely cited papers. Exposing such erroneous results and
replacing themwith rigorous ones is the main objective of this
paper.

2. Axisymmetric nonswirling jet

2.1 Solution for a jet in the boundary layer approximation
It is well known that a stationary flow of viscous, incompres-
sible fluid satisfies the Navier±Stokes equations

�uH�u� 1

r
Hp � nDu ; div u � 0 ; �1�

where u is the fluid velocity vector, p is the pressure, r is the
density, and n is the kinematic viscosity coefficient. However,
the first analytical solutions for jets were obtained in the
boundary layer approximation for large Reynolds numbers
Re, and only then their analogs were found in the framework
of the Navier±Stokes equations. In 1933, Schlichting pub-
lished a short paper in the prestigious journal ZAMM
(Zeitschrift f�ur Angewandte Mathematik und Mechanik) ì
only four pages long, in which he gave a solution for an
axisymmetric jet and sketched the solution for a plane jet [1]
(see also [2]). A énal solution for the plane jet was given by
W Bickley [3].

In the axisymmetric case, one considers a jet emerging
from a circular orifice into a domain filled with the same fluid.
A thin jet is studied. Its longitudinal velocity component is
much larger than the transverse one, but the longitudinal
velocity gradients are much smaller than the transverse ones.
The solution is sought in the boundary layer approximation,
assuming that the flow in a thin jet can be described in the
leading approximation of equations (1) expanded at large
Reynolds numbers. In the framework of this leading approx-
imation, the contributionwith the second derivative along the
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longitudinal direction is omitted in terms that depend on the
viscosity in the longitudinal projection of the equations; the
transverse component of the motion equation for a nonswir-
ling jet reduces to the equivalence of the transverse pressure
gradient to zero. The pressure change in the longitudinal
direction is defined by the pressure change outside the
boundary layer [4]. As the jet is thin, the gradient outside it
is zero in the leading approximation. The pressure in the jet is
then constant, and the boundary layer equations take the
form

ux
qux
qx
� ur

qux
qr
� n

r

q
qr

�
r
qux
qr

�
; �2�

q�uxr�
qx

� q�urr�
qr
� 0 ; �3�

with boundary conditions

ur � 0 ;
qux
qr
� 0 �r � 0� ; ux ! 0 �r!1� : �4�

Here, x, r are the coordinates of the cylindrical reference
frame, ux, ur are the components of velocity in this frame, the
x-axis is directed along the jet, and the point x � 0 coincides
with the jet origin point. Equation (2) with account for (3) can
be rewritten as

q�u 2
x r�

qx
� q�uxurr�

qr
� n

q
qr

�
r
qux
qr

�
;

which leads to the momentum flux conservation in any
transverse cross section of the jet

J � 2pr
�1
0

u 2
x r dr � const : �5�

If we assume that the jet originates from a point, then,
because of the equal dimensions of

��������
J=r

p
and the kinematic

viscosity coefficient, and also because of the lack of a
characteristic linear scale in this problem, the problem
solution can be sought in a self-similar form. The index of
self-similarity is determined from the condition ofmomentum
flux conservation (5)

ux � n
x

F 0

Z
; ur � n

x

�
F 0 ÿ F

Z

�
; Z � r

x
:

The function F�Z� is related to the stream function c by the
relation F � c=nx, � �0 � q=qZ, where

ux � 1

r

qc
qr

; ur � ÿ 1

r

qc
qx

:

From (2), it follows that

ÿ
�
FF 0

Z

�0
�
�
F 00 ÿ F 0

Z

�0
: �6�

Taking into account the boundary conditions (4) and the
expression for the momentum flux (5), the problem solution
becomes

F � x 2

1� x 2=4
; ux � 3

8p
K

nx
1

�1� x 2=4�2 ;

ur � 1

4x

�������
3K

p

r
xÿ x 3=4

�1� x 2=4�2 ; �7�

x �
���������
3K

16p

r
1

n
Z �

���������
3K

16p

r
r

nx
; K � J

r
:

Mass flow rate per unit time in the jet section

Q�x� � 2pr
�1
0

uxr dr � 8prnx : �8�

The jets can carry different momentum fluxes which, as
follows from (7), define all jet characteristics except for the
flow rate.

The jet width increases linearly with x. The flow rate (8)
across the jet cross section increases accordingly with distance
from the initial cross section. This means that the jet entrains
the surrounding fluid. This also implies that solution (7), (8)
cannot be realized in a bounded domain if its size is
comparable to the transverse size of the jet, for example,
when the jet is generated in thin channels.

At the initial cross section, although the longitudinal
velocity is infinite, the flow rate is equal to zero. Thus, the
Schlichting jet is characterized only by themomentum flux (5)
for a zero initial flow rate.

Note that the radial velocity is positive for small x. This is
because the part of the jet close to the axis is slowed down as x
increases. Beginning from some x �x � 2�, the radial velocity
becomes negative. The jet, entraining, accelerates the fluid in
the direction of the x-axis.

2.2 Solution for jets in the framework
of Navier±Stokes equations. Landau jet
The publication of [1] was followed one year later by [5] by
N A Slezkin (see also [6]), where results for nonswirling
axisymmetric flows were obtained, namely, the conical
axisymmetric solutions of the Navier±Stokes equations were
found. In this article, the full Navier±Stokes equations are
used for an incompressible fluid in spherical coordinates
R; y;j. The velocity components are uR and uy. The third
velocity component is zero. In the spherical reference frame,
the stream function is introduced as follows:

uR � 1

R 2 sin y
qc
qy

; uy � ÿ 1

R sin y
qc
qR

: �9�

A solution of theNavier±Stokes equation is sought for the
case where the stream function can be written as

c � R fS�t� ; �10�

where t � cos y.
By inserting (10) into the Navier±Stokes equations and

eliminating the pressure in the standard way, it can be found
that the function fS�t� satisfies the equation

fS f 000S � 3 f 0S f 00S ÿ n
�
f IVS �1ÿ t 2� ÿ 4 f 000S t

� � 0 : �11�

Equation (11) is equivalent to the following equation:�
f 2
S

2
ÿ n�1ÿ t 2� f 0S ÿ 2nt fS

�000
� 0 ;

