
Abstract. We consider a theory which contains massless scalar
fields with different sound speeds. For these theories we derive
unitarity relations for partial wave amplitudes of 2! 2 scatter-
ing, with explicit formulas for contributions of two-particle
intermediate states. We also obtain unitarity bounds both in
the most general case and in the case considered in the literature
for the speed of sound, equal to unity.We illustrate our unitarity
relations by explicit one-loop calculation to the first nontrivial
order in couplings in a simple model of two scalar fields with
different sound speeds. Obtained unitarity bounds can be used
to estimating the strong coupling scale of a pertinent effective
field theory (EFT).
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1. Introduction

Scalar-tensor theories of gravity with nontrivial scalar kinetic
terms and/or nonminimal couplings are commonly used to
construct models of inflation [1±5] as well as novel cosmolo-
gical models such as genesis [6±11] and bounce [12±20]. Such
theories are also popular in modeling dark energy, e.g.,
Refs [21±29]. In Ref. [30] the authors discuss corresponding
constraints on the dark energymodels in the framework of the
scalar-tensor theories after gravitational-wave event
GW170817.

In these scalar-tensor theories, perturbations about
nontrivial backgrounds often propagate with `sound speeds'
different from the speed of light and, moreover, perturbations

of different types (e.g., scalar vs tensor in the cosmological
context) have different sound speeds. Another feature is that
some constructions involve time-dependent couplings which
are dangerously large during certain time intervals. An
example is the Horndeski theory [31], whose subclass allows
genesis and bounce1 with `strong gravity in the past' (effective
Planck mass tends to zero as t! ÿ1) [36]; in this way, one
evades the no-go theorem of Refs [37, 38]. In [39], the authors
also evade the latter no-go theorem but in a slightly different
manner than in [36].

An important parameter in an effective quantum field
theory (QFT) is the energy scale of strong coupling or, in
other words, the maximum energy below which the effective
QFT description is trustworthy. Scalar-tensor theories of
gravitation, especially those featuring large couplings, are
not exceptional in this regard. While the strong coupling
energy scale can often be qualitatively estimated by naive
dimensional analysis, more accurate estimates are obtained
using unitarity bounds that follow from general unitarity
relations. This motivates us to derive unitarity relations and
unitarity bounds in theories with different sound speeds of
different perturbations.

In this paper, we consider theories with several scalar
fields; theories of particles with spin can be treated in a similar
way.2 We also study theories in flat space±time and with a
trivial background; this treatment is also expected to be
relevant for nontrivial backgrounds, since the classical
description of a background is legitimate provided that its
classical energy scale is well below the quantum strong
coupling scale, in which case the space±time dependence of
the background is expected to be negligible when evaluating
the quantum scale. Indeed, in [40], the results of this paper are
used in order to evaluate the quantum energy scale of strong
coupling in the model of Horndeski bounce.

Yu A Ageeva �1; 2; 3; a�, P K Petrov �1; b�
�1� Institute for Nuclear Research, Russian Academy of Sciences,

prosp. 60-letiya Oktyabrya 7a, 117312 Moscow, Russian Federation
�2� Lomonosov Moscow State University, Faculty of Physics,

Leninskie gory 1, str. 2, 119991 Moscow, Russian Federation
�3� Institute of Theoretical and Mathematical Physics,

Lomonosov Moscow State University,

Lomonosovskii prosp. 27, korp. 1, 119192Moscow,Russian Federation

E-mail: �a� ageeva@inr.ac.ru, �b� petrov@inr.ac.ru

Received 29 June 2022, revised 5 November 2022

Uspekhi Fizicheskikh Nauk 193 (11) 1205 ± 1213 (2023)

Translated by the authors

METHODOLOGICAL NOTES PACS numbers: 11.10. ± z, 98.80. ± k

Unitarity relation and unitarity bounds

for scalars with different sound speeds

Yu A Ageeva, P K Petrov

DOI: https://doi.org/10.3367/UFNe.2022.11.039259

Contents

1. Introduction 1134
2. Unitarity relation 1135

2.1 Distinguishable particles; 2.2 Identical particles; 2.3 Unitary bound; 2.4 Example: theory of two real scalar fields

3. Conclusions 1140
4. Appendix. Time-reversal invariance and symmetry of S matrix 1140

References 1141

Physics ±Uspekhi 66 (11) 1134 ± 1141 (2023) # 2023 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

