
Abstract. An analytical description of the plasmon polariton
localized at the arbitrarily oriented interface of a uniaxial
crystal and an isotropic metal is discussed. A compact real
form of the general dispersion equation determining the basic
wave properties is obtained. The solutions of this equation are
analyzed for the particular orientations of the sagittal plane and
interface. An approximate solution of the dispersion equation is
developed on the basis of the iteration method, which has proved
to be effective even for the general case of an arbitrary interface
orientation. General relations of the theory are specified for a
series of crystals.
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1. Introduction

Electromagnetic waves in the optical range, localized at the
interface of solid structures (polaritons in dielectrics or
plasmons in metals), are much more selective concerning the
conditions of their existence than is their acoustic counter-
part, the Rayleigh wave. It is known that a surface elastic
wave can propagate on the free boundary of any isotropic
medium [1] and even on an arbitrary cut of any crystal, which
is guaranteed by strict theorems [2]. At the same time, a
surface polariton at the interface of any isotropic dielectric

material (including the boundary with a vacuum) is strictly
prohibited. More precisely, a `dispersionless' polariton is
forbidden at positive permittivity values of two media,
virtually indifferent to its frequency. However, `dispersive'
polaritons can propagate in the vicinity of certain resonance
frequencies, where one of the media changes the sign of its
permittivity. Such polaritons have been actively studied [3±5]
and are now widely used.

It might seem that the polariton `locked' inside the
medium of an isotropic dielectric with an ideally metallized
surface is a close analog of a permanently existing elastic wave
trapped in a solid. However, metallization not only fails to
facilitate the propagation of the polariton, but, on the
contrary, even `kills' dispersive modes [6]. On the other
hand, the same metallization of the surface of a uniaxial
crystal [6] generates a specific dispersion-type polariton near
the interface in the vicinity of the frequency where one of the
permittivity values of the crystal becomes negative.

However, as has been shown by Dyakonov [7], the
`switching on' of anisotropy also rehabilitates dispersionless
eigenmodes, i.e., surface polaritons, which can propagate
at any frequency in a crystal with positive values of
permittivity. To do this, a uniaxial crystal must make
contact, not with an ideal metal, but with an isotropic
dielectric whose permittivity falls in a certain range (see
Section 3 for details). Study [7] explored the orientation of
a crystal with an optical axis parallel to the interface. The
region where a polariton exists turned out to be limited by
a rather narrow sector of the optical axis directions in this
plane. The generalization of [7] in [8, 9] for the case of an
arbitrary orientation of the optical axis has shown that the
extension of the polariton existence region is determined by
an increase in crystal anisotropy (as in [7]) rather than by
the deviation of the optical axis from the interface. The
same limitation on the region where a polariton exists also
occurs for the interface between an isotropic dielectric and
a biaxial crystal [8, 10±12]. In optics, increasing the
anisotropy is obviously a rather challenging task. How-
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ever, photonic crystals with anomalously large anisotropy
are now available.

On the other hand, there is another, rather paradoxical,
way to extend the region where dispersionless polaritons
exist. To do this, instead of using the ideal metallization of
the dielectric discussed above, it suffices to use a normal
metal that allows an accompanying (usually highly loca-
lized) wave, a plasmon, to enter its interior. The resulting
hybrid wave, a plasmon-polariton, turns out to be widely
allowed and, most importantly, very popular in applica-
tions precisely because of the plasmon, which is extensively
used in modern devices [13±18].

In this case, the dielectric can be either isotropic or
anisotropic. The choice of a crystal is usually driven either
by optimizing the free path of a plasmon-polariton on a
suitable crystal cut [19±21] or by the possibility of exciting a
plasmon in a metal by means of oblique incidence of the
polariton on the interface in the crystal at an angle
corresponding to total internal reflection [22±25]. In the
latter case, the parameters are chosen in such a way that
there is no reflected wave in the crystal, and the pumping of
energy through the interface compensates absorption in the
metal, thus maintaining stationary propagation of the
plasmon in the metal with a constant amplitude.

The formal reason for facilitating the conditions for the
existence of plasmon-polaritons is the universal negativity of
the permittivity em of the metal at any optical frequency. The
same occurs to dispersive polaritons near resonance frequen-
cies, where the sign of some of the permittivity values also
changes. In both cases, changing the signs of the correspond-
ing terms in the dispersion equation provides an extension of
the range where its solutions exist. However, the plasmon-
polariton, in contrast to the dispersive polariton, exists in a
wide frequency range.

There is another important aspect related to dispersion
equations in such problems, which arises when dealing with
crystals. It is related to the well-known problem of optics and
acoustics of anisotropic media, where the dispersion equation
for one unknown real parameter (for example, the refractive
index n) turns out to be complex, splitting into two, so the
problem looks overdetermined. Strict theorems have long
been proven (both in acoustics [26] and in optics [27]) that
these two equations are analytically related andmust have the
same roots. Nevertheless, many authors avoid dealing with
such complexities, preferring to consider symmetric crystal
orientations when the dispersion equation turns out to be real
[19, 20, 28±30]. The compact dispersion equation [28, 29],
which corresponds to the Dyakonov geometry [7], is
especially popular. However, to the best of the authors'
knowledge, the general real dispersion equation for plas-
mon-polaritons at the uniaxial crystal±metal interface with
an arbitrary orientation of the interface has not yet been
derived. This deficiency is removed below.

After the necessary mathematical formulation of the
problem in Section 2 and the derivation in Section 3 of the
general complex dispersion equation, the latter is reduced
to a compact real form. Verification shows that it trans-
forms into well-known equations corresponding to parti-
cular cases of orientation when the optical axis of the
crystal is parallel to the sagittal plane [30] or to the
interface [28, 29] (Dyakonov's geometry). In the former
case (Section 4), it can be easily solved exactly, but this
solution requires a nontrivial analysis of the stability
limits. In the latter case (Section 5), an iterative procedure

for the approximate solution of the equation is proposed.
Its efficiency is shown by a comparison with the numerical
solution of the exact equation for a dozen crystals,
including a superanisotropic photonic crystal, and the
boundaries of the existence of the solution are analyzed.
In Section 6, the iterative formalism developed is general-
ized to arbitrary orientation of the interface. Specific
crystals are used as examples to show that the first
iteration already provides a good accuracy of description
with deviations from the exact numerical dependences of
� 2%. Section 7 summarizes the results of the study.

2. Plasmon-polariton propagation geometry
and wave field parameters

In this study, we consider a natural electromagnetic wave
localized at an arbitrarily oriented interface between an
optically uniaxial crystal with permittivity values eo and ee
and a metal with permittivity em < 0 and magnetic perme-
ability mm � 1.

