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Abstract. Precise control for individual quantum systems, such
as individual photons, atoms, or ions, opens the door to a range of
quantum technologies. The goal of this concept is to create
devices that, due to quantum effects, will be able to solve prob-
lems of data processing and secure information transfer and
high-precision measurements of parameters of the surrounding
world more effectively than existing approaches do. The key step
in the advent of quantum technologies was the pioneering work of
the second half of the twentieth century, which, first, showed the
paradoxical nature and correctness of the quantum mechanical
description of nature and, second, laid down and introduced the
basic experimental approaches that became the basis of modern
quantum technologies. The Nobel Prize in Physics 2022 was
awarded to Alain Aspect, John Clauser, and Anton Zeilinger
for their experiments with entangled photons, establishing the
violation of Bell inequalities, and pioneering quantum informa-
tion science.
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1. Introduction

About a century ago, events were taking place in physics that
marked the emergence of quantum mechanics. The concept of
individual ‘quanta,” which Max Planck introduced in 1900,
not only helped solve the problem of the ultraviolet
catastrophe [1] but had much more far-reaching conse-
quences for physics. Born in heated debates was a deeply
unintuitive science not amenable to the usual ‘Newtonian’
description for humans, based, on the one hand, on relatively
simple mathematics, and, on the other hand, on such new
concepts as the wave properties of particles, probability
amplitude, superposition, and entanglement. Specifically, in
1913, Niels Bohr formulated his famous model using experi-
mental data on the spectra of the hydrogen atom [2-4]. The
model is based on the concept of quantization: for
stationary electron orbits, the angular momentum multi-
plicity is / = h/2m, where h = 6.626x 1073* J s is the famous
Planck constant. The works of Max Planck, Paul Dirac,
Wolfgang Pauli, Max Born, John von Neumann, Arnold
Sommerfeld, and Albert Einstein, the experiments of Stern
and Gerlach, and the theory of Louis de Broglie expand the
understanding of the quantum world, allowing us to
interpret accumulated experimental data and predict the
behavior of elementary systems: the structure of the atom,
the structure of spectra, properties of radiation, the
interaction of light and matter, wave properties of parti-
cles, and much more. The year 1925 saw Heisenberg’s work
with the fundamental formulations of quantum mechanics
and reasoning about the relationship between quantities
fundamentally accessible to observation in experiment
(which in 1927 led him to the formulation of the uncer-
tainty principle) [5]. And, of course, there was Schrodinger’s
surprisingly correct formulation of his famous equation [6].
The new ‘quantum world’ had fully come into its own.
Quantum mechanics gave humankind a powerful tool for
describing the interaction of physical systems with radiation,
and its mathematical apparatus was actively developing,
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integrating relativism, the concept of spins, the physical
vacuum, other types of interaction, and much more. For
instance, quantum electrodynamics—one of the areas of
development of quantum mechanics—even today retains
the position of the most accurate predictive science, allowing
calculations of the properties of elementary particles with an
error of up to the 10th decimal place (for example, the g-factor
of the electron!). At the same time, many formulations and
concepts of quantum theory have caused, and often continue to
cause, controversy and misunderstanding. Even the usual
concept of superposition, written through the amplitude
coefficients of the wave function v = a|0) + B|1) (Jaf*+
|BI*=1), where |0) and |1) are some orthogonal states, led to
the formulation of the well-known paradox of ‘Schrodinger’s
cat,” which is simultaneously in the living and dead states [7].
The lack of direct experiments and the lack of technical ability
to study single quantum systems did not allow us to make a
clear choice in favor of one interpretation or another.
Furthermore, the postulates of quantum mechanics them-
selves opened up the broadest opportunity for discussing
various ‘Gedankenexperiments’ (thought experiments), which
caused heated discussions among great scientists. Uncertainty
persisted for decades, which predictably increased the intrigue.
In this sense, the situation was reminiscent of the story of the
special theory of relativity, also rich in thought experiments
and their seemingly paradoxical interpretation.

One of the cornerstones for discussions was the concept of
entanglement and the inextricably linked Einstein—Podolsky—
Rosen paradox (EPR paradox, 1935), which attracted the
close attention of the scientific (and not only scientific)
community. The formulation of the paradox is quite simple
[8] (see also Fock’s introductory article [9]). It was proposed
to consider the state of two particles A and B, which is
simultaneously an eigenstate for the sum of momenta
operator p, = pa + pp and the coordinate difference opera-
tor X_ = Xa — Xg. Note that, although the individual position
and momentum operators of each particle do not commute
([Xa,PA]= [%B, PB] = i), the commutator [¥_,p,] =0, and
therefore a quantum state with deterministic values p. for the
observable p, and x_ for the observable X_ exists (from the
point of view of quantum optics, this state corresponds to a
two-mode compressed state with an infinite value of the
compression parameter). By measuring the coordinate or
momentum of particle A and obtaining the values xa or pa,
respectively, one can calculate the coordinate or momentum
of particle B: xg = x_ + xa, pg = p;+ — pa. Based on the
principle of locality, it can be argued that the direct choice
of the type of measurement (ps or Xa) for particle A should
not affect the ‘physical reality’ for particle B. Therefore, the
conclusion is drawn that both observables (Xg and pg) should
simultaneously have some definite ‘real’ values of pg and xg,
even if not predicted by the existing ‘incomplete’ formalism of
quantum mechanics. However, in principle, one can expect
that the apparatus of quantum mechanics can be supplemen-
ted by a method for predicting the values of noncommuting
observables.

