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Abstract. Helium at pressures below 25 atm remains liquid at
temperatures down to absolute zero, when the number of ex-
citations in the medium and the concentration of the normal
component become negligible. This makes it possible to use
superfluid helium at low temperatures as a model medium to
study the formation and decay of a turbulent system. Describing
and modeling the behavior of vortices in superfluid helium at
temperatures below 0.1 K, when the amount of the normal
component becomes negligible, are greatly simplified due to
the quantization of the flow of the superfluid component, and
all hydrodynamic properties of helium associated with its rota-
tional motion are determined by quantized vortices. The article
reviews experimental methods for the excitation and detection
of quantum turbulence presented in experimental studies in
recent years, and discusses features of vortex generation by
various methods and at different temperatures of the super-
fluid, the dynamics of change in the concentration of vortices
during the generation and decay of the vortex system, and the
difference between the behavior of quantized vortices under
Kolmogorov turbulence and that under Vinen turbulence.
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1. Introduction

Turbulence is one of the most common natural phenomena
occurring at lengths varying from nanometer (quantized
vortex in a superfluid) to galactic scales (magnetic turbulence
in the interstellar gas). It is an excited state of a system with
many degrees of freedom, far from equilibrium. In fluid
dynamics, turbulence is observed under certain conditions in
the flow, when some characteristic scale parameter exceeds a
critical value, e.g., when the dimensionless Reynolds number
exceeds a few thousand, a turbulent state arises, leading to a
disordered velocity of the flow particles and a chaotic change
in the pressure in the liquid. In a turbulent state, all these
parameters oscillate around the mean values. The Reynolds
number is inversely proportional to the coefficient of
kinematic viscosity (v), and the experimental cell size for
studying the behavior of a turbulent state can be reduced in
size by decreasing v. In this regard, experiments with liquid
helium provide an opportunity to reduce the size of the
experimental setup to study turbulent states by a couple of
orders of magnitude in comparison with experiments with
water or air.

If we talk about liquid helium (boiling point 4.2 K), when
it cools below T; = 2.17 K under saturated vapor pressure,
helium becomes superfluid, and it can flow without friction
through narrow channels with sizes down to even nanoscale
dimensions. However, the viscosity of flux of superfluid
helium in bigger volumes is determined by the flow of the
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normal component and the interaction of the normal and
superfluid components, which will be discussed below. The
coefficient of viscosity of air (at 7 =20°C) is equal to
v=0.01 cm? s~!, while, for gaseous helium (7=5.5K,
2.8 bar), v=3.21 x 1074 cm? s~!, for helium I (T =2.25 K,
at the saturated vapor pressure), v=1.96x10"* cm? s~', and
for superfluid helium in large volumes (7=1.8 K, VSP),
v=9x 107° ecm? s~ ! [1].

The main peculiarity of helium at temperatures below the
phase transition (7 < 7;) is that it has two components,
normal and superfluid, and this determines the fundamen-
tally different behavior of helium in comparison with
ordinary liquid. The superfluid component is a liquid in a
quantum-correlated state, which manifests itself in such a
phenomenon as the continuous flow of this component along
closed lines and the existence of quantized vortices. For a large
number of such disordered vortices in superfluid helium, their
motion and the physical parameters of the medium (pressure,
velocity of normal and superfluid components) can be
complex and unpredictable, and for such motions only their
average values are determined. A random tangle of such
vortices is known as a turbulent state of quantized vortices and
is called quantum turbulence. The term quantum turbulence
was first introduced into the literature in 1986 by R J Donnelly
[2] at a symposium dedicated to the memory of G I Taylor.

Hundreds of papers, both theoretical and experimental,
are devoted to the study of the features of quantum
turbulence. Let’s focus attention on review publications [3—
8]. Quite recently, a review of computational studies on the
properties of vortex structure reconnections was published [9].

It is possible to compare the behavior of vortices in He-II
at temperatures slightly below T’ (due to the presence of both
normal and superfluid components) and quantized vortices at
temperatures near absolute zero, when the presence of the
normal component and thermal excitations in liquid helium
can be disregarded. The behavior of vortices at ultralow
temperatures is the easiest kind for understanding and
computer simulation due to the description of the quantized
flows of the superfluid component around the vortices.
However, in the region of intermediate temperatures, when
the existence of vortices in both normal and superfluid liquids
is possible, their interaction and energy transfer between them
make the study of turbulence in helium very difficult.

In this review, we will consider turbulent processes in a
system of quantum vortices in superfluid helium-4, mainly at
low temperatures, the peculiarities of the formation of
quantum turbulence, the conditions for the existence of an
equilibrium concentration of quantum vortices during their
steady generation, and the decay of a vortex system, we will
analyze and discuss the results of recent experiments, and,
finally, we discuss conclusions that were made on the basis of
these experimental studies.

2. Turbulence in superfluid helium-4

The effect of superfluidity of liquid helium (He-IT) was
experimentally discovered by Kapitza as the ability of liquid
helium at temperatures below 2.172 K to flow through
micron-sized channels practically without any friction [10].
The coefficient of kinematic viscosity, a coefficient connect-
ing the viscous force of friction when a fluid flows through
narrow slots with the corresponding coefficients determined
by the parameters of the slot, decreases during the transition
of helium into a superfluid state by at least 6 orders of

magnitude. This coefficient differs from the values of
viscosity measured during the flow of superfluid helium
through large channels or when helium moves in a large
volume. The first experimental measurements of superfluid
helium flux indicated the nonobservance of superfluidity; it
was found in [11] that the experimentally observed ‘critical
velocities’ at which superfluid hydrodynamics appear are
significantly lower than the theoretical estimates obtained in
Landau’s theory of two-fluid hydrodynamics He-II [12, 13].
According to Landau’s theory, violation of superfluidity
occurs at flow velocities of the superfluid liquid ¥V

de 1
V> (= ~ — (\/2mA+pd—po)~60ms!
>(dp)p_m o (Vma = p)~soms

where ¢ is the energy of quasiparticles in a liquid with
momentum p, m; = 0.16 my, is the effective mass of the
roton, 4 = 8.6 K is the minimum energy of the roton and its
minimum momentum py = 1.91 A1 , while the measurements
give the values of the velocities at which hydrodynamic
friction appears, of the order of tens of cms™' [14-16]. The
larger the channel size, the greater the viscosity calculated
from the flow of superfluid helium through small-sized flow
channels becomes. For a large channel (1 um or more), the
viscosity of superfluid helium approaches the viscosity of
bulk helium.

The observed differences were explained within the
framework of the two-fluid model of superfluidity, accord-
ing to which helium-II consists of two interpenetrating
liquids — the superfluid and the normal component. The
superfluid component is helium, which is in a quantum-
correlated state. One may define a macroscopic quantum
fluid as a liquid with the wave function as [17]

¥ = /psexp (iS(r, 1))

(order parameter), where r and ¢ are a coordinate and time.
The velocity of the superfluid component is defined as
Vs = [I/(mane)|VS. The superfluid component moves with-
out friction, has zero entropy, and does not participate in the
transfer of energy in the form of heat. The following property
of superfluid helium is fundamental for quantum turbulence:
the quantum-correlated state determines the long-range
phase coherence of the superfluid component and imposes
certain restrictions on the flow of the superfluid liquid Vi:
when the phase S changes by 2nn, where 7 is an integer, upon
returning to the starting point observations, the wave
function does not change, which determines the conservation
of motion of the superfluid component at its circulation. In a
simply connected region rot V5 = 0; however, for a multiply
connected volume, the circulation of the superfluid compo-
nent is quantized,

F:{) Vsdl = nx,
C

where the integration is carried out along a closed line C. The
multiple connectedness of the circulation volume can be
realized by the presence in the volume of superfluid helium
of a region with disturbed superfluidity — the size of a vortex
with dimensions r. being several angstroms for *He,
re ~1.28 £0.13A at 7= 0.28 K, and for *He-B, r. > 100 A
[18, 19]. The circulation quantum is defined as
k=h/mye=9.998x 1078 m? s~!, where % is Planck’s con-
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stant, and myy. is the mass of a helium atom. By quantized
vortices we mean the region of superfluid flow around the
core of the vortex, by direction of the vortex, the direction of
its core, taking into account the direction of circulation of the
superfluid component, and by density of vortices, the number
of cores through a unit surface.

For a rectilinear vortex, the undamped velocity of motion
of the superfluid component is defined as

hn Kn
Vs = = )
Magel  271r

where r is the distance from the vortex core. The quantum
nature of the motion of the superfluid component around the
vortex core was experimentally confirmed by research groups
working on vibrating wires in superfluid helium [20, 21] and
by experiments on the motion of negative charges connected
with a vortex ring [22, 23]. The motion of the superfluid
component around the core of the vortex determines the
kinetic energy of a unit length of the vortex,

r 2 2
n’p.K r
E, = 4[ TP, Vszrdr = Z:T In <—) ,

I'e

¢

where the integration is limited either by the size of the vessel
for a single vortex or by the distance to the nearest
neighboring vortices. It is energetically favorable for vortices
to take the minimum possible n: a vortex with one circulation
quantum n = 1 is stable in *He. For n = %1, In (//r.) ~ 10
(which is quite reasonable for fairly highly dense packing of
vortices), p; = 0.147 g cm ™3, we obtain the energy per unit
length of the vortex filament E/L = (px?/4n)In (I/rc) ~
1.2x 1072 Tm ' =12x 1078 Jum~".

Quantum turbulence is characterized by a large separa-
tion of size scales: the minimum scale is . — the size of the
vortex core in *He ~ 1071 m, / is the average distance
between the vortex lines (usually estimated as [~ £~ '/? ~
10-% m, where £ is the vortex density), and the largest scale is
system size D ~ 10~ m.

By their nature (continuous flow of the superfluid
component along the closed lines around the vortex core),
quantized vortices in superfluid helium can begin and end on
one of the vessel surfaces, including the liquid—vapor inter-
face, or close on themselves in the form of vortex rings. An
increase in the density of quantized vortices in superfluid
helium is possible in several ways.

e First, an increase in the vortex densities occurs due to
extension of the length of already existing vortex lines,
which, bending under the action of a superfluid flow,
intersect and reconnect with themselves or with neighbor-
ing vortices, and formats vortex loops [9, 24] (Fig. la—f).
Numerical modeling within the framework of the nonlinear
Schrodinger equation showed in [25] that reconnection
occurs when the vortex cores are located at a distance of
several interatomic distances.

e Second, nucleation of vortices is possible from the walls.
To create a vortex from a wall, it is necessary to overcome the
potential barrier, the value of which will be determined as
Umax ~ [pgx?/(4n)][In (x/r.) — 1] at a distance xq from the
wall x/(4n V). This barrier can be overcome either thermally
or by quantum tunneling, when the critical speed V. is
exceeded [26] (Fig. 1g). In helium II (except for temperatures
close to 7)), proper nucleation requires a sufficiently high
velocity of superfluid component ¥y =~ 10 m s~!', which
makes such a mechanism unlikely. An excess of VN and the
nucleation of vortices of such a velocity is possible on sharp
edges of vibrating bodies or upon ions motion in superfluid
helium under the action of an electric field. The experimentally
observed velocities of motion of oscillators in a superfluid
liquid, at which a transition to turbulent vortex production
occurs, have a significantly lower value of ~ 0.1 m s~!, and
the generation of vortices is associated with the first mechan-
ism—an increase in the density of vortices from remanent
vortices in the volume of the liquid and attached to the walls of
the container and parts of a device.

Vortex lines can also be formed according to the Kibble—
Zurek mechanism [27-29], when helium quickly jumps into a
superfluid state from the normal state, for example, upon
shock release of liquid pressure. In this case, the coherent
wave function i can have a different phase in different regions
of space and the vortex lines remain as linear defects
separating the regions with a phase difference along a closed
path 2mn [30].

The clearest method for the formation of ordered vortices
is associated with the rotation with an angular velocity Q2 of a
vessel of radius R with superfluid helium. The total circula-
tion of all vortices formed in it will be mn, Rk, and the
equilibrium density of vortices in such a device will be
ny = 2Q/k [31]. The minimization of the energy of a vortex
system in a rotating vessel forms a triangular structure of
vortices (the Tkachenko vortex lattice [32], similar to the
vortex structure of Abrikosov vortices of type-II super-
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Figure 1. Calculation of time evolution of a vortex ring in the flow of a superfluid liquid in the direction of the diagonal of a cubic cell: conditional time
from beginning of the experiment (a) = 0, (b) t = 1,(c) 1 = 2,(d) t = 3, (e) t = 4, and (f) t = 5 (from [18]); (g) illustration of the nature of potential barrier

during vortex nucleation from wall of the cell (from [26]).
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conductors). In a superfluid vortex, along the direction of the
core can exist a transverse wave excitation with a sound
spectrum [33, 34], which was found experimentally [35-37].

When the vessel with superfluid helium stops rotating, an
ordered system of unidirectional vortices turns into a vortex
tangle, in which random processes decreasing the size of
vortex rings occur due to reconnection, diffusion of small
rings, etc. The process of reducing the density of vortices
continues until their equilibrium value is established — the
remanent vortex density. At a vessel rotation speed of one
radian per second, such a ‘spin-down’ technique allows one to
study the behavior of a vortex system with an initial vortex
density of ~ 10°—10* cm~2 [38] and the transformation of an
ordered system of vortices into a turbulent system, and to
study its decay with time, which is confirmed by model
calculations [39].

One of the fundamental questions arising in the study of
the motion of a superfluid liquid is the similarity and
difference between quantum and classical turbulence. First,
a quantized vortex has a quantized circulation of the super-
fluid component, and it differs from a vortex in a classical
viscous fluid. Second, a quantized vortices is a vortex of a
superfluid flow, and it cannot change the magnitude of the
flow in an any closed loop or reduce the velocity of the
superfluid component due to viscous friction, which is typical
of a classical fluid. Such behavior of quantized vortices needs
to have a special mechanism of energy dissipation of a system
of vortices, especially in the absence of excitations in helium
(at T'= 0, really below 0.1 K). Third, the size of the core of the
quantized vortex is of the order of the coherence length and
for superfluid “He is only a few angstroms. Therefore, it is
possible to determine with great accuracy the position of the
quantized vortex in the liquid.

These properties make the behavior of a quantized vortex
more definite than a classical one, which facilitates an
accurate description and understanding of the behavior of
quantum turbulence, the formation of a system of quantized
vortices, its development in the process of interaction of
vortices with each other, and its decay. In this respect, the
most difficult behavior to describe is that of superfluid helium
in the temperature range of 1.3-2.0 K. At these temperatures,
along with the quantized flow of the superfluid component
around the vortex core, there is a sufficiently high density of
the viscous normal component, as well as mutual friction
between the normal and superfluid components, which can
act as a source and sink of energy for each of the components.
For a two-component liquid, it is possible to create turbu-
lence by mixing helium II using mechanical devices, for
example, moving through the volume of superfluid helium a
grid [40—-42] or stirring the liquid with fan (a kind of ‘washing
machine’ [43]). In this case, both the superfluid and the
normal components of the liquid are turbulent.

The motion of the normal and superfluid components can
be separated by locking the motion of the normal component.
For this purpose, the entrance to and exit from the
experimental volume are closed with plugs with small pores
(superleak), through which the superfluid component can
flow freely, while the motion of the normal component is
inhibited by them. This type of turbulence, in which the
normal component remains stationary according to the
experimental conditions, or the concentration of the normal
component becomes negligible with decreasing temperature,
is called one-component superfluid turbulence. The behavior of
a superfluid liquid at very low temperatures is of particular

interest, since it refers to a simple and fundamentally
important case when there are no complications associated
with the motion of the normal component. Hereinafter, we
will mainly consider quantum turbulence at very low
temperatures.

The behavior of a classical viscous fluid is determined by
the value of the dimensionless Reynolds parameter — the
ratio of the velocity of the body relative to the fluid, the
dimensions of the moving body, and the viscosity of the fluid.
The enlarging of the Reynolds parameter over the critical
value leads to a transition to the turbulent state. The behavior
of superfluid turbulence is determined by two dimensionless
parameters [44]. One of them is the internal parameter ¢,
which characterizes the value of the friction force acting on
the vortex relative to the nondissipative forces that determine
the inertial motion of the vortex. The appearance of this
parameter is associated with a description of the forces acting
on a vortex in a superfluid liquid (an analogue of the Navier—
Stokes equation for a classical viscous fluid, derived with
averaging over scales larger than the characteristic distance
between vortices), which determines the time evolution of
vortex filaments for which V = V.

