
Abstract. Progress in the generation of extremely short pulses of
electromagnetic radiationmakes the question of the properties of
the limiting form of their shorteningÐunipolar pulses with a
significant zero-frequency component of the spectrum, that is,
the electric area of the pulseÐrelevant. Recently, it has been
established that it is the electric area that determines the effec-
tiveness of the impact of extremely short pulses onmicro-objects.
At the same time, unipolar pulses have a number of unusual
properties, which makes some researchers doubt the possibility
of their existence and propagation. Here, we show that a uni-
formly moving relativistic electric charge creates a short unipo-
lar pulse of the electromagnetic field. Unipolarity is realized as
well for transition radiation. We also present the unipolarity
condition for a pair of chargesÐa dipoleÐand for a more
general system of moving charges. This confirms the reality of
unipolar electromagnetic pulses, which are promising for appli-
cations of extremely short pulses.

Keywords: unipolar electromagnetic pulses, pulse electric
area, field of moving electric charges

1. Introduction

One important trend in modern laser physics and nonlinear
optics is the generation of ever shorter radiation pulses, with
durations currently reaching the attosecond range [1±4]. The
achievement of such durations promises revolutionary
changes in laser technology and also offers unique opportu-
nities for research in physics, chemistry, biology, and other
disciplines.

The limiting stage of pulse shortening when maximum
frequencies are fixed is the generation of unipolar pulses
whose spectrum contains a substantial zero frequency
component. Due to the short duration of such `delta'-like
pulses, their exact shape is irrelevant, and they are character-
ized by their electric area

SE �
�
E dt ; �1�

where E�r; t� is the electric field, r is the radius vector, and t
is time. It has already been shown that namely the electric
area of extremely short pulses defines the efficiency of their
action on electrons in bound states in atoms, molecules, and
quantum points [5±13], as well as on free electrons [14], in
particular on their spin [15, 16] (see also reviews [17, 18]).
The efficiency is related to the unidirectional action of such
pulses on charges, while for bipolar multi-cycle pulses this
direction changes to the opposite one for each half of the
oscillation cycle. For free electrons, the efficiency is
maintained if the pulse duration is short enough such that
for this time the electron stays in the region where the field is
homogeneous [14]. In the case of atoms, the pulse duration
should be less than the Keplerian period of electron rotation
in the Bohr orbit. In this case, the action is reduced to a
momentary `kick,' as a result of which an electron with
charge e acquires an additional mechanical momentum eSE.
Such a scenario is described by the theory of sudden
perturbations [19±23].

For these reasons, unipolar or quasi-unipolar radiation
pulses with a substantial electric area are promising for
improving the efficiency of the action on objects. However,
the physics of such pulses differs considerably from the
traditional physics, which developed mainly for multi-cycle
pulses and quasi-monochromatic radiation. In the mono-
graph by Jackson [24], the integral (1) is presented under the
name `field integral over time.' Later, Bessonov in Ref. [25]
proposed that electromagnetic fields be classified according
to whether the value of (1) is zero or nonzero, and arrived at
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certain conclusions about the properties of fields with SE 6� 0;
these conclusions, in our opinion, require corrections (see
below). The term `electric pulse area' was introduced in
Ref. [26], which established an important role of this
quantity in the electrodynamics of continuous media for a
one-dimensional geometry, and later, Ref. [27] also did the
same for the three-dimensional geometry (see also review
[17]). Nevertheless, a discussion is still going on in the
literature about the mere possibility of the existence of
unipolar electromagnetic pulses, which, it is argued in some
publications, contradict Maxwell's electrodynamic equations
on the basis of judgments that are, in our opinion, unconvin-
cing (see, e.g., Ref. [28]). The reason for the discussions, apart
from terminological aspects, lies, on the one hand, in the
unusual properties of unipolar pulses, which require clarifica-
tion or reconsideration of some traditional views. On the
other hand, theoretical work in most cases deals with rather
simplified models and/or does not touch the formation
process of such pulses. As far as experiments are concerned,
they provide mainly qualitative information (see, for exam-
ple, Refs [29±31]), and only recently has the electrical pulse
area been measured quantitatively [32].