or, equivalently, to the Riccati equation [7]

f 2
S

2
ÿ n�1ÿ t 2� f 0S ÿ 2nt fS � C0 � C1t� C2t 2 : �12�

It took another nine years `to turn' a special case of
equation (12) into an equation describing a submerged,
axisymmetric, nonswirling jet in an incompressible fluid
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within the framework of the Navier±Stokes equations. Such a
jet in spherical coordinates was considered by LDLandau [8]
(see also [4]). The jet satisfies the condition that through any
closed surface around the origin of the coordinates flows the
same total momentum flux as that injected by the jet source
into the surrounding fluid. This condition determines the
velocity decay law. Similar to (9), (10), the velocities are
written in the form

uR � 1

R
F�y� ; uy � 1

R
fL�y� : �13�

The steady-state Navier±Stokes equations for an incom-
pressible fluid (1) can be rewritten in a Cartesian reference
frame as

qui
qxi
� 0 ;

qPi j

qxi
� 0 ; Pi j � ruiuj � pdi j ÿ m

�
qui
qxj
� quj
qxi

�
:

Similarly, the components of the momentum density flux
tensor can be written in a spherical reference frame. From
the condition of axial symmetry and the absence of swirl,
the components of the momentum flux density PRj and
Pyj are equal to zero. Further, Landau selects the
`physically correct' solution from the variety of solu-
tions, as noted in Refs [9, 10]. He assumed that the
components of the tensor Pjj � pÿ 2m�uR � uy cot y�=R
and Pyy � p� ru 2

y ÿ 2m�uR � quy=qy�=R are also zero, and,
consequently, that the component PRy is zero, since in this
case

sin2 yPRy � 1

2

q
qy

�
sin2 y�Pjj ÿPyy�

�
:

Such a choice allows the boundary conditions on the jet axis
to be satisfied: uy � 0, and uR is bounded, or, in other words,
the velocity field is regular everywhere except at the jet source
point. Only the tensor componentPRR remains nonzero. We
have

1

r
�Pyy ÿPjj� � 1

R 2

�
f 2
L � 2n fL cot yÿ 2n

q fL
qy

�
:

Hence,

f 2
L � 2n fL cot yÿ 2n

q fL
qy
� 0 : �14�

Comparing (13) with (9), (10) and (12) with (14), we find
that the function fS � ÿfL sin y in this case satisfies equation
(12) with constants C0 � C1 � C2 � 0 as before. Later,
V I Yatseev proved that solution (12) is regular everywhere
except for the jet source point only when all constants are zero
[9]. Equation (14) is of the first order; its solution

fL � ÿ 2n sin y
Aÿ cos y

� ÿ 2n
�������������
1ÿ t 2
p

Aÿ t
�15�

depends on only one constant A. Other jet characteristics will
naturally depend on this constant. In this case,

F � 2n
�

A2 ÿ 1

�Aÿ t�2 ÿ 1

�
: �16�

From the above relationships, it follows that the velocity
field will be regular for all angles y only if A > 1 (jets flowing
in the direction of the semi-axis y � 0 are considered).

The pressure variation is quadratic in the viscosity
coefficient and has a singularity when approaching the jet
source:

p � p1 � 4rn 2

R 2

Atÿ 1

�Aÿ t�2 : �17�

The jet momentum flux

K � 16pn 2A
�
1� 4

3�A2 ÿ 1� ÿ
A

2
ln

A� 1

Aÿ 1

�
: �18�

In 1951, H B Squire [11] obtained an equation which
coincides with (12), carried out its analysis, and then found a
solution which coincides with that in [8]. Unfortunately, he
does not cite Slezkin, Landau, orYatseev in hiswork.Ref. [11]
also considers the evolution of a heat source placed at the jet
source on the background of the solution obtained for the
velocity field.

2.3 Correspondence between solutions
Let us now find a condition for which the solution (13), (15),
and (16) of the Navier±Stokes equations coincides with
solution (7) of the boundary-layer equations in the leading
approximation. This condition will be naturally satisfied if
the jet is sufficiently thin, i.e., if the region adjacent to its axis,
where the longitudinal velocity is of the order of the
maximum value at the axis, has a radial size which is much
smaller than the longitudinal one. According to (7), this will
happen if

����
K
p

4 n or if the characteristic number
Re � ����

K
p

=n4 1. From (18), it follows that this is only
possible if A is close to 1. The behavior of streamlines and
their change when A tends to 1 can be found in the well-
known monograph [12]. We write A � 1� d, where d5 1.
Then,

K � 16pn 2
�
2

3
dÿ1 � 1

2
ln d�O�1�

�
;

or, in the leading approximation (we neglect ln d versus dÿ1),

d � 32p
3

n 2

K
: �19�

The velocity components (7) in the cylindrical reference
frame are related to components (13) in spherical coordinates
by the relations ux � uR cos yÿ uy sin y, ur � uR sin y�
uy cos y. In this case, in the section x � const, we have
x � R cos y, r � R sin y. In the cylindrical reference frame,
the solution of the Navier±Stokes equation is written in the
form

ux � 2n cos y
x

� �A2 ÿ 1� cos y
�Aÿ cos y�2 �

1ÿ A cos y
Aÿ cos y

�
; �20�

ur � n sin �2y�
x

A cos yÿ 1

�Aÿ cos y�2 : �21�

Inserting A � 1� d, cos y � 1ÿ y 2=2 into the last relation
and taking into account (19), we obtain in the leading
approximation �d! 0, y! 0� the relations for ux, ur which
coincide with those in formula (7).