A somewhat more visual development of the EPR
paradox is Bohm’s thought experiment, formulated by him
in 1951 [10]. He considered a particle with spin 0 decaying into
two particles A and B with spin 1/2, and the orientations of
the spins of the daughter particles should be opposite. The
wave function of the resulting system can be written as

! https://physics.nist.gov/cgi-bin/cuu/Value?gem.

¥ )an = 1/V2(1DAIN s =[1)all)g)s where [1) and |])
denote the eigenstates of the spin projection onto the z
quantization axis. This entangled state is now commonly
referred to as the Bell state, named after John Bell. The
specificity of this state is that the first and second particles are
anticorrelated: this state is an eigenvector of the operator
6(n),6(n)y with an eigenvalue equal to —1, where 6(n)
denotes the spin projection operator onto the axis defined by
the three-dimensional unit vector n. Accordingly, measuring
the spin 6(n) , of one particle uniquely determines the result of
measuring the second spin 6(n)g, and it does not matter at
what distance the particles are from each other. From a
classical point of view, it would seem, what is surprising here?
After all, if you take a box with a pair of shoes, cutitin halfand
send the halves to different cities, then finding the right shoe in
Moscow will definitely mean that the left shoe will be found in
St. Petersburg. However, for a quantum system, everything
turns out to be much more complicated, since anti-correlation
remains valid, for example, for mutually orthogonal axes n;
and ny, for which the corresponding operators 6(n; ) and 6(n;)
do not commute, and therefore, from the point of view of the
axiomatics of quantum mechanics, cannot have certain values
at the same time.

Albert Einstein, being a proponent of determinism,
proposed a possible solution to the paradoxes of quantum
mechanics using the idea of so-called ‘hidden variables’ (this
was happening in the late 1930s; the theory was subsequently
developed by de Broglie and Bohm). According to Einstein, it
was precisely such hypothetical variables, inaccessible to
direct observation, that should have unambiguously deter-
mined the outcome of the measurement of quantum mechan-
ical quantities, and the seemingly random result to the
observer should have in fact been predetermined in advance.
A clear example is the Stern—Gerlach experiment, in which
spin —1/2, described by the wave function ¥ = cos (6/2)| 1)+
sin (0/2)] |) (0 is the angle to the z-axis), is projected onto the
z-axis. From the point of view of the postulates of quantum
mechanics, the measurement result is random, and the
probability of detecting a spin direction co-directed with z is
p = cos?(0/2). From the point of view of the theory of
‘hidden variables,” it can be assumed that there is some
hidden deterministic parameter u, inaccessible to the obser-
ver, that predetermines the result of spin measurement. And if
the probability distribution of the parameter is described by
the cos? (0'/2) function (9 is uniformly distributed from 0 to
m), then the measurement result will not differ from the
quantum mechanical interpretation with a random out-
come. An argument in favor of the theory of ‘hidden
variables’ was also the fact that nature is replete with
examples where processes that seem random (the behavior
of a gas at the microscopic level, strange attractors, etc.) are
actually determined through dynamic equations. However,
counterarguments were also expressed: for example, John
von Neumann came up with a proof [11] that quantum
mechanics supplemented with hidden variables will not
predict the results of experiments.

A further development of the theory of hidden variables
was the interpretation of David Bohm (1952), who formu-
lated the theory of nonlocal hidden parameters [12]. The
result of quantum mechanical experiments in his theory is
determined by a hidden ‘guiding wave,” which significantly
expand de Broglie’s original theory and at the same time made
it possible to interpret the results of experiments, such as
electron diffraction in Young’s experiment. In fact, Bohm
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purposefully developed a very specific theory that made
predictions identical to traditional quantum mechanics.
Therefore, Bohm showed that the existence of full-fledged
theories with hidden parameters is indeed possible.

Inspired by ideas about various interpretations of quan-
tum mechanics and Bohm’s theory, in 1964, the Irishman
John Stewart Bell formulated his famous theorem [13]. He
showed that the results of observations of particles whose
behavior is described by an arbitrary hidden parameter
theory must satisfy certain relationships, now known as Bell
inequalities. At the same time, the axiomatics of quantum
mechanics predict the violation of these inequalities for
experiments on entangled particles. Therefore, discussions at
this point had continued for more than 30 years, and there
were still 10 years to come before the first experimental work
of John Clauser, who first tested Bell inequality. It is pertinent
to note that Bell also complemented von Neumann’s proof by
pointing out inaccuracies in his original work.