In a one-dimensional geometry (plane waves), the
d'Alembert solution of the wave equation indicates that
pulses of any shape, including unipolar, can propagate in a
vacuum without changing shape. The propagation of uni-
polar pulses is also possible in a two-dimensional geometry
[33]. However, the energy of such structures is infinite,
because their transverse size is unlimited. It can be rigorously
shown that in a three-dimensional geometry the propagation
of pulses with nonzero electric area (and finite energy) is
impossible in an unbounded vacuum that was always void of
charges and matter [34, 35]. And yet, as pointed out in
Ref. [36], one-dimensional propagation of such pulses is
indeed possible, for example, in coaxial waveguides with no
cutoff frequency (main waves) [37]. In this article, we
demonstrate the compatibility of Maxwell's equations of
electrodynamics with the existence of electromagnetic pulses
localized in an unbounded space with nonzero electric area
and finite energy. A central part, reflected in the title of this
study, is the classical example of the field of a charge moving
at a constant speed in a vacuum. We then consider the
possibility of unipolarity (nonzero electric area) for transi-
tion radiation in the field of a pair of chargesÐa point
dipoleÐand also in a more general situation of a system of
charges moving in a vacuum.

2. Point charge uniformly moving in a vacuum

The electric field due to a charge q moving uniformly with a
constant velocity V is [24, 38]

E �
�
1ÿ V 2

c 2

�
qR

R �3
: �2�

Here,

R � �x; y; zÿ Vt� ; R �2 �
�
1ÿ V 2

c 2

�
r 2? � �zÿ Vt�2 ;

r 2? � x 2 � y 2 : �3�

As should be clear, the field and the flux of electromagnetic
energy move uniformly together with the charge with velocity
V along the z-axis. Field (2) can be treated qualitatively as the

Coulomb field of the charge, which is flattened in the
direction of its motion due to the relativistic effect [38]. The
distribution of E is axisymmetric. In the cylindrical frame of
reference �r?;j; z�,

Er�r?; zÿ Vt� �
�
1ÿ V 2

c 2

�
qr��1ÿ V 2=c 2� r 2? � �zÿ Vt�2�3=2

:

�4�

Both the azimuthal and longitudinal components of the
electric area are absent, SE;j � SE; z � 0. Integrating (4)
over time, we find for the radial component of the electric
area

SE; r � 2q

Vr?
: �5�

According to (5), the electric area does not depend on the
longitudinal coordinate z and decreases in inverse proportion
to the distance from the axis r?. This quantity is also inversely
proportional to the velocity of the charge motion [24], which
in principle leads to the possibility of it having very large
values (in a static limit V! 0, the electric area tends to
infinity). In the relativistic limit V=c! 1, the electric area
reaches its minimum 2q=�cr?�.

Note that the sign of the nonzero component of the
electric area vector is constant (coinciding with the sign of
the charge), so that a strictly unipolar pulse propagates
through each point of the medium. The pulse duration t at a
point located at distance r? from the charge path will be
determined by the level of 1=2 of the maximum value of the
radial component of the electric field (4). Then,

t � 2
����������������
22=3 ÿ 1

p ����������������������
1ÿ V 2=c 2

p
V

r? � 1:533

����������������������
1ÿ V 2=c 2

p
V

r? :

�6�

The numerical multiplier in (6) depends on the level used to
define the pulse duration. From (6), it follows that the pulse
duration is directly proportional to the detector distance r?
from the charge trajectory (the z-axis) and decreases
monotonically with increasing charge velocity V down to a
zero value in the limit V=c! 1; in a static limit (V! 0), the
pulse duration is infinite. It should also be mentioned that
the radial direction of the electric area vector can facilitate
the injection and propagation of unipolar pulses in coaxial
waveguides.

The spectrum of such a pulseEo �
� �1
ÿ1 E exp �iot� dt [24]

may be of interest. For its components,

Ez;o � ÿ2iqo
�

1

V 2
ÿ 1

c 2

�
K0�ob� exp

�
ioz
V

�
;

Er;o � 2qo
V

�
1

V 2
ÿ 1

c 2

�1=2

K1�ob� exp
�
ioz
V

�
: �7�

Here, b 2 � �1=V 2 ÿ 1=c 2�r 2? and K0; 1 are the cylindrical
functions of the imaginary argument. In the limit o! 0, we
find Ez; 0 � 0, and, for Er; 0 � Sr, the earlier value (5) follows.
The spectrum Er;o is bell shaped, with the maximum at zero
frequency and the characteristic width tÿ1.