1 Note that models of genesis and bounce often require violation of the

Penrose theorem [32] and, in particular, violation of the null energy
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perturbations at the expense of violation of Lorentz invariance, which
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An adequate approach to unitarity relations and unitarity
bounds makes use of Partial Wave Amplitudes (PWAs) (see,
e.g., Refs [41±44]). We follow this approach in our paper. We
aim at a self-contained presentation and give detailed
derivations, even though many steps follow closely the
analyses existing in the literature. In this sense this paper
may serve as a pedagogical mini-review of the subject, with
the novelty lying in the fact that we consider different sound
speeds of different excitations.

This paper is organized as follows. We derive in Section 2
the general unitarity relations for PWAs of 2! 2 scattering,
paying special attention to two-particle intermediate states.
In Section 2, we also derive the unitarity bounds. To this end,
in Section 2.1 we describe the class of theories we are dealing
with. We then study separately the cases of a pair of
distinguishable particles in the intermediate state (Sec-
tion 2.1) and a pair of identical particles (Section 2.2).
Unitarity bounds are derived in Section 2.3. We give an
illustrative example in Section 2.4, where we explicitly check
the validity of the unitarity relation to the leading nontrivial
order in a simple model of two real scalar fields. The
Appendix is dedicated to the time-reversal invariance and its
consequence for PWA's symmetry.

2. Unitarity relation

In this section, we proceed in the spirit of Ref. [41] and obtain
the unitarity relation for 2! 2 scattering processes in
theories with scalar fields fi whose sound speeds ui are
different. In further analysis, we consider massless case. The
quadratic action reads

S �
X
i

Sfi
; Sfi

�
�
d4x

�
1

2
_fi
2 ÿ 1

2
u 2
i �HHfi�2

�
:

The linearized equation of motion for fi is

�fi ÿ u 2
i Dfi � 0 ;

and its solution can be written as follows:

fi�x; t� �
�

dki

�2p�3
1���������
2Eki

p �
aki exp �ÿiEki t� ikix�

� a
y
ki
exp �iEki tÿ ikix�

�
;

where

Eki � ui ki ; �1�

and the operators api and a ypi obey the standard commuta-
tional relation

�ak 0i ; a
y
kj
� � �2p�3d �3��k 0i ÿ kj�di j ; �2�

and all other commutators equal zero. We define the one-
particle state as follows:

jpii �
���������
2Epi

p
a ypi j0i ;

so that one has the standard relation

0
��fi�x; t�

��pji � exp �ÿiEpj t� ipjx�di j ;

while the normalization of this state is given by

hp 0j jpii � �2p�3
������������������
2Ep 0j 2Epi

q
d �3��pi ÿ p 0j �di j : �3�

In the ith one-particle sector, we have

11 �
�

d3pi

�2p�32Epi

jpiihpij :

The S-matrix and T-matrix are related in the standard
way,

S � 11� iT ;

and we extract from T the overall d-function of 4-momentum
conservation:

T � �2p�4d 4
ÿP m 0 ÿ P m�M ; �4�

where P m �P p m
in and P m 0 �P p m

out are total 4-momenta of
the initial and final states, respectively.

Now, we consider an initial state

jc; bi � ���������
2Ep1

p ���������
2Ep2

p
a yp1a

y
p2
j0i ; �5�

with two particles of momenta p1 and p2, and a final state
jc 0; b 0i, with two particles of momenta p 01 and p 02. Notation b
refers to the types of the two particles, b � ffi;fjg, while the
notation c is shorthand for the pair of momenta,
c � fp1; p2g. Thus,
jc; bi � jfi; p1i 
 jfj; p2i :

In Eqn (5), we do not explicitly indicate the type of particle to
simplify formulas and write a yp1 � a

y
i p1

, etc.
Our purpose is to derive the unitarity relation for the

partial wave amplitudes.

2.1 Distinguishable particles
Let us begin with the case of distinguishable particles in a pair
b � ffi;fjg. In the next section, we consider the case of
identical particles.