Figure 1 shows the geometric characteristics of the system.
The arbitrary orientation of the interface plane is given by the
unit normal vector n, which also defines the coordinate axis y.
The metal is located in the region y4 0, and the crystal, in the
region y5 0. The direction of the optical axis of the crystal is
characterized by a unit vector c, which makes an arbitrary
angle y with the interface plane xz. For definiteness, the
coordinate axis x is chosen along the projection of the optical
axis c onto this plane. The direction of wave propagation
along the interface is set by the unit vector mmaking angle j
with the x-axis. In terms of the vectors m, n, and t � m� n
defining the wave geometry, the vector c along the optical axis
is equal to

c � m cos y cosj� n sin y� t cos y sinj : �1�

The electromagnetic field in the structure under consid-
eration consists of two pairs of coupled partial waves in a
crystal and an isotropic medium. In the crystal, these
components are ordinary (o) and extraordinary (e) waves,
and in the metal, they are waves with TM and TE polariza-
tions. The total wave field propagating along the vectorm (see
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Figure 1.Wave geometry of plasmon-polariton propagation.
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Fig. 1) can be represented as

H�r; t�
E�r; t�

� �
� H�y�

E�y�
� �

exp
�
ik�rmÿ vt�� ;

�2�

H�y�
E�y�

� �
�

�
Co

Ho

Eo

� �
exp �ÿkqoy�

�Ce
He

Ee

� �
exp

�
k�ÿqe � ipe�y

��
y5 0

;�
CTM HTM

ETM

� �
� CTE HTE

ETE

� ��
exp �kqmy�y4 0 :

8>>>>>>><>>>>>>>:
Here, r � �x; y; z� is the radius vector of the observation point
and k is the length of the common component of the wave
vectors of all partial waves along the propagation directionm.
The quantity k sets the tracing phase velocity v � o=k of the
plasmon-polariton along the interface and its wavelength
l � 2p=k. For a given frequency o, it is these quantities that
are the unknown characteristics of the plasmon-polariton.
However, the quantitates that are usually searched for in such
problems are not k or l, but the refractive index n � c=v,
where c is the speed of light in a vacuum. Consequently, it is
convenient to replace the wave vectors of partial waves ka in
the sagittal plane �m; n� with dimensionless refraction vectors
k0a � �c=o�ka �a � o; e;m�:

k0o � �m� iqon�n ;
k0e �

�
m� �iqe � pe�n

	
n ; �3�

k0m � �mÿ iqmn�n :

Partial waves in superposition (2) must individually
satisfy Maxwell's equations. Therefore, all the parameters of
each of the four waves in (2), except for the scalar amplitudes
Co, Ce, C

TM, and C TE, are found by substituting them into
the corresponding system ofMaxwell's equations for a crystal
or metal. As a result, the structure of expressions (3) is
obtained, from which it follows that, out of all partial
waves, the extraordinary mode alone has a nonzero real part
of the y component of the wave vector �Re ken � kpe�.
Moreover, the parameter pe does not depend on the
refraction index n:

pe � cmcn�eo ÿ ee�
eoA

: �4�

All imaginary parts of vectors k0a (3) are characterized by
localization parameters

qo �
�����������
1ÿ s
p

; qe �
����������������������������
B

A
ÿ s

�
ee
eoA

s
;

�5�
qm �

�����������������
1ÿ em

eo
s

r
; s � eo

n 2
;

depending on the index n, instead of which a more convenient
parameter s is introduced in (5). In Eqns (4) and (5), A and B
are functions of the direction of the optical axis c:

A � 1� c 2nDo ; B � 1ÿ c 2t De ; �6�

where the projections cn and ct are determined by Eqn (1), and
the parameters Do; e are determined by the formula

Da � ee ÿ eo
ea

; a � o; e : �7�

Optically `positive' �ee > eo� and `negative' �ee < eo� crystals
are usually distinguished. In crystals of the former type,
Da > 0, and, as the argument grows, the function A�c 2n �
increases, and B�c 2t � decreases. In crystals of the latter type,
Da < 0 and functions (6) behave in the opposite way.

In Eqns (2), the polarization vectors of the ordinary and
extraordinary partial polariton waves in the crystal are also
found directly fromMaxwell's equations:

Ho

Eo

� �
� No

k0o � �k0o � c�
k0o � c

 !
;

�8�
He

Ee

� �
� Ne

k0e � c

cÿ k0e�k0e c�=eo

 !
;

where No; e are normalization constants. The vector ampli-
tudes of the plasmon in a metal are found similarly:

HTM

ETM

� �
� t

t� k0m=em

� �
;

�9�
HTE

ETE

� �
� ÿt� k0m

t

� �
:

Equations (2) show that the TM and TE components of
the plasmon are characterized by the same localization (the
same parameter qm). The conventional separation of a
plasmon in an isotropic metal into two components is
conditional and only done for convenience. Polarizations (9)
are oriented in such a way that the pair HTM kETE is
orthogonal to the sagittal plane �m; n�, while the pair
ETM kHTE is parallel to this plane.

3. Dispersion equation
for an arbitrary interface orientation

The boundary conditions, which are standard for the problem
under consideration [1], are reduced to the requirement of
continuity of the tangential components of the magnetic and
electric fields at the interface between the media, y � 0. These
conditions determine the scalar amplitudes Ca in Eqns (2),
leading to a system of homogeneous equations

iqoa bct 0 iqm
sct bcm ÿ cn 1 0

ÿiqosct q 2
o cm � bcn iqmeo=em 0

a ct 0 ÿ1

0BB@
1CCA

Co

Ce

C TM

C TE

0B@
1CA � 0 ;

�10�

where, to simplify the matrix, the scalar amplitudes from (2)
are renormalized,

Co ! Co

n 2
; Ce ! Ce

n
; C TM ! C TM ; C TE ! C TE

n
;

�11�

and the following notations are introduced:

a � cn ÿ iqocm ; b � pe � iqe : �12�

The condition for the existence of nontrivial solutions of
the homogeneous system (10) for the amplitude coefficients
Ca, as usual, reduces to the requirement that the determinant
of the 4� 4 matrix in (10) vanish, which yields the complex
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dispersion equation

D � ia
�
em�q 2

o cm � bcn� � ieoqm�cn ÿ bcm�
�

� ieoct�b� iqm��1ÿ qoqm� � 0 : �13�
As noted in the introduction, complex dispersion equa-

tion (13), decomposing into two equations, should be
equivalent to one real equation. We now prove this assertion
in an explicit way. The real and imaginary parts in
determinant D (13) are singled out and transformed using
the identities

cn ÿ pecm � ee
eo

cn
A
�1ÿ Dec

2
t � ; �14�

q 2
o cm � pecn � cm

�
eoA
ee

q 2
e �

Dec
2
t

A

�
;

