
Abstract. We review some recent developments in the field of
quasi-one-dimensional superconductivity. We demonstrate that
low temperature properties of superconducting nanowires are
essentially determined by quantum fluctuations. Smooth
(Gaussian) fluctuations of the superconducting phase (also
associated with plasma modes propagating along a wire) may
significantly affect the electron density of states in such nano-
wires and induce persistent current noise in superconducting
nanorings. Further interesting phenomena, such as nonvanish-
ing resistance and shot noise of the voltage in current-biased
superconducting nanowires, are caused by non-Gaussian fluc-
tuations of the order parameterÐquantum phase slips (QPSs).
Such phenomena may be interpreted in terms of the tunneling of
fluxons playing the role of effective quantum `particles' dual to
Cooper pairs and obeying complicated full counting statistics,
which reduces to the Poissonian one in the low frequency limit.

We also demonstrate that QPS effects may be particularly
pronounced in the thinnest wires and rings, where quantum
phase slips remain unbound and determine a nonperturbative
length scale Lc, beyond which the supercurrent gets suppressed
by quantum fluctuations. Accordingly, for T! 0, such nano-
wires should become insulating at scales exceeding Lc, whereas
at shorter length scales they may still exhibit superconducting
properties. We argue that certain nontrivial features associated
with quantum fluctuations of the order parameter may be
sensitive to a specific circuit topology and may be observed in
structures like a system of capacitively coupled superconducting
nanowires.

Keywords: superconductivity, low-dimensional systems, quantum
fluctuations, quantum phase slips

1. Introduction

The important role of fluctuations in a reduced dimension is
widely known. Of special interest are fluctuation effects in low
dimensional superconductors whose propertiesÐ in contrast
to bulk structuresÐ cannot in general be adequately
described by means of the standard Bardeen±Cooper±
Schrieffer (BCS) mean field theory. Fluctuations are most
strongly pronounced in ultrathin superconducting wires,
causing a large number of intriguing physical phenomena.
Over recent decades, these phenomena have attracted a great
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deal of attention of numerous researchers worldwide and
have been discussed in detail in a number of recent books and
review papers (see, e.g., [1±6]).

Can superconductivity also survive in structures of lower
dimension, or do fluctuations disrupt any supercurrent in
such systems? The answer to these questions are of both
fundamental interest and practical importance due to rapidly
progressingminiaturization of superconducting nanocircuits.
According to a well-known theorem [7, 8], fluctuations
destroy the true long-range order in low dimensional super-
conductors. With this in mind, one could attempt to conclude
that low dimensional conductors cannot exhibit supercon-
ducting properties.

This conclusion, however, would be somewhat prema-
ture, because any generic superconducting system has a finite
size in which case phase coherence can be preserved, at least to
a certain extent. For instance, two-dimensional structures
undergo Berezinskii±Kosterlitz±Thouless (BKT) phase tran-
sition [9±11] as a result of which the decay of correlations in
space changes from exponential at fairly high temperatures to
power law at lower T. This result implies that at low
temperatures long range phase coherence does survive in
samples of a finite size, and, hence, generic two-dimensional
films can and do become superconducting.

Likewise, the general theorem [7, 8] does not yet allow one
to make any definite conclusion about the presence or
absence of superconductivity in quasi-one-dimensional wires
of a finite length employed in any realistic experiment.
Moreover, as we will see below, in the presence of quantum
fluctuations, superconducting properties of such structures
may crucially depend on a particular experimental configura-
tion, which makes the whole situation even more compli-
cated.

The superconducting state of a quasi-one-dimensional
metallic wire can be described by means of a complex order
parameter D�x� � jD�x�j exp �ij�x��, where x is the coordi-
nate along such a wire. Both thermal and quantum fluctua-
tions cause deviations in the modulus as well as the phase of
this order parameter from their equilibrium values. Such
fluctuations can be divided into two different types: (i) small
(Gaussian) fluctuations of the order parameter and (ii) non-
Gaussian fluctuations, i.e., so-called phase slips. Both of
these types of êuctuations are schematically illustrated in
Fig. 1.

The effect of Gaussian superconducting fluctuations can
be treated in a straightforward manner by expanding the
exact gauge invariant expression for the effective action of a
superconductor [12±14] in the fluctuating part of the order
parameter D�x�. In this way, one can, for example, derive the
(negative) correction to the mean field (BCS) value of the
order parameter D0. In particular, at T! 0, D � D0 ÿ dD0 is

found with [15]

dD0

D0
� 1

gx
� Gi

3=2
1D : �1�

Here,

gx � Rq

Rx
�2�

is dimensionless conductance, Rq � 2p=e2 ' 25:8 kO is the
quantum resistance unit, Rx is the normal state resistance of
the wire segment of a length equal to the superconducting
coherence length x, and Gi1D is the so-called Ginzburg
number in one dimension [3].

Note that in Eqn (1) fluctuations of both the phase and the
absolute value of the order parameter make contributions of
the same order. This estimate demonstrates that, at low
temperatures, order parameter suppression due to Gaussian
fluctuations in superconducting nanowires remains weak as
long as gx 4 1, and, in full accordance with general expecta-
tions, it becomes important only for extremely thin wires with
Gi1D � 1 and gx � 1.

It is also important to emphasize that, even if the absolute
value jDj does not fluctuate, the superconducting phase j can
still do so. In the limit gx 4 1, phase fluctuations in super-
conducting wires can be essentially decoupled from those of
jDj. Such phase fluctuations are controlled by the dimension-
less admittance

g � Rq

Zw
; �3�

where Zw �
���������������Lkin=C

p
is the wire impedance, Lkin �

1=�psNDs� and C are, respectively, the kinetic wire induc-
tance (times length) and the geometric wire capacitance (per
length), sN � 2e 2nFD is the normal state Drude conductance
of the wire, nF is the density of states at the Fermi level, and s is
the wire cross section. Such phase fluctuations are intimately
related to sound-like plasma modes [16] (so-called Mooij±
Sch�on modes), which can propagate along superconducting
wires with velocity v � 1=

������������LkinC
p

. The dimensionless impe-
dance g / ��

s
p

constitutes another important parameter
which, along with gx / s, also accounts for Gaussian super-
conducting fluctuations in ultrathin nanowires.

Let us now turn to non-Gaussian fluctuations of the order
parameter produced by phase slips. A nontrivial fluctuation
of this kind corresponds to the temporal suppression of jD�x�j
down to zero at some point x � x0 inside the wire, as shown in
Fig. 1b. As soon as the modulus of the order parameter
jD�x0�j vanishes, the phase j�x0� becomes unrestricted and
can jump by the value 2pn, where n is any integer. After this
process, the modulus jD�x0�j gets restored, the phase becomes
single valued again, and the system returns to its initial state,
accumulating the net phase shift 2pn. Provided such phase
slip events are sufficiently rare, one can restrict n to n � �1
and totally disregard fluctuations with jnj5 2.

Phase slips may have a strong impact on the behavior of
sufficiently thin superconducting wires. For instance, as was
first pointed out by Little [17], quasi-one-dimensional wires
made of a superconducting material can acquire a finite
resistance below the superconducting critical temperature
TC of a bulk material due to the mechanism of thermally
activated phase slips (TAPSs). This mechanism works as
follows.

D D

j
jx x

2p

Ti
me

Ti
me

Â b

Figure 1. Schematics of small fluctuations of the order parameter (a) and

the phase slip process (b) in superconducting nanowires. During the latter

process, the absolute value of order parameter D gets locally and

temporarily suppressed due to thermal and/or quantum fluctuations,

while its phase j undergoes a jump by �2p.
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According to the Josephson relation, each phase jump by
dj � �2p implies a positive or negative voltage pulse
dV � _j=2e. In the absence of any bias current, the net
average numbers of positive (n � �1) and negative (n � ÿ1)
phase slips are equal; thus, the net voltage drop across the
wire remains zero. Applying current I / jDj2Hj, a nonzero
phase gradient is created along the wire, making `positive'
phase slips prevail over `negative' ones. Hence, the net voltage
drop V due to TAPS differs from zero, i.e., thermal
fluctuations cause nonzero resistance R � V=I of super-
conducting wires even below TC.

A quantitative theory of this TAPS phenomenon was
initially worked out by Langer and Ambegaokar [18], who
employed the standard Ginzburg±Landau equations and
evaluated the TAPS rate within the exponential accuracy. A
more accurate analysis of the TAPS rate, including the pre-
exponential factor, was performed by McCumber and
Halperin [19], who employed the so-called time-dependent
Ginzburg±Landau (TDGL) equations. More recently, it was
realized that the TDGL-based approach is not sufficiently
accurate to account for the effect of quantum fluctuations
and, hence, to correctly determine the pre-exponent in the
expression for the TAPS rate. Appropriate modifications of
the LAMH (Langer±Ambegaokar±McCumber±Halperin)
theory have been worked out [15] employing the general
effective action approach [12±14].