The scalar product of states jc 0; b 0i and jc; bi is
hc 0; b 0 jc; b i � �2p�6 2Ep12Ep2d

�3��p 01 ÿ p1�d �3��p 02 ÿ p2�db 0b :

�6�

This follows from the one-particle state normalization (3).
In what follows, we consider the center-of-mass frame of
the two-particle system. In this frame, we denote
p � p1 � ÿp2, p � jpj � jp1j � jp2j. Let p̂ � p=p be the unit
vector along p and y;f be the corresponding angles. We
now replace the variables p1, p2 in (6) by P m � p m

1 � p m
2 , y,

and f, where we have in mind that in the vicinity of the
center-of-mass frame we have P m � �E; 0�, where E �
�u1b � u2b� p and u1b � ui, u2b � uj are sound speeds of the
two particles in the pair b � ffi;fjg. For the volume
element, we have

d3p1 d
3p2 � d3PPp 2 dp dp̂ � p 2

u1b � u2b
d4P m dp̂ ;
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which gives

d �3��p 01 ÿ p1�d �3��p 02 ÿ p2�dbb 0

� u1b � u2b
p 2

d �4��P m 0 ÿ P m�d �2��p̂ 0 ÿ p̂�dbb 0 ;

and hence

hc 0; b 0 jc; b i � �2p�6 4u1bu2b�u1b � u2b� d �4��P m 0 ÿ P m�

� d �2��p̂ 0 ÿ p̂�dbb 0 : �7�

As the next step, we introduce a two-particle state of
definite angular momentum in the center-of-mass frame. The
reason is that the unitarity relations have a particularly simple
form for the partial-wave amplitudes [41±44] (PWAs). The
relevant state is given by

jl;m;P m; bi � 1������
4p
p

�
dp̂ Ym

l �p̂�jc; bi ; �8�

where the integration runs over the unit sphere and Ym
l is the

spherical function,

Ym
l �p̂� ��ÿ1��jmjÿm�=2 exp �imf�

�������������������������������������
�2l� 1�

4p

ÿ
lÿ jmj�!ÿ
l� jmj�!

s
Pljmj�cos y�;

where we use the notation Plm�x� � �ÿ1�mPm
l �x�; the Ym

l

functions obey orthonormality�
dp̂ Ym

l �p̂�Ym 0�
l 0 �p̂� � dll 0dmm 0 : �9�

Let us also note that l is a standard notation for angular
momentum and m is its projection on some axis. The scalar
product of these states is found from (7):

hl 0;m 0;P m 0; b 0jl;m;P m; bi � 4pu1bu2b�u1b � u2b�
� �2p�4d �4��P m 0 ÿ P m�dll 0dmm 0dbb 0 :

Thus, the decomposition of the unit operator reads

11 �
�
d4P

X
l;m; b

jl;m;P m; bihl;m;P m; bj 1

N�b� � . . . ; �10�

where summation runs over all two-particle states and

N�b� � 2�2p�5u1bu2b�u1b � u2b� : �11�

The ellipsis in (10) stand for terms with multiparticle states.
We omit these terms in what follows and comment later on
how they affect the unitarity relation.

Let us now write the partial wave amplitude [45, 46],

T
�l�
m 0b 0;mb � hl;m 0;P m 0; b 0jT jl;m;P m; bi :

It is given by

T
�l�
m 0b 0;mb �

1

4p

�
dp̂

�
dp̂ 0 Ym

l �p̂�Ym 0�
l �p̂ 0�hc 0; b 0jT jc; bi :

Due to rotational invariance, the T-matrix does not vanish
only form 0 � m and does not depend onm [45, 46]. Thus, we

can write

T
�l�
m 0b 0;mb � dm 0m

Xl
~m�ÿl

T
�l�
~mb 0; ~mb

2l� 1
:

We now turn to the addition theorem for the spherical
harmonics, which states that the l-order Legendre polyno-
mial, depending on angle g, can be expressed through the
production of spherical harmonics as follows [47]:

Xl
m�ÿl

Ym �
l �p̂ 0�Ym

l �p̂� �
2l� 1

4p
Pl�cos g� ;

where g � � �p̂ 0; p̂� is the angle between the twomomenta, and
arrive at

T
�l�
m 0b 0;mb �

dm 0m
16p2

�
dp̂

�
dp̂ 0 Pl�cos g�hc 0; b 0 jT jc; bi ;

where, again due to rotational invariance, hc 0; b 0 jT jc; b i
does not depend on angular variables except for g. Because of
this property, it is straightforward to integrate over all angles
but g and obtain