If we consider the processes only in a superfluid liquid and
the motion of the normal component can be ignored, then we
obtain the equation [45, 46]

%—‘;JrVu:(l—oc’)meJroc(hx(me), (1)
where ® = V x V is the superfluid vorticity, ® = ®/w, and the
dimensionless parameters o’ and o determine the reactive and
dissipative forces acting on the vortex when it moves relative
to the normal component. By introducing the notation
g =o0a/(1 —0a'), equation (1) can be written

%—?+VQ:V XO+gox (0xV).

The first three terms define the inertial processes in classical
hydrodynamics, and the fourth term with the parameter ¢
determines the dissipation. For ¢ > 1, the dissipative pro-
cesses will dominate, and the flow of the superfluid compo-
nent will be laminar; if ¢ <1, inertial processes will
predominate, which makes possible the development of
turbulence. Thus, the inverse parameter ¢~' determines
whether the flow of the superfluid component will be stable
in case of its random deviation or the system can go into
disordered motion (Fig. 2b). In classical hydrodynamics,
developed turbulence described by the Kolmogorov spec-
trum is formed at Re> 1. In a superfluid, developed
turbulence can arise at g < 1.

The second parameter of superfluid turbulence, which
determines the nature of turbulence, is the superfluid
Reynolds number Re; = V'D/k, which contains the circula-
tion quantum x, which characterizes the quantized vorticity
in superfluid.

Two parameters g and Reg control the transition between
two classes of superfluid turbulence. The first is the
semiclassical regime, when energy transfer is formed simi-
larly to the Kolmogorov cascade (modified by dissipation due
to mutual friction of the normal and superfluid components
and the possible transfer of energy between normal and
superfluid vortices, state II). This type of turbulence of the
superfluid component is characterized by a state where the
vortices are locally polarized and vorticity quantization does
not play a fundamentally important role for energy transfer in
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Figure 2. (a) One possible diagram of the dynamic states of vortices on the plane (Res, ¢) according to illustrations in [47, 48]. Symbols on the graph are the
results of experimental work. Black dots — transition from state I to state II which was obtained in experiments with superlicks, when the motion of the
normal component is inhibited [49]; circles [S0] and crosses [51]—a similar transition in the case of counterflow of the normal and superfluid components.
(b) Temperature dependence of ¢! showing the stability of the flow of the superfluid component at random deviations [53].

pulse space. The second type of turbulence is Vinen’s
quantum turbulence (state I), where the properties of the
system are determined by the quantization of vorticity around
individual vortices and the system of vortices is isotropic.

Kolmogorov turbulence, the energy spectrum of which
has the form E(k) ~ k=573, is located in the range of wave
vectors 1/D < k < 1/, where D is the size of the system. In
Kolmogorov turbulence, quantized vortices can move
together with vortices in a normal fluid. Such turbulence
can arise, for example, during intense mixing of superfluid
helium (‘washing machine’ [43, 52]) at high temperatures
(above 1 K). The turbulent Kolmogorov spectrum in this
size range is also confirmed by model calculations [54]. The
Kolmogorov type of turbulence is possible for one-compo-
nent superfluid turbulence during the formation of superfluid
vortex bundles, as shown in the inset in Fig. 2a, although we
are not yet aware of experimental observations of such a
behavior of vortices.

Vinen turbulence is characterized by a random vortex
tangle with one dominant length scale /. The main experi-
mental evidence for the existence of Vinen turbulence is that,
if the vortex tangle decays, then the vortex line density
decreases as £ ~ t~!' [55, 56], which is consistent with the
phenomenological Vinen model [57], which assumes a
homogeneous and isotropic vortex configuration. The same
decay £ ~ t~! was observed in numerical calculations [58],
which also showed that the energy spectrum remains largely
concentrated near k =~ 1/1.

A possible diagram of division into regions is shown in
Fig. 2a. At a high flow rate Res > 1, the boundary of the
behavior of a superfluid liquid between the turbulent and
‘laminar’ states approaches the vertical axis ¢ = ¢o ~ 1. The
line of demarcation of the two superfluid turbulence regimes
arising at small ¢ corresponds to the ratio Re; ¢ ~ 1. The
idea of such a demarcation lies in the conditions when, at a
distance less than Dy, the detailing of the structure of
individual vortices becomes unimportant and this corre-
sponds to the condition VDo = ¢*>V,D = g’k Reg > K, or
Re, > 1/¢% > 1. At high quantum Reynold’s numbers,
turbulence of the semiclassical type arises, which is character-
ized by a Kolmogorov-type cascade, possibly modified by

mutual friction of the superfluid and normal components in
He-II, which determines the transfer of energy between
systems. Turbulence in this state becomes similar to that in
classical fluids. At lower values of the Reynold’s parameter,
Vinen-type quantum turbulence develops. However, in
contrast to classical fluids, the steady state of turbulence is
determined not by viscosity but by the parameter of mutual
friction ¢ between the normal and superfluid components,
and the energy losses of quantized vortices occur due to
phonon emission at the motion vortex kink along the vortex
core after reconnection (Kelvin waves, which will be discussed
in Section 11).

Apparently, a division into two types of turbulence does
exist, or at least such a picture of a rather abrupt transition
between the laminar evolution of injected vortices and the
emerging turbulent multi-vortex state of the entire superfluid
liquid was observed at ¢ of the order of unity for *He-B [59].
There is a similar behavior of superfluid *He at small ¢
numbers: the existence of two different superfluid turbu-
lences, in particular, is indicated by the fact that, at large
Res numbers, the energy transfer in the inertial region of the
frequency spectrum for both helium II and helium I are
identical and correspond to the Kolmogorov spectrum
E(f) ~ 33 (experiments with fast rotation of a fan in
helium at Re ~ 10%, T=2.3 K, 2.08 K, and 1.4 K [43]).

3. Density of vortices — Vinen’s quantum
turbulence

The main characteristic of quantum turbulence is the density
of vortices per unit area £. For homogeneous turbulence, the
direction of vortices is isotropic, although, for bunches of
quantized vortices that can arise with intense mixing of a
superfluid liquid and high quantum Reynolds numbers, one
can determine the anisotropy and density of vortices, as well
as the average vorticity of the liquid (as in Fig. 2a for the
Kolmogorov type of superfluid turbulence).

Vinen first quantitatively described the dynamics of the
density of vortex lines £(¢) in the studies of 1957-1958 [57, 60—
62] based on experimental data. For a uniform density of
vortices £, the distance between vortices is / = £/, The
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density of vortices is determined by two processes: the rate of
generation of vortices and the rate of their decay. If the
process of vortex generation is determined by the velocity of
the superfluid component, its gradients, and the value of the
counterflow of the normal and superfluid components in the
presence of heat fluxes, i.e., external influences on a superfluid
liquid, the decay process is determined by a change in the
shape of moving vortex rings, cascade fragmentation of
vortex rings when they intersect with themselves or neigh-
bors in a turbulent system (reconnection processes), a
decrease in the size of vortex loops due to interaction with
the normal component, radiation energy by Kelvin waves as a
motion of kinks along the vortex core, and finally, the
diffusion of vortices from the place of their generation and
their disappearance on the walls of the vessel.

The ratio of these two processes (generation and annihila-
tion) will determine the temporal dynamics of the density of
vortices

dc_[dc) _[de
de — [de), [dr],

Vinen measured the density of vortices by the attenuation of
second sound waves, using the counterflow of the normal and
superfluid components during local heat emission as a vortex
generator, which determined the operating temperature range
above 1.3 K. In the phenomenological theory of quantum
turbulence, Vinen proceeded from the locality of the change
in the vortex density, that interaction forces act on the
vortices, determined in some form from the distance between
the vortices, the interaction forces of the normal and super-
fluid components of V3 = V,—V,. A dimensional analysis
and the experimental fact of the growth of the vortex ring
radius that is proportional to the acting force [63] allow us to
conclude that the density of vortices in the vortex coil grows
as
dc

— | = ay|Vs|L3?, (2)
{ dt L

where oy ~ Co, with a constant C of the order of unity,
determined from the experiment.

To determine the decay rate of the vortex structure, Vinen
suggested a mechanism analogous to classical isotropic
turbulence, which implies the existence of an inertial interval
of energy transfer from the pumping region to the dissipative
region at large wave numbers. In the theory of homogeneous
isotropic turbulence, the energy dissipation associated with
inertial energy transfer is described as [64]

( ou? ) u?

— ) x——

ot a Zvisc

where u is the characteristic velocity on the scale /g,
corresponding to the viscous limit of the inertial interval. If
we take as /s the distance between the vortices [ = £V 2,
and as the velocity u the velocity of the superfluid component
at a distance / from the vortex core as V=1x/(2nl) =

(k/2m)L£ /2, then, as a result, the vortex decay rate can be
written as

|:d£:| 7ﬁV‘C27

Fri

where fy is a parameter close in order of magnitude to x/(2m).
A similar dependence is obtained when we consider the
probability of dissipative processes in a vortex system arising
due to reconnection and the decrease in the size of vortices
associated with this process. The probability of a reconnec-
tion for each vortex will be proportional to the density of the
vortices. If we are interested in energy losses in a system of
vortices, i.e., the rate of decrease in the total length of the
vortices during the interaction of all vortices with each other,
then we obtain the value ~ £2. As a result, the change in the
density of vortices in space with a uniform and isotropic
distribution of vortices will be written as follows:

‘Z—'C = ay|Vas| L2 = By L. (3)
t
This relation is called Vinen’s equation.

Vinen’s equation makes it possible to estimate the average
density of vortices under stationary conditions, when
dL/dt =0. It is not difficult to see that the equilibrium
density of vortices will arise at a constant heat flux, when
there is a counterflow of the normal and superfluid compo-
nents of the V5. Experiments with the generation of vortices
by a heat flux are carried out at temperatures where the
density of the normal component cannot be ignored, i.e., at
temperatures 7> 1 K.

The condition for the applicability of Vinen’s equation is
the need for the existence of remanent vortices (so-called
remanent vorticity) in the volume of liquid helium to increase
their density during heat fluxes (Fig. 1a—f). If at the beginning
of the experiment or after the collapse of the vortex system
after the heat flux is turned off the density of vortices is equal
to 0, then no vortices will arise for any value of V5. Such a
picture is observed when smooth filaments oscillate, if they do
not have pinning vortices, for which even high speeds of their
movement do not lead to a transition to a turbulent state in
the system. The possibility of vortex nucleation from the
vessel walls was discussed earlier (Fig. 1g).

We point out that, almost always, despite all the
precautions in preparing the experiment with superfluid
helium, there are remanent vortices in the liquid, which are
pinned on all surfaces. In Figure 3, shown is the temporal
change in the quality factor of a quartz tuning fork, the value
of which depends on the pinning of vortices (as an added
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Figure 3. Time dependence of the quality factor of a quartz tuning fork and
its resonant frequencies in superfluid helium-4 at temperature 7 = 10 mK.
At times of 30 and 90 hours, liquid helium was poured into the cryostat.
(From [65].)
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mass) at a low temperature [65]. It is clearly seen that the
quality factor of the tuning fork varies over a fairly wide
range, as does its resonant frequency. We will consider in
more detail the possibility of quartz tuning forks to detect
vortices in Section 14.

To test the proposed phenomenological theory, Vinen
measured the scattering of second sound waves as a function
of time in two channels with cross sections of 2.4 x 6.45 mm?
and 4.00 x 7.83 mm? and a length of 20 cm at temperatures
from 1.3 K to T, at various intensities of heat flux. These
measurements were the basis of the proposed theory,
although other relations are possible for the growth of £
when the vortex flow is turned on, in particular, relation (2)
may look like [dL/df], = og|Vns|> £, which is somewhat in
disagreement with the experimental data. This relation
corresponds to the case when the influence of vortices on
each other is neglected and only Vs is dominant in the
Magnus effect, which is responsible for the increase in the
length of the vortex.

From Vinen’s equation, one can determine the stationary
concentration of vortices at a constant heat flux:

2
v

£st = ﬁ\z/

Vo =1V (4)

Vinen’s equation makes it possible to estimate the time of
formation of a vortex tangle ty. Integration of relation (3)
gives the divergence in time to reach the value of Lg;
therefore, to estimate ty, it is possible to determine the time
of creation of the vortex density £ = L /2:

Ty = cU(T)q'%/z. (5)

4. Generation of quantum turbulence
by heat flows. Interaction of second sound waves
with a vortex structure

For temperatures above 1 K, when there is a significant
amount of the normal component, the absorption of second
sound waves is used as one of the main methods of detection
of quantum turbulence. The features of second sound
propagation in superfluid helium-4 have been studied in
detail and described in many papers (for example, in [1, 66—
68]). Here, we shall review the interaction of second sound
waves with vortices and the generation of a vortex tangle by
heat fluxes in He-II.

Experimental studies of the propagation of second sound
waves in rotating containers (with angular velocity ) have
shown a dependence of the signal attenuation with respect to
angle 0 (between the direction of the vortices aligned along the
axis of rotation and the direction of propagation of sound
waves) [69, 70]. One can write the mutual friction force F
between the normal and superfluid components as

Fos = fomp;%ﬁ(vn -Vy) sin? 0,

taking into consideration the total rotation of single vortices
in the container Q= 1/2xL®. The attenuation of the second
sound waves, proportional to the value of F, will be
proportional to the vortex density £ and for homogeneous
quantum turbulence (sin® @) = 2/3. There are two limiting
cases: when sin” 6 = 0 for the parallel direction of the vortex
axis and the propagation of the second sound and sin” @ = 1 in
the perpendicular direction.

Superconducting bolometers [71] are used as a detector of
second sound waves; the transition temperature of the super-
conductor depends upon the material of the film, and it can be
shifted to lower temperatures by applying a magnetic field.
Sensors based on membranes with small pores (~ 100 nm)
[72] are also used as receivers. The membrane sensor action is
based on the ability of the superfluid component to flow
through small pores, while the viscous normal component
cannot go through. As a result, the pressure inside the sensor
changes in accordance with the change in the amount of the
superfluid component (and the temperature in the measured
wave). Both sensors have their own advantages and dis-
advantages.

Heaters of various types are usually used as a source of
second sound waves, such as film resistances, as can porous
membranes for the detector.

Two methods are used to measure the absorption of
second sound waves— pulsed and resonant. The resonant
technique has a higher sensitivity, but is limited by its
temporal resolution, which is determined by the quality
factor Q of the system; a high Q slows down the system
response upon a change in absorption along the path of
second sound waves. The pulse technique has a higher
temporal and spatial resolution but has a lower sensitivity.
The technique for measuring the absorption of second sound
waves usually uses wave propagation in the direction
perpendicular to the source of turbulence. For example, the
change in the resonant characteristics of standing waves of the
second sound is measured in the direction of a perpendicu-
larly elongated ampoule, along the long side of which a fine
mesh is stretched at high speed [41] or a constant heat flow is
turned on [72, 73]. In the first case, the absorption of the
second sound allows the decay processes of a vortex system
associated with both the superfluid component and the
normal one to be investigated. In the second scheme of the
setup, it is possible to study the formation of quantum
turbulence, its stationary characteristics, and its decay, i.e.,
to investigate its temporal parameters and dependences on
the magnitude of heat fluxes.

Interaction of vortices and ions in liquid helium. Another
way to study quantum turbulence over the entire temperature
range is to study the propagation of charged particles in
superfluid helium. The motion of positive helium ions (He™)
creates a compaction zone of helium atoms, forming a nano-
solid-helium aggregate consisting of about 20 helium atoms
(‘Ferrell’s snowball model’ [74]), while the motion of negative
charged particle such as electrons forms a nanosized bubble
due to quantum mechanical repulsion of the environment by
a light particle (electron) — “Atkin’s bubble model’ [75]. Such
a bubble in liquid helium has a rather large hydrodynamic
added mass of about 200 helium atoms. The motion of both
kinds of ions can be controlled by an externally applied
electric field and is affected by the presence of quantized
vortices. Due to the pressure gradient of the superfluid
circulation around the vortex, there is an attractive interac-
tion between ions and vortices that can capture ions by the
vortex cores.

Generation of vortex turbulence by heat flows. Experi-
mental studies of counterflow turbulence in He-II began
with experiments on heat transfer through channels of
different sizes. The heat flow in He-II is characterized by the
counterflow of the normal and superfluid components and
has no obvious counterpart in flows of a classical ordinary
viscous liquid. If one tries to find a possible connection
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between thermal backflow and classical turbulence, thermal
convectional turbulence is a likely candidate.