It might seem that the coincidence of velocities in the
leading approximation in the main part of the jet ensures also
the coincidence of other quantities, but this is not the case in
reality. The flow rate paradox is mentioned in Refs [13±15].
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Flow rate through a section calculated for the Schlichting jet
is given by formula (8). If one calculates the flow rate through
a sphere surrounding the Landau jet, then naturally a zero
discharge is found. But if one calculates the flow rate through
the section x � const, it will be found that it is infinite:

Q�x� � 4prn
� ����������������

r 2 � x 2
p

A
ÿ A2 ÿ 1

A2

x 2

A
����������������
r 2 � x 2
p ÿ x

�r�1
r�0

:

�22�
The point here is that in a Schlichting jet the flow rate is

calculated only through a narrow part of the jet where the
boundary layer equations are valid, and the outer part,
described by Euler's equations, is ignored. To obtain a
solution in the outer part of the jet, we turn to formula (7).
In the limit x!1 the radial velocity component

ur ! ÿ
�������
3K

p

r
1

xx
� ÿ 4n

r
:

According to the method of matching asymptotic expan-
sions [16], the flow in the outer domain is generated by the
sources located at the axis r � 0. Their intensity is obtained
from the condition ur � ÿ4n=r � q=2pr, which gives
q � ÿ8pn. Thus, there is a ray 04 x <1, r � 0, each
element dx of which corresponds to a three-dimensional
source with intensity q dx. Such a ray of sources gives birth
to the axial and radial velocity components

ux�x; r� � ÿ
�1
0

x1 ÿ x

4p
��x1 ÿ x�2 � r 2

�3=2 q dx1 � 2n����������������
x 2 � r 2
p ;

�23�
ur�x; r� �

�1
0

r

4p
��x1 ÿ x�2 � r 2

�3=2 q dx1

� ÿ 2n
r

�
1� x����������������

x 2 � r 2
p

�
: �24�

Calculating the flow rate using formula (23), we find

Q�x� � 4prn
����������������
r 2 � x 2

p ����r�1
r�0

: �25�

Comparing (25) with (22), and also (23) with (20) and (24)
with (21), we conclude that, first, the Schlichting jet gives an
infinite flow rate if treated rigorously, and, second, agreement
between the characteristics of the Landau jet and the outer
flow in the Schlichting jet occurs if one sets A � 1 [15].
Although the longitudinal velocity component in the outer
inviscid domain is much smaller than in the inner domain,
which corresponds to the boundary layer, it still ensures an
infinite flow rate.

2.4 Broman and Rudenko jet
In 2010, Physics±Uspekhi published a paper by G I Broman
and O V Rudenko [10], which, first, gave a brief review of the
creation of the theory of laminar nonswirling submerged jets,
second, noted for the first time the lack of an inviscid limit in
the Landau solution, and, third, presented another solution
of equations (12) for C0 � C2 � D 2=2, C1 � ÿD 2, which
generalized the Landau solution [8]

f � fS � ÿn�1ÿ t�
�
1� g

�1� t�g � G

�1� t�g ÿ G

�
;

where D and G are some constants,

g �
���������������
1�D 2

n 2

r
:

So, everything is determined by the ratio D=n, i.e., the
quantity g. For D5 n, we have g � 1 and

f � 2n
1ÿ t 2

Gÿ 1ÿ t
;

which for G � A� 1 corresponds to the Landau solution
(15). In addition to a submerged jet, another application of
this solution was suggested in [10]: ``The fact that the Landau
jet imparts momentum to the medium without imparting
mass allows it to be used to describe streaming caused by
sound.''

In the case n! 0, g!1, one finds another limiting
solution from which it follows that, in the cylindrical
reference frame,

ux � ÿ D

x
�������������
1� Z2

p ; ur � ÿ
D
ÿ �������������

1� Z2
p

ÿ 1
�

xZ
�������������
1� Z2

p ;
�26�

p � p1 ÿ
D 2r

ÿ �������������
1� Z2

p
ÿ 1
�

x 2Z2
�������������
1� Z2

p ; Z � r

x
:

The authors of Ref. [10] interpret solution (26) as a
solution for a jet in an ideal fluid. This solution satisfies
Euler's equations and the condition that the radial velocity
component be zero and that the axial velocity component be
bounded at the jet axis, and also that the velocities decay for
Z!1. These conditions explain the choice of the constants
C0, C1, and C2 at the beginning of this section.

The equation for a streamline,

dr

ur
� dx

ux
;

determines their form,

r � r0

�����������������
1� 2

r0
x

s
; �27�

where r0 is the radial coordinate of the streamline in the
section x � 0.

The velocity field can be considered either in the whole
domain or in the one bounded by a streamline (27). As the
fluid is inviscid, any streamline can be replaced by a rigid
surface. In this case, the streamline corresponds to a flow in
widening or narrowing channels, depending on the sign of D.

The velocity field (26) has zero vorticity and is described
by the potential

j � ÿD ln
���x� ����������������

x 2 � r 2
p ��� :

Consequently, the fields of velocity and pressure (26) satisfy
not only the Euler's equations but also the Navier±Stokes
equations.

3. Axisymmetric jet with a flow rate
through the initial cross section

3.1 Rumer, Gol'dshtik±Yavorsky,
and Loytsyansky solutions
As shown in the previous section, it is possible to find
solutions for jets flowing from a point source of momentum.

November 2023 Laminar submerged jets of incompressible êuid at large Reynolds numbers 1145



Such sources are certainly absent, and jets leave orifices of a
finite diameter with a finite velocity, i.e., there is a flow rate
through the initial jet cross section. An example of such a case
is a jet flowing from a submerged cylindrical tube. Here, it is
essential that the momentum flux also be conserved in the
problem with a nonzero flow rate through the initial cross
section. One more invariant in this case is the fluid flow rate
through any closed surface containing the source.