In the 1970s, the development of laser light sources, high-
sensitivity detectors, and high-speed electronics opened up
possibilities for working with single quantum systems
(primarily photons) and experimental verification of Bell
inequalities. Alain Aspect, John Clauser, and Anton Zeilin-
ger were the first to conduct experiments that were important
for the entire quantum mechanical science. The work of
Clauser and Aspect showed a violation of Bell inequalities,
which resolved a half-century dispute among adherents of
different interpretations of quantum mechanics. Zeilinger’s
research demonstrated that, in addition to the importance of
entangled photon states for fundamental quantum
mechanics, they could provide the basis for new ideas, such
as demonstrating the transfer of quantum states over
distance — quantum teleportation and quantum communica-
tions. In the first two decades of the 21st century, the
consequences of the scientific experiments of Clauser,
Aspect, and Zeilinger became clear: their results formed the
basis for quantum technologies—instruments and devices
based on the control of individual quantum states. Technol-
ogies such as quantum random number generators, quantum
key distribution devices (quantum cryptography), and proto-
type quantum computers are already entering our lives. Alain
Aspect, John Clauser, and Anton Zeilinger were awarded the
2022 Nobel Prize in Physics for their experiments with
entangled photons, establishing violations of Bell inequal-
ities, and pioneering work in quantum information science.

The field of quantum information processing has already
been the subject of several reviews in the journal Uspekhi
Fizicheskikh Nauk (Physics— Uspekhi). A number of issues of
quantum computing were considered in Refs [14-17], various
aspects of quantum key distribution were considered in Refs
[18, 19], and issues of quantum metrology were considered in
Refs [16, 17]. The EPR paradox and Bell inequalities in the
context of quantum optics were discussed in the studies by
Klyshko [20, 21] and Klyshko together with Belinsky [22] (see
also the review by Sokolov [23]). The possible role of
entangled states for studies of living systems is discussed in
review Ref. [24].

2. Bell inequality (original version),
experiments of Nobel laureates,
Greenberger—Horne—Zeilinger states

The remarkable result obtained by Bell [13] made it possible
to demonstrate that no theory based on local hidden variables

could explain the results of quantum mechanics. In essence,
Bell inequalities are constraints that must be satisfied by the
results predicted by an arbitrary local hidden variable theory,
but which are violated by the predictions of quantum
mechanics. The most famous example of Bell inequalities is
the Clauser—Horn—Shimony—Holt (CHSH) inequality, which
is convenient in that it can be verified using pairs of photons
entangled in polarization. The heart of this inequality is as
follows (see review [22]).

Let two remote participants, Alice and Bob, have certain
devices at their disposal. On each of the two devices there are
two keys, conventionally designated X and Y, as well as a
screen on which the values +1 or —1 appear after each press of
one of the two keys. Each of the participants N times presses
one of two keys, and for each of the N presses, the choice of
the key X or Y by Alice and Bob is made independently and
randomly. The results read from the screen are entered into a
table by Alice and Bob. We will denote by X(X?) and
YA (Y®) the results read from the screen after the i-th pressing
of one of the two keys X or Y by Alice (Bob), respectively. It is
important to note that, for each valuei = 1,..., N, Alice and
Bob receive only one of two values: X or Y2 on Alice’s side
and X2 or Y? on Bob’s side. Therefore, if, for example, for
i=35, Alice pressed X and Bob pressed Y, then the
‘complementary’ values of Y2 and X8 remain unknown.

However, when 1) the devices in question are fundamen-
tally unable to interact with each other at the moment of
keypressing, for example, if the events of keypressing and the
appearance of results on the screens are separated by a space-
like interval, 2) the choice in keypressing by Alice and Bob is
not fundamentally deterministic or is determined by factors
independent of the ‘inside’ of the devices, then, from the point
of view of the complete theory that describes the response of
these devices to an arbitrary choice of keystrokes, we can talk
about the existence of all four values X, Y2, X2, Y foreach
i. It is easy to see that these values satisfy the inequality

XAXP 4+ YP) + YA - YD) <2

due to the fact that all values belong to the set —1, +1. Then, it
is obvious that the modulus of the average value of
Si= XMXE+ YB)+YAXPB - YPB) is also limited to a
maximum value of 2:

5| = ‘%Zs < %Zw <2.

i

(It can be easily shown that this inequality holds for any
values of X/, YA, XB, YP not exceeding 1 in modulus [25].)
On the other hand, the average value of S is the sum of four
correlation functions

S=XAXB 4+ XAYB4 YAXB — YAYB,

Although Alice and Bob cannot calculate S exactly, each of
the four terms can be estimated to within 1/ /N of the given
data (for example, to estimate YAXB, Alice and Bob can
calculate the average of the product of the instrument
readings in =~ N/4 cases where Alice pressed Y and Bob
pressed X). Note that the crucial assumption here is that the
choice of keys by Alice and Bob is independent of the ‘internal
gears’ that determine the functioning of the devices.

We can therefore expect that the average values
observed by Alice and Bob for N — oo will also be limited




1098 A K Fedorov, E O Kiktenko, K Yu Khabarova, N N Kolachevsky

Physics— Uspekhi 66 (11)

Alice Bob

-1
@+ "
@

Figure 1. Schematic diagram of Bell inequality verification using entangled
photons.

to a value of 2:

()= [(AXF) + (XAYP) + (YAXP) - (YA P <2, (1)

where angle brackets correspond to averaging over available
data.