Aq 2
o ÿ

eo
ee
�Aqe�2 � c 2nDo � c 2t De ;

�15�
s � 1ÿ q 2

o �
eo�qo � qm��1ÿ qoqm�

emqo � eoqm
:

As a result, we obtain

ReD � c 2mqoG1 ÿ c 2nG2 ÿ c 2t �qe � qm�G3 ; �16�
ImD � cmcn

�
G1 � qoG2 ÿ Do

A
G3

�
;

where

G1 � eo
ee

qe�emAqe � eeqm� � em
A

c 2t De

� em

�
q 2
o ÿ 1� 1

A

�
� eoqeqm � G 01 ;

�17�
G2 � cn

A

�
emAqe � eeqm�1ÿ c 2t De�

�
; G3 � eo�1ÿ qoqm� :

Here, G1 and G 01 are alternative forms of the same relation,
both of which are used below. Substituting (17) into the
formula for ImD in Eqn (16), we easily obtain

ImD � cmcn
A

F�s� ; �18�

where F�s� is a real function:

F�s� �
�
qo � eo

ee
Aqe

�
�emAqe � eeqm� ÿ c 2t De�ee ÿ em� : �19�

A similar procedure with the substitution of (17) into the
formula for ReD in (16) yields the result after more
cumbersome calculations. In this case, it is convenient to use
both forms of identically equal expressions G1 � G 01:

ReD � qoG1 ÿ c 2n �qoG1 � G2� ÿ c 2t
�
qoG

0
1 � �qe � qm�G3

�
� qe ÿ qo

Do
F�s� ; �20�

where F�s� is the same function (19). Thus, the complex
determinant D (13) is indeed proportional to the same real
function:

D �
�
eo�qe ÿ qo�
ee ÿ eo

� i
cmcn
A

�
F�s� : �21�

Thus, we have arrived at a real universal dispersion equation,
which is valid for an arbitrary orientation of the crystal:

�eeqo � eoAqe��emAqe � eeqm� � c 2t �ee ÿ eo��ee ÿ em� : �22�

At first glance, the complex factor in brackets in (21) could
provide additional dispersion branches at qo � qe, when the
optical axis c lies in one of the coordinate planes: cm � 0 or
cn � 0. However, analysis shows that this hypothetical
possibility is not realized.

Under condition (22), the homogeneous system of
equations (10) defines the following relations between scalar
amplitudes:

Co

C TM
� ÿbÿ iqm

Z
ct ;

Ce

C TM
� i�qo � qm�a

Z
;

C TE

C TM
� �ÿb� iqo�a

Z
ct ; �23�

Z � c 2t �b� iqm�s� i�qo � qm��ÿbcm � cn�a :
Result (22) is a generalization of the well-known Dyako-

nov equation [7, 28, 29] for the special case of an interface
chosen to be parallel to the optical axis: cn � 0. We now show
that Eqn (22) at cn � 0 �A � 1� actually yields this equation.
Substitution of the identity c 2t �ee ÿ eo� � q 2

o ee ÿ q 2
e eo into

(22) (see (15) for A � 1) gives the equation

�emqo � eoqe��qm � qe� � qo�qm ÿ qo��em ÿ ee� ; �24�

which looks evenmore compact than the classic version of the
Dyakonov equation. Multiplication of (24) by �qm � qo�
leads to the Dyakonov equation, yielding the well-known
form [7], which in our terms has the form

�emqo � eoqe��qm � qe��qm � qo� � qo�ee ÿ em��em ÿ eo�
n 2

:

�25�

Here, the identity

q 2
m ÿ q 2

o �
eo ÿ em

n 2
�26�

was taken into account.
Equation (25) was originally obtained in [7] to describe a

polariton at the interface between two dielectrics, a uniaxial
crystal and an isotropic medium, when all three permittivity
values, eo, ee, and em, are positive. According to [7], the
solution of Eqn (25) can only be realized in positive crystals,
and only if the value em lies between eo and ee:

0 < eo < em < ee : �27�

It was shown later [8, 9] that the necessary condition for the
existence of a polariton (27) remains valid for an arbitrary
orientation of the interface. According to [7±9], the geometric
dimensions of the region of existence in terms of the angles
�y;j� are not small only for highly anisotropic crystals. In this
case, criterion (27) precludes the propagation of a polariton
along the interface of two isotropic dielectrics.

We do not compare here dispersion equation (22) with the
corresponding equations presented in [8, 9], which remained
complex (like (13)) and were further analyzed using numerical
[8] or approximate [9] approaches. Presented below is an
analytical description of the plasmon polariton. It should also
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be noted that, in the case of the metallic isotropic medium
under consideration �em < 0�, the solutions of Eqn (22)
radically differ from those obtained in [7±9]. In this case,
condition (27) apparently fails. In subsequent sections, we
show that the plasmon-polariton exists in crystals of both
signs in a wide range of interface orientations.

4. Exact solution of the dispersion equation
for a special geometry

We now consider the orientation of the plasmon-polariton
propagation that corresponds to the choice of the sagittal
plane parallel to the optical axis: j � 0, i.e., ct � 0 when the
problem under study has an exact solution. In this case,
equation (22) decomposes into two independent dispersion
equations. The first of them is

eeqo � eoAqe � 0 ; �28�

in the case under consideration, the positive permittivity
values of the crystal eo and ee can only be satisfied if the
parameters qo � qe � 0 simultaneously vanish. Equations (5)
and (6) then show that equalities A � B � 1 and ct � cn � 0
should be fulfilled, which corresponds to the propagation of a
bulk polariton along the optical axis �m � c� lying in the
interface plane. We now show that such a solution is not
possible.

An important remark should be made here. In formulas
(8) for the polarization vectors of partial waves in crystals,
normalization constants No; e are introduced, which have not
played any significant role so far. No attention whatsoever
need be given them in analyzing almost any wave situation,
but not for this singular case. It can be easily seen that,
without normalization in this case, all vector amplitudes in (8)
vanish, as do most of the matrix elements in system (10).
However, after normalization �jEo; ej � 1� in (8) with
cn � ct � 0 (i.e., c � m) and qo; qe ! 0, n 2 ! eo, we obtain,
taking into account (3),

Ho

Eo

� �
� No

k0o � �k0o �m�
k0o �m

 !
� ÿnn

t

� �
;

�29�
He

Ee

� �
� Ne

k0e �m

mÿ k0e�k0e m�=eo

 !
� nt

n

� �
:

Now, the general complex equation (10) after simplifications
takes the form

0 0 0 1
0 n 1 0
0 0 1 0
1 0 0 ÿ1

0B@
1CA Co

Ce

C TM

C TE

0B@
1CA � 0 : �30�

It can be easily seen that the determinant of the matrix on the
left side of system (30) is nonzero:

D0 � ÿn 6� 0 ; �31�

thus indicating the absence of nontrivial solutions to system
(30) and hence a prohibition on the existence of the proposed
plasmon-polariton.