T
�l�
m 0b 0;mb �

dm 0m
2

�
d�cos g�Pl�cos g�hc 0; b 0jT jc; b i :

Using (4), we obtain

T
�l�
m 0b 0;mb� �2p�4d �4��P m 0ÿ P m� dm 0m

2

�
d�cos g�Pl�cos g�Mb 0b :

Finally, we define the partial wave amplitude,

al; b 0b � 1

32p

�
d�cos g�Pl�cos g�Mb 0b ; �12�

and T-matrix can be written as follows

T
�l�
m 0b 0;mb � 16p�2p�4d �4��P m 0 ÿ P m�dm 0m al; b 0b : �13�

Now, we turn to the unitarity relation. The unitarity of the
Smatrix, SS y � S yS � 1, implies

Tÿ T y � iTT y � iT yT :

Inserting the unit operator given by (10) into the right-hand
side, we find

ÿ i
ÿ
T
�l�
m 0b 0;mb ÿ T

�l� �
mb;m 0b 0

�
�
�
d4P 00

X
m 00 ;b 00

1

N�b 00� T
�l�
m 0b 0;m 00b 00T

�l� �
mb;m 00b 00 :

We make use of (13) and recall the definition of N�b�,
Eqn (11), to obtain the unitarity relation in terms of
PWAs:

ÿ i

2
�al; ab ÿ a �l; ba� �

X
g

2

u1g u2g�u1g � u2g� al; ag a
�
l;bg ;

where u1g and u2g are sound speeds of particles in the
intermediate state g.

One often assumes time reversal invariance, which gives
T
�l�
m 0b 0;mb � T

�l�
mb;m 0b 0 and hence al; ab � al; ba (see Appendix and
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Refs [45, 46]). In that case, the unitarity relation reads

Im al; ab �
X
g

2

u1g u2g�u1g � u2g� al; ag a
�
l; gb :

For u1g � u2g � 1, this relation coincides with the standard
one (see, e.g., Refs [41, 48]).

2.2 Identical particles
We now consider the case of identical particles in a pair b. We
again define two-particle states as follows:

jc; bi � ���������
2Ep1

p ���������
2Ep2

p
a yp1a

y
p2
j0i ;

where b � ffi;fig, while the commutational relation is still
given by (2). In the case of identical particles, the normal-
ization of the two-particle state is different from (6):

hc 0; b 0jc; bi � �2p�62Ep12Ep2

ÿ
d �3��p 01 ÿ p1�d �3��p 02 ÿ p2�

� d �3��p 02 ÿ p1�d �3��p 01 ÿ p2�
�
dbb 0 : �14�

We proceed along the same lines as in Section 2.1. The change
of variables in (14) gives

hc 0; b 0jc; bi � �2p�6 8u 3
b d
�4��P m 0 ÿ P m�

� ÿd �2��p̂ 0 ÿ p̂� � d �2��p̂ 0 � p̂��dbb 0 ;
where ub � ui is the sound speed of the particle fi. The states
of definite angular momentum are still given by (8), but the
scalar product of these states is now

hl 0;m 0;P m 0; b 0jl;m;P m; bi

� 1

4p

�
dp̂ �2p�2 8u 3

b �2p�4d �4��P m 0 ÿ P m�dbb 0

� ÿYm
l �p̂�Ym 0�

l 0 �p̂� � Ym
l �p̂�Ym 0�

l 0 �ÿp̂�
�
: �15�

Since identical scalars always have even3 l, we consider even l
until the end of this subsection without mentioning this
explicitly. Making use of the properties of the spherical
functions, Eqns (9), and (A.2a), we get

hl 0;m 0;P m 0; b 0jl;m;P m; bi
� 2p 8u 3

b �2p�4d �4��P m 0 ÿ P m�dll 0dmm 0dbb 0 ;

and the contribution of two-particle states with identical
particles to the decomposition of the unit operator reads

11 �
�
d4P

X
l;m;b

jl;m;P m; bihl;m;P m; bj 1

Nidentical�b� � . . . ;

where

Nidentical�b� � �2p�5 8u 3
b :