In the case of relativistic charge motion V 2=c 2 ! 1, the
pulse field tends to be transverse and, in this sense, it tends to
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the field in a vacuum without charges. This is the basis of the
virtual photon method, in which the action of one charge on
the other is replaced by the action of a purely electromagnetic
pulse on the charge, which represents the field due to the other
charge [24]. The possibility of detecting field pulses of moving
charges due to the excitation of atoms corresponds to the
experiments of Frank and Hertz [39].

Due to the constant velocity of the charge, there is no
deceleration of the charge by radiation. We do not consider
deceleration caused by the presence of a detector or a micro-
object and their secondary radiation. The charge energy
losses during the interaction with an object containing N
nonrelativistic electrons with charge e and mass m can be
estimated by the kinetic energy of the electrons acquired after
the impact of the pulse, as Ne 2S 2

E=�2m�. These losses can be
disregarded if they are substantially smaller than the initial
energy of the relativistic charge.

In the example being considered, the entire field is moving
at a constant speed V. The static part of the field is absent in
this case, and the zero frequency component of the pulse
spectrum (its electric area) cannot be interpreted as such. The
question of whether such a structure can be considered a
radiation pulse is rather terminological. It is often assumed
that radiation accompanies only the accelerated motion of a
charge [40], which takes place in the case considered in
Refs [41±43]. An argument could be that the field of a
uniformly moving charge is attached to it and is sort of its
`fur,' and only in the case of acceleratedmotion is a part of the
field detached from the charge in the form of `free' radiation.
However, the electromagnetic field pulses associated with a
uniformly moving charge will act on a micro-object or a
detector in the same way as the pulses of radiation emitted by
accelerating charges in their wave zone. In the first case, we
are dealing with the motion of the charge and the associated
field structure with respect to a stationary object (a detector),
which cannot be eliminated by the Lorentz transformation
(the electric area itself is not Lorentz invariant). We also
mention that the pulses discussed here can be transformed
into unipolar (with a nonzero electric area) for diffraction
radiation [29, 30].

If a charge moves in a homogeneous linear medium with
the dielectric permittivity e, in the framework of classical
electrodynamics, expression (5) for the electric area is
replaced by

S
�q�
E; r �

2q

Ver?
: �8�

The electrostatic value of e should be used in (8), since the
electric area corresponds to the zero-frequency spectral
component. We mention the increase in the electric area in
media in which e is close to zero [44].

3. Transition radiation

The transition radiation discovered by Ginzburg and Frank
[45] occurs even if a uniformly moving charge crosses an
interface z � 0 between media with different electrodynamic
properties. A large amount of the literature is devoted to this
effect (see review [46]), reflecting its important applications. A
detailed theory of transition radiation is given in Ref. [47]. In
the case of nonmagnetic media with dielectric permittivities e1
and e2, the distribution of the electric area of the electro-
magnetic pulse is axisymmetric, and its nonzero components

have the form [48]

Sz; n�r?; z� � 2q

Vren

e2 ÿ e1
e2 � e1

; r �
����������������
r 2? � z 2

q
; �9�

Sr; n�r?; z� � 2q

Vr?en

�
1� e2 ÿ e1

e2 � e1

�
1ÿ jzj

r

��
: �10�

Here, n � 1; 2 is the number of the medium related to the sign
� or ÿ on the right-hand side of (10), and static values are
taken for the dielectric permittivities (at zero frequency). Note
the appearance of the longitudinal electric area component
(9), the sign of which is defined by the difference among the
dielectric permittivities of the media. This component is
localized near the interface and decays algebraically with
distance from the interface. At such a distance, the magnitude
of radial component (10) tends to the value (8) in each of the
media, while in the transition region it is localized in the same
way as the longitudinal component. A nonzero value of pulse
electric area for transition radiation is also confirmed by the
results of Ref. [31]. Let us recall that the radiation from
colliding charges is also characterized by a nonzero value of
the zero-frequency component in the field spectrum [38].