We next consider a specific version of constructing devices
based on a pair of entangled photons, whose polarization
degrees of freedom are described by the vector

1
D) p=—= ([H)AH)g + | V)AlV)s),
|97) AB 7 (IH)AIH ) + 1V )AlV)5)
where |H ) and | V') denote the basis vectors of horizontal (H)
and vertical (7') polarization, respectively (see also Fig. 1).
Let particle A be given to Alice and B to Bob.
We introduce an observable

o(0) = op )| - (045 ) Yu(0+3 )|

where [y(0)) = cosO|H) +sin0|V), corresponding to the
measurement of the photon polarization with respect to two
orthogonal axes obtained by rotating the H and V" axes by an
angle 6. Note that the eigenvalues, i.e., the experimentally
observed values of operator 6(0), are 1. The average value
of the product of observables 6(0;),6(02)p for the state
|®T) s is of the form

<&(61)A&(02)B> = <(D+|AB6(91)A&(92)B‘(D+>AB
= cos [2(0, — 02)] . (2)

Assume that, when pressing the X' and Y keys on Alice’s side,
the observables 6(0), and 6(n/4), are measured, and when
the X and Y keys are pressed on Bob’s side, the observables
6(n/8)p and 6(—n/8)y are measured. Then, in accordance
with expression (2), we have

1
<XAXB> — <XAYB> _ <YAXB> — —<YAYB> :72

)

which leads to

[(S) =2v2>2.

Therefore, the predictions of quantum mechanics are incon-
sistent with the limitations that arise in a theory operating
with arbitrary local hidden variables.

We emphasize once again that, in the above reasoning, a
fundamental role is played by the initial premise that there is
no functional dependence of the observed values on Bob’s
side on Alice’s key choice (and vice versa). Otherwise, one
can, for example, propose a scheme in which X2 :=X/, and
also YB:=XA if Alice pressed X, and YP := — YA if Alice

1 1

pressed Y, and get |(S)| = 4 for arbitrary X, YA = +1. For

similar reasons, the types of measurements (choice of keys) in
a full-fledged test for violation of Bell inequalities must be
random: otherwise, having information about the protocol of
a future experiment can allow Alice and Bob to program
devices so that the observed value (S') takes almost any value
from —4 to 4. Such deliberate ‘preprogramming’ is difficult to
imagine in the case of a real physical experiment, but it can
take place in industrial devices that are reported to use
entangled states.

The first experimental demonstration of violation of
inequality type (1) was demonstrated in the work of Friedman
and Clauser [26]. It considered the production of a pair of
entangled photons in [®T) \p = 1/V2(|+) 4| +)p + =) al—)p)s
where 4+ and — denote the helicity of the photons. Photon pairs
at wavelengths of 551 nm and 423 nm, respectively, were
produced in the 4p26'Sy — 4p4s4!P; — 4s524!S; cascade
transition in calcium. Photons were detected by single-photon
detectors, with polarizers placed in front of them. A gradual
change in the relative angle between the polarizers was carried
out, and the ratio of the frequency of coincidences of readings
on detectors in the presence and absence of polarizers was
considered the main observed quantity. The experimental
results obtained from the data of 200 hours of observations
were fully consistent with the predictions of quantum
mechanics and contradicted the CHSH inequality (specially
formulated for observable quantities).

Like any mathematical result, Bell inequalities rely on
certain assumptions. The most important assumption under-
lying the proof of the impossibility of the existence of the
theory of hidden variables is the independence of the choice of
measurement types by Alice and Bob, as well as the
fundamental impossibility of the influence of the choice of
measurement of one of the parties on the measurement results
of the other party. To ensure that such influence is not
possible, Alice’s (Bob’s) measurement type selection and
Bob’s (Alice’s) measurement must be separated by a space-
like interval. Otherwise, a ‘locality loophole’ arises, which
makes it possible to potentially explain the violation of Bell
inequality in a classical way.

Important steps to close the locality loophole, as well as
improve the efficiency of the experiment to demonstrate
violations of Bell inequalities, were made by Aspect et al. in
1981-1982 [27, 28] (see also Aspect [29]). The work that
attracted the major attention was Ref. [29], in which, thanks
to the use of acousto-optical devices, it was possible to design
the installation in such a way that the switching of photon
measurement bases was carried out in less than 20 ns— the
time required for photons to travel a distance of 6 m between
the source and the detection devices.

However, the setup used still left the possibility of a
locality loophole. It took more than 15 years to completely
close the locality loophole: the decisive contribution to this
was made by the results of the Zeilinger group [30-34]. Note
that in Ref. [30] the detecting facilities were 400 m apart.

Another technical obstacle to the correct proof of Bell
inequalities is the so-called ‘detection loophole,” which arises
in real experiments with the use of photodetectors with finite
efficiency. The initial reasoning behind Bell inequalities
assumes that participants will always get a result of +1 or
—1 after choosing the type of measurement. In a real
experiment, however, it may happen that the photon will
not be detected by one or both parties due to the finite
efficiency of the detectors. One can naively assume that in
the analysis of experimental results it would suffice to limit
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Table. Firmware layout for Alice and Bob’s devices that ensures violation
of Bell inequalities when excluding records with a detection error when
calculating the value of (S).