Note that Nidentical�ub� � 2N�u1b; u2b�ju1b�u2b�ub , where N has
been introduced in (11), i.e., if all particles have the same
sound speed, then the normalization factorN is twice as large
for identical particles, as opposed to distinguishable particles.
We repeat the calculations in Section 2.1 and find that the
contribution to the PWAunitarity relation from intermediate

states g with two identical particles is given by

ÿ i

2
�al; ab ÿ a �l; ba� �

X
g

1

2u 3
g
al; aga

�
l;bg � . . . :

In a T-invariant (i.e., there is the time-reversal invariance)
theory one has

Im al; ab �
X
g

1

2u 3
g
al; ag a

�
l; gb � . . . :

The ellipses in formulas above mean the multiparticle state
terms. This is consistent with Refs [44, 48]: if all particles have
the same sound speed, then the contribution of identical
particles in the intermediate state has the extra factor 1=2, as
opposed to distinguishable particles.

2.3 Unitary bound
We combine the results of Sections 2.1 and 2.2 and write the
PWA unitarity relation as follows:

ÿ i

2

ÿ
al; ab ÿ a �l;ba

� �X
g

ggal; aga
�
l; bg ; �16�

where

gg � 2

u1g u2g�u1g � u2g� distinguishable ; �17a�

gg � 1

2u 3
g

identical ; �17b�

where Eqns (17a) and (17b) refer to distinguishable and
identical particles in the two-particle intermediate state,
respectively. We still do not write contributions explicitly
due to multiparticle intermediate states. We note in passing
that Eqn (16) can be written in the matrix form,

ÿ i

2
�al ÿ a

y
l � � al g a

y
l ;

where g is the diagonal matrix with matrix elements gg.
To obtain the unitary bound, we introduce rescaled

amplitudes ~al; ab via

al; ab � ~al; ab���������
gagb
p : �18�

In terms of the rescaled amplitudes, we write the unitarity
relation (16) in a simpler form:

ÿ i

2

ÿ
~al; ab ÿ ~a �l;ba

� �X
g

~al; ag~a
�
l; bg �

X
M

Al; aMA�l;Mb ; �19�

or in matrix form:

ÿ i

2

ÿ
~al ÿ ~a yl

� � ~al~a
y
l � AlA

y
l ; �20�

where we restore the contribution of multiparticle intermedi-
ate states M on the right-hand side and denote schematically
the (rescaled) amplitude 2!M by Al; aM.

Now, let us introduce Hermitean matrices

Pl � ÿ i

2
�~al ÿ ~a yl � ;

Ql � 1

2
�~al � ~a yl � :3 This can be seen also from Eqn (15): the integral on the right-hand side

vanishes for odd l.
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It can be written through introduced matrices and the
rescaled partial amplitude as

~al � Ql � iPl :

Then, the unitarity relation reads

Pl � P 2
l �Q 2

l � AlA
y
l ÿ i�P;Q� : �21�

We now choose the orthonormal basis in two-particle state
space in such a way that the Hermitean matrix Pl is diagonal:

Pl; ab � pl; adab :

In other words, this basis consists of those linear combina-
tions of states with two particles of definite types which are
eigenvectors of Pl. Then, the diagonal aa-component of
Eqn (21) is (no summation over a)

pl; a � p 2
l; a � �Q 2

l �aa � �AlA
y
l �aa :

Diagonal elements of matrices Q 2
l � QlQ

y
l and AlA

y
l are

nonnegative,4 so that

p 2
l; a ÿ pl; a 4 0 ;

and therefore

04 pl; a 4 1 :

To cast this relation into a somewhat more familiar form, we
come back to the unitarity relation (20), sandwich it between
an arbitrary vector jci of the unit norm, and write, still using
the basis of eigenvectors of Pl,

hcj~al~a yl jci �
X
a

pl; ajcaj2 ÿ hcjAlA
y
l jci :