4. Point electric dipole

The model of a point dipole [49] describes two point charges
of opposite signs q and ÿq separated by the distance a in the
limit a! 0, q!1, so that there is a finite limit
lima!0 qa � d called the dipole moment. The direction of the
moment d is from the negative charge to the positive charge.
The electric field of a linear dipole with a time-dependent d
and fixed direction of d is given by the expression

E �r; t��
�
3�d�
r 3
� 3� _d�

cr 2
� �

�d�
c 2r

�
�d; n� nÿ

� �d�
r 3
� �

_d�
cr 2
� �

�d�
c 2r

�
d ;

�11�

where r � rn is the vector of the coordinates of the observa-
tion point (the dipole is placed at the origin of the coordinates,
the dots above d imply time differentiation, and the square
brackets imply a retarded argument tÿ r=c.

Usually, in (11) only the terms proportional to rÿ1 are
kept, which in turn are proportional to the derivative �d (far
field). However, when calculating electric area, the terms with
derivatives in (11) make a zero contribution, and only the
near-field terms remain,

SE � 3�d; n� nÿ d

r 3
D ; D �

�
d�t� dt : �12�

It is seen that the distribution of the electric area is
analogous to the distribution of the electric field of a static
dipole. For a nonzero dipole momentD 6� 0, the electric area
differs from zero, its distribution has an axial symmetry with
the symmetry axis aligned with the dipole moment d, and it
decays with distance from the charge system as rÿ3.

The integral dipole moment D can be found in the
framework of the popular Lorentz oscillator model

�d� g _d� o 2
0 d � f �t� ; �13�

where g is the decay coefficient for an oscillator with
eigenfrequency o0 and f �t� is the projection onto the dipole
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direction of an external force acting on the dipole charges; the
force can be of various origins. Integrating (13), we find

D � oÿ20 Sf ; Sf �
�
f �t� dt : �14�

Thus, in this model, in order to have a nonzero electric area
for the dipole, it must be initialized by an excitation pulse with
a nonzero area Sf. To determine the shape of the dipole field
pulse, it is sufficient to use equation (13). Note that expression
(14) does not include the damping coefficient g, although the
pulse duration depends on it. If the oscillator is nonlinear
(there is an additional quadratic or cubic term on the left-
hand side of (13)), the integral dipole moment D will differ
from zero even for zero area Sf.

5. Electric area for a system of charges
in a vacuum

Finally, we turn to a general case of electric charges moving in
a vacuum (see also Refs [34, 41±43]). It should be recalled
that, as pointed out in Ref. [27], the time integration of
Maxwell's equation rotE � ÿ�1=c��qB=qt�, where B is the
magnetic field, for localized (with finite energy) radiating
structures leads to the relation

rotSE � 0 : �15�

The vector electric area field is therefore irrotational and
potential with some `potential' FS such that

SE � ÿgradFS : �16�

In the one-dimensional (plane wave) geometry with propaga-
tion along the z-axis, expression (15) is formulated as the
conservation of electric area

dSE

dz
� 0 : �17�

Relationships (15) and (17) are rather general: they are
valid for different media. A closed system of equations to
determine the electric area is obtained using the material
equation. For electric charges with density r in a vacuum,
time integration of Maxwell's equation divE � 4pr gives

divSE � 4pQ ; �18�

where Q�r� � � 1ÿ1 r�r; t� dt is the integral charge density.
Equations (15) and (18) are sufficient to determine the
electric area given the distribution of the integral charge
density. Formally, via the change of variables, they coincide
with the main equations of electrostatics [37]. The potential
FS satisfies the Poisson equation

DFS � ÿ4pQ ; �19�

whose solution is written in the form

FS�r� �
�
Q�r 0�
jrÿ r 0j dr

0 : �20�

Note that equations (15)±(20) do not explicitly include the
current density or the speed of light in a vacuum, so that the
relativistic factors are not manifested here (but they do
influence the character of the charge motion and charge

density). It follows from (20) that a nonzero integral charge
density in at least some spatial domain entails the appearance
of a nonzero area of an electromagnetic pulse. The every-
where zero pulse area S�r� � 0 is only possible if the integral
charge density is everywhere zero, Q�r� � 0.