The first attempt to obtain a solution of the Navier±
Stokes equations for the far field of an axisymmetric jet with
nonzero flow rate was made by Yu BRumer [17]. In this case,
a not-self-similar solution was sought in a spherical reference
frame in the form of an expansion in integer powers of 1=R as
a small correction to the Landau solution (13), (15)±(17):

uR � F�t�
R
� F2�t�

R 2
�O

�
1

R 3

�
; uy � fL�t�

R
�O

�
1

R 3

�
;

p � p1 � 4rn 2

R 2

Atÿ 1

�Aÿ t�2 �
rg2�t�
R 3

�O

�
1

R 4

�
:

�28�

Solution (28) has a flow rate across the sphere of radiusR,

Q � r
� p

0

uRR
22p sin y dy � 2pr

� 1

ÿ1
F2 dt ;

which equals the flow rate across the initial jet cross section.
Inserting (28) into the Navier±Stokes equations (1), we

find that the functions to be determined satisfy the system of
equations

ÿ
�������������
1ÿ t 2
p

fLF
0
2 ÿ 3FF2 � 3g2 � n

��1ÿ t 2�F 002 ÿ 2tF 02
�
;

g 02 � 2nF 02 :
�29�

The solution of the second equation in system (29) can be
written as

g2 � 2n
�
F2 ÿ 1

6
C1

�
;

whereC1 is a constant. The remaining first equation of system
(29) has the form (L is the differential operator)

LF2� �1ÿ t 2�F 002 ÿ 2

�
t� 1ÿ t 2

Aÿ t

�
F 02 � 6

A2 ÿ 1

�Aÿ t�2 F2 � C1 :

�30�
If we multiply equation (30) by �Aÿ t�2 and integrate over t
from ÿ1 to 1, we get

C1 � 9

2pr
A2 ÿ 1

3A2 � 1
Q :

Thus, if the flow rate across the exit cross section differs from
zero, Q 6� 0, and also C1 6� 0.

Reference [17] gives one of the solutions of homogeneous
equation (30), which has no singularities in the range
ÿ14t4 1:

h�t� � 1ÿ 3�A2 ÿ 1�
�Aÿ t�2 �

2�A2 ÿ 1�2
A�Aÿ t�3 : �31�

The second independent solution of the homogeneous
equation

q�t� � 1

�1ÿ t 2��Aÿ t�2h 2
�32�

has a singularity on the jet axis and should therefore be
discarded.

Reference [17] also gives a particular solution of the
inhomogeneous equation

H�t� � C1h�t�
� t

ÿ1

� x
1 �Aÿ Z�2h�Z� dZ

�1ÿ x 2��Aÿ x�2h 2�x� dx :

The general solution to equation (29) is

F2�t� � H�t� � C2h�t� :

Reference [17] repeatedly emphasizes that a regular
solution of the Navier±Stokes equations is sought, and
yet the fact that the function H�t� has a logarithmic
singularity at t � ÿ1, i.e., on the negative jet axis, went
unnoticed. Such a singularity in the solution and, respec-
tively, incorrectness of expansion (28) was mentioned in
Refs [15, 18]. These papers also point to the reason why the
solution turned out to be incorrectÐa logarithmic term
must be included in the expansion for velocities at large R. A
strange impression in this respect is left by Ref. [19], which
seeks the third approximation of the regular expansion in
whole powers of 1=R, i.e., the next term in the Rumer
expansion [17].

Resorting to Refs [15, 18], we write the expressions for
velocities and pressure with an accuracy of o�Rÿ2� and
o�Rÿ3�, respectively,

uR � F�t�
R
ÿ n
�
u 0�t� ln R

a
� w�t�

�
1

R 2
;

uy � 1

R
fL�y� ÿ n

u�t��������������
1ÿ t 2
p 1

R 2
; �33�

p � p1 � 4rn 2

R 2

Atÿ 1

�Aÿ t�2 � n 2
�
q�t� ln R

a
� g�t�

�
1

R 3
;

where a is the diameter of the initial cross section of the jet.
Expansion (33) also differs from (28) in that the term
proportional to Rÿ2 appears in the expression for uy.
Inserting expansion (33) into the Navier±Stokes equation,
we have

u 0�t� � Bh�t� ; u�t� � B�1ÿ t 2� 1ÿ At

A�Aÿ t�2 ; �34�

Lw � C� B

�
6�A2 ÿ 1�2
�Aÿ t�4 ÿ

8A�A2 ÿ 1�
�Aÿ t�3 �

3�A2 ÿ 1�
�Aÿ t�2

ÿ 6A2 ÿ 2

A�Aÿ t� � 6

�
:

Here, L is the differential operator defined in (30) and h�t� is
defined by expression (31). Two constants B and C are found
from the conditions that the flow rate through a sphere of
radius R be equal to the flow rate Q at the jet source and that
the solution be regular:

Q � ÿ 2prn
3�A2 ÿ 1�

�
C

�
A2 � 1

3

�

� B

�
9A2 ÿ 5� 4A�A2 ÿ 1� ln A� 1

Aÿ 1

��
;
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C

�
ÿ4A2 � 20

3
� 2
�A2 ÿ 1�2

A
ln

A� 1

Aÿ 1

�
� B

�
ÿ44A2

� 196

3
ÿ 8

A2
� �A

2 ÿ 1��22A2 ÿ 18�
A

ln
A� 1

Aÿ 1

�
� 0 :

�35�

Equation (34) has a solution which depends on one
constant c0,

w�t� � c0h�t� � h1�t� ; �36�

where h1�t� is a known function; its unwieldy expression in
quadratures can be found in Refs [15, 18]. The second
solution of the homogeneous equation (34), which corre-
sponds to (32), is discarded, once again because of singularity.

Free constant c0 in solution (36) does not depend on the
flow rate, as the latter is already fixed by the choice of the
constants B and C. There have been attempts to find a
conservation law that would help to determine this constant,
i.e., to relate it to some characteristics of the jet source.
M A Gol'dshtik and N I Yavorsky [15, 18, 20] linked the
constant c0 with the flux of a side component of angular
momentum through a surface composed of hemispheres with
radiiR andR0 and a ring in the plane y � 0 between the circles
R and R0. A drawback of such an approach is that the
expressions for the velocity components and the pressure are
only known in the far field. Therefore, this invariant does not
provide links between the far field of the jet and the
characteristics of the source, as we see for integrals of the
flow rate and momentum flux. The same drawback is present
in the assumptionmade in Ref. [21] that the appearance of the
term c0h�t� in the solution is related to the second term in the
expansion of the Landau solution in a series in inverse powers
of the distance from the origin of the coordinates, which is
displaced relative to the momentum source.