This theory predicts that the TAPS creation rate and,
hence, resistance of a superconducting wire R below TC are
determined by the activation exponent

R�T � / exp

�
ÿ dF

T

�
; �4�

where dF is the free energy difference or, in other words, an
effective potential barrier which the system should overcome
in order to create a phase slip. The height of this potential
barrier is determined by the superconducting condensation
energy for that part of the wire where superconductivity is
destroyed by thermal fluctuations. At temperatures close to
TC, Eqn (4) yields appreciable resistivity, which was indeed
detected in experiments [20, 21] performed on small super-
conducting whiskers with typical diameters in the range of
� 0:5 mm. Close to TC, the experimental results fully confirm
the activation behavior of R�T � expected from Eqn (4).
However, as the temperature is lowered further below TC,
the number of TAPSs inside the wire decreases exponentially,
and no measurable wire resistance is predicted by Eqn (4).

Recent progress in the nanolithographic technique has
allowed the fabrication of samples with much smaller
diameters down to � 10 nm or even below. In such systems,
one can consider a possibility of phase slips occurring, not
only due to thermal, but also due to quantum fluctuations
in the superconducting order parameter. The physical
picture describing such quantum phase slips (QPSs) is
qualitatively similar to that of TAPSs (Fig. 1b), except
the order parameter jD�x�j gets virtually suppressed due to
the process of quantum tunneling rather than thermal
activation. As a result, the superconducting phase again
experiences jumps by dj � �2p.

Following standard quantum mechanical arguments, one
can expect that the probability of such a tunneling process has
to be controlled by the exponent � exp �ÿdF=o0�, i.e.,
temperature T must be replaced by some attempt frequency
o0 in the activation exponent (4). This is because the order
parameter field D�x� now tunnels under the barrier dF rather

than overcoming it by thermal activation. Since this tunneling
process should obviously persist down toT � 0, we arrive at a
fundamentally important conclusion that such nanowires
should demonstrate a nonvanishing resistivity down to the
lowest temperatures. This effect was predicted and investi-
gated theoretically in [12, 14] and received its convincing
experimental confirmation in [22±26].

According to the present theory, quantum phase slip
effects are controlled by the QPS amplitude per unit wire
length [14]

gQPS � b

�
gxD
x

�
exp �ÿagx� ; �5�

where, as before, D is the superconducting order parameter,
and a � 1 and b � 1 are numerical prefactors. It follows
immediately from Eqn (5) thatÐprovided parameter gx is
not too largeÐQPS effects in superconducting nanowires
(similarly to Gaussian fluctuations) are pronounced and need
to be properly accounted for. Conversely, by choosing the
dimensionless conductance gx sufficiently large, one can
suppress both these types of fluctuations in the superconduct-
ing order parameter.

Note that, although the dimensionless admittance g (3)
does not enter directly into the QPS amplitude (5), it
nevertheless plays an important role in the physics of
quantum phase slips, because, as we already pointed out, it
accounts for Mooij±Sch�on plasma modes propagating along
the wire. Different quantum phase slips interact by exchang-
ing such plasmons and, hence, parameter g controls the
strength of inter-QPS interactions. By reducing the wire
diameter, g is also reduced, and we eventually arrive at the
superconductor±insulator quantum phase transition [12] that
occurs at T! 0. In other words, quantum fluctuations may
drive a superconducting nanowire not only into a resistive but
also into an insulating state.

Thus, we conclude that the same dimensionless para-
meters (2) and (3) which account for small fluctuations in
the order parameter also essentially control the physics of
quantum phase slips. These two parameters will play a central
role in our further considerations.

The main purpose of this paper is to review some recent
developments in the field. In doing so, we will merely
emphasize fundamental aspects of the phenomena under
consideration, focusing our attention on recent advances in
the theory of quantum fluctuations in superconducting
nanowires and nanorings. Wherever necessary, we will also
briefly indicate relevant experiments and possible applica-
tions of the effects in question.

The structure of our review paper is as follows. In Sec-
tion 2, we will analyze the effect of small (Gaussian) quantum
fluctuations in the phase of the order parameter on the
electron density of states in ultrathin superconducting wires.
The same type of fluctuations causing supercurrent noise in
superconducting nanorings will be addressed in Section 3.
Section 4 will be devoted to the important issue of phase±
charge duality in superconducting nanowires and nanorings
in the presence of quantum phase slips. The effect of quantum
phase slips on both the supercurrent and its fluctuations in
superconducting nanorings will be investigated in Section 5.
Voltage fluctuations in superconducting nanowires, such as
shot noise associated with quantum phase slips, will be
described in Section 6. In Section 7, we will outline a theory
of full counting statistics for quantum phase slips. Topology-
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controlled quantum phase transitions and superconducting
fluctuation effects will be analyzed in Section 8. In Section 9,
we will address several interesting phenomena associatedwith
quantum phase slips in capacitively coupled superconducting
nanowires. The paper concludes with a short summary in
Section 10.

2. Quantum phase fluctuations
and local density of states

Let us consider a long superconducting wire with sufficiently
small diameter � ��

s
p

< x attached to two big superconduct-
ing reservoirs, as displayed in Fig. 2. The superconducting
properties of the wire are described by the order parameter
field D�x; t� � jD�x; t�j exp �ij�x; t��, which depends both on
the coordinate along the wire x and on time t. The wire
remains in thermodynamic equilibrium at low enough
temperature T5 jDj, and its parameters are chosen such
that one can safely ignore fluctuations in the absolute value
of the order parameter, which is set to be independent of both
x and t, i.e., jD�x; t�j � D. As we already described above, this
situation can be achieved provided the dimensionless con-
ductance gx remains very large, gx 4 1.

On the other hand, we will allow for fluctuations of the
phase variable j�x; t� along the wire and keep the dimension-
less impedance g not very large. Our main goal in this section
is to demonstrate that such fluctuations can affect and
significantly alter the local electron density of states (DOS)
of superconducting nanowires. The physical origin of this
effect is directly related to the presence of Mooij±Sch�on
plasma modes propagating along the wire and forming an
effective environment for electrons inside the system. As will
be demonstrated below, interaction between electrons and
such plasma modes can lead to substantial modifications and
smearing of the local electron DOS inside superconducting
nanowires [27].

2.1 Green's functions in the presence of phase fluctuations
In order to proceed, we will note that, typically, the motion of
electrons in metallic nanowires is diffusive, implying that the
elastic electron mean free path ` in such wires is much smaller
than the superconducting coherence length x. This electron
motion can be described quasiclassically with the aid of the
standard approach based on the Keldysh version of the
Usadel equations [28, 29]�

qts3 ÿ i �D� ie �V1̂; �G
�ÿD

2
q̂
�

�G; q̂ �G
� � 0 �6�

for the quasiclassical electron Green±Keldysh matrix func-
tion

�G � ĜR ĜK

0 ĜA

� �
;

which also obeys the normalization condition �G 2 � �1. Both
retarded and advanced 2� 2 Green's functions are 2� 2
matrices in the Nambu space

ĜR;A � GR;A F R;A

~F R;A ÿGR;A

� �
;

whereas the Keldysh matrix has the form ĜK � ĜRĥÿ ĥĜA,
where ĥ is the matrix distribution function. In Eqn (6), we
showed the covariant spatial derivative q̂�. . .� � qx�. . .��
ie
�

�Axs3; �. . .��, �a; b� � abÿ ba denotes the commutator, V
and A are the scalar and vector potentials of the electro-
magnetic field, D � vF`=3 is the diffusion coefficient, t1; 2; 3
and s1; 2; 3 stand for the Pauli matrices, respectively, in
Keldysh and Nambu spaces, and �D is the superconducting
order parameter matrix.

The electron DOS n�E; x� is related to the quasiclassical
Green's functions in a simple way as

n�E; x� � nF tr
s3
4

ÿ
GR�E; x� ÿ GA�E; x�� ; �7�

where nF stands for DOS in a normal metal at the Fermi level
and

�G�E; x� �
�
d�tÿ t 0� exp �iE�tÿ t 0�� �G�t; t 0; x� : �8�

It will be convenient for us to perform the rotation in the
Keldysh space expressing initial field variables, e.g., the phase
of the order parameter jF;B on the forward and backward
branches of the Keldysh time contour in terms of their
classical and quantum components j�� �jF � jB�=2, jÿ �
jF ÿ jB. We also define the matrices

�j �
j�

jÿ
2

jÿ
2

j�

0B@
1CA : �9�

Employing the gauge transformation

e �V! �F � e �V�
_�j
2
; �10�

e �Ax ! �A � e �Ax ÿ qx�j
2

; �11�
D� ! jDj� ; �12�

we expel the phase of the order parameter fromD�x; t� and get
�G�t; t 0; x� � exp

�
i

2
�j�t; x�s3

�
�~G�t; t 0; x�

� exp

�
ÿ i

2
�j�t 0; x�s3

�
;

where �~G obeys Eqn (6) combined with Eqns (10)±(12). In
the next subsection, we will show that one can safely put
gauge invariant combinations A ! 0 and F! 0 and
choose �~G equal to the Green's function �L of a uniform
superconductor in thermodynamic equilibrium, i.e.,

�~G� �L � LR LK

0 LA

� �
; �13�

where

LR
E �

1�����������������������������
�E� i0�2 ÿ D 2

q E D
ÿD ÿE

� �
; �14�

MooijëSch�on modes

Superconductor

A

Figure 2. Narrow superconductingwire together with a circuit which could

be employed for DOS measurements.
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LA � ÿs3�LR�ys3 and

LK
E � LR

E FE ÿ FELA
E ; FE � tanh

�
E
2T

�
: �15�

Then, we obtain

�G�t; t 0; x� ' exp

�
i

2
�j�t; x�s3

�
�L�tÿ t 0�

� exp

�
ÿ i

2
�j�t 0; x�s3

�
; �16�

where �L�tÿ t 0� is the inverse Fourier transform of �LE.