Experiment XA YA Xxp vB
number 7
1 +1 +1 +1 ‘error’
2 -1 +1 ‘error’ -1
3 -1 ‘error’ -1 -1
4 ‘error’ —1 —1 +1

oneself to a subsample of experimental results in which both
participants, Alice and Bob, successfully detected a photon.
However, in this case, it is possible to propose the design of
devices whose readings violate Bell inequality when the
devices, in addition to results +1 and —1, can produce a
third result (‘detection error’). The table shows a variant of
the ‘pre-programmed firmware’ of devices to ensure that the
(S') value reaches the maximum value of 4.

To close the detection loophole, one can randomly select
the value +1 or —1 in case the device itself produces an error
(this approach, in particular, is used in quantum cryptogra-
phy protocols), but this can significantly reduce the final
value of quantity (S). Another way is to use delayed
measurements, implemented in experimental work on NV
centers in diamonds [35].

A much more nontrivial problem is the assumption of
random independent choice of the type of measurements.
Existing random number generators are usually pseudoran-
dom, i.e., use special deterministic mathematical functions to
obtain long sequences of bits from finite, so-called random
seed sequences. A stochastic physical process can be used to
generate the ‘initial entropy,’ but at the microscopic level this
process can potentially be described by deterministic equa-
tions, which introduces difficulty in rigorously justifying the
independence of measurement choices. An elegant approach
to this problem was considered in the work of A Zeilinger’s
group [34], where signals obtained from astronomical
observations were used as sources of randomness for
choosing the types of measurements. From an analysis of
the light cones of the stellar sources of randomness used, there
follows the conclusion: to explain the violation of Bell
inequalities in a classical way, it is necessary to assume that
the stars ‘conspired’ about the necessary correlation of their
behavior ~ 600 years before the implementation of the
experiment by scientists on Earth.

Another elegant demonstration of the impossibility of
describing the results of quantum mechanics by the theory of
local hidden variables can be constructed on the basis of the
three-qubit entangled Greenberger—Horne—Zeilinger state
(GHZ) [36], which is of the form

5 (04I0)8l0)c + DAl Dsl1)c)-

From this point on, the basic states of qubits correspond
to the vectors

|GHZ) spc =

In a particular case, these states can be realized as photon
polarization states [0) = |H ), |1) = |V).

Alice Bob

© -
@-

I s Béé(mmwmﬁ\1>A\1>B>\1c>

Charlie

Figure 2. Diagram demonstrating the impossibility of describing the
results of quantum mechanics by the theory of local hidden variables
using a three-qubit GHZ state.

Let particles A, B, and C be respectively transmitted from
the source to three participants— Alice, Bob, and Charlie
(Fig. 2). At each round, each participant can perform one of
two measurements described by the operators

N 0 1 . 0 —i
O'X:<1 0) and O'y:<i 0),

after which the procedure is repeated, and the participants
receive a fresh GHZ state. We will denote the measurement
results 6y and ¢y at the ith round as X iP and YiP , respectively,
where P = A, B, C denotes the particle being measured. It is
easy to see that, in accordance with the axiomatics of
quantum mechanics, the relation

XPYPYE = YAXPYE = YO YPXC = -1 (3)

must be fulfilled, because |GHZ) is an eigenvector (with
eigenvalue —1) for the corresponding triple tensor products
of the operators 6y and 6y. From equalities (3), we can
conclude that

(XiA YiB YiC)(YiAXiB Yz'C)(YiA YiBXiC) = XiAXiBXiC =1

However, the [GHZ) vector is an eigenvector of the operator
0x ® 6y ® 6y with eigenvalue +1, which corresponds to

XAXBXC=1.

Therefore, the assumption that for each particle P = A, B,C
at each round i both values of X7 and Y/ are determined,
although simultaneously unknown, is incompatible with local
hidden variable models. Experimental confirmation of the
validity of the predictions of quantum mechanics for the
GHZ state of polarization qubits was demonstrated in
Ref. [36].

3. Development of Bell inequalities:
quantum entanglement as a resource
and quantum teleportation

The next step in the development of the study of quantum-
mechanical systems and violations of Bell inequalities was the
question: how could this be used? A modern view of this issue
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Figure 3. Quantum teleportation of a single-qubit state.

is presented in Section 4. One of the central ideas was the
teleportation of quantum states [37]—the transfer of a
quantum state over a distance (this does not imply physical
movement from one place to another). Recall that the
theorem on the prohibition of copying (‘cloning’) prohibits
the possibility of producing an ideal copy of a previously
unknown quantum state [38, 39]: the presence of such an
operation would contradict the linearity of quantum
mechanics. However, if the original state is destroyed, an
ideal copy of it can be recreated elsewhere. This concept
formed the basis of the quantum teleportation protocol,
which was first demonstrated in 1997 by the groups of
Anton Zeilinger [40] and Sandu Popescu [41].

Recall that the basis of the quantum teleportation
protocol for some single-qubit state |y) = «|0) + f|1), where
o and f are arbitrary complex numbers that satisfy the
normalization condition |o|* + |/3|2 =1, and |0), |1) denote
the basic states of a two-level system, is the use of the
maximum entangled state, for example, one of the four Bell
states

+ 7L + fi
|® >—ﬂ(\0>\0>i|1>\1>)7 ¥ = 2(|0>\1>ﬂ:|1>|0>)
(see Fig. 3).