The heat flux with density ¢ emitted by the heater at one
end of the channel is carried away only by the normal liquid,
while, because of mass conservation, the superfluid compo-
nent moves in the opposite direction. Thus, a counterflow
occurs along the channel with velocity V3 = V, — V. The
velocity of the normal liquid is V,, = ¢/(STp), where S'is the
specific entropy of He-II, assuming that ¢ is fully used to
transform the superfluid component into a normal liquid.
The velocity of the superfluid component Vj is calculated
from the condition p,V,+ p, Vs =0. At relatively small
values of Vs, the flow remains laminar. An increase in eddy
turbulence and an increase in the number of eddies begins at a
certain heat flux density, the value of which can be determined
experimentally. One of the methods for determining the
transition to quantum turbulence was implemented by
visualizing the motion of counterflow with the help of
optically excited helium atoms and, consequently, observing
the time-dependent position of moving excited atoms [76]. In
the temperature range of 1.6-1.8 K and at a constant heat flux
g < 30-50 cm 2, the counterflow remains laminar. Exceed-
ing the indicated values of the heat flux leads to the
appearance of a turbulent state of superfluid helium, which
is characterized by its disordered flow, and the behavior of the
luminous path changes when the flux density exceeds 60—
65mW cm 2 [77]. Similar values of the heat flux, which do not
transfer the fluid into a turbulent state, were obtained in [78],
where the vortex state was tested by measuring the tempera-
ture gradient.

The phenomenological theory of vortex generation by a
heat flux has been considered in detail in reference [79]. In
brief, for a weak heat flux, the mutual friction F,s and the
term dV//d¢, which determines the acceleration of the motion
of the corresponding component, are equal to zero, based on
the continuity equations for superfluid helium and taking
into account that the heat flux through superfluid helium is
defined as the motion of a normal component. This
assumption leads to the following equation of state for
liquid helium:

Vp=pSVT,
a relation known as the London equation. The pressure

gradient caused by a laminar Poiseuille flow of the normal
component is defined as

Vp=1V3Vy,
where 1 is the viscosity of the normal component. When a

laminar heat flow streams along a tube with diameter d, the
pressure difference is

320V
Vp = e
and we obtain for the laminar heat flow in a long pipe
3275
VIi=————+4g.
p2S2Td? 1

At high heat fluxes, as we noted above at ¢ > 30-
50 mW cm~2, mutual friction occurs, which is determined
by an increase in the number of vortices, and quantum
turbulence is formed. In this case, the mutual friction term

Fs turns out to be dominant in the Navier—Stokes equations
for the normal and superfluid components. This quantity was
defined in [80] as

Fus = Aompspy|Vs — Vil (6)

where the Agm coefficient is called the Gorter—Mellink
constant. If we assume that the mutual friction of the normal
and superfluid components is dominant in the Navier—Stokes
equation at high heat fluxes with developed quantum
turbulence, then the temperature gradient is defined as

Fas

VT =-"
psS

As a result, we get

Acmp i\
VT = LLIY (.
S (&ST>

Equation (6) was further modified by Schwartz [81] to include
a small velocity shift Vo, which is associated with the
beginning of the formation of turbulence in the vortex
system, considering the Vinen equation. So, the final
equation has the form

Fys = [fstf: AGMpspn(Vn -V, — VO)Z‘Vn - Vs‘ .

Agm s calculated from experiments on the appearance of a
temperature gradient at heat flows that form fully-developed
turbulence, and it has a temperature dependence of the form
AGM ~ T3 (Flg 4)

The formation of a turbulent state requires time to
increase the density of the vortex tangle in the counterflow
that occurs during heat emission, so the transition to
turbulence for heat pulses occurs at significantly higher heat
flux densities. In measurements of double thermal pulses with
a duration of 10 us, the transition to an increase in the
absorption of the second pulse occurs: ¢ ~ 10—15 W cm 2.
The decrease in the second heat pulse means that it traveled
through the medium, where the density of vortices had
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Figure 4. Temperature dependence of the Gorter—Mellink constant Ay -
Taken from results of [57, 79, 82, 83].
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Figure 5. Experimental data on the influence of a thermal pulse on the
behavior of superfluid helium, depending on heat flux density and single
pulse duration. In region III, the vortex tangle is formed due to friction of
the normal and superfluid components — the Gorter—Mellink interaction
(from [86]).

already begun to increase. The increase in the vortex density is
proportional to time [84]:

dc g 5/21
a7 pST '

The power at which the density of vortices began to increase
significantly decreased when the successive launches of
double signals were a few milliseconds shorter. During the
times between launches, the density of residual vortices
remained sufficiently high. In [85], a cooling pulse was used
as a test signal after a heating one. Positive—negative
temperature pulses appear during the propagation of a long
thermal pulse in the three-dimensional geometry.

An approximate division of the state of superfluid helium
depending on the duration of a single pulse under the effect of
a heat flux is shown in Fig. 5. The scheme can be conditionally
divided into six regions of heat flux influence on superfluid
helium, depending on their temporal impact. I—laminar
Poiseuille counterflow of normal and superfluid components
in the region of constant heat fluxes ¢ < 30—50 mW cm™2;
IT—short thermal pulses, where the heat flow propagates
with the second sound speed, and the vortex system does not
have time to develop; IIT — region of heat transfer with vortex
multiplication, with quasi-classical turbulence formed due to
friction of the normal and superfluid components, and the
line of separation of regions II and III is approximately
described by relation (5): ty = ¢,(T)¢~/?, where coefficient
¢o(T)=0.1 W32 s cm~3 (and depends on temperature [87]);
IV — conditional region where pulses begin to generate a fully
developed turbulent state [84]; V— fairly dense vortex tangle
formed near the heater, which decelerates the normal
component; this process leads to a local transition of super-
fluid helium to the normal state, followed by boiling [88];
VI—film boiling of helium on a heater [89], where the time of
simmer at pulsed heating . is described by the relation
gtl/2 = €, where C ~ 0.05—0.5 W cm 2 s1/2,

It is worth recalling that the above diagram is conditional
and shows only trends in the formation of the state of
superfluid helium under different temporal-thermal actions,

and the actual behavior can differ greatly depending on the
geometry of the experiment. For example, at a constant heat
flux of 50 mW cm~2, a uniform density of vortices should be
established in the entire sample volume over times of the order
of ~ 10 s. However, in experimental investigations of the
distribution of the temperature gradient in a long capillary at
a constant heat flux [90] that was enough for the development
of the turbulent state in a capillary (Dj, =1.4 mm, L = 8.0 m,
G =44—60 mW cm~2, T = 1.34 K), the settling time was two
orders of magnitude longer, while the vortex tangles moved
both from the side of the heater and from the open part of the
capillary with velocities of 1-3.7 and 0.1-2.5 mm s~!, respec-
tively. This experiment confirms the necessity for a remnant
vortex density to generate quantum turbulence upon its
formation by a counterflow of the normal and superfluid
components.

The technique of forming a vortex structure by counter-
flow of the normal and superfluid components makes it
possible to use the attenuation of second sound waves as a
detector of the vortex structure. The temperatures at which
such studies are possible lie above 1 K, where the density of
the normal component is still high. However, in this
temperature range, turbulence can be established in both
normal and superfluid systems, which interact together
through mutual friction. In order to interpret the experi-
mental data, it is necessary to take into account the
deceleration of the normal component near the channel
walls, which causes distortion of the flat profile of the
counterflow V., and becomes significant in experiments in
thin channels. In general, vortex generation by a heat flow is
characterized by the first term in Vinen equation (3) and
depends on the resistive interaction constant o and on the
value of the counterflow.

Experiments on the study of the vortex distribution in a
wide channel (rectangular section of 1 x 2.3 cm?) [91] with
the help of negative ions during their formation by the
counterflow determined that the density of vortices over the
channel cross section is uniform and the normal liquid flow
profile is flat, except the viscous flow region near the walls
(~ 1 mm), with an accuracy of several percent.

Measurements of the temperature gradient along a
channel with a counterflow of the normal and superfluid
components [92] showed that there are several stable
turbulent states, depending on the geometry of the experi-
mental cell. In rather large round or square channels, the
laminar flow undergoes the first transition at heat flux ¢,
above which the measured AT only slightly exceeds the
extrapolated laminar value. At §., the second transition
occurs, above which the measured AT increases sharply.
These turbulent states are referred to as TI and TII (Fig. 6).

The possibility of the existence of the TI state under
conditions when ¢¢; < ¢ < g2 was noted in work on the
attenuation of second sound waves [57, 60-62], as well as in
experiments on measuring the pressure difference [93] and
temperature difference [51, 78] upon passage of a constant
heat flux.

The Biot—Savart law is usually used in full or local form to
model and calculate the behavior of vortex filaments. The
Biot—Savart law takes into account the motion of a liquid
(superfluid component) around the vortex core and the effect
of this motion on other vortices. The full Bio—Savart law
considers the influence of all volume elements on a given
segment of the vortex. The approach requires a rather large
number of calculations. Often, the local Biot-Savart law is
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Figure 6. Thermal resistance (VT/q) as a function of heat flux density at
T=1.15K[92].

used to model the behavior of vortices, taking into account
only the influence of the nearest segments of the vortex line
based on considerations that the closest segments of the
vortex line have the greatest effect on the dynamics of the
vortex point, i.e., in calculations, they are limited to sections
of the vortex filament. This significantly weakens computing
power requirements. Considering the transition of the system
to a turbulent state, it was shown in [94] that the simulation of
a vortex filament in a steady counterflow turbulence using the
full Biot—Savart law gives isotropic turbulence, while calcula-
tions in the local approximation create a layered structure of
vortices that does not transition into an isotropic turbulent
state. Since agreement between the experimental data and the
theory of homogeneous isotropic turbulence is worse at TI
than at TII (for which this theory works quite well), the state
of TI can be inhomogeneous and not isotropic. This behavior
is associated with a low density of generated vortices. The low
density of vortices at TI sharply reduces the influence of
superfluid flows from distant vortices and increases the
influence from nearby parts of the vortex.

As experiments have shown, the geometry has a strong
influence on the turbulence generated by the counterflow. In
rectangular channels with a big aspect ratio (1:10) and a small
size of less than 100 pm, only one transition was observed at
¢c3, denoted in contrast to the previous transitions as TIII
[91].

The existence of two clearly distinguishable stable
turbulent states in the ‘counterflow’ turbulence of He II, as
well as the existence of the TIII transition in small channels,
has been a mystery for a long time. One possible explanation
was proposed in [95], where it is assumed that the superfluid is
turbulent in the TI state, but the normal fluid is still laminar.
Thus, the transition from TI to TII may correspond to the
onset of the transition of the normal component of helium II
to the turbulent state. However, a similar behavior of the
transition from a laminar flow to a developed turbulence
through a certain intermediate state was also observed at
ultralow temperatures, when the turbulence of the normal
component cannot exist in principle. An alternative inter-
pretation will be discussed in Sections 9, 10, 13, and 14.

The complexity of interpreting the results of experiments
with the generation of turbulence by heat fluxes is associated
precisely with the presence of two components that interact
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Figure 7. Steady-state vortex line density versus mean superfluid velocity
in a channel. Center graph shows dependences of vortex density on the
speed of the superfluid component at different temperatures; solid lines
correspond to dependences £ = B(V — V), where f = 2.65 x 10* cm™3:
data at T=1.92 K (green diamonds), 7= 1.73 K (black triangles),
T =1.58 K (blue squares), 7= 1.49 K (red circles); blue arrows from
below indicate £' ~ ¥, (TII). Top-left inset shows data on the distance
between the vortices as a function of the speed of the superfluid component;
thick red lineis the £!'/2 ~ ¥ (TI) dependence, black lineis £' ~ ¥, (TII),
T = 1.73 K. Lower-right inset shows dependences of the V1! temperature
(blue dots), black squares plot the values of V! rates for the 10-mm
channel, red circles are VCTrl for 6-mm channel. Green crosses X’s show
data and solid line is the prediction of the theory (taken from [96]).

with each other, and turbulence can arise both in the
superfluid and in the normal component.

In the experiments described in [96], the motion of the
normal component was suppressed by creating a flow of only
the superfluid component through two porous plugs (super-
leaks) using the fountain effect. However, taking into account
the mutual friction of the normal and superfluid components,
some toroidal flow of the normal component still remains in
this setup of the experiment. The results of the measuring
concentration of vortices by the attenuation of second sound
waves in a directed flow of only the superfluid component are
shown in Fig. 7. The graphs in Fig. 7 (upper-left inset) clearly
show the change in the regime of vortex generation with an
increase in the flow velocity of the superfluid component: we
call this transition from laminar flow (L) to turbulent flow
(TII), in accordance with the results presented above, TI. An
intermediate region of the velocities is also observed in the
transition from laminar motion to the regime of developed
quantum turbulence in experiments where the generation of
turbulence takes place via the motion of oscillating bodies in
superfluid helium at low temperatures.

The results of investigations of vortex generation using
heat fluxes are difficult to interpret due to the movement of
both the normal and superfluid components, the possibility of
the existence of turbulent states in both systems, their mutual
friction, and energy transfer between them. The situation is
simplified when the superfluid liquid is cooled to tempera-
tures below 0.1 K, where the concentration of the normal
component can be ignored. However, the ‘counterflow’
regime of turbulence generation under such conditions is
impossible, and other methods are used to create vortices, in
particular, oscillations of various kinds of solids in a super-
fluid liquid.
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5. Generation of turbulence by moving bodies

The use of the motion of bodies or fluids around bodies
immersed in fluids to generate turbulence has a long history
dating back to the observations of Leonardo da Vinci, whose
drawings of vortices in water demonstrate perhaps some of
the first documented interest in turbulence. One of the
methods in experimental fluid dynamics for the inception,
growth, and decay of turbulence in fluids, both classical and
superfluid helium, has been the observation of the change in
the quality factor of oscillating bodies in a medium under
resonant conditions. We would like to mention the recent
reviews by Vinen and Skrbek [97, 98] that analyze the
possibilities of generating turbulence using oscillating sys-
tems.

When a solid body moves in a liquid, the resistive drag
experienced by it depends upon the cross section of the body
As, its speed ¥, the viscosity of the liquid, and its density. The
value of the drag force depends on the drag coefficient Cgy,
which is determined by the conditions of fluid flow around the
body under circumstances of turbulent flow:

1
F:ECdpASVZ = V2. (7)

In classical fluids, the turbulent coefficient C; at high
velocities depends on the shape of the body and is approxi-
mately constant ¢, of the order of unity. The drag coefficient
is defined asy = CJpnR?/2 forasphere,e.g., CJ = cr ~ 0.4.

At low velocities, when the flow is laminar, a dissipative
drag arises from the viscosity of the fluid and is known as the
Stokes drag. The drag coefficient C} for an object oscillating
with a frequency f= w/(2n) is given by the expression
Cl = ¢ /wv/V, where v is the kinematic viscosity and ¢ is
a geometric constant of the order of unity. This relationship is
valid when the penetration depth 6 = 1/2v/w of the viscous
fluid flow is small compared to the size of the object. The ratio
of the object size to the penetration depth determines the
Stokes number fg = fd%/v ~ (d/d)*. The Stokes number is
much greater than 1 for typical objects with dimensions of
several millimeters moving in normal helium fig > 1. For a
laminar flow, the drag force (7) will be proportional to the
speed of movement.

The turbulent drag will be equal to the Stokes drag at
speed

V=L Jov. (8)
‘T
Characteristic drag coefficients for bodies of various shapes
are shown in Fig. 8. The drag coefficient Cq becomes about
unity at Reynolds numbers Re ~ 10%—10°.

In a classical fluid, however, oscillating objects usually do
not have a well-defined critical velocity above which the flow
becomes turbulent: the flow becomes more complex as it
transforms from low-velocity laminar to higher-velocity
turbulence. Often, there is a wide transition region with
many completely different flow regimes, while the drag
coefficient Cyq changes smoothly with an increase in speed
[99, 100].

To characterize the motion of a body in a fluid, in
particular at resonant oscillations, the Keulegan—Carpenter
number (KC) is determined as a dimensionless quantity that
characterizes the ratio of the drag force to the inertia forces
for oscillating bodies in a fluid at rest: KC = 2nA4/d, where 4
is the relative motion amplitude and d'is the size of the moving
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Figure 8. Graph of the dependence of the drag coefficient on the value of

the Reynolds number for a disc, cylinder, and sphere. Dotted line shows
the Stokes relation for a sphere in a laminar flow [101].

object, such as the diameter of a cylinder. A small KC number
means that the inertia forces dominate, while a large number
means that the (turbulent) drag forces prevail. In classical
liquids, the picture of the formation of a turbulent structure
varies, depending on the Stokes and Keulegan—Carpenter
numbers [99].