Thus, for ct � 0, dispersion equation (22) takes the simple
form

emAqe � eeqm � 0 : �32�

We have already derived this equation earlier [30] by direct
analysis of the problem for a given special orientation.

Substituting the functions qe�s� and qm�s� (5) atB � 1 into
(32), we find the solution

s � 1ÿ eoee=e 2m
Aÿ ee=em

; �33�

which determines via Eqns (5) all the wave parameters of the
plasmon-polariton:

qo �
��������������������������������
1ÿ 1ÿ eoee=e 2m

Aÿ ee=em

s
; �34�

qe � 1

A

������������������������������������
ee
eo

�
1ÿ Aeo=em
1ÿ Aem=ee

�s
; �35�

qm �
����������������������
Aÿ em=eo
Aÿ ee=em

s
: �36�

Wave parameters (33)±(36) are functions of the angle of
inclination y of the optical axis c to the interface plane, since
the quantity A (6) in these formulas depends on c 2n � sin2 y
(Fig. 1 at j � 0). It should be noted in passing that the
absence of bulk solutions of Eqn (28) along the optical axis
ckm, which was proven above, does not apply to localized
waves, which are described by formulas (33)±(36) at y � 0.

Figure 2 shows the dependences on y of wave parameters
(5) and (33)±(36) for two positive and two negative crystals in
contact with gold at a wavelength in vacuum lvac �
2pc=o � 0:75 mm, when em � ÿ20:148 for gold [31]. The
material parameters for NaNO3 were taken from [22], and
for the other three crystals, data reported in [32] were used. As
can be seen from formulas (33)±(36) and Fig. 2, the
dependences found for positive (a, b) and negative (c, d)
crystals have a different behavior. In the former case, the
functions n�y� and qo�y� increase with increasing y, while the
functions qe;m�y� decrease; in the latter case, the opposite is
true.

It should be noted, however, that the structure of the
plasmon-polariton in this geometry is greatly simplified.
According to (23), at ct � 0, we have Co � C TE � 0, so
wave superposition (2) only contains two partial compo-
nents: the e-wave in a crystal and the TM mode in a metal
with the following amplitude ratio:

C TM

Ce
� ÿbcm � cn : �37�

Taking into account the zero amplitude of the ordinary wave
�Co � 0�, curves qo�y� are shown in Fig. 2 as dashed lines.
Their presence in the figure is justified by the fact that, for any
deviation of the sagittal plane from the orientation ct � 0, the
existing superposition of e- and TM-waves �Ce;C

TM 6� 0�
will have admixed o- and TE-waves with amplitudes Co and
C TE; the stronger the perturbation ct in (23), the greater the
amplitudes. In practice, this situation always occurs, if only
because of the inevitable diffraction divergence of the beam.

Formally, the domain where solutions (33)±(36) exist is
limited by the condition s > 0 and the requirement that the
parameters qa be real. If em < 0, the denominator in (33) is
certainly greater than zero; therefore, the positivity of s is only
violated for e 2m 4eoee. However, the region of small jemj is of
no practical interest due to the strong attenuation of the
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plasmon in the dissipating metal. For the plasmon-polariton
path length to significantly exceed the wavelength, the value
of jemj should be greatly increased, passing into the infrared
region, which is rather characterized by the opposite relation-
ship e 2m 4 eoee.

As can be seen from Eqns (35) and (36), the parameters
qe;m are real and positive for any characteristics of media and
orientations y of the optical axis in the sagittal plane fm; ng.
Therefore, they cannot limit the region where the plasmon-
polariton under consideration exists. However, the reality of
the parameter qo (34) (taking into account the admixture of o-
and TE-waves) is by no means guaranteed. The qo parameter
only remains real until the sign of the radical expression in
(34) is changed:

eoee�eo ÿ em�5 c 2n e
2
m�eo ÿ ee� : �38�

Condition (38) can only be violated for negative crystals
�ee < eo�. The critical inclination yc of the optical axis
corresponding to qo � 0 is determined by the condition

sin2 yc � eoee
e 2m

eo ÿ em
eo ÿ ee

� �c 2n �max 4 1 :
�39�

In Figure 2c, the dashed curve of the qo�y� function for the
NaNO3 crystal shows the violation of criterion (38) at
y > yc � 0:62 rad. Of course, the limiting angle yc (39) does
not necessarily exist: there is none in the LiIO3 crystal
(Fig. 2d). On the other hand, the presence of such limiting
orientations is not uncommon. As the wavelength increases,
the quantity jemj increases rapidly, and the angle yc (39)
decreases accordingly. For example, with an increase in lvac
from 0.75 to 1 mm for gold, we have [31] em � ÿ41:849 instead
of ÿ20:148, so the limiting angle also appears in the LiIO3

crystal: yc � 0:82 rad.
If y � yc, the partial o-wave becomes a bulk wave, and at

y > yc this bulk wave acquires a nonzero real component ky
and starts removing energy from the interfaceÐ the polariton
becomes leaky, i.e., is characterized by a decrease in the
tangential component of the energy flux as it propagates

and, consequently, by a nondissipative limitation of the path
length.

Thus, the region of orientations of the optical axis y > yc
is the region of instability of the two-partial plasmon-
polariton under study. In this region, for any perturbation
in orientation that drives the optical axis out of the sagittal
plane ct � 0, the surface polariton in the crystal transforms
into a pseudo-surface one.

5. Approximate solution
in the Dyakonov geometry
by the iteration method

In this section, we consider the orientation cn � 0, which
was studied in Dyakonov's theory of polaritons [7] (see
Section 3). The same geometry was later analyzed in the
theory of plasmon-polaritons, but primarily by numerical
methods [28, 29]. Here, as before, our goal is to develop an
analytical theory that expresses the wave characteristics of
a plasmon-polariton as a function of material and geome-
trical parameters. It should be noted that Dyakonov [7]
already proposed an approximate analytical solution of
Eqn (25) for a polariton based on the assumption that the
crystal anisotropy is small. The concept of the solution is
based on the observation that under conditions (27) the
quantities eo and ee being close to each other implies that
the product �ee ÿ em��em ÿ eo� on the right side of equation
(25) is small. The approximation used in [9] was based on
similar considerations. In the case of a plasmon-polariton,
when jemj4 1 and em < 0, this product is large rather than
small, so we have to look for alternative approaches to the
solution.