Let the sender Alice possess particle A in state |i) , as well
as particle C from the entangled pair [®*).g, and the
recipient Bob possesses the second particle from this pair—
B. If Alice performs a joint measurement of particles A and C
in the basis of Bell states, with equal probabilities of 1/4, she
will have one of four outcomes: |@ ) sc, D Vacs [P ) acs
|¥ ") sc- In this case, Bob’s B particle will appear, respec-
tively, in one of four states [,)p = 2|0)g + f|1)g, |¥2)g =
2/0)g — Bll)g. [¥3)p = all)g + Bl0)g. [W4)p = o[1)g — Bl0)g.

Note that an equally weighted ensemble of these four states

Figure 4. Tensor diagram of Bob’s state before he performs a unitary
transformation in the single-qubit quantum teleportation protocol using a
maximally entangled state |¥) in the case of the result |®;) on Alice’s side.
The complex conjugation of bra vectors is indicated explicitly.

corresponds to a maximally mixed state, which is also
obtained by taking a partial trace of the state |@ ) p(® |
over particle C. Thus, in the absence of information about the
result of Alice’s measurement, the reality of the measurement
itself does not in any way affect the possible predictions of the
results of measurement by Bob of his particle B (from this
point of view, the collapse of the state is ‘insensitive’ for Bob).
However, if Alice transmits the result of her measurement
(one of four possible outcomes), encoded by two bits of
classical information, to Bob, then he will know what specific
pure state |i;) he has and will be able to recreate the state |i))
from |y/;) by applying to B the appropriate local operator U;,
where Uy =1, Uy =0z, U3 = gy, Uy = oy (use is made of
standard notation for Pauli operators). As a result, state |i)
will pass from particle A to particle B without interaction,
even indirect, of particles A and B with each other (note that
the preparation of particle A in state |yr), can be carried out
after the separation of particles from the pair |@ ") p).

In essence, to transfer the state |jf) from particle A to
particle C, two channels are used: the classical channel,
through which the result of Alice’s Bell measurement is
transmitted, and the ‘quantum channel’ implemented by the
state |@ ") .. Consider the transfer of a single-qubit quantum
state [if) via a maximally entangled state in more detail. To do
this, consider a more general situation when Alice and Bob
initially own some maximally entangled state | )~ and Alice
makes a measurement on her side in a basis of four maximally
entangled states |®;)ap, i=1,2,3,4. According to the
axiomatics of quantum mechanics, Bob’s state after Alice
obtains the result |®;),c, up to normalization, assumes the
form [y;)c = |¥)gc(Pilapl¥)a- Next, we take advantage of
the fact that any maximally entangled state can be obtained
from any other maximally entangled state by applying a local
unitary transformation to one of the subsystems. In particu-
lar, |@)ap = Via|®P:i)ap and |P)ye = Up|® ") for some
unitary operators V; and U acting on particles A and B,
respectively. Then, the state of Bob’s particle can be written in
the form |y,) = UTV; |)/2, whose corresponding tensor
diagram is plotted in Fig. 4. Note that in the construction of
the diagram we took advantage of the fact that the | +)-state
tensor coincides, up to a constant, with the unit transforma-
tion tensor, and also that the square of the factor 1/2
corresponds to the probability of the realization of this
outcome.

According to the constructed tensor diagram, which is
also analyzed in detail in Refs [42, 43], quantum teleportation
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can effectively be considered as the propagation of the state
|/) along the space-time trajectories of particles A, B, and C:
at the instant of Alice’s measurement, the state |i/) passes
from particle A to particle B, while transforming into V;" |y/),
and begins to propagate back in time on particle B to the
moment of initialization of the state |¥)p. Next, the state
V) is transformed into UTV;'|y) when moving from
particle B to particle C and begins to move forward in time
until the moment Bob applies the inverse transformation
U= (UTV;*)" and particle C ends up in state [i)). This
interpretation resolves the issue of the ‘nonlocal’ propagation
of the |/) state from Alice to Bob, but raises new questions
related to the reverse-time transfer of information and
possible violations of the principle of causality. It turns out
that the actuality of ‘absolute randomness’ of transformation
type i, due to the absolute randomness of the result of Bell’s
measurement, removes the possibility of paradoxes asso-
ciated with an apparent violation of causality. Note again
that the 1/4 Zf:l U |)(y|U; state, which corresponds to
applying one of the four transformations U;' to |y) with equal
probabilities, coincides with the maximally mixed state
obtained by taking a partial trace of the maximally entangled
state.