For large numbers Re, as shown in Section 2, the jet
characteristics obey the boundary layer equations. A solution
for the far field of a jet produced by a finite-size source was
obtained by L G Loytsyansky [22] (see also [23, 24]) in a
cylindrical reference frame in the form of a series in inverse
powers of the coordinate x,

c � n
x 2

1� x 2=4
xÿ nb

�x 2=4��1ÿ x 2=4�
�1� x 2=4�2 � . . . ;

ux � 2a 2 1

�1� x 2=4�2
1

x
ÿ ba 2

2

1ÿ �3=4�x 2

�1� x 2=4�3
1

x 2
� . . . ; �37�

ur � a
���
n
p xÿ x 3=4

�1� x 2=4�2
1

x
ÿ ba

���
n
p
2

xÿ 3x 3=4

�1� x 2=4�3
1

x 2
� . . . :

In these formulas, x and K are the same as in (7), and a �
�1=4� �������������

3K=pv
p

. By comparing (37) and (7), it becomes obvious
that the constant bmust reflect the finite size of the source.

3.2 Link of the far-field asymptotic form
to the velocity profile in the jet exit cross section
We ask two questions: what characteristics of the velocity
profile at the jet source are responsible for the magnitude of
the constant b and what is the relationship between the
solutions found in Refs [18] and [22]?

Loytsyansky calculated the mass flow rate per unit time
through the jet cross section and obtained a formula which

extends (8),

Q�x� � 2pr
�1
0

uxr dr � 2prn�4x� b� : �38�

Contrary to the previous opinion [22] that it is impossible to
connect the constant b to the initial flow rate from the jet
source, Ref. [23] incorrectly concludes from equality (38),
``...the terms including b give a correction for the finite initial
jet flow rate. Using this formula and taking x � 0 we obtain,
in the approximation adopted here, the flow rate Q0 in the
initial cross section... .'' It was therefore assumed that
Q0 � Q�0�, which would be correct if solution (37) could be
continued to the exit cross section of the jet.

The answer to the question of how to determine b was
found in Refs [25, 26]. It turns out that, in the framework of
the boundary layer equations, there is another conservation
law for an axisymmetric nonswirling submerged jet, which
was first obtained inRef. [27] in a rather complicated way.We
give a simple derivation. A consequence of equations (2) and
(3) is the equation

q
qx
�u 2

x r� �
q
qr

�
uxurrÿ nr

qux
qr

�
� 0 :

Wemultiply it by cÿ nx and rearrange it into a divergent
form,

q
qx

�
u 2
x r�cÿ nx��
� q
qr

��
uxurrÿ nr

qux
qr

�
�cÿ nx� � n

u 2
x r

2

2

�
� 0 :

This implies the conservation of the quantity

E �
�1
0

u 2
x �cÿ nx� r dr � const �39�

in any transverse cross section of the jet.
For x � 0, the invariant E � � rout0 u 2

x �0; r�c�0; r� r dr,
where rout is the radius of the jet exit. We assume that the
stream function c � 0 for r � 0, as in formula (37). Let us
now consider an arbitrary cross section x of the jet far field.
The integral E is zero for the leading term of expansion (37).
Taking into account the two terms, E � 2n 2a 2b=3. The
equality of these two values of the invariant gives the
constant b.

References [25, 26] also give numerical calculations for the
initial profile ux�0; r� � 1ÿ r n, 04 r4 1 for n � 1 and n � 2.
The differences between numerical and asymptotic solutions
of (37) from the main term in (37) are shown in Fig. 1.

To answer the second question about the connection
between the solutions obtained in Refs [18] and [22], one
needs to take the limit A � 1� d, where d is determined by
relationship (19), as before in the solution (33)±(36). In this
case, in the leading approximation, (35) gives

B � 9d
8pr

Q ; C � ÿ 45d
8pr

Q :

Moreover, a comparison of the leading approximation of the
solution for w�t� (34), (36) with the second term in expansion
(37) points to their correspondence and, as a consequence, to
the connection between the constants c0 and b,

c0 � n
2
b :
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The last expression closes the problem of a jet with a flow
rate through its initial cross section for large numbers Re. The
problem of determining the constant c0 in other cases has not
yet been solved.

4. Axisymmetric swirling jet

A swirling jet is obtained by adding some azimuthal velocity
to an axisymmetric jet. This immediately raises many
questions. What integral quantities are conserved for a
swirling jet? What is the flow asymptotic form at an infinite
distance, both in the direction of the jet and in the radial
direction?Many aspects could possibly depend on theway the
jet is created, but the jet starts from a point, and questions
about how it is created are outside the scope of the solution.

A historically first solution for a swirling jet was obtained
by Loytsyansky in the framework of boundary layer equa-
tions in the same study [22] (see also [23]), where the second
approximation for an axisymmetric nonswirling jet was used.
The problem is considered in a cylindrical reference frame,
where only an additional azimuthal velocity component uj is
added. In this case, the pressure is no longer constant and is
defined by the azimuthal velocity. The transverse pressure
gradient is balanced by the centrifugal force, and, although
the pressure outside the jet is constant in the leading
approximation, the appearance of the transverse pressure
gradient gives rise to its longitudinal gradient. In the
equations for the axial and azimuthal velocity components,
the terms with second derivatives in the longitudinal direction
q2ux=qx 2 and q2uj=qx 2 are discarded:

ux
qux
qx
� ur

qux
qr
� ÿ 1

r
qp
qx
� n

r

q
qr

�
r
qux
qr

�
;

qp
qr
� ru 2

j

r
;

�40�
ux

quj
qx
� ur

quj
qr
� uruj

r
� n

q
qr

�
1

r

q�ujr�
qr

�
;

q�uxr�
qx

� q�urr�
qr
� 0 :

From the first and last equations of system (40), it follows
that

q
qx

�
r�p� ru 2

x �
�� q

qr

�
rr
�
uxur ÿ n

qux
qr

��
� 0 :

Here, p is the pressure difference with respect to the pressure
at a point at infinity. Integrating the last equation transverse
to the jet, we obtain

d

dx

�1
0

r�p� ru 2
x � dr�

�
rr
�
uxur ÿ n

qux
qr

��r�1
r�0
� 0 :

At the jet axis ur � 0, qux=qr � 0. Assuming that for
r!1 the velocity component ux decays no more slowly
than rÿ1, we find that the second term is zero. Then, in any
transverse cross section x � const, the total momentum flux
is conserved,