The flow of the low-speed motion of a body in super-
fluid “He must be potential. However, the movement of an
oscillating body in a fluid is also associated with the
movement of the volume and mass of the surrounding
fluid. The additional mass of fluid will affect the kinematic
drag coefficient, which is proportional to the amplitude of
the body’s oscillations (and the speed of its movement). The
determination of the mass of an oscillating body will include
an additional term related to the penetration depth of the
viscous motion, which will be close to zero at low
temperatures, where the density of the normal component
p, Will be negligibly small.

The resonant frequency and the width of the frequency
resonances of the oscillator in a liquid are affected by the
forces of hydrodynamic resistance. In this case, both the
reverse fluid flow around the oscillating body and the viscous
resistance of the flowing fluid lead to a decrease in the
resonant frequency and additional energy losses, which
affects the quality factor of this resonant system. Thus, the
effective mass of an oscillating body in liquid helium can be
written as the sum of three terms:

Mye = Mefr + ﬁPHeV + BpnAsé~

Here, mg 1s the bare mass of the oscillator, the second term
represents mass enhancement due to back flow, and the third
term is the mass of the viscous layer attached to the oscillator.
For a rectangular beam oscillating in the direction perpendi-
cularitslength L,V = TWL, where Tisits thickness, and Wis
itswidth (L > T, W), A; = 2LT + 2L W s the area of the side
faces, py. is the density of helium, and ff and B are geometric
constants of the order of unity. In superfluid helium at low
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temperatures, the last term asymptotically approaches zero,
so that only the term associated with the added mass affects
the resonant properties of the oscillator.

In superfluid “He, the drag force of a mechanical
oscillator at high velocities is approximately proportional to
V, corresponding to a constant drag coefficient Cy, as is
usually the case in turbulent motion in classical fluids.
However, in contrast to classical liquids, the rate of transi-
tion from laminar to turbulent flow in superfluid helium
occurs quite abruptly.

The methods used in the investigation of superfluid
helium for the generation and detection of turbulence
consist of tracking the motion of oscillating bodies under
resonant conditions and measuring the speed of their
motion, depending on the magnitude of the applied mechan-
ical stresses. Vibrating grids, levitating spheres, supercon-
ducting wires, and quartz tuning forks are some of the
resonators used extensively to study superfluids. Recently,
micro- and nano-electromechanical systems (MEMS and
NEMS) have begun to be used as small-size and vanishingly
small mass resonators. At temperatures above 1 K, methods
include rotating blades [43] and grids drawn along the
channel [41, 42, 102-105], and the creation of fast flows
with high Reynolds numbers around standing objects with
the help of turbines [52, 106]. In Section 6, we shall focus on
temperatures much less than 1 K, at which the normal
component can be ignored and at which the methods of
‘heat counterflow’ and the ‘washing machine with high Re’
cannot be applied yet.

6. Oscillating resonant systems
at low temperatures

Circular grid membranes [107-111]. The first experimental
technique employed to study the generation of vortices at low
temperatures was the excitation of resonant oscillations of a
thin transparent metal grid custom made in the form of a
circular membrane [107]. A nickel grid 90 mm in diameter
(Fig. 9a) was sandwiched between two electrodes, each at
distance of 1 mm from the grid, forming a dual capacitor. The
mesh grid (75% transparency) had square cells with a
thickness of 6 pum, width of 17 um, distance between the
metal strips of the grid of 111 um, and grid mass m = 85 mg.
The grid surface roughness was less than 2 pm. A high voltage
(about 500 V, Fig. 9b) was applied to the grid, and an
alternating voltage was applied to one of the electrodes
(control), which made the mesh oscillate due to electrostatic
attraction. The second electrode, owing to time-varying
induced charge, served as a detector. The resonant frequency
in different designs of the device was ~ 1 kHz, while the
quality factor of the oscillatory system in a superfluid liquid at
low excitation voltages and low temperatures reached 2 x 10°
[111]. A transition to the turbulent regime was observed at
grid velocities of ~ 2 cm s~!. The maximum amplitude
corresponding to such vibration was 4 ~ 30 pm.

Levitating sphere [112—115]. Another system to probe
superfluid “He involved a ferromagnetic (SmCos) ball of
diameter D = 0.2 mm with a bare mass of 27 pg levitated in
the space between two superconducting plates of a flat
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Figure 9. (a) SEM image of the nickel grid used in the study of quantum turbulence at low temperatures. (b) Schematic of these measurements [107, 109].
(c) Levitating magnetic sphere with a radius of 120 um, distance between superconducting electrodes of 1 mm [112]. (d) Quartz tuning fork, prong length
of 2-3 mm, resonant frequency, depending on the geometric dimensions and the excited mode, from 4 kHz up to 300 kHz (photo from open sources).
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capacitor (4 mm in diameter) with a distance of 1 mm between
the plates (Fig. 9c). The ball was charged up to ~ 1 pC during
the cooling of the device until the superconducting transition
of the niobium capacitor, at which point the sphere lifts in the
space and levitates. Furthermore, an alternating electric field
to one of the plates forces the sphere to oscillate at its
characteristic resonant frequency (f'= 120 Hz). The second
plate picks up the induced charge, and the resulting current
determines the displacement and speed of the sphere. The
quality factor of the system at low temperatures in a vacuum
reached 10°, and about ~ 10* in superfluid helium at
T=25puK. It was observed that the critical speed for
transition to the turbulent regime was Ve ~ 1.94 cm s~
The displacement amplitude corresponding to such a velocity
was A ~ 270 um. For a sphere with a radius of 75 um (mass
m = 15 pg), resonance f = 236 Hz,and V¢, = 4.2 cms™! was
observed at all temperatures below 7= 1.6 K [112]. In[115],
the Q-factors of the sphere oscillations in the laminar regime
were measured in a fairly wide temperature range. The results
of these measurements are shown in Fig. 12 in Section 7.

Quartz tuning forks. Tuning fork (quartz) resonators have
found wide application as a viscosity sensor for various
liquids at different temperatures, including fuel level meters
in car tanks. In recent years, quartz tuning forks have found
wide application in low-temperature physics for the study of
quantum turbulence. The advantages of such resonators
include their mechanical rigidity, simplicity of installation,
thermal cycle stability, high quality Q factor, and low cost.
The most used quartz tuning forks have a resonant frequency
of 32 kHz in air at room temperature. These resonators are
used as a frequency standard in electronic watches
(f= 2" Hz=32,768 Hz) (Fig. 9d). A Q factor of 10° in a
vacuum at low temperatures and 10* in superfluid helium in
the absence of thermal excitations has been found. The
dimensions of quartz tuning forks determine their resonant
frequency. The tuning fork prongs have a width and thickness
of the order of fractions of a mm, the length of the prongs
varying from a few mm to tens of mm. The observed resonant
frequencies of tuning forks used in low-temperature experi-
ments were from 4 to 300 kHz. The critical velocities for the
onset of quantum turbulence depends on the resonant
frequency (Section 10). So, for the resonant frequency
f~32kHz, Vee ~ 10 cm s~ and A4 ~ 0.5 um. The effective
mass of the tuning fork prong is m ~ 400 pg [116].

The technique for measuring the piezoelectric response of
a quartz crystal (Fig. 9d) is shown in Fig. 10. One of the
prongs is excited using an AC drive voltage, and the induced
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Figure 10. Scheme for measuring the inductive response of a piezoelectric
system to an alternating electrical signal [116].

current (nA) in the second prong is measured using a lock-in
amplifier with the help of a I-V convertor. A similar scheme
was used to measure velocities of motion as a response to the
exiting force for a grid oscillator (Fig. 9b) and levitating
sphere (Fig. 9c).

Superconducting wires in a magnetic field. This technique
for the generation and detection of vortices has been used
extensively in superfluid *He (see, for example, [117, 118])
(Fig. 11a). The essence of the technique is the measurement of
the oscillation amplitude as the AC voltage of a super-
conducting NbTi wire with a diameter of 2-3 um in a
magnetic field of ~ 25 mT under resonant conditions when
an alternating electric current is passed through the wire. The
induced EMF that arises on the wire when it moves in the
magnetic field is proportional to the speed of the wire. The
typical geometry of such resonators is shown in Fig. 11a; the
distance between resonator legs ~ | mm, wire curvature
diameter ~ 1 mm. The resonant vibration frequencies for
such resonators are of the order of 1-3 kHz. The quality
factor of such a system is Q = 10003000, V', = 10 cm s~ !,
A ~ 20 pm, m =~ 10 ng.

MEMS and NEMS resonators. With the development of
photolithography and micro-electronic technology, it has
become possible to manufacture micro- and nanomechanical
resonant systems, test them in superfluid helium, and use such
devices as generators and detectors of quantum turbulence.
Thus, in the last few years, investigations were done to study
the interaction of MEMSs and NEMSs with vortices in
superfluid helium at low temperatures.

Studies [120, 122—-124] describe experiments with MEMS
resonators consisting of a central plate ~ 200 x 200 um?
suspended on curved springs at a height of 1.25 and 0.75 pm
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Figure 11. (a) Experimental device with oscillating superconducting wires with a diameter of 2.5 pm, using two of them as detectors and one as a generator
of quantized vortices [119]. (b) EMS with the dimensions of the central moving plate ~ 200 x 200 um?, distance from the substrate to the plate = 2 pm
[120]. (c) NEMS with the dimensions of an oscillating strip: thickness of 130 nm, width of 300 nm, length of 150 um and its resonance curve, fy is its

resonance frequency, Qi is the quality of the resonator [121].
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from a substrate (for two tested systems). The masses of the
central plates were 0.345 and 0.277 pg. The central plate was
driven by electrostatic interaction between comb-drive
actuators attached to its sides and stationary electrodes
attached to the substrate (Fig. 11b). To improve the
conductivity, a metal film was deposited on the structure.
The manufacturing procedure for MEMSs is described on the
manufacturer’s website [125]. Depending on the distribution
of constant charges on all electrodes, the resonating plate
could oscillate with different modes, the amplitude of which
was set by alternating electrical signals. The alternating
current flowing in the system was proportional to the speed
of the plate. The resonant frequencies for vibrations along the
plane of the plate (direction x, Fig. 11b) were 24.1 kHz,
perpendicular to the plane (in the direction z) ~ 15 kHz. Two
more rotational modes were observed with an axis along axis
x [~ 25.6 kHz and along the z-axis f'~ 16 kHz. The quality
factor in vacuum reached 10*. The surface roughness did not
exceed 10 nm.

At the Quantum Technology Center, Lancaster Univer-
sity, UK, mechanical resonators with sizes of fractions of a
micron have been developed and successfully used in the
study of quantum turbulence [121, 126, 127]. The NEMS used
in these experiments had the dimensions of resonant stripes
T = 130 nm thick, W = 300 nm wide. The length of the strips
was L = 30 um and 150 um and they were located at 1 um
from the substrate plate. The resonant frequencies for these
two resonators were f = 11.6 MHz and 1.6 MHz. The main
substrate material was undoped silicon; the resonator strip
was made of silicon nitride (100 nm), on which an aluminum
conductive layer of 30 nm was deposited during the
manufacturing process. The mass of the resonant strip was
m = 15 pg. Placed in a magnetic field of 10 mT, in a vacuum,
the resonator had a quality factor of 5 x 10° at a temperature
of 7 mK. Aluminum in such magnetic fields remained in a
normal state. The schematic of the experiment and measuring
equipment is shown in Fig. 11¢c. We will discuss the generation
and detection of vortices by MEMS and NEMS systems in
more detail in Section 14.

7. Quality factor of oscillating systems

To be used as a generator or a detector of quantum
turbulence, resonators must have a very high Q factor.
Therefore, it is no coincidence that, when indicating the
Q-factor achieved by the aforementioned resonators, the
measurement temperature is indicated. At high temperatures
(T > 1 K), the quality factor of the resonator will be
determined by the interaction with roton excitations in
superfluid helium. At temperatures of 0.7-0.1 K, the quality
factor is limited by interaction with ballistic phonons, and
only at lower temperatures does the material of the resonator
and the accuracy of its manufacture determine the energy
losses of the device.

In Fig. 12 is shown the influence of the temperature of
superfluid helium on energy losses of resonators of various
designs under resonant conditions. For all the oscillating
structures shown in the graph, the main losses are determined
by thermal excitations in liquid helium, and only at
temperatures below 0.3-0.1 K is the maximum sensitivity of
such resonators achieved. The interaction of the oscillating
resonator with phonons is proportional to T4 in a tempera-
ture range of 0.2-0.8 K; the dependence is plotted as dashed
lines. For high-frequency NEMS resonators, one of the
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Figure 12. Graphs of temperature dependences of energy losses of various
resonators in liquid “He. Dots of various colors are the results of loss
measurements for an NEMS resonator in different magnetic fields (from
[121]), resonant frequency f= 1.6 MHz; stars—grid loss data P=35 bar,
=925 Hz [111]; triangles— quartz tuning fork, /= 6488 Hz, P ~ 0 bar,
recalculated from [129]; black circles— absorption measurement data for a
levitating sphere f = 237 Hz[112].

significant reasons for the decrease in the quality factor of
the system is magneto-mechanical losses, the magnitude of
which is proportional to the magnitude of the magnetic field
squared (left side of the graphic). Another effect that affects
the quality factor of resonant systems at low temperatures is
the dissipative losses of oscillating systems associated with the
emission of sound waves.

8. Sound emission by oscillating systems

It is well known that vibrating bodies emit sound waves. For
superfluid helium, in addition to the first sound, it is possible
to emit waves of the second sound — the counterflow of the
normal and superfluid components. For a plane oscillating in
the direction normal to the plane, the amplitudes of two
sound waves (first and second sounds) are determined by the
relationship ﬁezT V3 /CVy, where B, is the thermal expansion
coefficient, T is the temperature, ¥} and V; are the speeds of
the first and second sounds, and C is the heat capacity. Thus,
the energy transfer to the second sound radiation will be much
weaker than to the first sound, except for special cases of
resonant amplification of the second sound inside the
experimental cell.

Quartz tuning forks, by analogy with musical tuning
forks —standards of pitch—emit sound waves. The emis-
sion of sound waves will also occur at zero temperature,
which can limit the quality factor of the oscillatory system at
low temperatures. Theoretical models of sound radiation in
an infinite medium were presented in [129, 130]. In the
simplest case of acoustic emission, one can consider radia-
tion into an infinitely large unbounded volume of a classical
fluid with negligible attenuation of propagating sound waves.
In this case, all the energy of the emitted waves is carried away
from the source, and it is more or less easy to find an
analytical expression for the radiation power of the oscilla-
tor, allowing certain simplifications regarding the geometry
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of the oscillator and ignoring the dissipation of sound waves
propagating in the liquid. Models of emission of sound by
vibrators consider three-dimensional (3D) and two-dimen-
sional (2D) radiation. The calculations take into account two
limiting cases: when the length of the sound waves is much
larger than the dimensions of the emitter and when it is much
less. The cutoff frequency for an oscillating system with
dimensions of the order of several mm is fyr ~ 100 kHz, and
for dimensions of the order of several mm, fs ~ 100 MHz.
For ordinary quartz resonators, as well as for micron
superconducting filaments, the emitted waves can be con-
sidered in the long-wavelength limit.

Calculations of sound emission [131] showed that, for
both 3D and 2D cases of wave propagation, the emitting
power is determined, as for sound radiation by a long
cylinder, by the relation

P = CownwLe)1lV2 ’

where C is a constant depending on the width and thickness
of the oscillating body, on the speed of sound in the liquid,
and on the density of the liquid; nw = 5 for 2D and cylindrical
radiation, and nw = 6 for 3D; the exponent n/ of the effective
length of the oscillating system L. is equal to 2 for 3D
radiation and is equal to 1 for the other two cases; V' is the
speed of the emitter. It is possible to determine the energy loss
of the resonator due to the emission of sound waves by
comparing the quality factor of the system in a vacuum and
in liquid under the same temperature. The influence of
vibration frequencies of quartz tuning forks on the quality
factor of resonators was determined experimentally in [129,
130] (Fig. 13). The dotted line on the graph corresponds to
Af~ f7. Fitting the experimental results showed that the
three-dimensional acoustic emission model describes the
experimental data better. At high temperatures and at low
resonant frequencies, the hydrodynamic component of
vibration energy absorption is dominant. For these tempera-
tures, acoustic impedance becomes significant for frequencies
above 100 kHz. At low temperatures (below 0.35 K), the

acoustic component of oscillation damping can be significant
already in the frequency range above 10 kHz.