2.2 Effective action for phase fluctuations
In order to evaluate any physical observable, one needs to
average the corresponding variable over all possible phase
configurations. This can be done by means of the path
integral technique employing an effective action Seff which
controls phase fluctuations in our system at sufficiently low
energies. This action was microscopically derived and
analyzed elsewhere [1, 2, 13, 14]. Here, we recover this action
from simple symmetry arguments.

It is well known that global U�1� symmetry is broken in a
superconductor, whereas local gauge symmetry remains
preserved. Within this picture, the phase of the order
parameter plays the role of a Goldstone boson, implying
that the action should be constructed from the gauge
invariant quantities A and F rather than from the phase
derivatives only. The simplest appropriate form of the action
then reads

Sle�j;V;Ax� � Sem�V;Ax� �
�
dt

�
dx
�
z1�2eV� _j�2

ÿ z2�qxjÿ 2eAx�2
�
; �17�

where Sem�V;Ax� is action for the electromagnetic field and
z1; 2 are some constants. In the case of a quasi-one-dimen-
sional wire, we have

Sem�V;Ax� � 1

2

�
dt

�
dx

�
CV 2 ÿ A 2

x

L
�
; �18�

where C is the capacitance per unit wire length and L is the
geometric inductance times unit length. The constants z1; 2
can be identified by evaluating the response to static fields V
and Ax with the result

z1 �
nFs
4
; z2 �

1

8e 2Lkin
: �19�

Integrating out the electromagnetic potentials, we arrive at
the effective action for the phase variable

Seff�j� �
�
dt

�
dx

�
nFsC

4�C� 2e 2nFs� _j2

ÿ 1

8e 2�L � Lkin� �qxj�
2

�
: �20�

In the case of interest to us, diffusive metallic wires with a
diameter of the order of the superconducting coherence
length x � ����������

D=D
p

, we find C5 2e 2nFs and L5Lkin. We
then obtain

Seff�j� � C

8e 2

�
dt

�
dx

�
_j2 ÿ 1

CLkin
�qxj�2

�
: �21�

Following the same route, fluctuations of the variables F and
_j can be linked to each other. From the equations of motion,
we get

F � C

C� 2e 2nFs
_j � 1

4ECnFs
_j5 _j ; �22�

and, hence, the effects related to weak (/ F) penetration of
the fluctuating electric field inside the wire can be safely
ignored [13, 14]. Here and below,EC � e 2=�2C� stands for the
charging energy of a unit wire length. As usual, magnetic
effects related to fluctuations in A can also be disregarded in
the nonrelativistic limit considered here.

For the sake of completeness, let us also comment on the
differences between the superconducting metal considered
here and a neutral superfluid. In the latter situation, there is
no interaction with the electromagnetic field which can be
formally achieved by taking the limit L ! 0 andC!1, i.e.,
the opposite condition C4 2e 2nFs is realized. Accordingly,
the gauge transformation trick would not work anymore in
this case. This fact constitutes a clear manifestation of the
fundamental difference between the situations of global and
local gauge symmetry breaking.

2.3 Density of states
In order to evaluate the electron DOS, we need to average
Green's function (16) over all possible phase configurations.
This averaging is conveniently accomplished by means of the
path integral technique, which yields

h �Gij�tÿ t 0� �
�
Dj exp

ÿ
iSK

eff�j�
�

�G�t; t 0; x� ; �23�

where SK
eff�j� is the effective Keldysh action which accounts

for phase fluctuations in a superconducting wire. As we
demonstrated above, at low enough energies, it can be
written in the form

SK
eff�j� �

1

16EC
tr

ÿ
j� jÿ

�V ÿ1 j�
jÿ

� �� �
; �24�

where

V � V K V R

V A 0

� �
�25�

is the equilibrium Keldysh matrix propagator describing
plasma modes and

V R;A�o; k� � 1

�o� i0�2 ÿ �vk�2 ; �26�

V K�o; k� � 1

2

ÿV R�o; k� ÿ V A�o; k�� coth� o
2T

�
: �27�

Making use of the structure of �L in the Nambu space and
performing Gaussian integration, we get

n�E� � nF

�
d�tÿ t 0� exp �iE�tÿ t 0�� tr� t3s3

4

� exp

�
i

2
�j�t; x�s3

�
�L�tÿ t 0� exp

�
ÿ i

2
�j�t 0; x�s3

��
j

� nF

�
dt exp �iEt� tr

�
t3s3
4

ta �L�t�tbB ab�t�
�
; �28�
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where a; b � f0; 1g, t0 � 1̂,

B�t� � BK�t� BR�t�
BA�t� 0

 !
� exp

h
2iEC

ÿV K�t� ÿ V K�0��i

� cos
�
EC

ÿV R�t� ÿ V A�t��� i sin
ÿ
ECV R�t��

i sin
ÿ
ECV A�t�� 0

 !
; �29�

V�t� � V�t; 0� �
�
do dk

�2p�2 exp �ÿiot� V�o; k� : �30�

Note that Eqn (28) accounts for all emission and absorption
processes of multiple plasmons in our system via an auxiliary
propagator B. This propagator obeys the standard causality
requirements and satisfies the bosonic fluctuation-dissipation
theorem (FDT), because plasmons remain in thermodynamic
equilibrium (cf. Eqn (27)).

Employing this theorem and taking traces both in
Keldysh and in Nambu spaces, from Eqn (28) we obtain

hnij�E� �
nF
4

�
dt exp �ÿiEt� tr

h
s3
ÿ
LR�t� ÿ LA�t��BK�t�

� s3LK�t�ÿBR�t� ÿ BA�t��i
�
�
dE
2p

nBCS�E�BK�Eÿ E��1� FEFEÿE� ; �31�

where nBCS�E� is the BCS density of states in a bulk super-
conductor.

Since, for E0E� 2T, the combination 1� FEFEÿE decays
as / exp ��Eÿ E�=T �, the electron DOS at subgap energies is
suppressed by the factor� exp ��Eÿ D�=T �, and atT! 0 the
superconducting gap D is not affected by Mooij±Sch�on
plasmons at all.

Evaluating BK in Eqn (29), we find

BK�t� � exp

�
ÿ 1

g

� oc

0

do
1ÿ cos �ot�

o
coth

�
o
2T

��
� cos

�
1

g

� oc

0

do
sin �ot�

o

�
; �32�

where an exponential high frequency cutoff at oc � D is
implied. This cutoff procedure is consistent with the fact
that the effective action (24)±(27) remains applicable only at
energies well below the superconducting gap.

Equation (32) provides a lot of useful information about
the effect of phase fluctuations on the DOS. For instance, the
identity�

dE
ÿ
n�E� ÿ nBCS�E�

� � 0 �33�

(which follows directly from the condition BK�t � 0� � 1)
implies that phase fluctuations can only redistribute the
electron states among different energies without affecting
the energy integrated DOS. In the low temperature limit
T! 0, Eqn (32) reduces to

BK�t� �
�
sinh �pTt�

pTt

���������������������
1� �oct�2

q �ÿ1=g
� cos

�
arctan �oct�

g

�
: �34�

It is also instructive to evaluate the Fourier transform of
Eqn (32) BK

o . After some algebra, we obtain [27]

BK
o ' cosh

�
o
2T

��
2pT
oc

�1=g
�� �1=�2g� � io=�2pT ����2

2pT �1=g� ;

�35�

where o remains well below the superconducting gap D, and
�x� is the Euler gamma function. At low frequencies o5T,

Eqn (35) reduces further to

BK
o '