J � 2p
�1
0

�p� ru 2
x � r dr � const : �41�

From the third and last equations of system (40), it can be
deduced that

q
qx
�r 2uxuj� � q

qr

�
r 2uruj ÿ n

�
r
q
qr
�ruj� ÿ 2ruj

��
� 0 :

Integration across the jet leads to the relationship

d

dx

�1
0

r 2uxuj dr�
�
r 2urujÿ n

�
r
q
qr
�ruj� ÿ 2ruj

��r�1

r�0
� 0 :

�42�
Two situations are now possible. The first one, which

corresponds to the Loytsyansky jet [22], is the case when the
velocity components decay sufficiently fast as the coordinate r
is increased. In this case, the second term goes to zero, which
indicates the appearance of one more invariant for a swirling
jetÐ the angular momentum flux

L � 2pr
�1
0

r 2uxuj dr � const : �43�

1
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Figure 1.Differences between numerical ux and asymptotic u
�1�
x � bu �2�x (37) solutions and the solution u

�1�
x (7) for x � 100 (a), for r � 0 (b): 1Ðnumerical

solution for a parabolic initial velocity profile; 2Ðsolution for a linear initial velocity profile; 3Ðsolution (37), (38); 4Ðsolution (37), (39).
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If, in the limit r!1, the velocity components behave as
rÿ1 multiplied by a constant that is different for different
components, then, instead of (43), one gets another invariant
for r!1 equal to the azimuthal velocity multiplied by r, i.e.,
the circulation of the azimuthal velocity divided by 2p,

G � ujr � const : �44�

The flow is axisymmetric, so that the quantity G is
independent of the angle j. Furthermore, at large Reynolds
numbers, the vortical flow in the jet is concentrated in the
region corresponding to the boundary layer. According to the
Helmholtz theorem on the conservation of the vorticity flux
(the circulation of the azimuthal velocity) through any
transverse section of such a vortical flow, the quantity G
does not depend on x. Other quantities will have well defined
asymptotic form. From the second equation of (40), for
r!1, it follows that

p

r
� ÿ G 2

2r 2
:

In this case, to ensure a finite flux of total momentum, it is
necessary that, for r!1, the integrand in formula (41) be
zero,

ux �
��������
ÿ p

r

r
� G���

2
p

r
: �45�

The axial velocity component at a large distance from the axis
is smaller than the azimuthal velocity component by a factor
of

���
2
p

.
The radial velocity component is defined by the first

equation in system (40). For r!1,

ur � ÿ n
r
: �46�

4.1 Loytsyansky jet
We consider in detail the first case, i.e., the Loytsyansky jet,
which is characterized by two invariants J (41) andL (43). The
ratio L=J has a dimension of length, and, consequently, the
solution for the jet characteristics will not be self-similar.
Reference [22] constructed a solution at large distances from
the jet source. The approach of [22] allows one to consider
simultaneously the swirl and the flow rate through the initial
cross section. Here, it is important that, in the leading
approximation, the problem solution at large distances
coincide with the solution for the nonswirling Landau jet.

The solution satisfies equations (40). Boundary condi-
tions (4) are still valid for the velocity components ux and ur.
The azimuthal velocity should be zero at the jet axis, and, for
r!1, it should decay faster than rÿ1 and maintain integral
(43).

As for the nonswirling jet (37), the solution for a swirling
jet is sought as a series in inverse powers of the coordinate x.
Inserting this expansion into system (40) and the boundary
conditions, one obtains a solution that coincides with (37) for
the components ux and ur,

ux � 2a 2 1

�1� x 2=4�2
1

x
ÿ ba 2

2

1ÿ �3=4�x 2

�1� x 2=4�3
1

x 2
� . . . ;

ur � a
���
n
p xÿ x 3=4

�1� x 2=4�2
1

x
ÿ ba

���
n
p
2

xÿ 3x 3=4

�1� x 2=4�3
1

x 2
� . . . ;

uj � g
x

�1� x 2=4�2
1

x 2
� . . . ;

p � ÿ 2

3
rg 2

1

�1� x 2=4�3
1

x 4
� . . . : �47�

Here, g � 3aL=16prn 3=2.
Compared to (37), solution (47) includes the expression

for the azimuthal velocity, which decays proportionally to
xÿ2. The azimuthal velocity component decays with x faster
than the axial velocity component. The ratio of these
velocities therefore decreases as x increases.

We only need to check the asymptotic behavior of the
velocity components for r!1. The radial component
decays proportionally to rÿ1 and the azimuthal component
decays as rÿ3, providing the required decay of the second term
in equation (42). The circulation of the azimuthal velocity
along a contour of infinite radius becomes zero.

A solution for a swirling jet with the conservation of the
angular momentum flux in the framework of the Navier±
Stokes equations has been obtained by M S Tsukker [28]. In
this work, the velocities and pressure in a spherical coordinate
system are taken as series in inverse powers of R:

uR � ÿn
�
f 01 �t�
R
� f 02 �t�

R 2
� . . .

�
; uy � ÿn

�
f1

R
�������������
1ÿ t 2
p � . . .

�
;

uj � n
�
g1�t�
R
� g2�t�

R 2
� . . .

�
;

pÿ p0
r
� n 2

�
h1�t�
R
� h2�t�

R 2
� . . .

�
:

From the equations and boundary conditions, Tsukker found
that the azimuthal velocity in this approximation does not
modify the solution which corresponds to the Landau jet

h1 � 0 ; g1 � 0 ; f1 � 2�1ÿ t 2�
Aÿ t

; h2 � ÿ 4�1ÿ At�
�Aÿ t�2 :

In the leading approximation, the zonal velocity is expressed
as

uj � n
g1�A� 1�

2R 2

�������������
1ÿ t 2
p

�Aÿ t�2 ; �48�

where g1 is a constant that accounts for the swirl.
The standard transition A � 1� d, cos y � 1ÿ y 2=2

�d! 0, y! 0� from solution (48) taking into account (19)
to solution (47) of the boundary layer equation gives the
connection between the constants g1 and g:

g1 �
���
2
p

d 3=2

n
g :

4.2 Long jet
We now consider the second situationÐ that of a swirling
axisymmetric jet with the invariants (41) and (44) conserved.
Such a jet was first considered by RRLong [29] in 1961 in the
framework of boundary layer equations, although he had
formulated all the necessary equations three years earlier [30].