A theoretical and experimental study of the time-reversal
formalism as applied to maximally entangled states is
presented in Ref. [44]. The use of this formalism is in good
agreement with the interpretation of experiments on delayed
entanglement swapping [45, 46] (research in Ref. [45] was
carried out by Zeilinger’s group). The post-selective closed
time-like trajectories that arise in the considered context have
been studied theoretically and experimentally in Refs [47, 48].
Discussed in Ref. [47], in particular, is the issue of the relation
between this behavior of quantum states and the general
theory of relativity. Issues related to potential causality
paradoxes in experiments with entangled states are discussed
in detail in Ref. [49]. The possibility of experimentally
observing the backward-time propagation of the |\/) state on
particle B was recently demonstrated using a superconducting
7-qubit processor available in the cloud in Ref. [50].
Experimental observation of quantum effects in spacetime
associated with post-selection with available quantum pro-
cessors is presented in recent paper [51]. We also note that the
Bell state can serve as a channel for transmitting two single-
qubit states in opposite directions as part of bidirectional
teleportation [52]. Finally, we emphasize that experiments on
quantum teleportation have been demonstrated, among other
things, for two macroscopic atomic ensembles [53, 54].

4. Entanglement in quantum computing,
quantum communications,
and quantum metrology

Quantum entanglement at the level of two or more particles is
now seen as a key ‘resource’ for quantum technologies. In the
context of quantum computing, it is the many-body nature of
entanglement between qubits (the basic elements of quantum
computers, described by states of the form «|0)+
BI1) (|2 + |B)* = 1)) that leads to the fact that describing a
register of N qubits may require about 2" complex numbers
(taking into account the normalization condition and
insensitivity to the phase, the N-qubit state is generally
specified by 2(2¥ — 1) real numbers). It is hardly possible to
describe such systems for more than 50 qubits using classical
computing technologies. The complexity of quantum

Figure 5. Photograph of a crystal of eight 7' Yb™ ytterbium ions captured
in a linear trap. Each ion plays the role of a ququart—a qudit of
dimension d = 4.

mechanical descriptions of multiqubit entangled states is the
key argument for why quantum systems can accelerate the
solution to computational problems [55]. At the current stage
of development, it is not yet clear which of the physical
systems will make it possible to create a sufficiently large
multi-qubit state with the ability to highly accurately perform
quantum logical operations on it (so-called quantum gates).
Possible candidates include superconducting chains [56, 57],
semiconductor quantum dots [58—60], optical systems [61,
62], neutral atoms [63-66], and ions in traps [67-70] (these
experimental systems are also being actively developed by
domestic scientific groups, for example, in the field of trapped
ions [71-73] (Fig. 5), superconductors [74, 75], atoms [76, 77]
and photons [78, 79]).

It is pertinent to note that the representation of such
systems as qubits (two-level systems) is a certain idealization.
In fact, considering, say, an ytterbium ion [72, 73], we do well
to bear in mind that such a system allows the control of a
much larger number of levels. This opens up the possibility of
making qudit quantum processors (i.e., processors operating
multilevel quantum systems with the dimension of Hilbert
space d > 2) [80-83]. In 2021, a four-qubit quantum proces-
sor based on two ion qudits was demonstrated [74]. Qudit
manipulation opens up new possibilities for studying more
complex entanglement structures and analyzing fundamental
questions in quantum information theory [80-84].

In the case of quantum key distribution, on the face of it, it
is possible to do without quantum entanglement. The first
quantum key distribution protocol, proposed in 1984 by
Charles Bennett and Gilles Brassard [84], does not use the
phenomenon of quantum entanglement. It would be suffi-
cient to encode information into single photons, and the
measurement procedure proposed by the protocol makes it
impossible for a potential attacker to carry out measurements
without the legitimate parties of communications finding out
about it. However, back in 1991, Arthur Eckert independ-
ently came up with a quantum key distribution protocol
based on entangled photon pairs and Bell inequalities [85].
This protocol has been demonstrated experimentally many
times; however, in the development of industrial devices for
quantum key distribution, preference is given to the Bennett
and Brassard protocol.

However, an important limitation for modern quantum
key distribution systems is the problem of distance. Due to
losses in state transfer (for example, in fiber optic commu-
nication channels), the rate of generation of a cryptographic
key by two parties lowers with increasing distance. For
example, industrial quantum cryptography systems that use
fiber optic cables as a photon propagation medium are
designed for 120-200 km [86], while the record transmission
length is 830 km [87] (in this case, superconducting single
photon detectors were used to detect photons [88]). It is worth
noting that classical data transmission makes use of ampli-
fiers, but in the quantum case this is impossible.
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There are two fundamental approaches to increasing the
distance: making trusted nodes and making intermediate
untrusted nodes based on quantum memory elements that
record the quantum state of the light field (see review
Ref. [18]). The first method involves the use of ‘classic’
trusted nodes—intermediate points connecting two sites.
Let’s assume that Party 4 and Party C want to distribute a
key using a trusted node (Party B). In this case, Party 4 and
Party B distribute their key k4p, and then key kpc is
distributed. Party B, therefore, knows both keys: k,p and
kpc, then Party B transfers to Party C the key k 45, encrypting
it with the key k¢ using the one-time pad cipher [19]. In this
case, the requirement of trust in the specified node is
fundamental, since at this point the quantum-distributed
keys of two sections are known. Such a system is scalable, so
modern extensive quantum key distribution networks operate
on its basis, for example, in Russia, China and the European
Union. In the context of the Nobel Prize, it is worth noting
that Zeilinger took part in the implementation of experiments
on quantum key distribution for secure videoconferencing
between Beijing and Vienna [89] using the Micius satellite (it
can be considered a trusted node), which made it possible to
transfer quantum states over a distance of more than 7000 km
[89-92].