Note that all the measurements presented here were
carried out at very small oscillation amplitudes, so that the
measured drag forces were proportional to the velocity. Thus,
in [130], it is indicated that the main mechanism of energy
dissipation at low speeds of the tuning fork prongs is
associated with the emission of sound, and this mechanism
was assumed to determine the mutual influence of the tuning
forks on each other. At a much higher velocity of tuning fork
vibration, quantized vortices are generated in superfluid
helium, and the transfer of energy to the vortex system — so-
called turbulent drag—begins to play a fundamentally
important role.

9. Vortex generation by oscillations of solids

Measurements of the resistance to the movement of oscillat-
ing bodies showed that at low speeds the drag force is
proportional to the velocity, which corresponds to the
laminar flow of the liquid. When the critical value of the
velocity is exceeded, the turbulent drag increases rapidly with
a growth of the amplitude and the velocity of the oscillations.
The change in the behavior of hydraulic resistance in liquid
helium at high temperatures occurs rather gradually (as in
ordinary liquids), but becomes sharp at low temperatures,
although the transition to the turbulent regime occurs at
approximately the same critical velocities. An example of
such behavior is shown in Fig. 14.

As we noted earlier, the response of a resonant system and
its transition to the regime of generation of turbulence are
affected by the temperature of the liquid and the presence of
excitations in superfluid helium, which actively attenuate the
resonant oscillations of the device. In addition, the prehistory
of the experiment has a significant effect on the transition to
the turbulent state.

At low temperatures, the transition to turbulence is often
accompanied by hysteresis: as the driving force increases, the
transition to the turbulent state is accompanied by a sharp
drop in velocity. As the excitation signal reduces, the velocity
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Figure. 14. Dependence of the maximum vibration velocity of a quartz
tuning fork as a function of the driving force at different temperatures.
Insert shows the additional driving force spended on generation of
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decreases to values measured at laminar motion, and there is
usually a small jump in the increase of the motion velocity,
corresponding to a state of potential fluid flow. The return to
laminar motion occurs at significantly smaller forces and at
lower velocities of the oscillator. Such behavior was
observed for most of the oscillating systems used to generate
vortices in superfluid helium (Fig. 15); however, the
magnitude of the hysteresis and the conditions for returning
to the laminar regime of oscillations strongly depend on
many factors, including the mass of the oscillating body and
the roughness of its surface. The hysteresis depends on the
influence of individual vortices on the behavior of the
oscillatory system, on the possibility of pinning vortices on
the resonator surface, etc. The change in the behavior of the
resonator during its transition from laminar to turbulent
oscillations is clearly visible on the drag coefficient of the
system (7). Moreover, if the laminar flow around an
oscillating body is determined by the presence of excitations
in superfluid helium (i.e., by temperature), then the transi-
tion to the turbulent state occurs at approximately the same
speed of the vibration. Developed turbulence (reaching the
stationary value of CJ) has a close value according to the
dependence F ~ C]V? in a wide temperature range, both in
the presence of excitation in superfluid helium (7 > 1 K)

and at low temperatures (7 down to mK). Along with the
quadratic dependence of the resistance force on the velocity
of the body, the transition of the flow regime from laminar
to turbulent is accompanied by an increase in the value of
CJ. For example, for the graphs shown in Fig. 16, CI
increases by 20-40 times at minimum temperatures. The
change in the behavior of oscillations during the transition
from laminar motion L of an oscillating body to developed
turbulence TII can be explained by the existence of an
intermediate region TI, in which individual vortices are
generated by pinned vortices (see Fig. 19a in Section 12)
due to an increase in the length of vortices when they move in
a superfluid liquid together with an oscillating surface, self-
and neighboring vortex reconnection, and ballistic motion of
the resulting vortex loops (see Fig. 19b in Section 12). The
presence of several critical velocities and different mechan-
isms of energy transfer from the resonator to superfluid
helium was observed in experiments with free damping of
grid oscillations at low temperatures. Experimental tempera-
tures were 10 mK, pressure P = 5 bar, with high purity “He.
At small initial amplitudes and velocities of grid oscillations
Ap < 3.5 mm s~! (experimental technique and geometry in
Figs 9), the velocity corresponds to the movement of the
middle of the grid, and the attenuation of oscillations is
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where switching was observed in the response. The corresponding
maximum grid velocities are plotted on the right-hand ordinate scale.

determined by the quality of the system and the laminar flow
of the superfluid liquid. The free grid motion is described by
the exponential damping with the exponent time 7 & 56 s.
An increase in the initial speed of the grid leads to a change
in the nature of the movement. It is seen in Fig. 17 that, for a
speed of several mm s~!, the energy losses of the grid increase
intensively and this loss of speed continues to values of 0.4—
0.7 mm s~!, after which the mode changes to laminar
damping of oscillations. If the initial grid velocity was
greater than 10 mm s~!, the termination of energy pumping
into the system is accompanied by rapid damping followed
by laminar damping. In accordance with the previous
definitions, we also refer to these transitions as L, TI, and
TII. At very large oscillation amplitudes (and grid movement
velocities greater than 2-3 cm s~!), a TIII turbulent state
arose, characterized as a very rapid decrease in the oscilla-
tion amplitude with characteristic times of seconds, followed
by laminar damping.

At low initial speeds of the grid movement, with an
increase in the amplitude of oscillations in the TI mode, a
switching mode appears at the amplitude of oscillations,
when the maximum grid speed periodically changes (a
discussion of this behavior is given in Section 13).

When generating turbulence by oscillatory systems, one
can compare the effect of dimensions on the laminar—
turbulent transition, for example, for spheres of different
diameters. Experiments with a ball on an elastic suspension
were presented in [134]. The ball radius was 3.5 mm,
resonance frequency f= 320 Hz, Q ~ 3000, and critical
velocity was Ve, ~ 0.14 cm ¢~!. At similar vibration frequen-
cies (f =~ 236 Hz) but at lower temperatures (with cooling to
25 mK) and a smaller sphere radius (75 mm), the authors of
[112] determined the critical transition velocity as
Vi =~ 4.2 cm c~!. A comparison of the Reynolds quantum
numbers for these two cases showed the closed values of ~ 50
and 30. These Re values were closed to Reynolds numbers
obtained in [49] for a stagnant flow of the normal component
(Fig. 2a). For two spheres with very different sizes at these
temperatures (both 1.5 K and 0.3 K), ¢! » 1, i.e., exceeding
the critical velocity VCr corresponds to the transition from
the laminar flow to the V., turbulent state.

10. Influence of the frequency of oscillation
on the critical velocity of the transition
to a turbulent state

At low temperature experiments, it was found that the
velocities of the resonator vibration at which the transition
to the turbulent regime occurred depended significantly on
the oscillation frequency. It was shown above that in super-
fluid *He the force of resistance to the movement of a
mechanical oscillator at high velocities is approximately
proportional to the square of the velocity, which corresponds
to a constant drag coefficient Cy4, as is usually the case with
turbulent drag in classical liquids. The transition to turbu-
lence in classical fluids is accompanied by a smooth change in
the drag coefficient (see Fig. 8), while the transition to one-
component superfluid turbulence occurs quite abruptly (see
Fig. 16).

For a classical fluid at low speeds in a laminar flow, the
dissipative drag force (Stokes drag) arises due to viscosity,
and this force for an object oscillating with a high frequency is
defined as Cj =cpv/wv/V (see Section 4). This relationship is
valid when the viscous penetration 6 = /2v/w is small
compared to the size of the object. This condition is certainly
correct for standard quartz tuning forks in normal liquid
helium. If the turbulent drag is equal to the Stokes drag, we
may estimate the characteristic velocity of an object in a fluid
at which turbulent vortex generation begins (8), V, =
(cL/eT)y/wv. From this relation the speed of the onset of
turbulence is proportional to the square root of the oscillation
frequency times the viscosity of the fluid. The situation
changes in superfluid helium, especially at low temperatures,
when the superfluid at low velocities exhibits a purely
potential flow without viscous drag. In this case, the quality
of the resonant system is defined by its own losses, which can
be measured in a vacuum. The onset of ‘turbulent’ resistance
may not necessarily be strictly associated with the developed
turbulence in the sense of the irregular motion of a vortex
tangle. The increase in drag can be caused by the emission of
single vortex rings, as shown in Section 9, in the TI mode.

From measurements of the decay of quantum turbulence
[38, 61, 62, 135], there is more and more evidence that
quantum turbulence behaves similarly to turbulence in a
classical fluid with an effective kinematic viscosity, the value
of which is usually written as a multiple of the circulation
quantum of a superfluid fluid: k = h/m, where m is the mass
of an “*He atom for superfluid *He, or the double mass of an
3He atom for superfluid He. The similarity between
quantum and classical turbulence is supported by theoretical
arguments [18, 136-138], experiments that investigate fluc-
tuations in a superfluid flow [43, 139, 140], and computer
simulations [141, 142].

By analogy with formula (8) for classical turbulence, one
could expect the critical velocity of the onset of quantum
turbulence in the form

Ver £ 4/ frok, 9)

where i1 is a constant of the order of unity, depending on the
geometry of the flow.

The frequency dependence of the critical velocity given in
formula (9) can be obtained using the dynamic scaling
arguments for the vortex motion. These arguments were
first used to explain the critical rate of turbulence formation
by high-amplitude second sound waves [143, 144]. In [145],
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Figure 18. Influence of the oscillation frequency of resonant systems on the
critical velocity of the transition to turbulence. Grid at 7= 10 mK [111],
superconducting wire at 7= 30 mK [163], quartz tuning forks at
T =5 mK [128].

dependence (9) was rigorously obtained using dynamic
scaling of the equations of vortex dynamics.

The first experimental confirmation of the frequency
dependence of the critical velocity given by formula (9) was
obtained in experiments with levitating balls [146, 147].
However, equation (9) should be valid only at relatively
high frequencies, where the oscillation amplitude 4 = V/w is
small compared to the size of the object R. An experiment to
test the influence of the oscillation frequency on the
transition to turbulent generation of vortices was done with
a set of quartz tuning forks [128]. In this work, the
measurements were carried out on a comb of tuning forks,
which were cut from a quartz plate with a thickness of
W=75 pum and a prong width of r =90 pm. The distance
between the prongs of the tuning fork was also the same,
90 pm. The length of the tuning fork prongs L determined
their resonant frequency, which ranged from 6.5 to 300 kHz.
The measurement results are shown in Fig. 18.

Critical velocities of the transition from the laminar to
turbulent regime correspond to the relation V¢ ~ v/0.7kw,
where k is the circulation quantum. At lower frequencies,
when the oscillation amplitude exceeds the size of the object
R, it can be estimated that the critical velocity will become
frequency independent [148]: V¢, &~ k/R. The transition of the
system to a turbulent state at amplitudes larger than the
characteristic dimensions of resonating systems were
observed in experiments with a grid and superconducting
wires. The data from these experiments are also shown in
Fig. 18. For the lowest resonant frequencies in experiments
with a levitating ball, the critical velocities were significantly
higher than those calculated by relation (9), which may be
explained by the small number of pinned vortices, which is
determined by the peculiarity of the experiments— the
absence of contacts between the sphere and the chamber
walls.

11. Dissipative processes in superfluid helium

At temperatures at which the normal and superfluid compo-
nents exist, there is an interaction between the components,

and, for homogeneous turbulence (Vinen turbulence), the
energy transfer from the oscillating body to the vortex system
is defined as

c=v'(k2L?), (10)
where v’ is the effective viscosity, and the relation k2L is the
effective root-mean-square vorticity of the superfluid compo-
nent [149]. Thus, relation (10) can be an analogue of the
energy flow in the inertial turbulence interval for classical
Newtonian fluids. By analogy with classical fluids [5], energy
is transferred to large eddies and flows through the Richard
inertial cascade into the dissipation region, where the flow
becomes laminar. The energy spectrum of such a process has
the Kolmogorov form

E (k) = Cxe*Pk 3

where E(k) dk is the energy of the turbulent system per unit
mass of the liquid, associated with the wave vector in the
range from k to k + dk, eis the energy flux through the inertial
cascade per unit mass, i.e., the pumping rate into the vortex
system is equal to the rate of energy dissipation in the system
(due to viscosity or with the help of another mechanism), and
Ck is a constant of the order of unity. For a classical fluid, the
energy dissipation is determined by the viscosity ¢ = v{w?),
where (w?) is the flow vorticity. In the range of wave vectors
greater than /, energy transfer through the Richard cascade
occurs due to vortex reconnections and the formation of
smaller vortex loops, i.e., the process is semiclassical. In
experiments with high Reynolds numbers (for example, the
‘washing machine’ [43]), it was experimentally shown that the
semiclassical behavior of a vortex tangle only applies to
length scales much larger than the average distance between
vortex lines. However, any similarity between the classical
and quantum velocity fields must disappear at length scales
comparable to or smaller than the distance between the
vortices. In this case, the flow of the superfluid component
must be very different from the velocity field in the classical
flow.

On scales of the order of or less than /, quantum effects
(circulation quantization and, connected with it, the existence
of vortex line cores) should strongly manifest themselves in the
velocity field of the superfluid component. It can be assumed
that, in the absence of viscosity of a normal fluid, the
Kolmogorov spectrum and the corresponding energy flux
from large scales to the region of small sizes, related to the
motion of the fluid as a whole, will smoothly merge with the
spectrum of quantum turbulence at k/ — 1. The velocity for
the Kolmogorov spectrum can be rewritten as

V2 (k) = Cxe*Pk=2/3 . (11)
Then, on a scale of lengths /, the characteristic velocity should
be the same as for a homogeneous vortex tangle. This velocity
is of the order of the velocity of the superfluid component at a
distance / from a single vortex and is determined by the
expression

pr?

Vz(lil) _1_2 )

(12)

where the parameter ff depends on the geometric arrangement
of the vortices. With a smooth connection between equations
(11) and (12) on the distances between the vortices (k/ — 1),
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we obtain

B\ g\ 2
_ 34 _ 3p2 _ 1022
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With such a qualitative analysis, it turns out that the effective
viscosity for quantum turbulence will be of the order of
magnitude

v = (£>3/2K.
Ck

Thus, this quantity is of the order of the circulation quantum.

At low temperatures, the usual viscosity in liquid helium
no longer exists, and a superfluid liquid requires another
mechanism for the dissipation of the energy pumped into the
system. One of the possible mechanisms may be reconnection
processes, which lead to the appearance of Kelvin waves
(waves moving along the vortex core). The distance between
the vortices [ ~ £~/ 2, while the characteristic radius of the
vortex loop for the case of uniform turbulence will be

1 1
<ﬁ>zl—2:£.

The speed of reconnections can be estimated from a
dimensional analysis. During the interaction of a vortex
tangle, there is one dimensional parameter— the average
distance between vortices /— and the value /?/x can act as a
time scale. Then, the rate of reconnections per unit volume of
vortices should be of the order of kI =5 = k£ [5].

Computer modeling has shown that, when a straight
vortex and a vortex ring intersect and reconnect, Kelvin
waves scatter on the newly formed vortices [150]. The
reconnection of two straight vortices forms regions of high
curvature on these new vortices, which, due to the tension of
the vortex core, move at a high speed along the vortex. An
experimental observation of reconnection processes was
presented in the work of a group from Maryland, in which,
by decorating vortices with hydrogen microparticles [151—
153], it was possible to observe the formation of Kelvin waves
[154, 155]. At high temperatures with a relatively high
viscosity of the normal component, the curvature of the
vortex rapidly decreases due to friction forces. At low
temperatures, in the absence of viscosity, Kelvin waves with
large curvature running along the vortex core emit phonons.
The emission of phonons in a superfluid liquid at zero
temperature can be the main dissipative mechanism of
energy loss by a vortex.

For an isotropic vortex tangle with a distance between
vortices /, the velocity field of the superfluid component
acting on a neighboring vortex will be

K

The motion of the vortex line on the characteristic dimensions
/ is connected with the frequency as
K

This relationship is of fundamental importance for the
emission of sound or phonons with frequency w. If we
consider two rectilinear vortices located at a distance of 2b
and moving under the action of mutual velocity fields, then
the rate of energy loss that they radiate during their mutual

motion per unit length of the vortex will be [156, 157]

dEL px’

dr (4m)etns”

where c is the speed of sound. Let us imagine that the vortex
ring has a size of 2b, which is equal to the distance between the
vortices. The estimated time for the vortex ring to lose its size /
and its energy will be defined as the rate of energy transfer of
the vortex to Kelvin waves per unit mass of liquid. This value
is of the order of magnitude [5]

(=Gl =GKrL?,

where the factor G is of the order of one. Thus, for the case of
energy emission in the form of phonons due to kinks in the
vortex lines, the effective dissipative parameter, the effective
viscosity for the case of the absence of real viscosity in a
superfluid liquid, is of the order of magnitude x:

v// — é’K,

where the numerical factor { is in the range of 0.05-0.3 [26].