We consider the case of the optical axis of a crystal parallel
to the interface plane fm; tg (see Fig. 1), so that y � 0 and
A � 1 (6). Dispersion equation (22) for the propagation
geometry under consideration can be conveniently repre-
sented as

qe
ee
� qm

em
� ÿ c 2t De

eoqe � eeqo

�
1ÿ ee

em

�
: �40�
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Figure 2.Dependences n�y�, qo�y�, qe�y�, and qm�y� for two positive (a, b) and two negative (c, d) crystals.
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The dependence of wave parameters on orientation in
Eqn (40) is now determined by the parameter c 2t � sin2 j,
both explicitly and implicitly, via the parameter qe (5).

To remove radicals (5) from the left part of Eqn (40), we
multiply this equation by the factor

eoee

�
qe
ee
ÿ qm

em

�
6� 0 : �41�

As a result, the left part of the equation takes the form

eo
ee

q 2
e ÿ

eoee
e 2m

q 2
m � q 2

o ÿ
eoee
e 2m

q 2
m ÿ c 2t De

� 1ÿ eoee
e 2m
ÿ s

�
1ÿ ee

em

�
ÿ c 2t De ; �42�

where relations (5) and identity (26) at A � 1 are taken into
account. Moving the term c 2t De in Eqn (42) from the left to
the right part of the equation obtained, after minor
transformations, we derive a new form of the exact
dispersion equation:

sÿ s �0� � c 2t DeZ ; �43�

where

s �0� � 1ÿ eoee=e 2m
1ÿ ee=em

; �44�

Z � ee
ee ÿ em

ÿ ko ÿ 1

ko � ke
; �45�

ko � ÿ qoem
qmeo

; ke � ÿ qeem
qmee

: �46�

Resulting exact equation (43) has a significant advantage
over (22) and (40): it is well prepared for the forthcoming
approximate calculations. As shown below, for many crys-
tals, the right side in Eqn (43) is convincingly small compared
to s �0� � 1 for almost any orientation j of the optical axis c in
the interface plane. This provides us with an analytical
description of the parameters and conditions for the exis-
tence of a plasmon-polariton with quite acceptable accuracy.

In the zeroth order, the right side of (43) is assumed to be
equal to zero, so in this approximation the solution is given by
formula (44), which coincides with (33) at A � 1. However, it
should be remembered that exact formula (33) was obtained
for the case ct � 0, cn 6� 0, and B � 1 and depended on the
inclination y of the optical axis c in the sagittal plane (see
Fig. 1), while Eqn (44) was derived for cn � 0, ct 6� 0, and
A � 1 as the zeroth-order solution, and in this approximation
does not depend on orientation (azimuth j). However, at
j � 0, this solution is also an exact solution. Definitely, here,
as in Eqn (33), it is assumed that e 2m > eoee.

In the zeroth approximation under consideration, by
combining (44) with relations (5), we obtain the localization
parameters q

�0�
o , q

�0�
e , and q

�0�
m . The first and the third of these

parameters do not depend on orientation c,

q �0�o �
���������������������
1ÿ eo=em
1ÿ em=ee

s
; q �0�m �

���������������������
1ÿ em=eo
1ÿ ee=em

s
� q �0�o

ÿem��������
eoee
p ;

�47�
since their anisotropy, according to (5), is fully determined by
the parameter s �0�. In contrast to these two parameters, the

parameter q
�0�
e contains an additional source of anisotropy

(via B) and is therefore fairly sensitive to variations in ct
already in the zeroth approximation:

q �0�e �
������������������������������������������������
ee
eo

�
1ÿ eo=em
1ÿ em=ee

ÿ Dec
2
t

�s
: �48�

As ct grows, this parameter increases for negative crystals,
decreases for positive crystals, and, in principle, can vanish at
a certain value of ct.

The next approximation `incorporates' the right-hand
side of Eqn (43) with the parameters q

�0�
o , q

�0�
e , and q

�0�
m (47),

(48) calculated in the zeroth approximation. As a result, we
obtain

k �0�o �
�����
ee
eo

r
; k �0�e �

�����������������
Bÿ s �0�

1ÿ s �0�

s
�

����������������������
1ÿ c 2t De

�q �0�o �2
s

; �49�

where the parameter B is defined in (6) and only depends on
the azimuth j, since, in the case under consideration, y � 0
(see Fig. 1): ct � sinj. Formulas (49) are derived from (5),
(44) and the relationship between q

�0�
m and q

�0�
o in (47).

Combining formulas (49) and (45), we obtain

Z�0� � ee
ee ÿ em

ÿ
����������
ee=eo

p ÿ 1����������
ee=eo

p � k �0�e

: �50�

Next, we substitute the first-order approximation into (43),

s � s �1� � s �0� � ds �1� ; �51�

and, taking into account (50), we find

ds �1� � c 2t Z
�0�De � c 2t

�
ee ÿ eo
ee ÿ em

ÿ �ne ÿ no�2�ne � no�
ee�ne � nok

�0�
e �

�
; �52�

where no � ����
eo
p

and ne � ����
ee
p

are the refractive indices of the
crystal.

Formula (52) gives an estimate of the right side in exact
equation (43), which, as expected, features a certain small-
ness, being quadratic in two small parameters, the anisotropy
factor De and the ratio ee=jemj, which are about 10ÿ1 for most
crystals. The first term on the right side of (52) is proportional
to their product, while the second term is proportional to the
anisotropy squared. Therefore, the right side in (52), and
hence in (43), should be of the order of 10ÿ2, which
predetermines a good convergence of the iterations.

Figure 3 shows functions ds �1��j� (52) for a group of
crystals selected due to their enhanced anisotropy, i.e., the
largest difference between the permittivity values eo and ee
(Table 1). The values eo and ee are taken for crystals, except
for calomel �Hg2Cl2� and sodium nitrate �NaNO3�, from
reference book [32]. The parameters for NaNO3 are reported
in [22], and for Hg2Cl2, the data from [33, 34] are used. All
data refer to the wavelength lvac � 0:75 mm, similar to
em � ÿ20:148 for gold [31].

For negative crystals, all dependences ds �1��j� displayed
in Fig. 3 monotonically decrease in the interval 04j4 p=2.
In the case of positive crystals, the ds �1��j� functions behave
differently. In cinnabar (HgS), a monotonic increase in
ds �1��j� occurs over the entire interval 04j4 p=2. For the
other three positive crystals shown in Fig. 3a, these functions
first increase, reach a maximum, and break off on the decline
branch at certain azimuths. We have already encountered a
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similar situation in Section 4, where restrictions on the region
of existence of a plasmon polariton in a negative NaNO3

crystal occurred at inclination angles of the optical axis that
exceeded the critical angle yc, at which qo � 0. The physical
meaning of the boundary anglesjc in positive crystals is quite
similar: in this case, these are the angles at which qe�jc� � 0.
We return to this aspect of the problem below. Here, of more
importance for us is another feature of the curves shown in
Fig. 3.