In the case of a point charge q moving straight along the
z-axis with constant velocity V in a vacuum, we should write

r �x; y; z; t� � qd�x� d�y� d�zÿ Vt� ;
Q �

�
q

V

�
d�x� d�y� : �21�

Inserting (21) into (19) or (20) gives the earlier expression for
the electric pulse area (8). Similarly, from (18) and (20), by
taking the limit as described above, one can obtain expression
(12) for the pulse area of a point dipole. Of interest is also the
`nonradiating' structure of the charge distribution as found in
Ref. [34], where the field is completely confined to a finite
domain (an analog of the static field in a spherical capacitor
or anapole in a toroidal coil setup with a current [50]) and
within a limited time interval.

The above-mentioned formal coincidence of the equa-
tions for the electric pulse ares with the equations of
electrostatics allows finding the asymptotic form of the
electric area in the far field, i.e., at distances greater than the
size of the charge localization domain. To do this, solution
(20) is expanded in multipole moments using the formula [37]

1

jrÿ r 0j �
X1
l�0

r 0l

r l�1
Pl cos w ; �22�

where w is the angle between the vectors r and r 0,
�r; r 0� � rr 0 cos w, and Pl are Legendre polynomials. Insert-
ing (22) in (20), one gets the relationship

FS�r� �
X1
l�0

Fl

r l�1
: �23�

The explicit form of coefficients Fl is given in Ref. [37]. In the
lowest order, the coefficient by the `Coulomb' term takes the
form

F0 �
�
dt

�
dr r�r; t� �

�
Q0 dt � 0; Q0 � 0,

1; Q0 6� 0 .

�
�24�

Here, Q0 �
�
r�r; t� dr is the total electric charge of the

system, which is constant in time, dQ0=dt � 0. It follows
from here, once again, that, for a nonzero system charge
Q0 6� 0, the electric area is infinite and will further setQ0 � 0.
The Coulomb term in expansion (23) then drops out and the
main contribution comes from the `dipole' term

Fs1�r� � �dS; r�
r 3

: �25�

Expression (25) contains the `dipole moment' of the integral
charge distribution dS �

�
Q�r� r dr. From here, with the help

of (16), we find the distribution of the electric area in the
dipole approximation. Introducing the angle y between the
directions r and dS, we write in the vector form

SE � 3�n; dS� nÿ dS
r 3

: �26�
This expression coincides, up to the notation, with the

expression (12) for the pulse electric area of the point dipole
field.
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6. Conclusions

The simple electrodynamic models considered above can also
be used for the classical description of the electromagnetic
field in continuous media. New details on the interaction of
extremely short pulses with micro-objects and media are
introduced by quantum effects such as ionization and
excitation of a considerable number of states. As far as
radiation pulses are concerned, they cause additional energy
losses that can be compensated by laser amplification [27].
These issues require further consideration. For us, however, it
is important that the examples given here lend support to the
reality of the existence of unipolar pulses from an electro-
magnetic field. The results may be important in formulating
the requirements for superstrong electromagnetic field gen-
eration systems [51, 52].

Everywhere above, we have defined the electric area as the
integral of the total electric field (1). After this work was
accepted for publication, Ref. [35] appeared, which required
comments [53]. The conclusion of [35] that the propagation of
electromagnetic pulses with a nonzero electric area and finite
energy is impossible in an unbounded vacuum without
charges and media coincides with that of Ref. [34] obtained
in a different way. The further generalization of this
conclusion in Ref. [35] to the case where charges are present
is connected with the subdivision of the total field, not strictly
defined in Ref. [35], into the `radiation field' and the `static
field' and the inclusion of the zero-frequency field component
in the latter. The physical sense of such a subdivision is
doubtful in many cases, because field detectors or objects
interacting with the field cannot distinguish between these
components. Furthermore, in the cases considered, the field is
different from zero at each spatial location, i.e., it is
noticeably above the noise only for a limited time interval
(the pulse duration). Consequently, they lack a static
component in the presence of which the electric area would
become infinite. For a similar reason, the critiques in Ref. [35]
of the experiment in Ref. [32], where a quantitative measure-
ment of the electric area of an electromagnetic pulse is
performed, seem to be unfounded.