This gives

hcj~al~a yl jci4 1

for all jci, and we arrive at the result that

no eigenvalues of ~al~a
y
l are greater than 1 : �22�

Until now, we have been working in full generalities. To
the best of our knowledge, previous analyses not only were
restricted to the unit sound speed, but also studied somewhat
less general situations (see, e.g, Refs [48±51]). Namely, (i)
the matrix ~al; ab was assumed to be symmetric due to T-
invariance, ~al; ab � ~al;ba. Then Ql and Pl are its real and
imaginary parts, respectively. (ii) It was further assumed
that Pl and Ql are simultaneously diagonalizable. This
property holds, in particular, when there is just one type of
particle and also when the contribution of multiparticle states
is negligible in (20): in the latter case, the imaginary part of
Eqn (21) gives �P;Q� � 0. In this situation, Eqn (22) says that
any eigenvalue ~aaa of matrix ~a obeys j~aaaj4 1. In fact, in this
case, one obtains a slightly stronger bound [52]. In the basis of
eigenvectors of ~a (i.e., common eigenvectors ofQ and P), one
writes the diagonal part of the unitarity relation (19) for each

a (no summation over a):

Im ~al; aa � ~al; aa~a �l; aa �
X
M

Al; aMA�l;Ma :

Again, the contribution of multi-particle intermediate states
is nonnegative, so we arrive at the inequality

Im ~al; aa 5 j~al; aaj2 :

This gives�
Im ~al; aa ÿ 1

2

�2

� �Re ~al; aa�2 4 1

4

and, therefore,

jRe ~al; aaj4 1

2

�23�

for any eigenvalue of ~a.
The last special situation is particularly relevant when it

comes to perturbative unitarity and estimating the strong
coupling scale [49±52] in corresponding EFT, where the
strong coupling problem indeed potentially arises. In that
case, the multiparticle intermediate states (almost) always
make contributions to (20) which are indeed suppressed by
extra powers of the couplings, while the matrix ~a is real at
the tree level. Perturbative unitarity then requires that
inequality (23) hold for the tree level amplitudes. Note,
however, that bounds (22) and (23) are qualitatively the
same, even in this situation.

2.4 Example: theory of two real scalar fields
In this section, we show explicitly that the unitarity relation
(16) holds at the lowest nontrivial order in a model of two real
scalar fields. Note that this model does not have a strong
coupling energy scale and is not particularly relevant for
cosmological perturbations.5

For our simple model, the Lagrangian reads

L � 1

2

ÿ
_f 2
1 ÿ u 2

1 �HHf1�2
�� 1

2

ÿ
_f 2
2 ÿ u 2

2 �HHf2�2
�

� l1
4!

f 4
1 �

l2
4!

f 4
2 �

l3
4

f 2
1f

2
2 ; �24�

where u1 and u2 are the two sound speeds. The scalar potential
in Eqn (24) is a general fourth-order homogeneous poly-
nomial symmetric under the transformationf1; 2 ! ÿf1; 2. In
this theory, the PWA matrix aab is symmetric due to T-
invariance, so the unitarity relation is

Im al; ab �
X
g

ggal; aga
�
l; gb

or, in matrix form,

Im al �
X
g

alga
y
l ; �25�

where elements of the diagonal matrix g are still given by
Eqn (17).

4 Because, e.g., 04 hc �a�jAlA
y
l jc �a�i � �AlA

y
l �aa for c �a�b � dab.

5 However, in [40], where the authors consider the model of Horndeski

bounce, formula (16) and corresponding unitarity bounds are used to

evaluate the quantum energy scale of strong coupling.
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The beginning of the calculation follows textbooks. There
are three two-particle states a � �f1;f1�, b � �f1;f2�, and
g � �f2;f2� in this theory. The tree-level matrix elements
make the matrix

Mtree �
Maa Mab Mag

Mba Mbb Mbg

Mga Mgb Mgg

0@ 1A � l1 0 l3
0 l3 0
l3 0 l2

 !
:

Since these matrix elements do not depend on scattering angle
g, the only nonzero PWA, as given by Eqn (12), is a0, i.e.,
scattering occurs in the s wave.

The matrix of these PWAs is given by

a0; tree � 1

32p

� 1

ÿ1
d�cos y�P0�cos y�Mtree

�Mtree

16p
� 1

16p

l1 0 l3
0 l3 0
l3 0 l2

 !
: �26�

As usual, inQFT, the right-hand side of (25) is of order lilj, so
Im al obtains its lowest-order contribution in one loop. This
contribution comes from s-channel diagrams shown in Fig. 1,
while t- and u-channel diagrams make no contribution to the
imaginary part in one loop.