The expected smallness of their maximum values in
comparison with the constant component s �0�, which corre-
sponds to the orientation j � 0 and is determined by the
exact formula (44), is confirmed. Table 1 shows the absolute
values of jds �1�jmax and their relative value jds �1�jmax=s

�0� for
ten crystals. The set of four positive crystals presented in
Fig. 3a is extended in the table by adding a superanisotropic
model photonic crystal (Ph Cr), considered in [18, 19, 35]. In
almost all cases, the inequality jds �1�maxj5 s �0� can be observed.
Based on this, for some crystals presented in Table 1, even the
zero approximation s � s �0� � const is a fairly acceptable
estimate. The last column of the table contains the maximum
deviations of functions s �1� � s �0� � ds �1��j� (normalized by
s �0�) from the numerically found solution s�j� of exact
equation (43). It can be seen that for most crystals the
relative error of the first approximation does not exceed
1%, and the maximum deviations occur for HgS (1.9%),
NaNO3 (2.2%), and GaSe (2.3%) crystals. In the case of a
model photonic crystal, the situation is special. Due to the
anomalous anisotropy, an acceptable accuracy (� 1:7%)
can only be achieved for this crystal after the second
iteration.

Thus, as expected, even the first correction ds �1� (52) to the
zeroth approximation s �0� (44) may be sufficient to character-
ize the plasmon-polariton parameters. However, as the
example of the photonic crystal shows, the approximate
solution ds �1� can, if required, be refined by recursive
calculations in the next iterations, when the result of the kth

approximation substituted into the right side of Eqn (43),
taken at ko � k �k�o and ke � k �k�e , gives the next, �k� 1�th,
approximation for s.

Substituting s � s �0� � ds �1� into (5), in the same approx-
imation we find

n �1� �
�����������������������

eo
s �0� � ds �1�

r
� n �0�

�
1ÿ ds �1�

2s �0�

�
: �53�

Next, by analogy, we obtain

q �1�o �
�������������������������������
1ÿ s �0� ÿ ds �1�

p
; �54�

q �1�e �
�����������������������������������������
ee
eo
�Bÿ s �0� ÿ ds �1��

r
; �55�

q �1�m �
����������������������������������������
1ÿ em

eo
�s �0� � ds �1��

r
: �56�

Taking into account these values, it is easy to obtain from (46)
the refined values of the parameters k �1�o and k �1�e in the next
approximation:

k �1�o � k �0�o

�
1ÿ ds �1�

2�q �0�o �2
�
; �57�

k �1�e �
������������������������������������������
1ÿ c 2t De

�q �0�o �2
�1� Z�0��

s
: �58�

The value k �1�e differs from k �0�e (49) by the addition of a small
function Z�0� (50) in the radicand. These values can be used to
build the next iteration for Z�1� and s �2�.

Figure 4 compares the results of the analysis in the first
two approximations, i.e., solutions s �1��j� and s �2��j�, with a
numerical solution s�j� of exact initial equation (43) for a
positive HgS crystal and a negative GaSe crystal, whose first-
approximation errors displayed in the last column of Table 1
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Figure 3.Dependences ds �1��j� for some positive (a) and negative (b) crystals.
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are the largest among real crystals. The calculations again
refer to the wavelength lvac � 0:75 mm. It can be seen that in
both cases all the curves originate from the same point,
corresponding to the exact solution at j � 0, s�0� � s �0�

(44), and then rise (Fig. 4a) or fall (Fig. 4b) following close
trajectories. The deviations of the approximate solutions
from the exact one are the largest on the right edge, where
they amount, compared with s �0�, in the first and second

order, respectively, to � 1:9% and 1% for cinnabar and
� 2:3% and 0.18% for gallium selenide. As can be seen
from Table 1, these figures for a photonic crystal are � 15%
and 1.7%.

We now return to Fig. 3a, where for three (out of four
positive) crystals, the region where the solution exists turns
out to be limited from above by the critical azimuth jc, at
which qe � 0. If the angle jc is exceeded, the parameter qe�j�

Table 1.Material and physical parameters for 10 crystals at lvac � 0:75 mm using data [18, 28±30] and formulas (41) and (49).

eo ee De s �0� jds �1�jmax

jds �1�jmax

s �0�
js �1� ÿ sjmax

s �0�

CO�NH2�2
Carbamide

2.180 2.550 0.145 0.876 0.0065 0.74% 0.35%

2-furyl
methacrylic
anhydride

2.643 3.446 0.233 0.835 0.0075 0.90% 0.46%

Hg2Cl2
Calomel

3.771 6.566 0.426 0.718 0.0148 2.06% 0.75%

HgS
Cinnabar

7.811 9.626 0.189 0.551 0.0499 9.06% 1.91%

Ph Cr
Photonic
crystal

2 7.5 0.733 0.702 0.0631 8.97%
s �1� ! s �2�

15.1! 1.7%

b-BaB2O4

b-barium
borate

2.763 2.389 ÿ0.156 0.880 0.0210 2.39% 0.45%

LiIO3

Lithium
iodate

3.499 2.984 ÿ0.173 0.849 0.0278 3.27% 0.59%

Ag3SbS3
Pyrargyrite

10.202 9.168 ÿ0.113 0.529 0.0381 7.20% 0.38%

NaNO3

Sodium
nitrate

2.512 1.781 ÿ0.410 0.909 0.0537 5.9% 2.2%

GaSe
Gallium
selenide

8.255 6.413 ÿ0.287 0.660 0.0846 12.82% 2.27%
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Figure 4. Comparison of approximate curves 1Ð s �1��j� and 2Ð s �2��j� that correspond to the first and second iteration, respectively, with curve 3Ð

s�j� being the numerical solution of Eqn (22) for HgS (a) and GaSe (b) crystals.
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becomes imaginary, which corresponds to the transformation
of an extraordinary localized partial mode in superposition
(2) into a bulk wave propagating at an angle to the interface
surface with energy diversion deep into the crystal, so the
polariton becomes a leaky mode. Thus, the region where the
localized eigenmode under study exists turns out to be limited
by the interval 04j4jc. In the particular case under
consideration here, cn � 0, the exact critical angle jc is
found from the equation

sinjc �
�
De

�
1ÿ em�2ÿ em=ee�

ee�1ÿ em=eo�
��ÿ1=2

4 1 : �59�

We now compare for these three crystals and the photonic
crystal in Table 1 exact solutions jc of Eqn (59) with the
approximate values j �0�c and j �1�c that follow from equations
q
�0�
e �j� � 0 (48) and q

�1�
e �j� � 0 (55). The results of this

comparison, displayed in Table 2, are fairly optimistic for
real crystals, even in the zeroth approximation, not to
mention the first iteration (the second iteration was not
calculated). As for the model anisotropic photonic crystal,
to get closer to the exact value, the second iteration was again
required.