Spin-down experiments [38] on the decay of eddy
turbulence at 7= 0.15 K showed that the value of v” is
close to 3 x 10~3. However, it can be shown that there is a
region of wave vectors ~ /~! for which turbulence is situated
in the intermediate region between the Richard cascade and
dissipation due to Kelvin waves. According to the theoretical
concepts of [158], in the process of energy transfer to the high-
frequency region, there is a bottleneck in the accumulation of
vortex energy in the wave vectors of the beginning of the
formation of Kelvin radiative processes, which can well
explain such a small value of v/ observed in experiments.

By analogy with the viscosity of classical liquids and the
normal component of helium-II at high temperatures, one
can estimate the ratio of the Keulegan—Carpenter number
(KC) and the Stokes number fg by introducing the concept of
effective viscosity in accordance with the arguments given
above and assuming for all experiments the parameter
{ =0.11. According to the results of these experiments (see
Table), at temperatures at which we can ignore the concentra-
tion of the normal component, the transition to the turbulent
regime for a variety of structures with different sizes is
described by the relation KC x [fsl/z ~14.9+5.1.

For classical liquids, changing the Keleghan—Carpenter
number and the Stokes number g transforms the structure of
the generated vortices in the liquid. For water, it is possible to
draw a rather conditional line of the difference in the behavior
of the generated vortices. As noted above, at large KC values,
the inertial forces in the fluid predominate during the
movement of an oscillating structure, and at low Stokes
numbers a turbulent mode of motion occurs. The transition
from laminar to turbulent behavior takes place at a ratio of
the oscillation frequency and viscosity in the system corre-
sponding to equation (8). For a classical fluid, this transition
is determined by the following relation:

L
Ve —+vwvA,
‘T

and the drag coefficient at the speed of transition to the
turbulent regime is written as

20,8 1 2V2roS 1

Vv — KC

~1/2
Cyq 4 % y (nfs) ;
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Table. Characteristics of experimental structures and Keulegan—Carpenter number (KC) and Stokes number (S) calculated for them.

Structure d, pm f,kHz Ve, cm s~ KCe Bs

Schoepe sphere [114] 248 0.12 1.9 0.64 671
Schoepe sphere [112] 200 0.24 3.8 0.79 873
Osaka wire [133] 2.5 0.7 5.0 28.6 0.40
Lancaster wire [160] 4.5 1.0 4.8 10.7 1.84
Lancaster grid [108] 21 1.0 4.5 2.14 40.1
Osaka wire [119] 2.5 3.8 7.0 7.37 2.16
Tuning fork [128] 75 6.5 6.5 0.13 33 % 10°
Tuning fork [161], T > 1 K 400 32 6.0 4.7 %1073 4.6 x 10°

where S is the area of the moving body, 4 is the cross section . G "

of the body, and the coefficient for the cylinder is B

as = (3n/4)v/2. Thus, the transition to turbulent flow at

values Cq ~ 0.5—2 will occur at the ratio KC x [351/2 ~ 10.

In work on the visualization of the formation of vortices B

during the oscillation of a cylinder [99], the transition from a A

two-dimensional vortex structure of the Karman vortex street
to a three-dimensional one (i.e., the regime of developed
turbulence) occurred at KC x ﬁsl/ ? > 30. Measurements of
vibrations in superfluid helium of three quartz tuning forks at
temperatures above 1.4 K [97], where the viscosity of the
normal component cannot yet be disregarded, showed that
the transition occurred at KC x [351/ 217,

Thus, the characteristic ratios KC x ﬁsl/ ? for the transi-
tion of a fluid around an oscillating body to a developed
turbulence regime for both a classical fluid and superfluid
helium at high and low temperatures have close values.

12. Influence of pinned vortices
on the generation of quantum turbulence

As experimental studies show, the critical velocities of the
transition to turbulent vortex formation fundamentally
change after the first creation of vortices in the liquid
volume —with the second and subsequent increases in
velocity, the critical velocities usually become significantly
lower. The generation of vortices by the counterflow of the
normal and superfluid components requires the presence of
vortices in the bulk of the liquid; otherwise, the growth of
turbulence (and the temperature gradient) occurs only as the
vortex front diffuses from the heater or from the cold end of
the pipe [90]. For the creation of vortices from the wall of the
vessel, speeds of the order of 10 m s~! are required; just such
velocities of ion movement create the quantized vortex rings.
Similar arguments are valid for the generation of vortices
during the oscillation of resonant systems at low tempera-
tures, with the only difference being that the movement
proceeds via an oscillating body relative to a stationary
fluid. Thus, to increase the number of vortices in the
volume, it is necessary to have some remanent number of
vortices connected with the vibrating body. A diagram
depicting the pinning of vortices on oscillating structures is
shown in Fig. 19a. Figure 19b shows the formation of a vortex
loop during the reconnection of the vortex to itself during the
vibration of the oscillator.

The most revealing experiments in this regard were those
on the use of oscillating wire resonators, in which the speed of
the transition to a developed turbulence was determined by

Figure 19. (a) Different positions of remanent vortices in a cell: A—
residual vortices in the volume (remanent vortices), B— pinned vortices
on parts of the device, for example, on a ball or wire (pinning vortices),
C —intermediate case, when the vortex has weak fixation, it can crawl into
position (B) or break away and become free (A); (b) growth of the length of
the pinned vortex as the substrate moves away from us, followed by the
formation of a free vortex loop (from bottom to top). Arrows show the
directions of flow of the superfluid component around the vortices.

the ability of the oscillator to pin vortices. In experiments of
the H Yano group on generating turbulence using an NbTi
superconducting wire with a diameter of 2-3 pm, it was shown
that the transition from laminar to turbulent motion occurred
at wire speeds above 35 cm s~!. With especially careful filling
of the cell with superfluid helium (at a temperature below
100 mK in 20 h), it was apparently possible to fill the volume
under study with a minimum number of remanent and pinned
vortices. In this case, the first increase in the excitation signal
under resonant conditions of such an oscillatory system led to
the fact that the wire speed could reach values up to 1 m s~!
without transition to a turbulent state [162, 163] (virgin state).
After the formation of a turbulent state, the return to laminar
flow with a decrease in excitation occurred at significantly
lower velocities. An example of such a hysteresis is shown in
Fig. 15b. The next transition to the turbulent state after the
laminar one occurs at lower vibration velocities (regular state).

Moreover, two identical resonators made of identical
wires and placed side by side on a substrate exhibited
different resonant properties. One of the wires at sufficiently
low velocities began to generate vortices, while the other one
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b

Figure 20. Micrographs of the surfaces of various oscillators: (a) metal
mesh (from [164]); (b) NbTi superconducting wires, on the left with a
rough surface and on the right with a smooth one (from a private
communication by Professor Hideo Yano, Osaka City University,
Japan). Surfaces: (c) of a quartz tuning fork, (d) of a quartz tuning fork
with gold evaporation, and (e) of a monocrystal (from [165]).

experienced laminar flows at significantly higher velocities. It
should be noted that this behavior was observed only for
superconducting wires: a significant excess of the velocities of
motion over the regular transition to the state of developed
turbulence. This feature can be explained by the different
abilities of vortex pinning by the surface roughnesses of
different structures. Figure 20 shows micrographs of various
surfaces of oscillating systems.

A smooth wire (Fig. 20b, on the right) demonstrated a
transition to the turbulent state at velocities several times
higher upon increasing external excitation than the inverse
transition to the laminar state upon decreasing the motion
velocity (VI/VE a 20). Roughness with dimensions on the
order of several micrometers for other systems (oscillating
grids, a levitating ball, quartz tuning forks) led to the
observed hysteresis being much smaller for them. In addition
to a significant hysteresis at the ‘onset and ‘discontinuation’
of turbulence, the pinning of vortices leads to an interesting
effect— an unstable transition to turbulence.

13. Unstable transition to quantum turbulence

Experiments have shown that, in the operation of any
generators of turbulence by oscillating bodies in superfluid
helium, three regimes can be distinguished: low speed —
laminar motion—when the force of hydrodynamic resis-
tance Fyq to body motion is proportional to the velocity
F4 ~ V; high velocity, when the force is proportional to the
velocity in the square Fy ~ V2, along with these two main
modes of motion of bodies in a superfluid liquid, there is an
intermediate region of transition from laminar to turbulent
motion, in which the creation of vortices and the transfer of
energy from the mechanical motion of the body into the
motion of the liquid have a probabilistic character. Figure 21
shows the results of measuring the speed of a levitating ball as
a function of the applied variable forces [166].

Such a probabilistic transition to turbulence, as well as
switching the detector to the detection mode, which will be
discussed in Section 14, is described by the cumulative
distribution function F(¢), which is the probability that a
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Figure 21. Dependence of the speed of a sphere on the magnitude of the
applied force. Sphere size of 200 pum, oscillation frequency of 114 Hz,
T =300 mK, V¢ =2 cm s~'; in the gray region is an unstable transition
to the turbulent state [166].

random variable has a value of no more than ¢, for example, a
device failure occurs before the time ¢. Figure 22d shows a
survival function (reliability function) R(¢), which describes
the probability of an object ‘surviving: R(1) = P(T > 1),
where 7 is the time during which the events were observed, T
is a random variable denoting the moment of ‘death’, and P
means the probability of ‘death’ (failures) in a given time
interval (the oscillator falls into the generation of vortex
turbulence).

Statistical processing of the experimental results of the
transition of a vibrational sphere into a turbulent regime
showed that the temporal dependence is

R() ~ exp (-g) 7

and it corresponds to the Rayleigh distribution, where 7 is the
mean lifetime. The average ‘lifetime’ (the time for the system
to cross over to a turbulent state) does not depend on the
temperature at 7' < 0.5 K, at which we have a sufficiently
small number of thermal excitations in superfluid helium.
Obviously, the average lifetime () depends only on the
turbulent drag force Fr = F — AV, defined as the difference
between the applied force and the linear laminar dependence.
The average lifetime of the system before the transition to
turbulence can be described by the exponential

<> exXp | — ’
T) = Tp€X
0 F] 9

where 19 = 0.5 sand F; = 18.3 pN.

Similar observations were made in the study of grid
oscillations at low temperatures (Fig. 17, shaded area),
where the switching mode occurs with a change in the grid
oscillation speed (Fig. 23).

Thus, we can conclude that, during the transition from
laminar motion of oscillating bodies to turbulent at low
temperatures, processes of random switching of the flow
around a moving body quite often occur: vortices begin to
be generated, which leads to energy loss by the moving body
and a decrease in the speed of its movement — which means a
return to laminar motion. This switching regime falls on the
TI region, where separate eddies are generated, in contrast to
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V1 is the speed of transition to a turbulent state. (d) Survival function (reliability function) describing the probability that the sphere remains in laminar
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Figure 23. Switching of grid oscillation speed in the TI mode. Grid vibration
is excited by an alternating voltage U applied to the driving electrode
(in Fig. 9b): (a) U =0.03 mV; (b) U = 0.05 mV; (¢) U =0.085 mV; and
(d)U=0.17 mV.

the TII regime—developed turbulence. The features of
vortex emission in the TI and TII regimes will be considered
in more detail in the next section.

14. Detection of quantum turbulence

One of the main questions that arise in the study of quantum
turbulence is understanding how far and how fast the region
of a turbulent state in superfluid helium can propagate after
the start of vortex generation. If, say, in quasi-one-dimen-
sional geometry, vortices are created at the origin of
coordinates due to some mechanism described above, and in
the process of diffusion or ballistic flight vortices lose energy
and momentum, then vortex turbulence propagates only to a
finite distance, and only part of the space in this case will be
occupied by vortices. In the general case, this resembles the
situation with the calming of a river after the rapids. Let us
consider experiments in which vortices were detected at some
distance from the turbulence source and estimate the vortex
generation rate.

As we noted earlier, the formation of quantum turbulence
is possible in two different ways— thermal and mechanical.
With the thermal method, the generation of vortices occurs
due to the counterflow of the normal and superfluid
components during local heating of helium. In this case, it is
assumed that the establishment of a counterflow in the entire
volume of the heat flux occurs in times determined by the
speed of propagation of the second sound, i.e., 1520 ms~! at
temperatures from 1 to 2 K. For a sample size of several cm,
this time is of the order of milliseconds. At lower tempera-
tures, the concentration of the normal component becomes
negligible, and the counterflow of the two components can be
disregarded.

The creation of vortices by the mechanical method occurs
when bodies move in superfluid helium with velocities above
the critical ones (Section 9 and 10). Now, we are interested in
the processes of registering the movement of vortices in space
at different temperatures.

The possibility of decay of vortex turbulence due to the
motion of vortex loops and their disappearance on the walls
of the vessel was expressed in the first studies of quantum
turbulence [168]. Created in a superfluid helium and moving
in it, quantized vortices will behave differently depending on
the temperature of the liquid. At ultralow temperatures, when
thermal excitations in the Bose fluid can be ignored, vortex
rings will propagate without changing their dimensions. The
speed of motion of a vortex ring of radius Ry, at zero
temperature is given by the expression [§]

K 1 8R0 1
UO_4TCR0<H ap 2>
It is not difficult to see that the speed of the ring becomes
smaller as its radius increases. For a vortex ring with a radius
of 1 um, the vortex velocity is of the order of vy = 8 cm s~ !,
for a radius of 10 pm, vy = 1 cm s~!, and for a radius of
100 pm, vy = 1.2 mm s~'. The characteristic times of passage
of the distance to the detector via the vortices, say, for
D =1 mm, will be 12.5 ms, 100 ms, and ~ 1 s, respectively.
Of course, these values are only estimates. Diffusion or
ballistic span times will be significantly affected by the
complex shape of vortex rings with a large number of local
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bends, reconnection processes, especially at the initial stages
of vortex motion, and their high concentration with the decay
of large vortices into smaller ones, as well as the processes of
merging of small vortices with the formation of larger vortex
loops.

A theoretical consideration and computer simulation of
the processes of motion of vortex rings at zero temperature
was carried out in [169, 170]. It was assumed in the
calculations that the circular vortex rings began to diffuse in
the mutual vortex fields of the superfluid component. In the
process of movement, the vortex loops deformed and
intersected with other ones and with themselves with the
formation of small loops from large ones and the merging of
small loops into large ones. The calculations were made
within the local approximation of the Biot-Savart equation
[171]. Computer simulation has shown that, for times of the
order of 1-2 ms, a fairly wide distribution of vortex loop sizes
(up to tens of um) forms vortex rings with a diameter of the
order of 1 um. The decay times of turbulence in a volume with
dimensions of 160 pm were of the order of several ms. During
this time, most of the vortices leave this region. This made it
possible to estimate the average velocities of vortex motion at
4 cm s~!. Similar results were obtained in computer simula-
tions of the generation of vortices by a levitating sphere [172].
Computer simulation within the framework of the Biot-
Savart equation [173] indicated a slowdown in the speed of
motion of vortex loops with a large number of kinks and
associated Kelvin waves. However, the order of velocities and
times of motion of the vortices must be preserved. The results
of computational experiments on the ballistic expansion of
small vortices from the region of turbulence generation are in
good agreement with the results of theoretical work [174] on
the diffusion decay of vortex turbulence.

Experimental observations of the detector response to the
generation of a turbulent state by a moving body located at a
macroscopic distance from the detector were made using
high-Q resonators. Thin superconducting wires, quartz
tuning forks, and micro- and nanoelectromechanical systems
(MEMS and NEMS) were used as such detectors.

The change in the oscillation frequency of a high-quality
resonator when a vortex is attached to it will increase due to
an increase in the returning force associated with an increase
in the length of the vortex when the resonator moves, i.e., the
oscillation frequency of the resonator will increase. On the
other hand, we note that any pinning of the vortex to the
resonator is an incorporation of additional mass, which
should reduce the frequency of the resonator. By the way, a
similar effect of reducing the frequency of the resonator is
observed in a superfluid liquid compared to a vacuum during
laminar motion of the oscillating element of the resonator due
to the added mass.