1

goc

�
2pT
oc

�1=g
2pT

o2 � �pT=g�2 ; �36�

whereas, for the frequency interval T5o5D, we find

BK
o '

p
oc �1=g�

�
o
oc

�1=gÿ1
: �37�

Making use of the above expressions, at energies in the
vicinity of the superconducting gap D, we arrive at the
following result for the electron DOS:

n�D� o� � nF
����
D
p���
2
p

�
2pT
D

�1=gX1
k�0

�k� 1=g�
k! �1=g�

�Re
exp

�ÿip=�2g������������������������������������������������
o� 2ipT

�
1=�2g� � k

�q
0B@

1CA : �38�

The energy dependent DOS n�E� for superconducting
nanowires in the presence of phase fluctuations is also
displayed in Fig. 3 at different temperatures and two
different values of the parameter g. We observe that at
T 6� 0 the BCS singularity at E! D is smeared due to
interactions between Mooij±Sch�on plasmons and electrons
propagating inside the wire. For the same reason, the electron
DOS at subgap energies 0 < E < D remains nonzero at any
nonzero T, i.e.,

n�E� / exp

�
Eÿ D
T

�
: �39�

We also note that, at bigger values of g, the function n�E�
demonstrates a nonmonotonic behavior at energies slightly
above the gap (Fig. 3a), whereas, at smaller g, the DOS
decreases monotonically with decreasing energy at all E not
far from the gap (Fig. 3b). In the zero temperature limit
T! 0 and for Eÿ D5D, we obtain

n�E� ' nF
���
p
p

y�Eÿ D����
2
p �1=2� 1=g�

�
Eÿ D
D

�1=gÿ1=2
: �40�

This result demonstrates that, while at E < D the electron
DOS at T � 0 vanishes at all values of g, the behavior of
n�E� (40) at overgap energies differs, depending on the
dimensionless conductance g. For relatively thicker wires
with g > 2, the DOS singularity at E! D survives,
becoming progressively weaker with decreasing g. In
contrast, for thinner wires with g4 2, the DOS singularity
is washed out completely due to intensive phase fluctua-
tions and n�E� tends to zero at E! D as a power law (40).
This behavior is also illustrated in Fig. 3c.
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2.4 Summary and comparison with experiments
To summarize, we demonstrated that local properties of
superconducting nanowires, such as the electron density of
states, can be sensitive to phase êuctuations in such
nanowires. At this stage, we intentionally restricted our
analysis to the effect of small phase êuctuations associated
with low energy sound-like plasma modes propagating along

a wire and forming an effective quantum dissipative environ-
ment for electrons inside the wire.

The coupling strength between electrons inside the wire
and such an effective plasmon environment is controlled by
the dimensionless parameter g. For relatively thick wires with
g4 1 or, equivalently, provided the wire impedance Zw

remains much smaller than the quantum resistance unit Rq,
phase fluctuations weakly affect the electron DOS except in
the immediate vicinity of the superconducting gap D. For
larger values Zw � Rq, the effect of phase fluctuations
becomes strong and has to be treated nonperturbatively as
1=g at all energies.

At any nonzero T, the electron DOS depends on
temperature and substantially deviates from that derived
from the standard BCS theory. In particular, at T > 0, the
BCS square-root singularity in DOS at E � D gets totally
smeared, and n�E� differs from zero at subgap energies as well
(cf. Eqn (39)). This behavior can be interpreted in terms of a
depairing effect due to the interaction between electrons and
Mooij±Sch�on plasmons. We also note that our results are
consistent with the phenomenological Dynes formula [30]

n�E� ' nF Re
E� iG�������������������������������

�E� iG�2 ÿ D 2
q

0B@
1CA ; �41�

describing smearing of the BCS singularity in the DOS in the
immediate vicinity of the superconducting gap.

At T � 0 and subgap energies, the electron DOS vanishes
as in the BCS theory, while the BCS singularity in the DOS at
E! D becomes weaker for any finite g > 2 and eventually
disappears for g4 2.

The local electronDOS in superconducting nanowires can
be probed in a standard manner by performing a tunneling
experiment, as is also illustrated in Fig. 2. Attaching a normal
or superconducting electrode to our wire and measuring the
differential conductance of the corresponding tunnel junc-
tion, direct access to the energy dependent electron DOS of a
superconducting nanowire is obtained. For instance, in the
case of a normal electrode at T! 0 and eV > D, we find

dI

dV
/ n�eV� /

�
Vÿ D

e

�1=gÿ1=2
: �42�

This power law dependence of the differential conductance
resembles the one encountered in small normal tunnel
junctions at low voltages dI=dV / V 2=gN [31], where gN is
the dimensionless conductance of normal leads. In fact, both
dependence (42) and the zero bias anomaly in normal metallic
junctions [31] are caused by Coulomb interaction and are
controlled by the impedance of the corresponding effective
electromagnetic environment.

Experiments similar to that described above were per-
formed with both thicker (

��
s
p

> 40 nm) and ultrathin
(
��
s
p

< 35 nm) titanium nanowires [32]. While the shape of
IÿV curves measured for thicker wires agrees well with the
standard BCS-like DOS, qualitatively different behavior
was found in thinner nanowires. Namely, upon decreasing
the wire diameter, (i) smaller and smaller values of the
superconducting gap D in titanium were observed and
(ii) progressively stronger smearing of the gap singularity
was detected. Observation (i) is consistent with theoretical
results [15] predicting suppression of the order parameter by
quantum fluctuations. Indeed, as the inverse dimensionless
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Figure 3. Normalized energy dependent electron DOS n�E�=nF for super-

conducting nanowires at different temperatures and two values of g � 5

(a) and g � 1:67 (b) as well as atT � 0 and different values of g (c). Energy

E and temperature T are expressed in units of D.
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conductance 1=gx increases with decreasing wire diameter,
the order parameter suppression becomes more pronounced
(cf. Eqn (1)), as was indeed observed in experiments [32].

Observed effect (ii) can be interpreted in terms of
theoretical predictions [27] outlined in this section. For
instance, the experimentally detected temperature depend-
ence of the nonvanishing DOS tail at subgap energies [32]
agrees well with our Eqn (39). We conclude that experimental
observations [32] clearly support our theory, thus, also serv-
ing as an independent confirmation of the existence ofMooij±
Sch�on plasmons in superconducting nanowires. Earlier, such
plasma modes were also detected within a different experi-
mental scheme in Ref. [33].

3. Gaussian phase fluctuations
in superconducting rings

Let us now consider a somewhat different configuration
for which small (Gaussian) fluctuations of the super-
conducting phase variable j�x; t� also yield interesting
physical effects. We will consider a superconducting wire
with cross section s closed in the form of a ring of radius R
pierced by an external magnetic flux Fx (Fig. 4). As before,
the wire is assumed to be thick enough (implying that
gx 4 1) to be able to fully ignore fluctuations of the
absolute value of the order parameter field jD�x; t�j,
where x is now the coordinate along the ring and t is the
imaginary time, 05t5b � 1=T. In this case, one can
construct a complete description of fluctuation effects.

3.1 Grand partition function
It will be convenient for us to define the grand partition
function of our system Z, which can be expressed via the
following path integral over the superconducting phase
variable j�x; t�:

Z �
X
m; n

�
Dj exp

�
ÿ l
2p

�
dx dt

ÿ
v�qxj�2 � vÿ1�qtj�2

��
;

�43�

where we introduced an effective coupling constant l � g=8
[12]. According to our assumptions, this partition function
includes only small fluctuations of the superconducting phase
j described by the imaginary time version of the effective
action (24) in the exponent of Eqn (43).

The path integral (43) should be supplemented by proper
boundary conditions, which should keep track of (a) the

periodicity of the phase variable j in space±time, (b) the fact
that the phase is defined up to 2pm, where m is an arbitrary
integer (the so-called winding number), and (c) the magnetic
flux Fx piercing the ring. Putting all these requirements
together, we obtain

j�x; 0� � j�x; b� � 2pm ; j�L; t� � j�0; t� � 2p�fx � n� :
�44�

Here, L � 2pR is the ring perimeter, fx � Fx=F0, and
F0 � pc=e is the superconducting flux quantum. Com-
bining Eqns (43) and (44), after a simple calculation we
find

Z �
X1

n�ÿ1
exp

�ÿbEn�fx�
�

�
����������
2pT
ER

r
#3

�
pfx; exp

�
ÿ 2p2T

ER

��
; �45�

where

En�fx� �
ER

2
�n� fx�2 �46�

are the flux-dependent energy levels of the ring, #3�u; q� is the
third Jacobi theta function, and

ER � 4plv
L
� p2nFDDs

R
: �47�

In the limit T! 0, the supercurrent I�fx� flowing around the
ring in its ground state is obtained by means of a well-known
simple formula

I �fx� �
qE�Fx�
qFx

; �48�

where E�Fx� � minnEn�fx� is the ground-state energy of the
ring, which is periodic in Fx with the period F0. Hence,
supercurrent I is also periodic in Fx, being defined as

I �fx� �
eER

p
q

qfx

minn �n� fx�2 : �49�

The supercurrent flowing across the ring can also be
expressed in terms of the phase variable by means of the
relation

I �t� � eER

2p2
ÿ
j�L; t� ÿ j�0; t�� : �50�

Combining Eqn (50) with the second Eqn (44), in the zero
temperature limit, we again recover the expression for the
expectation value of the current operator I�fx� � hI�t�i.