One more recent work [54] casts doubts on the rule of
electric area conservation (17). In fact, rule (17) is also valid
under the conditions of Ref. [54], while its supposed violation
is related to the use in [54] of equations in the approximation
of unidirectional propagation [55] instead of the exact
Maxwell's equations.

7. A few words on the 2023 Nobel Prize
in Physics (added to the proofs)

The proofs of this paper arrived at the same time as the news
that the 2023 Nobel Prize in Physics was awarded to Pierre
Agostini, Ferenc Krausz, and Anne L'Huillier ``for the
experimental methods for the generation of attosecond light
pulses for studies of electron dynamics in matter'' [56]. We
note that F Krausz is the coauthor of review [1] cited first in
this paper. The 2023 prize commemorated a new important
step in experimental physics compared to the experimental
studies of atomic motion in chemical reactions using
femtosecond laser pulses, marked by the 1999 Nobel Prize in
Chemistry (awarded to Ahmed H Zevail [57]).

As far as fundamental physics is concerned, attosecond
pulses, which are shorter than the Bohr period, make it
possible, for example, to study experimentally the question of

the observability of electron orbits in atoms. The significance
of the achievement of the prize winners is emphasized by the
advances in molecular physics, condensed-matter physics,
chemistry, biology and other branches of science and technol-
ogy made possible by the use of attosecond light pulses.

A key point in the new `attosecond' science is the
realization of radiation pulses with a duration that is smaller
(shorter) than the time scale characteristic of the object of
action. The method is based on the summation of many
harmonics of laser radiation with multiple frequencies. Such
pulses are multi-cycle: they contain a large number of field
oscillation cycles.

In the scientific background to the award of the 2023
Nobel Prize in Physics, the Nobel Committee mentions the
important contribution of other scientists to the development
of attosecond science, including Paul Corkum and colleagues
[58] and the subsequent work of the group of Ursula Keller
[59], andMargaretMurnane, Henry Kapteyn, and collabora-
tors [60]. In their research, they also used a relatively weak
interaction of laser radiation with gases, accompanied by the
generation of higher harmonics, but without exceeding the
gas ionization threshold. The attosecond pulses are the result
of coherent summation of these harmonics. These studies
essentially use ideas developed by Leonid Veniaminovich
Keldysh and the theory of photoionization in strong laser
fields [61±66]. An important role in this stage of development
was played by the work of other domestic scientists (see [4, 52,
67, 68] and others). However, the absence of ionization
fundamentally limits the spectral width of the generated
radiation and, respectively, the duration of the pulses by
tens or hundreds of attoseconds.

Another approach, which is currently being developed, is
based on the action of laser radiation of high (relativistic)
intensity, exceeding 1018 W cmÿ2, on solid targets [69±71]. In
this case, the medium is ionized and a laser plasma is formed.
As a result of the motion of the plasma charges in a strong
laser field, a broad and relatively flat spectrum of secondary
radiation is formed. In principle, this allows sequences of even
shorter sub-attosecond (i.e, zeptosecond) radiation pulses to
be formed [72±74]. Such pulses can be generated using free
electron lasers [75].

A common feature of these approaches is that the
generated pulses are multi-cycle, and thus bipolar. The
electric field direction changes to the opposite one every half
of the cycle. This weakens the effect of such pulses on micro-
objects with a characteristic Bohr period that is smaller or
comparable to the pulse duration. It is emphasized in this
paper that, even if the possibilities of using progressively
higher frequencies are exhausted, further pulse shortening is
still possible by reducing the number of these cycles to one
half cycle. Such short pulses become unipolar, so that their
electric field acts on the charges unidirectionally and therefore
most efficiently. This efficiency is not determined by the
energy or the maximum pulse intensity, but by the pulse
electric area (see formula (1) above).

It seems that further research on the generation of
extremely short electromagnetic pulses with a significant
electric area will lead to further progress in the diagnostics
of rapidly changing processes and phenomena, and in the
action on their dynamics.

The analysis of transition radiation was supported by the
Russian Science Foundation, grant no. 23-12-00012. Studies
on the other topics were supported by the state order to the
Ioffe Institute, topic 0040-2019-0017.
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