Is it possible to make intermediate nodes untrusted? Yes:
the second approach suggests that this is possible, but it is
technically much more difficult. The basis of untrusted nodes
is Bell state measurements [93]. One of the protocols might
look like this. Party 4 and Party B send single photons to
Party C, which is located between them. Party C carries out
Bell measurements of states and announces the results. In this
case, there are no requirements for trust in Party C. Itis worth
noting that, for the effective implementation of such a
protocol, subject to the presence of losses in state transfer
channels, Party C must, however, use quantum memory in
which one of the photons can be stored until the arrival of the
second photon. The fundamental possibility of implementing
such protocols with sufficient efficiency was shown in 2020
[94] (an entanglement swap mechanism is also a possible
method [93]).

The possibility of using various objects as quantum
memory cells is being considered (see [95, 96]), in particular,
single atoms and ions [97-98], color centers [94, 100], super-
conducting chains [101, 102], as well as collective spin
systems, for example, doped crystals at low temperatures
(see Ref. [103]). The successful implementation of quantum
memory cells and their integration with fiber lines of quantum
communications will make it possible to create quantum key
transmission systems with a length of about 1000 km,
protected from hacking at the level of the laws of physics
[18, 19]. To solve this problem, it is necessary to fulfill a
number of requirements: ensuring a strong coupling between
the photonic mode and the quantum memory element and
moving to the telecommunications range (1.5 pm) where
losses in the quartz optical fiber are minimal.

An integral element of quantum key distribution devices is
quantum random number generators—devices capable of
generating sequences whose randomness is guaranteed by
fundamental physical laws. How could this be strictly
demonstrated (or, as is referred to in the literature, certified)?
To do this, one can use the violation of Bell inequalities: if Bell
inequalities are violated, the source of randomness is of a
quantum nature [104—107]. In practice, however, weaker
randomness criteria are used for quantum generators [108].

Quantum entanglement can also improve the limits of
measurement of physical quantities (see, for example,
Refs [109-111]), which is important in the context of a
number of applications, for example, global positioning
systems.

5. Development of the field:
experiments of C Monroe and H Weinfurter:
on the way to the quantum Internet

Experiments demonstrating violations of Bell inequalities
and quantum teleportation employed primarily photons as
the object of research. At the same time, as we know, light,
both classical and quantum, can be used for communica-
tions— the transfer of quantum states, in other words, as a
resource for distributing entanglement between other objects.
Over the past decades, experiments have been carried out on
the distribution of quantum entanglement over a distance
between, for example, atoms or ions. Being especially
interesting in the context of the difficulty of scaling quantum
processors without losing the quality of their control, this idea
underlies the concept of the quantum Internet [112]. Then,
instead of scaling the number of quantum objects in one
quantum processor, it is possible to move to a quantum
analogue of a ‘many-core’ architecture, in which different
cores are connected using quantum communications [113].
Striking experimental results were obtained by Christopher
Monroe’s group working on quantum entanglement transfer
between spatially separated ions [114], which can be con-
sidered the first step to link ion traps and create controlled
entanglement transfer between them. Similar work is being
carried out by groups from the United Kingdom [115] and
Austria [116], where entanglement of two distant ions (at a
distance up to 230 m) was demonstrated using a photonic
interface.

Probably the most striking experimental work aimed at
testing Bell inequalities and analyzing quantum correlations
using entangled atomic systems has been carried out in recent
years by the group of Harald Weinfurter (Germany). Starting
with the entanglement of two rubidium atoms separated by a
distance of 20 meters [117], in 2017 they experimentally
proved the elimination of locality and detection loopholes
on atoms separated by a distance of 398 m [118]. In 2022, his
group demonstrated entanglement between two atoms
separated by a 33-kilometer-long optical fiber, the next step
toward the quantum Internet and distributed quantum
computing [119]. These studies represent the development of
the idea of entanglement transfer for practically important
problems of quantum technologies.

6. Conclusions

In 2022, the Nobel Committee especially drew attention to the
fact that the prize was awarded precisely for the experimental
achievements of the laureates: work on Bell inequalities by
Aspect and Clauser, as well as research on quantum data
transfer and quantum teleportation by Zeilinger. As this was
taking place, the experimental work was accompanied by
conceptualization and interpretation of the philosophical
foundations of quantum physics, without which the results
of the experiments would not be so clear to the general
scientific community. Here, it is especially worth noting the
work of Aspect (see, for example, Ref. [29]), who, inheriting
the tradition of disputes between Einstein and Bohr,
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supplemented scientific articles with relevant reflections and
explanations in an attempt to answer the important question:
What do these results mean? The achievements of the
laureates demonstrate that the humorous approach to the
perception of quantum mechanics, ‘Shut up and calculate,’?
although it can lead to practical results, does not always lead
to a Nobel Prize.

The studies by Aspect and Clauser also show that there
are no local hidden variables in quantum mechanics. Could
nonlocal hidden variables be present and play a role? Despite
significant progress in this area (see, for example, the study of
nonlocal hidden parameters in the context of quantum
computing [120]), a complete answer will only be obtained
in future theoretical and experimental work.
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