3.2 Coherent fluctuations of supercurrent
Fluctuations in the phase should in general cause fluctuations
in the supercurrent flowing inside the ring. It turns out that,
under the conditions formulated above, we can derive
formally exact expressions for all current correlators in our
problem. Employing Eqn (50), it is straightforward to
demonstrate that none of these correlators depend on time
and can be expressed through the derivatives of the theta

I

Fx

Figure 4. Superconducting ring threaded by magnetic flux Fx.
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function #
�k;0�
3 as [34]


Î�t1� . . . Î�tk�
�

�
�
eER

p

�kP1
n�ÿ1�n� fx�k exp

�ÿbEn�fx�
�P1

n�ÿ1 exp
�ÿbEn�fx�

�
�
X2n4 k

n�0

�ÿeT �kk!

n!�kÿ 2n�!
�

ER

2p2T

�n

� #
�kÿ2n; 0�
3

ÿ
pfx; exp �ÿ2p2T=ER�

�
#3
ÿ
pfx; exp �ÿ2p2T=ER�

� : �51�

At T! 0, this expression obviously yields

I k�t�� � 
I�t��k �52�

for all integers k5 0. Equation (52) implies that no super-
current êuctuations can occur in the ground state of super-
conducting rings. This observation is fully consistent with
general theorem [35] stating that no persistent current
êuctuations can occur at T � 0 provided the current
operator commutes with the total Hamiltonian of the ring.
Suféciently thick superconducting rings where QPS effects
can be totally disregarded represent an example of this
physical situation.

Supercurrent fluctuations, however, may and do occur at
nonzero temperatures. Below, let us focus our attention on
the supercurrent noise, the power spectrum of which reads

So �
�
dt exp �iot�S�t� ; �53�

where

S�t� � 1

2



Î�t�Î�0� � Î�0�Î�t��ÿ hÎ i2 �54�

and Î�t� � exp �itĤ�Î exp �ÿitĤ� is the current operator in the
Heisenberg representation and Ĥ is the system Hamiltonian.
In order to evaluate the above current±current correlation
function, it will be convenient for us to also define the
irreducible Matsubara correlator

P�t� � T
X
k

exp �ÿiokt�Piok
� 
ÎM�t�ÎM�0��ÿ hÎ i2 ; �55�

where ÎM � exp �tĤ�Î exp �ÿtĤ� is the current operator in
the Matsubara representation and ok � 2pkT is the Matsu-
bara frequency. It is also important that, from the expression
for the imaginary time correlator (55), one can directly
recover the real time PC noise power spectrum

The quantities S�t� and P�t� defined respectively in
Eqns (54) and (55) can be related to each other through the
appropriate analytic continuation procedure combined with
the fluctuation-dissipation theorem. Expressing both corre-
lators in terms of the exact eigenstates Em of the system
Hamiltonian Ĥjmi � Emjmi, we find
So � 2pPd�o� � p

Z
X
m6�n

��hmjÎ jni��2
� �exp �ÿbEn� � exp �ÿbEm�

�
d�o� En ÿ Em� ; �56�

Piok
� bPdk; 0 � 1

Z
X
m6�n

��hmjÎ jni��2 exp �ÿbEm� ÿ exp �ÿbEn�
iok � En ÿ Em

;

�57�

where

P � 1

Z
X
n

��hnjÎ jni��2 exp �ÿbEn� ÿ I 2 �58�

defines the zero-frequency contribution and

I � Zÿ1
X
n

hnjÎ jni exp �ÿbEn�

is the expectation value for the current. With the aid of the
above general expressions, we easily arrive at the relation

Im
��Piok

ÿ bPdk; 0�
��
iok!o�i0

� � tanh

�
o
2T

�
So : �59�

Equation (59) enables us to recover the current noise power
spectrum So directly from the imaginary time analysis.

It follows from Eqns (56) and (58) that, in the zero
temperature limit (i) P � 0, i.e., zero frequency, the super-
current noise vanishes identically, and (ii) at nonzero
frequencies, this noise also vanishes provided the current
operator commutes with the system Hamiltonian Ĥ.

At nonzero temperatures, the supercurrent noise power
does not vanish, having a peak at zero frequency,

So � 2pPd�o� ; �60�

where, from Eqn (51), we find [34]

P � e 2T 2

�
ER

p2T
� #

�2; 0�
3

ÿ
pfx; exp �ÿ2p2T=ER�

�
#3
ÿ
pfx; exp �ÿ2p2T=ER�

� �

ÿ e 2T 2

�
#
�1; 0�
3

ÿ
pfx; exp �ÿ2p2T=ER�

�
#3
ÿ
pfx; exp �ÿ2p2T=ER�

� �2
: �61�

In the low and high temperature limits, this expression
reduces to

P �
2e 2E 2

R

p2
exp

�
ÿER

2T

�
cosh

�
pI�fx�
eT

�
; T5ER ;

e 2ERT

p2
ÿ 8e 2T 2 exp

�
ÿ 2p2T

ER

�
cos �2pfx� ; T4ER ;

8>>><>>>:
�62�

where I�fx� is defined in Eqn (49). Also, one can note that, in
the absence of phase slips, P can be related to the second
derivative of free energy F over the flux

P � e 2TER

p2
ÿ T

q2F
qF 2

x

�63�

and thus to the difference between the Drude and Meissner
weights of the system [36, 37].

Dependence (61) is also depicted in Fig. 5 for different
values of the magnetic flux. We observe that at sufficiently
low temperatures the magnitude of PC fluctuations can be
tuned by the external flux fx, hence indicating the coherent
nature of such fluctuations. At higher temperatures, quantum
coherence is destroyed and P�T � / T becomes practically
independent of fx.

The above picture remains applicable as long as the ring is
sufficiently thick and one can essentially ignore quantum
fluctuations of the absolute value of the order parameter field.
However, upon decreasing the wire diameter � ��

s
p

, typically
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to values in the 10-nm range, one eventually reaches the
regime in which quantum fluctuations of jD�x�j gain
importance and may strongly modify the low temperature
behavior of the system. This regime of strong quantum
fluctuations in superconducting nanowires and nanorings
will be considered in the forthcoming sections.

4. Quantum phase slips
and phase±charge duality

As we already discussed, at low temperatures, the most
significant non-Gaussian quantum fluctuations in super-
conducting nanowires are quantum phase slips. Provided
such a wire is sufficiently thin, quantum fluctuations may
yield temporal local suppression of the absolute value of
the superconducting order parameter field D�x� �
jD�x�j exp �ij�x�� at different points along the wire. As soon
as the modulus of the order parameter jD�x�j in the point x
vanishes, the phase j�x� becomes unrestricted and can jump
by the value �2p. After this process, the modulus jD�x�j gets
restored, the phase becomes single valued again, and the
system returns to its initial state, accumulating the net phase
shift �2p.

Loosely speaking, each QPS event involves suppression of
the order parameter inside the phase slip core and awinding of
the superconducting phase around this core. This process can
also be viewed as quantum tunneling of the order parameter
éeld through an effective potential barrier. As the phase j
changes in time, according to the Josephson relation
V � _j=2e, each QPS event causes a voltage pulse inside the
wire, thus essentially inêuencing the system electrodynamics.

An important property of superconducting nanowires is
so-called phase±charge duality. This property will be sub-
stantially explored below in this section. Note that, earlier,
duality between the phase and the charge variables was
extensively discussed for ultrasmall Josephson junctions [31,
38±41]. In particular, it was demonstrated that, under a
certain duality transformation, the effective actions for
Josephson tunnel junctions in the phase and in the charge
representations are exactly transformed into each other.
Furthermore, in the absence of a shunt resistor, one can
describe the Josephson junction in terms of an effective
Hamiltonian for a `quantum particle' in the periodic
potential in the (quasi)-charge space. Within this picture,
charge q and êux F are canonically conjugate variables

exactly analogous to the momentum and coordinate vari-
ables in quantum mechanics. For more details on this issue,
we refer the reader to book [1] and review paper [41].

Later on, it was pointed out in [42] that all the same
arguments remain applicable for short superconducting
nanowires in the presence of quantum phase slips, whose
properties are exactly dual to those of Josephson junctions.
For this reason, a short superconducting nanowire was
named a QPS junction [42]. Note that `Josephson-junction-
like' duality arguments are strictly applicable only to
suféciently short nanowires, i.e., as long as the coordinate
dependence of both the phase and the charge variables can be
ignored and the QPS junction can be effectively treated as a
zero-dimensional object. It turns out that one can alsomodify
and extend these arguments further to the case of long
superconducting nanowires. This task can be accomplished
either by means a rigorous path integral analysis [34] or in
terms of simple quantummechanical operator manipulations
[43]. Both methods will be outlined below.

4.1 Phase±charge duality in the operator formalism
We first consider a more intuitive operator approach. As
before, we are going to deal with a uniform superconducting
wire of length L and cross section s. The effective Hamilto-
nian of the wire can be expressed in a simple form:

Ĥeff �
� L

0

dx

"
Q̂ 2�x�
2C

� 1

2Lkin

�
qxĵ�x�
2e

�2
#
; �64�

where Q̂�x� and ĵ�x� are canonically conjugate local charge
and phase operators obeying the commutation relations�

Q̂�x�; ĵ�x 0�� � ÿ2ied�xÿ x 0� : �65�

Employing Hamiltonian (64), one should arrive at results
exactly equivalent to those derived, for example, within the
effective action approach based on Eqn (24) or (43).