Since circulation (44) has the same dimension as
��������
J=r

p
and the kinematic viscosity coefficient, and additionally there
is no characteristic scale in this problem, a self-similar
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solution is sought with the quantities taken as

c � nx f �y� ; ux � G

r
���
2
p f 0 ; ur � ÿ n

r
f� G

x
���
2
p f 0 ;

�49�
uj � G

r
l�y� ; p

r
� ÿ G 4

n 2x 2
s�y� ; y � rG

nx
���
2
p ; � �0 � d

dy
:

Two dimensionless quantities are introduced: e � n=G, an
analog of the inverse Reynolds number, which is assumed to
be small for the validity of boundary layer equations, and
M � J=rG 2, an analog of the inverse squared number of the
flow swirl. The solution should depend on these two
dimensionless quantities. Inserting (49) into the boundary
layer equations (40), we obtain the system of equations

f 00yÿ f 0�1ÿ f � ÿ 4y 3s � 0 ;

l2 � 2y 3s 0 � 0 ; �50�
l00yÿ l0�1ÿ f � � 0 :

The boundary conditions on the jet axis �y � 0� are f � 0,
l � 0. Boundary conditions at y!1 follow from (44)±(46):
f! 1� y, l! 1, s! 0. In Ref. [29], system (50) was solved
numerically. It turned out that in such a formulation a
solution exists only if M > 3:65. Depending on the problem
parameters, the axial velocity can be both positive and
negative (reverse flows).

This topic was further developed in Refs [31±33].
Reference [31] rejects the possibility of creating such a jet
with the strange statement that ``the initial flux of the angular
momentum of the jet source is zero.'' In Ref. [32], a solution in
a swirling jet is sough with the help of the Navier±Stokes
equations in spherical coordinates. The boundary conditions
on the jet axis are discussed not only for x > 0 but also for
x < 0. On the negative semi-axis, the same circulation should
be given and hence the azimuthal velocity component will be
infinite. This boundary condition follows from theHelmholtz
theorem and the zero size of the jet at its origin. Thus, a vortex
filament with finite circulation should follow the entire
negative semi-axis, and a jet is formed at x � 0 due to the
momentum added to the flow. In order to eliminate the
singularity in the momentum flux on the semi-axis x < 0,
the axial velocity component should be infinite on it.

Reference [33] constructs an asymptotic solution for large
Reynolds numbers and small swirl. It is the case of largeM in
the terminology of Ref. [30].

4.3 On the realization of swirling jets. Hidden invariants
Since there are two fundamentally different solutions for
swirling jets, the question naturally arises as to which will be
realized in practice. The same question is posed in Refs [14,
15, 32]. Let us have a closer look at these studies, as not all
their statements can be considered correct. In Ref. [15],
swirling jets are subdivided into weakly and strongly swirling
jets (in all probability, following Refs [31, 34]):

...Its solution was characterizing a `weak' swirling jet in
which the velocity of rotation decayed much faster than the
axial or radial ones. This did not agree very well with the
experimental data... which, for sufficiently strong jets,
showed complicated reverse flows in the near-axial zone,
whereas the theory did not predict them. The reason lies in
the existence of a hidden invariant... overlooked by previous
researchers. This invariant, to be discussed here, makes the
problem self-similar... .

Surely, the invariant (we will return to it later) has nothing
to do here, nor do the reverse flows. If the jet is a Loytsyansky
jet for a small swirl, the increase in swirl will not change the jet
type. The asymptotic form of Ref. [22] is the far field one, and
the presence of near-axial reverse currents only shifts further
the range where it becomes valid for large x. The numerical
simulations in Refs [35, 36] may serve as proof of this fact. In
Ref. [36], it is shown that different flow regimes are realized as
the swirl is increased. The first regime is characterized by the
fact that the axial velocity component in any section
x � const is maximal at the jet axis and decreases mono-
tonically as x increases (Fig. 2). As the swirl increases, the
second regime is realized, in which the behavior of the
maximum axial velocity is no longer monotonic with x, but
the axial velocity remains positive (see Fig. 2). Finally, for an
even larger swirl, return currents appear in the vicinity of the
axis (Fig. 3). In all the regimes described, in the case of both
weak and strong swirls, jets follow the asymptotic solution of
[22] in the far field.

We now return to the hidden invariant found in Refs [14,
15, 20, 32]. The invariants in the case of jet flows are usually

Re = 100

S � 0.5
S � 1.06255
S � 1.06875
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Figure 2.Calculated distributions of axial velocity on the jet axis (a) and in the section x � 4 (b) for Re � 100, S � 0:5, 1.0625, 1.06875. Linear scales are
nondimensionalized by the tube radius, and velocities are normalized by the maximum axial velocity in the tube.
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the values of the fluxes of momentum, angular momentum,
and other quantities that do not change when integrated over
a closed surface around the coordinate origin or the section
x � const. A not quite conventional flow invariant of
Refs [14, 15, 20, 32] was called a hidden invariant by
Gol'dshtik.

The flux of the j component of the momentum in the
Cartesian coordinate system through a closed surface S

Jj �
��

S

�Pxj nx �Pyj ny �Pzj nz� dS ;

where n�nx; ny; nz� is a unit vector of the outer normal to the
surface S.