The question of the inertial mass of a vortex pinned on a
detector is not completely clear at present. When considering
the analogy between superfluidity and electrodynamics [175],
the vortex energy E, can be compared with its mass M,
through the Einstein relation E, ~ M,c?, where c is the speed
of sound. The complexity of the assessment is also related to
the fact that the value of the added mass of the vortex will be
affected by the pinning potential and the degree of slip of the
vortex relative to the oscillating body, the density of pinned
vortices, the Magnus forces acting on the vortex when it
moves with the resonator element, etc. [176, 177]. So, the
change in the frequency of the resonator with vortices has not
been fully elucidated, and only experiments can answer this

question by changing the frequency of the resonator under
specific conditions.

In the work of Japanese researchers [178—180], who were
the first to record the response of a detector located at a
macroscopic distance from the generator to the formation of
a turbulent state at temperatures of 7 =30 mK, they
observed that the detector frequency increased after the
arrival of vortices. Both the generator and the detector were
resonators in the form of an arc & 1 mm in diameter made of
NbTi superconducting wires with a diameter of about 2.5 pm
(Fig. 11a). Excited by an alternating electric current in a
magnetic field, the wire moved at maximum velocities of
50 cm s~' and at characteristic resonant frequencies of
f~ 3 kHz and had an oscillation amplitude of the order of
27 pm. The mass of such a resonator was m ~ 10~% g. The
distance between the detector and the generator, which
differed in resonant frequencies by several hundred Hz, was
~ 1 mm in the experiments. A resonator with velocities up to
50 cm s~! was used as a detector. Such high velocities
correspond to the supercritical mode of operation of the
detecting wire, exceeding the transition to the turbulent state
(for a wire with a rough surface, Vi ~Scm s7!). A
significant excess of the speed of motion of the detecting
wire is possible due to the fact that, as the authors of [162, 181]
indicate, there were no residual pinned vortices on the
detector. An increase in the velocity of the detector was
accompanied by an expected decrease in the frequency of
the laminar motion of the wire. The arrival of vortices at the
detector after turning on the turbulence generator (a similar
wire resonator with a movement speed of more than 10cms ™)
triggered the transition of the detector to the generation of
vortices, which led to a sharp decrease in the detector
oscillation amplitude and an increase in its resonant
frequency by 0.3 Hz. After reducing the current through the
detector (driving force) to a critical value (F ~ 100 pN) and
turning off the vortex generator, the detector returned to
laminar oscillations after some time.

At significantly greater distances (10 mm), registration of
eddy turbulence was observed in studies of the Lancaster
group [182]. Quartz tuning forks were used as a generator and
a detector in these experiments. The vibration plane of the
quartz tuning forks was parallel to each other. The resonant
frequency of the quartz resonators used in these experiments
was ~ 32 kHz, but differed for the generator and detector,
which precluded the mechanical influence of one resonator on
the other.

Experiments have shown (Fig. 24) that, at the freezing
temperature of roton and phonon excitations, the formation
of a turbulent state by one of the quartz tuning forks
(‘turbulence generator’) affects the quality factor of the
second tuning fork (‘detector’), the speed of oscillation of
the prongs of which was significantly lower than V.,
(0.3 mm s~!). The ‘detector’ frequency also increased upon
interacting with the vortices. In the ‘telegraph’ regime of
switching on a ‘generator’ (2 s on and a rest period of 20 s), the
amplitude of the ‘detector’ signal changed over times of the
order of fractions of a second. Thus, at times of the order of
fractions of a second, the vortices traveled distances of the
order of ten mm to the second tuning fork (‘turbulence
detector’), reducing its quality factor. For times of a fraction
of a second after the ‘generator’ was turned off, the quality
factor of the ‘detector’ returned to its original value.
According to the response of the ‘detector’, two critical rates
of formation of vortices by the ‘generator’ can be distin-
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Figure 24. Influence of the ‘generator’ oscillation speed upon the amplitude
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‘detector’ resonance (low-drive-linewidths— LDLs) (b) and its resonant
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Figure 25. Drag coefficient Cy4 as a function of the speed of a quartz tuning
fork. The black dots show the behavior of Cy if the external pump is
reduced until V,; is reached.

guished. When the first critical speed (V¢ ~ 1 cm s71) is
exceeded, vortices begin to form, the number of which and
their influence on the quality factor of the ‘detector’ increase
with the speed of movement of the prongs of the ‘generator’.
When the turbulent state of the ‘generator’ is reached (the
speed of movement of the prongs of the ‘generator’ exceeds
Ve ~ 15 cm s71), the quality factor of the ‘detector’ begins
to increase, which may indicate a decrease in the number of
vortices that reach the detector, i.e., there is a ‘shielding’ by a
vortex tangle that occurs near the ‘generator’ of the passage of
vortices to the ‘detector’. When the ‘detector’ oscillation
speed exceeds Vo, the ‘detector’ ceases to change its quality
factor and respond to the creation of vortices by the
‘generator’. Decreasing the oscillation amplitudes of the
‘generator’ to the detection regime and increasing the
amplitude of the ‘detector’ to generation gives a similar
picture of the recorded signals.

A decrease in the response of the detecting wire at high
generator powers and a more intense production of vortices
was noted in the work of the Yano group [183]. As in
experiments with quartz tuning forks, the decrease in the
response of the wire detector with an increase in the intensity
of vortex generation by the generator can be explained by the
screening of the vortex flow by the turbulent state of the
vortex tangle near the generator.

The detection of the propagation of vortices generated by
a quartz tuning fork located at a distance of 5 mm from the
MEMS is described in [124]. The MEMS, consisting of a
125 x 125-um? central oscillating plate suspended at 2 pm
above the substrate, was immersed in “He along with a quartz
tuning fork as a turbulence generator. The vibration plane of
the prongs of a quartz tuning fork was parallel to the plane of
the resonator plate. The resonant frequency of the MEMS
was 23 kHz. The measurements were carried out at a
temperature of 15 mK. It turned out that, when the quartz
tuning fork exceeded velocity Vg ~ 71 mm s~! at which
turbulence generation begins, the damping of the MEMS
resonator increased, but this increase depended on the
intrinsic mode of the MEMS resonator and the ability to
generate vortices by the resonator itself.

Note that the authors [124] of the work investigated the
MEMS resonator itself for the possibility of generating
vortices. Increasing the plate speed to 5 mm s~! changed the

hydraulic resistance coefficient—it stopped growing and
became constant. At a speed above 140 mm s~!, the drag
coefficient of the oscillating plate of the MEMS resonator
dropped sharply. The authors of [124] attribute this behavior
to a change in the vortex pinning regime: at a high speed of
motion, the resonator plate is cleared of pinned vortices.

The same features of the transition to developed turbu-
lence are observed in the dependences of the drag coefficient
of quartz tuning forks on their velocity. Peculiarities in the
dependences V(F) of quartz tuning forks at Vg, were
observed in many experiments at low temperatures (Fig. 25).
The behavior of C4(V') is reproducible if the maximum speed
of movement of the prongs of the quartz tuning fork is less
than V,». However, if the resonator switches to the developed
turbulence mode V > V4, then the experimental depen-
dences in the low-velocity region become closer to the values
denoted by the dashed line, and this behavior will also be
reproducible after the transition to turbulence.

Comparing the results of the transition to turbulence
(Section 12) and the data given above, we can assume the
following scenario for the development of quantum turbu-
lence. For the first generation of vortices (virgin state), the
mode of transition to turbulence is determined by a small
number of remanent vortices pinned on the oscillator. The
number of pinned residual vortices on the oscillator can
change with time (Fig. 3). As the speed of the oscillator
increases above V¢, the vortices pinned on the oscillator
begin to increase their length and intersect with themselves or
with their neighbors as they lengthen, forming free vortex
loops that can freely move in the liquid (as shown in Fig. 19b).
Ve is on the order of 1 cm s~! for many experiments at low
temperatures. The number of generated vortices depends on
V — V. At Ve, there is a transition to the generation of a
large number of vortices, which do not have time to leave the
vicinity of the oscillator and create a dense tangle of vortices,
which can already serve as an obstacle to the flow of vortices
into the surrounding space. The same tangle can interact with
vortices pinned on the oscillator; vortices from the tangle can
attach to the oscillator, increasing the density of pinned
vortices.

The difference in the value of V., and sometimes the
complete absence of the transition to the TI vortex produc-
tion regime, is due to the absence or negligible number of
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Figure 26. Time dependence of NEMS response to the capture of a vortex by a resonating nanobeam. Greek letters denote the times of change of the state
of the resonator: state / —resonator is free of vortices, 2— capture of the vortex by the resonator, 3— vortex is captured by the resonator, 4 —extrication
of the resonator from the vortex. Before time o, beam is in a vortex-free state. Between o and f3;, the vortex interacting with the beam gradually increases
the frequency of the beam by 3 kHz, and finally is captured along the entire length of the beam at point f5;. From f, to y, the resonance is stable for 20 ms.
Captured vortex interacts with a nearby vortex and at the point y; /9, the system returns to the free state via reconnection of the trapped and attracted
vortices. After 14.35 s, a second event occurs at the point o, with similar characteristics. Diagrams along the top of the figure depict the general processes
that may be involved, although the exact details of capture and release mechanisms are not fully understood [184].

vortices pinned on the oscillator. For rough surfaces, such as
quartz tuning forks or oscillating grids, there are many more
opportunities for vortex engagement, which affects the
existence of the TI regime with a subsequent transition to
the TII regime of developed turbulence. After the transition
of the tuning fork to the regime of quantum turbulence, some
of the vortices after the completion of generation remain on
the oscillator, and the drag coefficient of the oscillator
increases in this case. The transition to the turbulent state
will occur taking into account a new, denser system of pinned
vortices at subsequent sweeps of the driving force.

For the sensitivity of all the above-described resonant
systems as detectors of quantum turbulence, the mass of the
detector itself and its area on which vortices can be pinned are
fundamental. In this regard, the most sensitive one is NEMS,
which is shown in Fig. 11lc [121, 184]. Compared to other
detecting systems, the mass of the working element (oscillat-
ing beam) is several orders of magnitude lighter, which
apparently makes it possible to detect the pinning of
individual vortices. At least, the response of the NEMS
resonator during the generation of vortices in the surround-
ing space is always the same, and when a vortex is attached,
the resonance frequency increases by 3 kHz (Fig. 26).

Let us pay attention to the characteristic response times of
the detector to the arrival of the vortices. At a speed of
movement of the prongs of the quartz tuning fork, starting
from 73 mm s~!, the NEMS resonator begins to detect the
arrival of vortices, while the waiting time for the detector to
operate is in the range from 40 to 1000 s. The probability
density function of the waiting time between events t5, for
equal velocities of the quartz tuning fork (i.e., for the same
vortex flow into the surrounding space) is described by an

exponential of the form P o< exp (—15,/7). The characteristic
vortex registration times t varied from hundreds of seconds
for 74 mm s~! to T & 7 s for 90 mm s~!. It should be noted
that the transition of a quartz tuning fork from laminar
motion (F ~ v) to turbulent motion (F ~ v?) occurs at lower
velocities (~ 65 mm s~!), but registration of vortices under
such excitations has not been experimentally observed and,
most likely, the time constant for such a flow of vortices from
the generator is much more than hundreds of seconds.

The turn-on times of the NEMS detector for all
investigated modes ranged from fractions of a second to tens
of minutes, which is apparently due to the need to pin the
contact of a vortex of a suitable size on the surface of the
NEMS resonator beam at the correct angle. However, the
process of freeing the beam from the adhering vortex took
place over times t,, = t, — t,; much shorter, on the order of a
few or ten milliseconds. From experiments on the visual
behavior of vortices during reconnection [155, 185] and
modeling the interaction of quantized vortices [186], the
time characteristics of the interaction of vortices 7,, during
reconnection and the intervortex distance / RC are related as
| = A,/¥t,,, where A is a value of the order of unity [155]. If
we now assume that the characteristic time for an arbitrary
vortex to stop a vortex ‘adhered’ to the resonator beam is
1,y = 3—100, then from #,, ~ 3—100 ms follows a distance
between vortices in a vortex tangle near the detector of 70—
200 um (£ ~ 0.2 — 2 x 10* cm~2), which is quite plausible.

A number of observations of the detection of vortices at
macroscopic distances were made at temperatures above
1.2 K. At nonzero temperatures, when there is mutual
friction between the normal and superfluid components,
dissipation occurs, which reduces the diameter of the vortex
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ring during its motion, and the ring will disappear after
passing a certain distance. The rate of change of the vortex
ring radius is defined as [8, 187, 188]

R=—uw(R).

The vortex lifetime can be estimated as T = Ry/(2owp), where
o is the coefficient of mutual friction between the normal and
superfluid components of superfluid helium. The range of the
ring before it disappears is given by [160]

I = L)TU(R(I)) di = J; v(R) % dR :é

where ¢ is the minimum size of the vortex of the order of the
vortex core r; taking into account the smallness of the vortex
core radius in comparison with the initial vortex radius, we
finally get /, = Ry/o. Therefore, for sufficiently strong
dissipative processes in superfluid helium, the detection of
vortices at a distance D is possible only for vortices with sizes
larger than Ry, determined by the relation 2Ry > 2aD.

In the Ueno group’s work with superconducting wire
resonators, a number of measurements on the detection of
propagating vortices were carried out at high temperatures,
which imposed certain restrictions on the size of the detected
vortices that could reach the detector. Thus, the disappear-
ance of a vortex with an initial radius of 18 um will occur in
41 ms, and the distance traveled by it before disappearing is
about 0.5 mm [189]. In [119], there are two detectors, one of
which was placed in the direction of motion of the generator
wire, and the other in the perpendicular direction (Fig. 11a).
In this work, an anisotropy in the detection of vortices was
shown. Taking into account the high temperature of super-
fluid helium in the experiment, the detector registered vortices
with an initial diameter greater than 38 pum, which is
comparable to the amplitude of the generator oscillations. If
such a large vortex is formed and stretched by the motion of
the wire, then the resulting vortex ring is likely to move
perpendicular to the direction of the wire’s path. In experi-
ments, it was found that the detection of vortices occurs more
often in the perpendicular direction than in the parallel
direction. If we describe the probability of waiting for the
operation of the detector 1 — P at time ¢ after the generator is
turned on, then the experimental observations are described
by the relation

t—t
l—P:exp<— ; 0>7
1

where ¢ is the time of passage of the distance to the detector
by the vortex, and ¢, is the average response time of the
detector. For the direction of movement of the oscillation of
the generator wire, the response time of the detector is
t; = 11 s, while, for the perpendicular direction, ¢ = 0.007 s
at a generation power of 500 pW. These measurements
showed that the large vortex rings recorded in the experiment
are emitted and move anisotropically, and they are detected in
much greater numbers in the direction perpendicular to the
motion of the generator wire.

Thus, by now it has been experimentally shown using the
detection of vortices that vortices propagating over macro-
scopic distances are formed during quantum turbulence. At
zero temperature, propagation distances are limited by the
size of the cell. At temperatures above 0.3 K, the sizes of

(RO - é)a

vortices decrease as they move due to interaction with
excitations in a superfluid liquid — phonons and rotons. A
similar anisotropic behavior of expanding vortex loops,
albeit at zero temperature, was made in simulated experi-
ments in [190]. It was shown that, when vortices are
generated in an elongated volume of a parallelepiped, the
probability of vortex diffusion in the direction perpendicular
to the elongated direction of the source is much higher and
the sizes of vortices in this direction are significantly larger,
which also means that for the case of nonzero temperature
there is a higher probability of registering vortices in this
direction.

In Section 15, we estimate the number of vortices
generated during the oscillation of resonators from the
energy parameters of the oscillators and the change in their
frequency during the detection of vortices.

15. Number of vortices generated
in the process of oscillations

When discussing the problems of quantum turbulence, the
question arises: how many vortices are created during the
generation of a turbulent state at different velocities of an
oscillating body? As experiments on the generation of
quantum turbulence have shown, initially oscillating bodies
move laminarly and only then, after exceeding the critical
speed, do they begin to give rise to vortices that propagate
through the space of the device at ‘zero’ temperature. As
noted in Section 13, the transition from laminar motion to
developed turbulence occurs in at least two stages, which
differ, among other things, in the effect on the detector [65, 83,
124, 182].

One can calculate the energy transferred to the vortex
system and estimate the number of vortices generated in the
process of oscillations. This energy is the difference between
the extrapolation of the linear dependence for laminar motion
F~ V and the experimentally observed value F (V). If we
now estimate the power transferred to the system for one
oscillation of an oscillating body, we can estimate the length
of the vortex line generated in one period of oscillations
(E =mnFyVy/w, where Fy and V; are the force and velocity
amplitudes, respectively) and compare it with the amplitude
of oscillations in such a process.