At this stage, we will assume that our superconducting
wire is isolated from any external circuit, in which case the
current at its end points x � 0 and x � L vanishes, and,
hence, we can define the boundary conditions for the phase in
the form

qxĵ�0� � qxĵ�L� � 0 : �66�

Employing the Fourier series expansion, we get

ĵ�x� � ĵ0 �
����
2

L

r X1
n�1

ĵn cos

�
pnx
L

�
;

�67�

Q̂�x� � Q̂0

L
�

����
2

L

r X1
n�1

Q̂n cos

�
pnx
L

�
;

where

�Q̂0; ĵ0� � ÿ2ie ; �Q̂m; ĵn� � ÿ2iedmn : �68�

Let us now introduce the following (dual) operators:

F̂�x� � qxĵ�x�
2e

;
�69�

ŵ�x� � ÿ p
e

� L

x

dx 0 Q̂�x 0� � p�Lÿ x�
eL

� L

0

dx 0 Q̂�x 0� ;
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Figure 5. Temperature dependent zero frequency supercurrent fluctua-

tions in superconducting rings at different values of magnetic flux fx.

892 A G Semenov, A D Zaikin Physics ±Uspekhi 65 (9)



which can also be expressed as

F̂�x� � ÿ
�������������
p2

2e 2L3

r X1
n�1

nĵn sin

�
pnx
L

�
;

�70�

ŵ�x� �
�������
2L

e 2

r X1
n�1

Q̂n

n
sin

�
pnx
L

�
:

These new canonically conjugate operators obey the commu-
tation relations�

F̂�x�; ŵ�x 0�� � ÿiF0d�xÿ x 0� �71�

and obvious boundary conditions

F̂�0� � F̂�L� � 0 ; ŵ�0� � ŵ�L� � 0 : �72�

Substituting the relations

qxĵ�x� � 2eF̂�x� ; Q̂�x� � Q̂0

L
� e

p
qxŵ�x� �73�

into Eqn (64), we obtain

Ĥeff � Q̂ 2
0

2LC
� ĤTL ; �74�

where

ĤTL �
� L

0

dx

�
F̂ 2

2Lkin
� 1

2C

�
qxŵ
F0

�2�
�75�

is the Hamiltonian for a transmission line formed by a
superconducting wire.

The above analysis does not yet include the effect of QPS.
In order to account for the QPS contribution to the wire
Hamiltonian, let us first define the phase field configurations
as

ĵ�x�jj�x�i � j�x�jj�x�i �76�

and bear in mind that the phase of the superconducting order
parameter is a compact variable implying that, for example,
the field configurationsj�x� andj�x� � 2p correspond to the
same quantum state of our system. Furthermore, in the
absence of QPS, i.e., provided the absolute value of the
order parameter jD�x; t�j does not fluctuate, the states j and
~j�x� � j�x� � 2py�xÿ x1� (where 0 < x1 < L and y�x� is the
Heaviside step function equal to 0 for x4 0 and to 1 for
x > 0) are also physically indistinguishable. For instance, the
supercurrent operator Î proportional to the combination
jDj2 exp �ÿiĵ�x��qx exp �iĵ�x�� remains the same in both cases.

Let us now slightly modify the step function, making
it continuous by effectively smearing it at the scale of
the superconducting coherence length x. We substitute
y�x� ! yx�x�, where field configuration ~jx�x� � j�x��
2pyx�xÿ x1�, on the one hand, remains very close to ~j�x�
and, on the other hand, is now physically distinguishable
from the latter. The QPS process can be interpreted as
quantum tunneling between these two different (though very
close to each other) phase configurations.

Making use of the fact that any shift by a constant phase
does not change the state of our system, without loss of
generality, wemay set ĵ0jci � 0 for any system state jci. This

condition applies for quantum dynamics controlled by
Hamiltonian (64), and it is also maintained in the presence
of quantum phase slips. Hence, we conclude that the QPS
process corresponds to quantum tunneling of the phase
between the states j�x� and

j 0�x� � j�x� � 2pyx�xÿ x1� ÿ 2p
� L

0

dx yx�xÿ x1� : �77�

In the operator language, this tunneling process can be
denoted as Ûx�x1�jj�x�i � jj 0�x�i, where the operator
Ûx�x1� can be established with the aid of the commutation
relations. It reads

Ûx�x1� � exp

�
ip
e

� L

0

dx

�
Q̂�x� ÿ Q̂0

L

�
yx�xÿ x1�

�
: �78�

As a result, the part of the Hamiltonian which explicitly
accounts for the QPS contribution takes the form

ĤQPS � ÿgQPS

� L

0

dx1 cos

�
p
e

� L

0

dx

�
Q̂�x�ÿ Q̂0

L

�
yx�xÿ x1�

�
:

Setting x! 0 now andmaking use of the second Eqn (73), we
obtain

ĤQPS � ÿgQPS

� L

0

dx cos
ÿ
ŵ�x�� : �79�

The above analysis can be easily generalized in order to
include the effect of an external circuit. Let us consider one
example of an external circuit displayed in Fig. 6. The system
consists of a superconducting nanowire and a capacitance C0

(which also includes the wire capacitance C) switched in
parallel to this wire. The right end of the wire (x � L) is
grounded as shown in the figure. The voltage V�t� at its left
end x � 0 can be measured by a detector. The whole system is
biased by an external current I � Vx=Rx.

The system depicted in Fig. 6 can be described bymeans of
the effective Hamiltonian in the mixed phase±charge repre-
sentation:

Ĥ � ĤSW � Q̂ 2
0

2C0
ÿ Iĵ

2e
; �80�

where the term

ĤSW � ĤTL � ĤQPS �81�

defined by Eqns (75) and (79) accounts for the superconduct-
ing nanowire. The last two terms in Eqn (80) describe,
respectively, the charging energy (which also includes the

I

Rx Vx

C0

V�t�

Superconductor

Figure 6. Superconducting circuit embedded in an external circuit.
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first term on the right-hand side of Eqn (74)) and the potential
energy tilt produced by an external current I. The operator
ĵ � ĵ�0� corresponds to the phase of the superconducting
order parameter field D�x; t� at x � 0. Here, we also set
ĵ�L� � 0.

Let us now take a quick look at Fig. 7 where we display
two complementary superconducting devices. One of them is
an arbitrarily long superconducting nanowire surrounded by
a vacuum or an insulator (Fig. 7a). In the device depicted in
Fig. 7b, the superconductor is interchanged with the vacuum/
insulator, thus forming a spatially extended Josephson
junction between two superconductors. As we just demon-
strated, the superconducting nanowire in Fig. 7 is described
by Hamiltonian (81), whereas the Hamiltonian correspond-
ing to a Josephson junction (of length L) in Fig. 7 is well
known to have the form (see, e.g., [44])

ĤJJ �
� L

0

dx

� Q̂ 2�x�
2CJ

� 1

2LJ

�
qxf̂�x�
2e

�2�
ÿ jC
2e

� L

0

dx cos
ÿ
f̂�x�� ; �82�

where Q̂�x� and f̂�x� are the local charge and phase difference
operators, CJ and LJ represent, respectively, the Josephson
junction capacitance and inductance per unit junction length,
and, finally, jC is the Josephson critical current density. We
observe that, under the transformation of the operators

F̂�x� $ Q̂�x� ; ŵ�x� $ f̂�x� ; �83�

Hamiltonians ĤSW (defined by Eqns (75) and (79)) and ĤJJ

(82) are exactly dual to each other provided we interchange

F0 $ 2e ; gQPS $
jC
2e
; Lkin $ CJ ; C$ LJ : �84�

The above duality transformations, on the one hand,
interchange magnetic and charging energies in these two
Hamiltonians (cf. Eqn (75) and the first line in Eqn (82))
and, on the other hand, establish a correspondence between
the term (79) describing the effect of QPS and the Josephson
coupling energy on the second line in Eqn (82) that accounts
for Cooper pair tunneling across the junction.

We conclude that the tunneling of a Cooper pair with
charge 2e between two superconductors is a dual process to a
QPS event that can be viewed as tunneling of a quantum
fluxon (i.e., the flux quantum F0) across a superconducting
wire, as illustrated in Fig. 7. Indeed, we note thatHamiltonian
(79) contains a linear combination of creation �exp �iŵ�� and
annihilation �exp �ÿiŵ�� operators for the flux quantum F0.
Each QPS event corresponds to the net phase jump by 2p
associated with voltage pulse dV � _j=2e and magnetic flux� jdV�t�j dt � p=e � F0 passing through the wire in the
direction normal to its axis.

Also, the physical meaning of the quantum field w�x; t� is
transparent: it is proportional to the total electric charge
q�x; t� that has passed through the point x up to the time
moment t, i.e., q�x; t� � w�x; t�=F0. Accordingly, the local
current I�x; t� and the local charge density r�x; t� are defined
as

I�x; t� � qtw�x; t�
F0

; r�x; t� � ÿ qxw�x; t�
F0

; �85�

thereby satisfying the continuity equation.
The property of phase±charge duality in superconducting

nanowires was confirmed and illustrated in a number of
experiments. For instance, tunneling of magnetic flux quanta
through such nanowires was detected in experiments [45, 46].
The insulating behavior of these nanowires as well as Bloch
steps (dual to Shapiro ones) on their IÿV curves were also
discussed and reported experimentally [47±50]. A phase±
charge duality-based single-charge transistor and charge
quantum interference device were demonstrated in Refs [51,
52], respectively. The duality property also enables one to
investigate the possibility of employing superconducting
nanowires for creating a QPS-based standard of electric
current [48, 53].