We begin with the first diagram in Fig. 1. It gives the one-
loop contribution to matrix element

iM
�1�
1- loop �

l23
2

�
d4q

�2p�4
���

E

2
ÿ q 0

�2

ÿ u 2
2 q

2 � iE
�

�
��

E

2
� q 0

�2

ÿ u 2
2 q

2 � iE
��ÿ1

;

where E is still the total energy in the center-of-mass frame.
Upon rescaling u2q! q, a textbook calculation gives

ImM
�1�
1- loop �

l23
32pu 3

2

:

Likewise, diagrams 2±6 in Fig. 1 give

ImM
�2�
1- loop �

l21
32pu 3

1

; ImM
�3�
1- loop �

l2l3
32pu 3

2

;

ImM
�4�
1- loop �

l1l3
32pu 3

1

; ImM
�5�
1- loop �

l22
32pu 3

2

;

ImM
�6�
1- loop �

l23
32pu 3

1

:

We now turn to diagram 7 in Fig. 1. Unlike the others, it has
two different particles in the loop. We write

iM
�7�
1- loop � l23

�
d4q

�2p�4
���

E

2
ÿ q 0

�2

ÿ u 2
1 q

2 � iE
�

�
��

E

2
� q 0

�2

ÿ u 2
2 q

2 � iE
��ÿ1

: �27�

There are four poles of the integrand at

q 0
1; 2 �

E

2
� u1jqj � iE ;

q 0
3; 4 � ÿ

E

2
� u2jqj � iE :

Without loss of generality, we assume

u1 5 u2 :

Then, it is convenient to close the integration contour as
shown in Fig. 2; the poles inside it are at q 0

1 and q 0
3 . We

integrate over q 0 and get

iM
�7�
1- loop � l23

�
d3q

�2p�4 �ÿ2pi�

�
�

1

2qu1
ÿ
E� q�u1 ÿ u2�

�ÿ
E� q�u1 � u2�

�
� 1

�ÿ2qu2�
ÿÿE� q�u1 � u2� ÿ iE

�ÿ
E� q�u1ÿ u2�

� � :
The first term in the integrand does not contribute to
ImM

�7�
1- loop. The imaginary part due to the second term is

calculated using the Sokhotski±Plemelj formula,

lim
E!0�

�
1

x� iE

�
� �ipd�x� � P

�
1

x

�
;

f2

f2

a! a
f1 f1

f1

l3 l3

f1

1

f1

f1

a! a
f1 f1

f1

l1 l1

f1

2

f2

f2

a! g
f1 f2

f1

l3 l2

f2

3

f1

f1

a! g
f1 f2

f1

l1 l3

f2

4

f2

f2

g! g
f2 f2

f2

l2 l2

f2

5

f1

f1

g! g
f2 f2

f2

l3 l3

f2

6

f1

f2

b! b
f2 f2

f1

l3 l3

f1

7

Figure 1.One-loop s-channel diagrams in the theory with Lagrangian (24).

Im q0

Re q0

q03 q01

Figure 2. Integration contour relevant to Eqn (27).
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where P stands for the principal value. We find

ImM
�7�
1- loop � l23

�
d3q

�2p�3
1

2qu2
ÿ
E� q�u1 ÿ u2�

�
� pd

ÿÿE� q�u1 � u2�
�
;

and, finally,

ImM
�7�
1- loop �

l23
8pu1u2�u1 � u2� :

To sum up, we collect all results in one matrix:

Im a0; 1- loop � 1

16p
ImM1- loop

� 1

16p

l21
32pu 3

1

� l23
32pu 3

2

0 l1l3
32pu 3

1

� l2l3
32pu 3

2

0
l23

8pu1u2�u1�u2� 0

l1l3
32pu 3

1

� l2l3
32pu 3

2

0
l22

32pu 3
2

� l23
32pu 3

1

0BBBB@
1CCCCA : �28�

Now, Eqn (17) gives for matrix g in (25)

g � diag

�
1

2u 3
1

;
2

u1u2�u1 � u2� ;
1

2u 3
2

�
: �29�

Making use of Eqns (26), (28), and (29), we find that

Im a0; 1- loop � a0; tree g a0; tree ;

i.e., the unitarity relation (25) is indeed valid to the lowest
nontrivial order in the couplings.