It is noteworthy that, when passing from the parameter
s to the physical parameters n and qo; e;m, the approxima-
tion error becomes even smaller due to the presence of the
correction ds �1� in the radicand in Eqns (53)±(56). This is
shown in Fig. 5, which compares the approximate func-
tions n �1��j�, q �1�o; e;m�j� with the corresponding numerical
solutions of exact equations (5) and (43) for HgS and GaSe
crystals.

Figure 5 shows that the largest deviation, which is
observed between the n�j� curves in the GaSe crystal,
amounts to a relative value of 1.4% at j � p=2. No
deviations in any other curve in both crystals exceed 1%. If
plotted on a normal scale without breaks in the ordinate axis,
as in Fig. 5, all the compared pairs of curves, except for n�j�,
merge: the gap between them becomes smaller than the line
thickness. The n�j� curves become approximately four times
closer.

The intersection of curves qo�j� and qe�j� in Fig. 5 for
both crystals, HgS and GaSe, should also be noted. We
find the exact positions of these points analytically. It
follows from (5) that, in the plane under consideration
(cn � 0, A � 1), the intersection occurs at qo�j� � qe�j� �
jctj � sinj, s � cos2 j. Substitution of these values into the
dispersion equation (40) determines the searched for position
of the intersection point jdeg:

cotjdeg � 2

������������������������������������������������
eo
ÿjemj � ee

�ÿjemj ÿ eo
�

�eo � ee�2
ÿjemj � eo

�s
: �60�

Figure 5 shows that the approximate theory yields the
positions of intersection points close to exact values (60).

It can be easily checked that, when moving towards the
point jdeg, it is not only localization parameters of the
ordinary and the extraordinary components but also
polarization vectors (3) that come close. The degenerate
waves propagating in this direction are referred to as
Dyakonov±Voigt plasmon-polaritons. They feature fairly
nontrivial properties that require a special description [36,
37], which is beyond the scope of this study. It is only
worth noting that the partial waves of the degenerate
polariton in a crystal have coinciding polarization para-
meters but different vector amplitudes. One polariton
component features a circular polarization and a scalar
amplitude that linearly increases as the distance from the
interface grows.

Thus, comparisons of the approximated solution with
exact ones in Figs 4 and 5 and Tables 1 and 2 indicate that the
procedure proposed in this section to analytically describe the
plasmon-polariton in the Dyakonov geometry proved to be
fairly successful. For all `live' crystals, including most
anisotropic ones, the first iteration provides a fairly high
accuracy of description. It is for the model superanisotropic
crystal alone that refinement was needed, but, in this case as
well, the second iteration was sufficient. The next section
presents a generalization of the described approach for an
arbitrary geometry.

6. Generalization of the iteration formalism
for the case of arbitrary orientation

General equation (22) now contains all components of the
vector c, and hence both functionsA�cn� andB�ct� (6) that are
different from unity. We solve this equation by analogy with
Section 5. Therefore, it is convenient to write it in a form that
generalizes Eqn (43),

sÿ s
�0�
A � c 2t De

�
ee

ee ÿ em
ÿ ko ÿ 1

ko � �ke

�
w ; �61�

Table 2. Comparison of angles j �0�c , j �1�c , j �2�c , and jc for four crystals.

j �0�c j �1�c j �2�c jc

CO�NH2�2 67:77� 65:39� 63:28�

FMA 57:34� 56:38� 55:74�

Hg2Cl2 56:09� 56:00� 55:85�

Ph Cr 39:6� 44:6� 52:1� 53:02�
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Figure 5. Comparison of functions n�j� and qo; e;m�j� found numerically

from exact equations (5) and (43) (solid curves) with their first-approx-

imation solutions (53)±(56) (dashed curves) for HgS ±Au (a) and GaSe ±

Au (b) interfaces at lvac � 0:75 mm.
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where the parameter ko is determined as before by Eqn (46)
and new notations are introduced:

s
�0�
A � 1ÿ eoee=e 2m

Aÿ ee=em
; �62�

�ke � ÿAqeem
qmee

; w � 1ÿ ee=em
Aÿ ee=em

: �63�

It should be stressed that the obtained new form of Eqn (61) is
exact and fully equivalent to initial equation (22).

We now show that the right part of Eqn (61) is again fairly
small in comparison with the terms in the left part. Given this
circumstance, the iteration method can also be applied to
solve Eqn (61). In the zeroth order, we can set s � s

�0�
A (62),

which formally agrees with our solution (33), which described
in Section 4 the particular case j � 0. In the same zeroth
approximation, taking into account (5), we obtain

q �0�o �
��������������������������������
1ÿ 1ÿ eoee=e 2m

Aÿ ee=em

s
; �64�

q �0�e �
1

A

���������������������������������������������������
ee
eo

�
1ÿ Aeo=em
1ÿ Aem=ee

ÿ c 2t De

�s
; �65�

q �0�m �
����������������������
Aÿ em=eo
Aÿ ee=em

s
: �66�

Substituting Eqns (64)±(66) into the formulas for ko (46) and
�ke (63), we also find the parameters

k �0�o �
��������������������������������
ee
eo
ÿ c 2nDoem=eo

1ÿ eo=em

s
; �k �0�e �

�������������������������������������������
1ÿ c 2t De

1ÿ Aem=ee
1ÿ Aeo=em

s
:

�67�

In deriving the first formula in (67), terms of the second order
of smallness, like �ee;o=em�2 and Do�eo=em�, were omitted.
Based on this, a step to the next iteration, the first order
approximation, can be made:

s �1� � s
�0�
A �y� � ds �1�A �y;j� ; �68�

where

ds �1�A � Dec
2
t �y�w�y�Z�0�A �y;j� ; �69�

Z�0�A �
ee

ee ÿ em
ÿ k �0�o �y� ÿ 1

k �0�o �y� � �k �0�e �y;j�
: �70�

Similar to Section 5, the iterative procedure under
development ensures rapid convergence only provided the
right side of Eqn (61) is fairly small. Analysis shows that the
estimate ds �1�A �y;j� (69) found in the first order is actually
small for most crystals for all angles j and ywithin the region
where the plasmon-polariton exists. It should be noted here
that the possible reversion of signs of the radicands inEqn (67)
(as in (5)) is of no concern, since it would only indicate going
beyond the regions of existence. In frames of simple limiting
consideration, for small y �c 2n 5 1� the analysis in Section 5
based on Eqn (52) can be repeated. At large y, a new
additional small factor emerges, c 2t 5 1, so in the limit
ds �1�A �p=2;j� � 0. For intermediate orientations, all three
small factors are operative: c 2t DeZ

�0�
A . It is shown below in an

alternative approach.