4.2 Path integral analysis
We now turn to a more formal path integral analysis. For
pedagogical purposes and also for reasons which will be
clear below in the next section, we will now consider a
closed ring (with perimeter L � 2pR and cross section s)
made of a thin superconducting wire. The configuration
remains essentially the same as that already treated in
Section 3 (e.g., we again assume that the magnetic flux Fx

pierces the ring) with only one important difference: we
now allow for quantum phase slips. We will perform the
whole calculation for the ring geometry and at the very
end of it we will explain how to apply our results to
superconducting wires with open ends and/or attached to
an external circuit.

In order to proceed, we will again make use of the
expression for the grand partition function Z (43) that
accounts for the ring geometry as well as for an external
magnetic flux inside the ring. It is also important to bear in
mind that Eqn (43) remains valid only at length and time
scales exceeding, respectively, the superconducting coherence
length x � ����������

D=D
p

and the inverse gap Dÿ1, i.e., outside the
QPS core where only superconducting phase fluctuations
may occur. Within the semiclassical approximation, it
suffices to take into account all relevant saddle point
configurations of the phase variable j which satisfy the
equation

�q 2
t � v 2q2x�j�x; t� � 0 : �86�

Superconducting nanowire

Josephson junction

Fluxon
tunneling

Cooper pair tunneling

F0

I

I

2e

Â

b

Figure 7.Dual tunneling processes for (a) a quantum fluxon (that tunnels

through a superconducting nanowire) and (b) a Cooper pair (which

tunnels across a Josephson junction).
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Apart from trivial solutions of this equation (linear in t and
x), nontrivial ones exist which correspond to virtual phase
jumps by �2p at various points of a superconducting ring
where the magnitude of the order parameter gets locally (at
spatial scales x0 � x) and temporarily (within the time
interval t0 � 1=D) suppressed by quantum fluctuations.
These quantum topological objects can be viewed as vortices
in space-time and just represent quantum phase slips. For
sufficiently long wires or large rings and outside the QPS core
jxj > x0, jtj > t0 (whose position in space-time can be chosen,
e.g., at x � 0 and t � 0), the saddle point solution ~j�x; t�
corresponding to a single QPS event should satisfy the
identity

qxqt~jÿ qtqx~j � 2pd�t; x� ; �87�

implying that, after a wind around the QPS center, the phase
should change by 2p. This saddle point solution has the form
[14]

~j�x; t� � ÿ arctan

�
x

vt

�
: �88�

Configurations j qps�x; t� consisting of an arbitrary num-
ber of quantum phase slips can be treated analogously.
Our goal here is to effectively sum up the contributions to
the partition function Z (43) from all possible QPS
configurations. This goal can be conveniently accom-
plished with the aid of the approach involving the so-
called duality transformation. Let us express the general
solution of Eqn (86) in the form

j sp�x; t� � amt� bnx� j qps�x; t� ; �89�

where am and bn are some constants fixed by the boundary
conditions. We also introduce the vorticity field $�x; t� by
means of the relations

v qx$ � qtj qps ; qt$ � ÿv qxj qps : �90�

This field is single-valued, obeying the equation

q2t$� v 2q2x$ � ÿ2pv
X
j

nj d�xÿ xj�d�tÿ tj� ; �91�

where xj and tj denote, respectively, the space and time
coordinates of the jth phase slip, while nj � �1 is its
topological charge corresponding to a phase jump by �2p.
It follows from boundary conditions (44) that the vorticity
field derivatives are periodic functions in both space and time,
implying, in turn, that

P
j nj � 0.

Let us define the function

$ qps�x; t� � bLv
2p

X
jmj�jnj>0

exp �2pimt=b� 2pinx=L�
m 2L2 � n 2v 2b 2

: �92�

One can verify that the function

$�x; t� �
X
j

nj$ qps�xÿ xj; tÿ tj� �93�

satisfies Eqn (91), and, by virtue of the duality relations
(90), it yields the saddle point configuration j qps.
Combining boundary conditions (44) with the above

equations, we find

j qps�L; t� ÿ j qps�0; t� � ÿ 1

v

� L

0

dx qt$�x; t�

� 2p
X
j

nj

�
y�tÿ tj� � tj

b

�
; �94�

j qps�x; b� ÿ j qps�x; 0� � v
� b

0

dt qx$�x; t�

� ÿ2p
X
j

nj

�
y�xÿ xj� � xj

L

�
�95�

and, hence,

am � 2p
b

�
m�

X
j

nj
xj
L

�
; �96�

bn � 2p
L

�
n� fx ÿ

X
j

nj
tj
b

�
: �97�

We also note that, for each of the above saddle point
configurations, the expression for the current (50) takes the
form

I�t� � 4evl
L

�
n� fx �

X
j

nj y�tÿ tj�
�
: �98�

Let us now carry out the summation over all possible
saddle point configurations. Expanding the partition func-
tion in powers of gQPS, we get

Z�J�t�� �X1
N�0

1

N!

X
n1;...;nN��1

dP
j
nj; 0

�
dx1 dt1 . . . dxN dtN

�
X1

m; n�ÿ1
exp

�
ÿ l
2p

�
bL
v

a 2
m � bLvb 2

n

���
gQPS

2

�N

� exp

�
ÿ l
2p

�
dxdt

ÿ
v�qx$�2� vÿ1�qt$�2

�� i

�
dt J�t�I�t�

�
:

�99�

Here, J�t� is the source variable which we introduced for
future purposes. Rewriting the sum over m; n with the aid of
the relationsX1

m�ÿ1
exp

�
ÿ lbL

2pv
a 2
m

�

�
X1

m�ÿ1
exp

�
ÿ pvbm 2

2lL
� 2pim

X
j

nj
xj
L

�
; �100�

X1
n�ÿ1

exp

�
ÿ lbvL

2p
b 2
n �

4ievl�n� fx�
L

�
dt J�t�

�

�
X1
n�ÿ1

exp

�
ÿ pL
2lbv

�
nÿ 2evl

pL

�
dt J�t�

�2

� 2pinfx

ÿ 2pi
�
nÿ 2evl

pL

�
dt J�t�

�X
j

nj
tj
b

�
; �101�

employing the Kronecker delta-function representation
dm; n �

� 2p
0 dz exp �iz�mÿ n��=�2p�, and formally inserting
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the path integral over the$-field, we find

Z�J�t�� �X1
N�0

1

N!

X
n1 ;...;nN��1

� 2p

0

dz

2p

�
dx1 dt1 . . . dxN dtN

�
X1

m; n�ÿ1
exp

�
2pinfx ÿ

pvbm 2

2lL

ÿ pL
2lbv

�
nÿ 2evl

pL

�
dt J�t�

�2��gQPS

2

�N

� exp

�
2pim

X
j

nj
xj
L
ÿ 2pi

�
nÿ 2evl

pL

�
dt J�t�

�X
j

nj
tj
b

�

�
�
D$ exp

�
ÿ l
2p

�
dx dt

ÿ
v�qx$�2 � vÿ1�qt$�2

��
� exp

�
iz
X
j

nj � 4ievl
L

X
j

nj

�
dt J�t�y�tÿ tj�

�

� d
�
q2t$� v 2q2x$� 2pv

X
j

njd�xÿ xj�d�tÿ tj�
�
; �102�

where the functional delta-function follows from Eqn (91).
Expressing this delta-function via the integral over the dual
field Z�x; t� with the periodic boundary conditions and
evaluating the gaussian integral over $, from Eqn (102) we
get

Z�J�t�� �X1
N�0

1

N!

X
n1 ;...;nN��1

� 2p

0

dz

2p

�
dx1 dt1 . . . dxN dtN

�
X1

m; n�ÿ1
exp

�
2pinfx ÿ

pvbm 2

2lL

ÿ pL
2lbv

�
nÿ 2evl

pL

�
dt J�t�

�2��gQPS

2

�N

� exp

�
2pim

X
j

nj
xj
L
ÿ 2pi

�
nÿ 2evl

pL

�
dt J�t�

�X
j

nj
tj
b

�

�
�
DZ exp

�
ÿ pv
2l

�
dx dt

ÿ�qtZ�2 � v 2�qxZ�2
��

� exp

�
2piv

X
j

njZ�xj; tj� � iz
X
j

nj

� 4ievl
L

X
j

nj

�
dt J�t�y�tÿ tj�

�
: �103�

Introducing now the field

w�x; t� � ÿ 2pmx

L
� 2pt

b

�
nÿ 2evl

pL

�
dt J�t�

�
ÿ 2pvZ�x; t� ÿ zÿ 4evl

L

�
dt 0 J�t 0�y�t 0 ÿ t� ; �104�

which obeys the boundary conditions

w�x; b� ÿ w�x; 0� � 2pn ; w�0; t� ÿ w�L; t� � 2pm ; �105�

we obtain

Z�J�t�� � X1
m; n�ÿ1

exp �2pinfx�

�
� mn

Dw exp
�ÿSeff

�
w�x; t�; J�t��	 �106�

with the effective action

Seff � 1

8plv

� b

0

dt
� L

0

dx

��
qtw�x; t� ÿ 4evlJ�t�

L

�2

� v 2
ÿ
qxw�x; t�

�2�ÿ gQPS

� b

0

dt
� L

0

dx cos
ÿ
w�x; t�� :

�107�

These expressions define the generating functional and the
effective action for superconducting nanorings in the dual
representation. In other words, our original problem of a
nanoring with quantum phase slips was exactly mapped onto
a sine-Gordon model on a torus. Equations (106), (107) keep
track of interactions between different QPSs and serve as a
convenient starting point for an analysis of the ground state
properties of superconducting nanorings, which will be
carried out in Section 5.