Similarly, in the spherical coordinate system, one can
write momentum fluxes in the direction of the longitudinal
coordinate x and one of the transverse coordinates y through
a sphere of radius R:

Jx �
� 2p

0

� p

0

�PRR cos yÿPRy sin y�R 2 sin y dy dj ;

Jy �
� 2p

0

� p

0

�PRR sin y cosj�PRy cos y cosjÿPRj sinj�

� R 2 sin y dy dj :

For an axisymmetric jet, integrating over j we obtain

Jx � 2p
� p

0

�PRR cos yÿPRy sin y�R 2 sin y dy ;

Jy � 0 :

The integral Jy is calculated in [14, 32] not over the entire
sphere but over the hemisphere with the `bottom' (Fig. 4): we
denote it J �y . This integral is universal and should be
conserved for any axisymmetric swirling jet for any R.
Making the erroneous assumption that the integral over the
`bottom' equals zero due to the axial flow symmetry,

Gol'dshtik obtained

J �y � R 2

� p

0

PRj sin y dy : �51�

It will be recalled that

PRj � ruRuj ÿ m
�
quj
qR
ÿ uj

R

�
: �52�

A paradoxical situation arises in this case. Due to the
conservation of invariant (51) taking into account (52), it is
necessary that, for large R, the components of the velocity be
inversely proportional to the radius uR � Rÿ1, uj � Rÿ1,
which corresponds to the swirling Long jet. Based namely on
this, Ref. [14] concludes that, for the given invariants Jx and
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x

Figure 3.Dependence of the size and shape of the recirculation domain on Reynolds number Re and swirl S; thick black line depicts the tube wall.
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Figure 4. Integration surface in the construction of the hidden invariant.
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J �y , the solution should be sought in a self-similar form, and
the velocity component should be inversely proportional to
the radius.

The error of Refs [14, 32] is corrected in [36], where it is
shown that the flux of the y-component of the momentum
through the `bottom' of the hemisphere is not zero. In order to
take it into account, the flux Jy between two hemispheres with
radii R0 and R with the `bottom,' for R > R0, was calculated
in this work. The flux through the inner hemisphere is equal to
the flux through the outer hemisphere and the ring region of
the `bottom' between them. The correct universal invariant is
given by the expression

J ��y � R 2

� p

0

PRj sin y dy

�
� R

R0

� p

0

R�PRj sin y�Pjy cos y� dy dR ; �53�

Pjy � rujuy ÿ m
R

�
quj
qy
ÿ uj cot y

�
:

Let us now consider possible far asymptotic forms for
swirling jets. As was shown above, from the continuity
equation and the conservation of the total momentum flux
(41) in both the Loytsyansky and Long jets, it follows that,
when their solutions are rewritten in spherical coordinates,
two velocity components will be inversely proportional to the
radius:

uR � a�y�
R
� . . . ; uy � b�y�

R
� . . . : �54�

We express the azimuthal velocity in the form

uj � w�y�
Rk
� . . . ; �55�

where k can take the values 1 (the Long jet) and 2 (the
Loytsyansky jet).

We insert (54) and (55) into (53) and take the range in R
where these asymptotics hold. For k � 1,

J ��y
r
�
� p

0

f �y� sin y dy� ln
R

R0

� p

0

ÿ
f �y� sin y� g�y� cos y�dy ;

where f �y� � aw� �k� 1�nw, g�y� � bwÿ n�w 0 ÿ w cot y�.
Integral (53) is conserved if� p

0

� f sin y� g cos y� dy � 0 :

For k � 2,

J ��y
r
� ÿ 1

R

� p

0

g�y� cos y dy

� 1

R0

� p

0

ÿ
f �y� sin y� g�y� cos y�dy :

Integral (53) is conserved when� p

0

g cos y dy � 0 :

So invariant (53) does not define the power of the decay of
the azimuthal velocity.

The second question, for which there is already a correct
answer in Ref. [15], is: can the source of the self-similar Long
jet be point-like? The answer in Ref. [15] is as follows: ``It
should be mentioned that the vortex filament differs in
principle from a point or spherical source by having uj � 1
on the semi-axis y � p... . Therefore, the source of the self-
similar swirling jet cannot be point-like.''

It is not difficult to produce a Loytsyansky jet. InRefs [35,
36], such swirling jets leaving a tube of finite length were
created by rotating the inner tube surface. Any other source of
swirl can be used instead of the rotating inner surface. As for
the Long jet, producing it would be difficult, if not impossible.
One of the methods to produce a swirling jet that is close to
the Long jet was proposed inRef. [36]. However, the jet in this
work was generated numerically, and an appropriate zonal
velocity profile was used as a boundary condition for the
incoming flow, which was not specified.

What are the difficulties in generating a self-similar Long
jet? First, such a jet should be injected into a vortex filament.
In this case, and only in this case, the source of the self-similar
jet can be point-like. Ideally, the vortex filament should start
from minus infinity and somehow avoid the action of
diffusion. A vortex tube can be created, for example, behind
a long rectangular wing or behind a propeller with a certain
type of blade. In the first case, a vortex formation resembling
a vortex tube is shed from the tip of the wing, and, in the
second case, it is observed in the butt part of the propeller. In
both cases, a zonal velocity close to that from a point vortex
can be created. Second, at x � 0, the total momentum Jx is
injected in the flow, which, according to Refs [32, 33], should
have a zero value for x < 0. However, in the examples given
above, the axial velocity is determined from the condition that
the Bernoulli integral hold and not from the condition that
the momentum flux be zero, which gives a very different
value. The question of the feasibility of the Long jet remains
open.

5. Conclusions

The theory of laminar jets will soon be 90 years old. During
this time, solutions to many problems have been found that
are surprisingly elegant. At the same time, some problems
remain unsolved. There are no sufficiently satisfactory
theories to describe jets emerging from a point source
perpendicular or parallel to an infinite plane. Little is known
about the mechanics of jet interaction. An open question is
whether it is possible to create a swirling jet while conserving
circulation along the outer contour of the jet.

The authors of this paper have attempted to critically
review studies on the jet theory and to pick out the out-
standing ones among them, as well as those with erroneous
statements. As far as the latter is concerned, the material
presented in this paper should fundamentally change the view
on swirling jets and jets with flow rate through the initial cross
section. We corrected the expression for the hidden invariant,
from which it followed earlier that a swirling jet should tend
to a jet with a given circulation at a large distance from its
source. This fact was contrary to physical intuition, which
says that at infinity a swirling jet should tend to a Landau jet
in the leading approximation, and hence the azimuthal
velocity should decay faster than the longitudinal velocity.
The correct calculation of this invariant indicates the
mathematical possibility of the existence of both Loyt-
syansky and Long jets. For jets with a flow rate through the
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initial cross section, a correct procedure was presented for
finding the connection between the far asymptotic form and
the initial velocity profile in the framework of the boundary
layer equations.

The authors are indebted to E A Kuznetsov for helpful
discussions of certain questions.
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