It is natural to compare the results of the approximate
analysis based on Eqns (68)±(70) with the numerical solution
s�y;j� of exact equation (61) for the same pair of crystals for
which the largest deviations were found in Section 5. Figure 6
displays such a comparison for these crystals: for positive
cinnabar (Fig. 6a) and negative gallium selenide (Fig. 6b).
Pairs of curves s �1��j� and s�j�were plotted for a series of five
angles, y � 0, p=6, p=4, p=3, and p=2 (I), and pairs, s �1��y� and
s�y�, for fixed azimuths j � 0, p=6, p=4, p=3, and p=2 (II). If
y � p=2, when the optical axis c is orthogonal to the interface,
which thereby becomes the transverse isotropy plane, the
function s�p=2;j� naturally becomes independent of the
azimuth j. Formally, in this case, the identity ct�p=2;j� � 0
is valid, so Eqns (62) and (69) automatically yield the same
exact solution: s � s

�0�
A �p=2� � const, which can be seen in

Fig. 6(I). In negative crystals, this constant turns out to be the
absolute maximum of the function s�y;j�, and, in positive
crystals, its absolute minimum (see Fig. 6(II)).

As the angle y decreases, the width of the region of
variation of the function s�j�, estimated using the value
jds �1�jmax, monotonically grows. Concurrently, the deviation
between curves s �1��j� and s�j� also grows to reach a
maximum at y � 0, j � p=2: 1.9% for HgS and 2.3% for
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Figure 6.Comparison of first-approximation functions s �1��y;j� (67) with
numerical solutions s�y;j� of exact equation (60) forHgS (a) andGaSe (b)

crystals; lvac � 0:75 mm.
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GaSe (see Table 1). Thus, the testing of the first approxima-
tion under discussion, which was carried out in Section 5
specifically for y � 0, seems to be sufficient. Figure 6(I) shows
that an increase in y only reduces the already small errors in
our approximation (Table 3). It should be added that the
differences among the solutions displayed in Fig. 6 refer to
crystals with a uniquely high anisotropy and can be
significantly reduced in the next iteration (see Fig. 4). As can
be seen from Table 1, for the vast majority of crystals, the
errors in even the first-approximation solutions do not exceed
1%.

7. Conclusion

One of the key results of this study is the obtained explicit
form of real dispersion equation (22) (see Section 3), the
solutions of which determine the main properties of the
plasmon-polariton at interface orientations that allow its
existence for given material parameters. These properties are
described above analytically for a number of orientations,
including an arbitrary one, on the basis of an exact analysis
(see Section 4) or in an approximate way, based on the
iterative formalism developed in Sections 5 and 6.

Attention should be paid here to a `technical' detail
underlying the surprisingly fast convergence of the men-
tioned iterative formalism used in Sections 5 and 6. It should
be recalled that we used in our analysis four forms of the exact
dispersion equation: (22), (40), (43), and (61). It can be easily
seen that the first two equations, (22) and (40), contain on
their right side an anisotropy parameter, which, generally
speaking, is not too small, De � 10ÿ1. However, the last
two forms, (43) and (61), obtained by transformation, the
concept of which is described below Eqn (40), contain a
really small factor of � 10ÿ2 on the right side, the estimate
of which is given in Eqns (52) and (69) and Table. 1. It is
this factor that governs the effectiveness of the iterative
procedure we have proposed.

The analytical theory developed in this study makes it
possible to describe the dependences of the wave parameters
of the plasmon-polariton on the orientation of the interface
andmaterial constants. Aswe have seen, the higher the crystal
anisotropy, the more diverse the wave pattern. Under certain
conditions, a polariton in a crystal can even lose its
localization, i.e., it becomes a bulk one.

Here, it is reasonable to consider for comparison the
opposite limiting case of the complete loss of anisotropy,
when the crystal transforms into an isotropic dielectric
medium. In this limiting case, ee ! eo, De; o � 0, A � B � 1,
qe ! qo, and dispersion equation (22) is greatly simplified to

emqo � eoqm � 0 : �71�

This shows that, if em > 0, i.e., when metal is replaced by a
normal isotropic dielectric, dispersion equation (71) has no
solutions, as already stated in the introduction. It is only if
em < 0, i.e., in cases of a plasmon-polariton or a dispersive
polariton, that the terms on the left side of Eqn (71) turn out

to be of opposite signs, so that it has a simple solution:

s � 1ÿ eo
jemj : �72�

Consequently, we obtain from (5) in the same limit

qo �
���������
eo
jemj

r
; qm �

���������
jemj
eo

s
: �73�

If ee � eo, the same formulas (72) and (73) follow, of course,
from Eqns (33)±(36). By analogy with the analysis carried out
in Section 4, the requirement s > 0 limits the domain of
existence by the criterion

jemj > eo : �74�

As in Section 4, this criterion is definitely of no practical
interest due to a more serious physical limitation on the value
of jemj associated with plasmon damping in the metal. For a
plasmon-polariton to exist, it is necessary that its path L
significantly exceed its own wavelength: L4 l. This requires
a paradoxical increase in l with a transition to the infrared
region (L grows faster than l). In this frequency range, the
growth of L is provided by a sharp increase in jemj [21, 31], so
that the very existence of a plasmon-polariton guarantees the
fulfillment of inequality (74).

However, even with this choice of l, the typical free path
of a plasmon-polariton is usually several ten micrometers.
Therefore, in plasmonics, the problem of increasing the path
length persists. One of the effective ways to solve this problem
is to straightforwardly replace an isotropic dielectric with a
crystal [19±21]. In particular, our study [21] has shown that
the choice of interface orientation corresponding to a weakly
localized (quasi-bulk) polariton in a crystal should sharply
increase the free path of the plasmon-polariton. An increase
in the free path is expected to be approximately proportional
to the ratio of the energy fluxes carried by the polariton and
plasmon.

In Section 5, exact formula (59) for the Dyakonov
geometry is obtained, which specifically determines the
critical orientation in which the bulk polariton of the
extraordinary partial branch �qe � 0� is realized in the
crystal. Table 2, presented in the same section, shows the
corresponding critical angles jc for four positive crystals.
Study [21] has shown for two of these crystals that the free
path L of the plasmon-polariton sharply increases by several
orders of magnitude as the orientation approaches the critical
one j! jc, shown in [21].

It should be noted that bulk polaritons also exist in biaxial
crystals adjoining a metal [38]; therefore, the noted well-
pronounced effect can also occur in dielectrics of arbitrary
anisotropy. However, in a similar semi-limited isotropic
dielectric, delocalization of a polariton is not possible;
therefore, this effect is purely anisotropic.

This study was supported by the Ministry of Science and
Higher Education of the Russian Federation as part of the
state assignment to the Federal Research Center Crystal-
lography and Photonics of the Russian Academy of Sciences.
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