Finally, we would like to note that, for example, for
relatively large negative l3, relation (22) does not hold.
However, this is not a sign of the strong coupling regime.
The reason for the violation of (22) is that the potential in
Lagrangian (24) for relatively large negative l3 is unbounded
from below, and the theory becomes physically unacceptable.

3. Conclusions

In this paper, we found PWA unitarity relations (16) in a
theory containing massless scalar fields with different sound
speeds. We illustrated these relations in a model with
Lagrangian (24) to the lowest nontrivial order in the
couplings. When written in terms of rescaled amplitudes
(18), the unitarity relations have a particularly simple form
(19), which is formally the same as in a theory with unit sound
speeds.

Using the unitarity relations, we derived the unitarity
bounds, which in the most general case have the form (22),
and, in the (still quite general) case considered in the
literature, reduce to the familiar form (23) (but written in
terms of rescaled amplitudes). The latter form is particularly
useful for evaluating the quantum strong coupling scale in
pertinent EFT. It is worth stressing here that we consider the
model with Lagrangian (24) in Section 2.4 only as a clear
example of how to calculate unitarity relation (16) for a
concrete theory at the lowest nontrivial order. For sure,
there is no strong coupling energy scale in the theory (24).
However, in [40], we consider another model, Horndeski
bounce, which has strong gravity in the past, i.e., effective
Planck mass runs to zero. There are two different types of
perturbations with, generally speaking, different sound

speeds in this model. There, we use formula (23) in order to
evaluate the quantum energy scale of strong coupling.

We anticipate, however, that the results of this paper may
have applications in other theories where different perturba-
tions about nontrivial backgrounds propagate with different
sound speeds. For example, in condensed matter studies,
different sound speeds effectively emerge in different setups
corresponding to anisotropic media [53±55]. In such media,
once unitarity is ensured, a correspondingmodel may become
a useful and interesting tool to analyze condensed matter
systems with anisotropic properties (see, e.g., Refs [56, 57]).

Finally, one can turn to unitarity in theories with violated
Lorentz invariance. For example, in Ref. [58], the authors
develop a systematic approach to the calculation of scattering
cross sections in theories with violation of the Lorentz
invariance and apply it to compute the probabilities of
several astrophysically relevant processes. In this case, it is
interesting to understand if unitarity even holds in these kinds
of models (see, e.g, Ref. [59], where the author checks the
optical theorem for the concrete physical process). If so, one
can also calculate the corresponding unitarity relation and
unitarity bounds which can be useful for analyzing the cutoff
energy scale of the concrete physical theory.
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4. Appendix. Time-reversal invariance
and symmetry of S matrix

In this Appendix, we show that T-invariance of the S matrix
implies the symmetry of the partial-wave amplitudes,

T
�l�
b 0b � T

�l�
bb 0 : �A:1�

T-invariance of the S matrix is invariance under the
exchange of initial and final states and sign reversal of all
spatial momenta:

hp 0; b 0jS jp; bi � hÿp; bjS j ÿ p 0; b 0i :

Wemake use of this property to write (we work in the center-
of-mass frame)

hl;m; b 0jS jl;m; bi

� 1

4p

�
d3p̂ 0 d3p̂Ym �

l �p̂ 0�Ym
l �p̂�hp 0; b 0jS jp; bi

� 1

4p

�
d3 p̂ 0 d3p̂Ym �

l �p̂ 0�Ym
l �p̂�hÿp; bjS j ÿ p 0; b 0i

� 1

4p

�
d3�ÿp̂ 0� d3�ÿp̂�Ym �

l �ÿp̂ 0�Ym
l �ÿp̂�hp; bjS jp 0; b 0i :

Now, the spherical functions obey

Ym
l �ÿp̂� � �ÿ1�lYm

l �p̂� ; �A:2a�
Ym �

l �p̂� � �ÿ1�mYÿml �p̂� ; �A:2b�
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so that

Ym �
l �ÿp̂� � �ÿ1�l�m Yÿml �p̂� :

This gives

hlm; b 0jSjlm; bi

� 1

4p

��
d3p̂ 0 d3p̂Yÿml �p̂ 0�Yÿm �l �p̂�hp; bjSjp 0; b 0i

� hl; ÿm; bjSjl; ÿm; b 0i :

Since these matrix elements are actually independent of m,
this proves relation (A.1).
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