For most oscillators, this power can be defined as the
power of electrical losses of the external circuit: the speed of
movement is determined by the bias current J for the
capacitor in the case of a quartz tuning fork, a levitating
sphere or an oscillating grid, and the voltage U is the
magnitude of the external force through the appropriate
coefficients. The energy of the external circuit in this case is
not only transferred to the laminar motion but is also used to
increase the length of the vortex system. In this case, the
temperature of superfluid helium and the processes of energy
dissipation of vortices after their creation is of little con-
sequence — the energy of external excitation was transferred
to the vortex system, and this power will be equal to
W =U* (Jin—J), where Jjj, is the linear extrapolation of
current (velocity) dependence, corresponding to laminar
motion of the oscillator. It is quite reasonable to assume
that the distance between the vortices is in the range
[~ 1=100 um (£ ~ 10* =108 cm~2), and then the energy of
a unit length of the vortex (as the kinetic energy of the
superfluid component) is determined as Ep ~ (1.0-1.4)x
10~ J um.
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When the levitating sphere oscillates [114] with diameter
d = 248 pm (Fig. 22a), the difference between the continua-
tion of the laminar velocity and the transition to turbulence is
Avx1 ecms~!at F ~ 60 pN, the power loss for the creation of
vortices W~0.6 pW, and for one half-cycle (f = 114 Hz) the
length of the vortices increases by AL ~ 2000 pm. An
oscillation speed of 2 cm s~! corresponds to an oscillation
amplitude of 4 =28 pum, which makes it possible to estimate
ALy/A ~80and AL,/d ~ 9.

Similarly, it is possible to estimate the number of
generated vortices for a quartz tuning fork, taking into
account the onset of the transition for different turbulence
regimes: TI (Ve = 0.5 cm s™!) and TIH (Vg = 15 cm s7h).
For these velocities, with the oscillation frequency of such an
oscillator at f'= 32 kHz, the amplitudes will be 4| ~ 25 nm
and A, ~ 700 nm. The applied forces calculated from the
calibration for these two cases will be 2 nN and 50 nN, and the
energy transferred to the vortex system for one oscillation will
be £1=5x 10"'8 Jand E;=3.5 x 10~'* J. The vortex system
for one oscillation will receive an increment in AL; =~ 4 pm and
AL; ~ 3 x 10* um, which significantly exceeds the oscillation
amplitude for these conditions in AL;/A;~160 and
AL,/ A>~4.3 x 10*. The dimensions of the quartz tuning fork
prongs in these experiments were 3.676 mm long, 256 um thick,
and 616 um wide. The gap between the prongs was 260 um.

For a superconducting wire [133], the characteristic
resonator values were: wire diameter d = 2.5 pm, wire arc
radius R = 0.5 mm, oscillation frequency f= 3.8 kHz,
Ve =7 cm s~!, F~120 pN, oscillation amplitude 4~3 pm,
transmitted energy at a half a period of oscillation
E ~ 3.6 x 10719 J. The addition of the length of the vortex
system for one half-period of oscillation was AL; ~ 300 pm
and the ratio AL, /A ~ 100.

From the above estimation for various oscillating objects
(levitating sphere, quartz tuning fork, superconducting arc) it
follows that the increase in the length of the vortex system is
much greater than the oscillation amplitude.

Estimates of the increase in the vortex system made for a
MEMS resonator [124] with the dimensions of an oscillating
plate 125 x 125 pm at a distance # = 2 pm from the substrate
showed values closer to the oscillation amplitude. Here, the
elongation of the vortex system was comparable to the
amplitude of the oscillations. The oscillation frequency was
f =23 kHz. For the first critical speed V¢ = 0.5 cm s~! of
the beginning of vortex generation, applied force F; ~7 pN,
amplitude 4, ~ 35 nm, energy E; ~ 0.25 x 107'® J trans-
ferred to the vortex system increases the length of the vortex
system in one half-cycle AL; ~ 0.2 pm, which exceeds the
oscillation amplitude AL;/A; ~ 6. Similar estimates for
speed Veo =14.0 cm s™!, at which the behavior of the
MEMS resonator changes, give: F> ~30 pN, 4, ~ 900 nm,
Ey~27x 1078 ], and the gain of the vortex system
AL2 ~ 22 pm (ALQ/AQ ~ 25)

In a number of studies, the density of pinned vortices was
estimated as a change in the detector frequency due to an
increase in the rigidity of the system through the attached
vortices. As experiments have shown for all vortex detectors
based on high-Q oscillators, the response to the inclusion of
quantum turbulence led to an increase in the resonant
frequency. We noted that to date the question of vortices as
an added mass has not been fully elucidated. In a number of
papers, the pinning of additional vortices is considered an
additional force due to an increase or decrease in the length of
the vortex line during motion of the oscillator. In this regard,

the results with a NEMS oscillator were significative.
According to the authors [184], the addition of just one
vortex always led to the same increase in the oscillation
frequency by 3 kHz (Fig. 26).

The change in the resonator frequency during pinning of
vortices (or one vortex) on it can be used to estimate the
number of vortices. In [184], estimates of the elastic properties
of a resonator nanobeam based on natural vibrations of a bar
clamped on both sides [191] give the value Ty ~ 5.6 uN for
the tension of the rod as a string. Accounting for the added
mass of superfluid helium and additional acoustic damping,
as discussed in Sections 5, 8, gives the oscillation frequency
f=~2.116 MHz. The main change in the NEMS oscillation
frequency is related to the coupling of the vortex to the
nanobeam, which can be calculated by the imaging method
as the interaction between the vortex on the nanobeam and
the substrate. The distance between the nanobeam and the
substrate is d ~ 1 um, and it can be represented that the
vortex interacts with the image—with a parallel vortex
located at distance 2d from it. An estimate of the attractive
force in this case gives F ~ 8 pN. This force leads to a
deflection of the nanobeam, which changes the oscillation
frequency upward by ~ 1 kHz, which coincides in order of
magnitude with the observed value. The Magnus force during
the oscillation of the vortex attached to the oscillator will
determine the addition to the nanobeam tension, but this shift
is of the order of 10 Hz.

The additional tension of the pinned vortices explains the
stepwise increase in the oscillation frequency of the wire
resonator [178], which acts as a turbulence detector. The
change in the oscillation frequency of this oscillator occurs
due to the appearance of an additional tension of the vortex
cores connecting the oscillating wire with the walls of the cell.
Estimates [167] of the tension of the vortices due to the
oscillation of the wire under the assumption that the vortex
connects the tip of the detecting wire and the nearest wall of
the ampoule give, for the real dimensions of the ampoule, a
change in the oscillation frequency of ~ 0.7 mHz per pinned
vortex. The observed increase in the resonant frequency by
0.3 Hz may be explained as several hundred bridge vortex
lines. With a wire resonator length of 1 mm, the distance
between the pinned vortices should be on the order of several
pm.

From general considerations, it is clear that a change in
the frequency of oscillations of resonators associated with the
addition of vortices could be registered in the case of a small
mass of an oscillating body, when a small change in the forces
in the system due to interaction with vortices has a visible
effect on the resonant properties. So, such frequency changes
affect measurements with NEMS nanobeams (m ~ 15 pg)
and superconducting wire (m ~ 10 ng). However, an increase
in resonant frequencies was observed for much heavier quartz
tuning forks (m ~ 400 pg) [182], which is not entirely clear.
We mention that the mass of the oscillating grid [107] is the
largest, taking into account the large size of the oscillating
oscillator (d =~ 10 cm), and has the order of m ~ 85 mg, the
levitating spheres having m ~ 20 mg [112]. The MEMS
resonator turned out to be much lighter—m ~ 0.3 pg.

To estimate the increase in the attenuation of oscillations
of the MEMS resonator during the detection of vortices, it
was assumed in [124] that, when oscillating along the plane of
the resonator plate, the vortices attached along the edge of the
plate change their length due to the shift of the pinning point
when the plate oscillates, &/ ~ 4,/2d, where d are the
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distances from the oscillator plate to the substrate. Then, to
create additional damping of the oscillator when vortices are
attached, it is necessary that the vortices radiate vortex loops
due to reconnections and carry away additional energy from
the oscillator. The number of such vortices to fulfill the
damping conditions should be ~ 400, and when they are
fixed along the perimeter of the oscillator plate, the distance
between the pinned vortices will be about 1-10 pm.

Several conclusions can be drawn based on estimates of
the creation and pinning of vortices in oscillating systems.
First, the number of vortices varies depending on the
prehistory; by slowly filling the cell, one can achieve the state
of a vortex system in superfluid helium with the virtual
absence of remanent vortices and vortices pinned on the
oscillator (virgin state). In this case, the transition of the
oscillator to the turbulent state can occur at significantly
higher velocities of the oscillating element. The transition to
turbulence leads to a sharp increase in the number of pinned
vortices on the oscillator, which can be removed and the
oscillator returned to the initial ‘virgin® state only by special
tricks. Second, the length of the vortex structures generated in
one oscillation for all of the above resonators is significantly
greater than the oscillation amplitude of these oscillators from
tens (for MEMS oscillators) to tens of thousands (for quartz
tuning forks). Third, the distance between the pinned vortices
on any oscillator is of the order of 1-10 um, which gives an
estimate for the vortex density of £ ~ 10°—10% cm—2.

An estimation of the rates of vortex generation from
‘zero’—vortex nucleation from a wall without a spin
vortex —shows (Section 2, Fig. 1g) that vortex generation
always occurs at significantly lower velocities. It is difficult to
assume that a vortex pinned by two ends on an oscillator can
launch a loop with a length greater than the amplitude of
oscillations into superfluid helium in one half-period of
oscillations. If we assume that the length of a pinned vortex
grows by gradually increasing its length during successive
oscillations of the oscillator, then the characteristic radius of
the vortex loops cannot exceed the distance between the
pinned vortices, i.e., 1-10 pm. However, observations of
detection at nonzero temperatures, when vortices of small
diameter disappear due to interaction with rotons and
phonons in superfluid helium, showed in [119, 189] that the
size of vortices reaching the detector at a distance of ~ 1 mm
was initially significantly larger (R > 30 pm), for both the
oscillation amplitude of the wire oscillator (4 ~ 3 pum) and
the diameter of this wire (d = 2.5 pm).

The mechanism of quantum turbulence generation can be
represented as the formation of vortex loops from many
vortices pinned between the oscillator and the ampoule
walls. The formation of kinks during the motion of vortex
pinning points, self-intersection, and intersection with neigh-
boring vortices, and reconnection processes lead not only to a
decrease in the size of vortex loops near the source of vortices
but also to their growth, which is observed in experiments. An
increase in the size of single vortices at the boundary of the
vortex generation zone was observed in computer simulations
[190]. The transition to quantum turbulence during resonator
oscillations is accompanied by an increase in the interaction
of generated vortices with their source, i.e., with an oscillator.
This interaction leads to an increase in the number of vortices
pinning on the oscillator, which was described above as a
transition to a regular state from a virgin one.

An increase in the damping of independent oscillations
upon the transition of a quartz tuning fork to the generation

of vortices was experimentally observed in Ref. [192]. For the
experiments, a quartz tuning fork was made with a specially
chosen orientation of the crystal axes, which made it possible
to create two independent vibration modes from the same
electrodes — bending and torsion. It turned out that, during
the transition of the bending mode to the generation of
vortices and transition to quantum turbulence, the torsion
mode begins to experience additional damping, the magni-
tude of which depends on the intensity of the generation of
vortices. This indicates that, during the generation of a
turbulent state in superfluid helium, some of the generated
vortices are attached to the surface of a quartz tuning fork,
which changes the quality factor of torsion oscillations, as in
the case of a tuning fork when it detects vortices reaching its
surface [182].

16. Conclusion

In this review of quantum turbulence, we mainly focus on
recent work on the generation of vortices using oscillators,
which allow measurements to be executed at very low
temperatures under conditions of freezing of thermal excita-
tions in superfluid helium. The features of superfluid helium,
namely, the quantization of the flow of the superfluid
component around vortices, the definite position of the
vortex core, and the purity of the liquid (the amount of
impurity in liquid helium can be reduced to less than 10~'1%
[193]), make it a model medium for studying the formation
and decay of turbulent systems. The behavior of quantum
turbulence is determined by two parameters — the superfluid
Reynolds number Re; = VD /i, where Vis the velocity of the
fluid or body relative to the fluid, D is the size of the system,
and « is the circulation quantum, and the ratio of dissipative
to inertial processes in superfluid helium ¢ =oa/(1 —a'),
where the dimensionless parameters o’ and o determine the
reactive and dissipative forces acting on the vortex when it
moves relative to the normal component.

The state of quantum turbulence, the rate of generation of
vortices in the counterflow of the normal and superfluid
components, and the decay of the vortex system are quite
well quantitatively described by the phenomenological
Vinen’s equation. An increase in the density of vortices at a
stationary heat flux according to Vinen’s equation is possible
only in the presence of residual vortices in superfluid helium
(remanent vorticity). The presence of a vortex system can be
detected by the absorption of second-sound waves, which is
most often used at temperatures above 1.2 K, as well as by the
response of high-Q resonators to their interaction with
vortices.

During oscillatory processes around moving bodies, when
critical velocities are exceeded in superfluid helium, quantized
vortices are generated. It is this technique that is used at low
temperatures (below 0.1 K), when intrinsic excitations in
superfluid helium (rotons and phonons) can be ignored.
Vibrating grids, levitating spheres, superconducting wires,
and quartz tuning forks are currently used as oscillatory
systems. Recently, micro- and nano-electromechanical sys-
tems (MEMS and NEMS) have begun to be used as small-
sized resonators.

The transition from the laminar to the turbulent state
occurs, judging by the experimental data, in at least two
stages. At the first stage, single vortex loops are formed by
elongation of the residual vortices and their reconnection, i.e.,
by crossing with themselves and with nearby vortices during
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the motion of the superfluid component either due to the
counterflow of the normal and superfluid components during
heat release or during the motion of oscillating objects with
pinned vortices. With a stronger counterflow of the normal
and superfluid components or the oscillation velocity of
oscillators in superfluid helium, a developed turbulent state
is formed in which the number of vortices in the space
surrounding the oscillator sharply increases. It may screen
the flow of vortex flux from the oscillator, and the number of
vortices pinned on the oscillator increases—there is a
transition from the virgin state to the regular state. Such a
two-stage transition was registered by the change in the
temperature gradient during heat release, by the behavior of
the resistance coefficient of oscillating resonators to a change
in external excitation, and by the response of high-Q
resonators, as vortex detectors, when turbulent states are
excited at macroscopic distances from the source of vortices.

The oscillatory processes of high-quality resonant systems
used to generate vortices in superfluid helium are accompa-
nied by the emission of sound waves, which can be the
dominant oscillator in energy losses at vibration frequencies
above 100 kHz. The critical velocities of oscillatory processes
that bring a superfluid liquid into a turbulent state are
proportional to the root dependence on the oscillation
frequency.

When vortex turbulence is generated by oscillating bodies,
the increment in the length of vortex lines can be estimated as
an excess of energy transfer compared to laminar motion.
Estimates show that the increase in the length of the vortex
system during the half-period of oscillations of generating
oscillators is tens, hundreds, or even thousands of times
greater than the amplitude of these oscillations. This
indicates that the increase in the density of vortices in
superfluid helium during turbulence is a collective process
involving a large number of vortices pinned on the oscillator.
A small number of vortices pinned on the oscillator and its
smooth surface led to a significant increase in the critical
velocities of the transition to turbulence, a substantial
hysteresis with sweeping up and down excitations of the
oscillator. The departure of vortex loops from the oscillator
is determined by the processes of reconnection of pinned
vortices both on themselves and on neighboring vortices, the
density of which on the vortex generator can reach values of
the order of 10°—10% cm™2.

Qualitative analysis makes it possible to estimate the
effective viscosity of a superfluid liquid in the presence of a
vortex structure. With such an estimate, it turns out that the
effective viscosity for quantum turbulence will be of the order
of the circulation quantum,

3/2
v = B K,
(CK>

where the constants in parentheses are of the order of unity.

The main mechanism of energy dissipation of the vortex
system at low temperatures is apparently the Kelvin waves
that appear during reconnection as the movement of sharp
kinks, which is confirmed by visual observations. The motion
of Kelvin waves along the core of the vortex is accompanied
by the emission of phonons and the loss of energy by the
vortex loop.
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