In the absence of the source J�t� ! 0, the effective action
(107) turns out to be exactly dual to that for spatially extended
quasi-one-dimensional Josephson barriers described by
Hamiltonian (82), i.e., we again arrive at the duality
transformations (83) and (84) already derived within the
operator formalism for superconducting nanowires. In
particular, the Josephson phase f�x; t� in the latter model is
dual to the field w�x; t� (104).

Finally, we point out that all the above arguments
developed for superconducting nanorings equally apply to
nanowires with open ends. In that case, one should setfx � 0,
J � 0, and abandon the second boundary condition (44).
Removing the summation over n in Eqn (43) and repeating all
the same steps, one again arrives at the sine-Gordon action
(107) (with J�t� � 0) describing a superconducting nanowire
of length L in the presence of quantum phase slips.

5. Superconducting nanorings
with quantum phase slips

In Section 3, we already considered some quantum coherent
effects associated with fluctuations in the phase variable in
superconducting rings threaded by a magnetic flux. That
analysis was performed for sufficiently thick rings, thus
enabling us to fully disregard QPS effects. Our main goal
here is to include quantum phase slips into our consideration.

According to the existing microscopic theory [1, 2, 5, 12,
14], QPSs represent quantum coherent objects 1 which may
significantly affect not only transport but also equilibrium
ground state properties of superconducting nanowires and
nanorings. The coherent nature of quantum phase slips was
also demonstrated in a number of experiments [45, 46, 52]. A
fundamental manifestation of a quantum coherent ground
state is the possibility of a nonvanishing supercurrent flowing
around a superconducting ring pierced by an external
magnetic flux. Provided such a ring is sufficiently thin, as
displayed on the left side of Fig. 8, quantum phase slips
proliferate and may drastically modify both the supercurrent
magnitude and its dependence on the magnetic flux [2, 5, 34].
Below, we will also demonstrate that quantum phase slips

1 For this very reason, the notion of `coherent quantum phase slips'

sometimes used in the literature is to a large extent tautological. No such

objects as `incoherent quantum phase slips' (or, by duality, ``incoherent

Cooper pairs'') exist in Nature. At the same time, quantum tunneling of

both fluxons and Copper pairs can, of course, be made incoherent,

provided, for example, enough extra dissipation is added to the system.
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cause nonvanishing supercurrent noise [54], which otherwise
would be totally absent in the limit T! 0 (see Section 3).

All the same phenomena can also occur in rings consisting
of thicker and thinner parts, as shown in Fig. 8b. In this case,
QPS effects are negligible in a thicker part of the ring andmay
only occur in its thinner part, which is named a quantum phase
slip junction [42]. It was proposed to employ such QPS
junctions as central elements of so-called quantum phase
slip êux qubits [55].

Bearing in mind that QPS effects are basically the same in
uniform superconducting nanorings and QPS junctions (see
Fig. 8), in what follows, we will merely address only the
former systems. In order to distinguish them from thicker
superconducting rings (where QPS effects are negligible) and,
on the other hand, to stress their similarity to QPS junctions,
we will denote such systems as quantum phase slip rings.

5.1 Supercurrent in quantum phase slip rings
In order to proceed, we will make use of the effective action
(107) derived in the previous section. At low enough
temperatures T5 v=L and provided the ring perimeter
L � 2pR remains sufficiently small, we can ignore the spatial
dependence of the field w and, hence, ignore the term v 2�qxw�2
in the effective action (107). Then, our problem reduces to a
zero-dimensional one with an effective Hamiltonian [35, 36]

Ĥ � ER

2
�f̂ÿ fx�2 �U0

ÿ
1ÿ cos �ŵ�� �108�

describing a fictitious quantum particle on a ring in the
presence of the cosine external potential. Here, we identify
[54]

ER � p2N0DDs
R

� gxDx
R

; �109�

U0 � 2pRgQPS �
gxDR
x

exp �ÿagx� : �110�

The average value of the supercurrent I flowing across the
ring can be obtained by means of the standard formula

I � ÿ e

pb
q lnZ
qfx

: �111�

In the zero dimensional limit described by the effective
Hamiltonian (108) and at low temperatures T! 0,
Eqn (111) reduces to

I � e

p
qE0�fx�
qfx

; �112�

where E0�fx� is the flux-dependent ground state energy. For
smaller rings with U0 5ER, we have

E0�fx� �
ER

2p2
arcsin2

��
1ÿ p2

2

�
U0

ER

�2�
sin �pfx�

�
; �113�

i.e., the ground state energy is almost parabolic except in the
vicinity of the crossing points fx � 1=2� n, where the gap to
the first excited energy band dE01 � U0 opens up due to level
repulsion. Accordingly, not too close to the points fx �
1=2� n, the supercurrent is not affected by QPS and is again
defined by Eqn (49).

For larger U0, the bandwidth shrinks, while the gaps
become bigger. In the limit U0 4ER, i.e., for

R4Rc � x exp
�
agx
2

�
; �114�

we obtain [2, 5]

I � I0 sin �2pfx� ; I0 � eE
1=4
R U

3=4
0 exp

�
ÿ R

Rc

�
: �115�

This result demonstrates that quantum phase slips yield
exponential suppression of the supercurrent even at T � 0
provided the ring radius R exceeds the critical value Rc (114).

Let us now generalize our analysis by including the
spatial derivative term v 2�qxw�2 in Eqn (107) or, in other
words, by taking into account logarithmic interactions
between quantum phase slips described by the sine-
Gordon effective action. This task can be accomplished
by means of the standard Berezinskii±Kosterlitz±Thouless
(BKT) renormalization group (RG) approach [11]. Adapting
the corresponding RG equations to our problem, we get

dz
d lnL

� �2ÿ l�z ; dl
d lnL

� ÿ32p2z 2l2K�l� ; �116�

where z � gQPSL
2 is the dimensionless coupling parameter, L

is the renormalization scale, and K�l� is some nonuniversal
function (which depends on the renormalization scheme)
equal to one at the quantum BKT phase transition point
l � 2, which separates superconducting (ordered) phase
l > 2 with bound QPS±anti-QPS pairs and disordered phase
l < 2 with unbound QPS [12].

Starting renormalization at the shortest scale L � xc �
�x 2 � v 2=D2�1=2, we, as usual, proceed to bigger scales.Within
the first order perturbation theory in z, it suffices to ignore
weak renormalization of the parameter l. Then, the solution
of Eqns (116) takes the simple form gQPS�L� � gQPS�xc=L�l.
OurRGprocedure should be stopped at the scale correspond-
ing to the ring perimeter L � L � 2pR. As a result, we arrive
at the renormalized QPS amplitude

~gQPS � gQPS

�
xc
L

�l

: �117�

This result allows us to conclude that inter-QPS interaction
effects remain weak and can be disregarded only for very
small values of

l5
1

ln �L=xc�
: �118�

This inequality, in turn, may severely restrict both the wire
length and cross section values at which the system can still be

F

I I

FÂ b

Figure 8. (a) Quantum phase slip ring, i.e., an ultrathin superconducting

ring threaded by an external magnetic flux. (b) Quantum phase slip

junction embedded in a thick superconducting ring.
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treated as effectively zero-dimensional and analyzed by
means of simplified Hamiltonian (108).

Substituting the renormalized QPS amplitude (117)
instead of the bare one into Eqn (110), we again reproduce
the same expressions for the supercurrent, now with
gQPS ! ~gQPS. As before, for smaller rings with R5 ~Rc and at
T! 0, the current is defined by Eqn (49) at all values of the
flux except for fx � 1=2� n, where QPS effects with the
effective rate (117) become significant. The critical radius ~Rc

is now determined by the condition ER � 2p~gQPS, which
yields

~Rc � x exp
�

agx
2ÿ l

��
x
xc

�l=�2ÿl�
; �119�

where l is not supposed to exceed 2. In the opposite limit of
bigger rings R4 ~Rc, we again reproduce Eqn (115), where
now

I0 � e

�
xc
x

�3l=4

gxD
�
R

x

�1=2ÿ3l=4
exp

�
ÿ 3agx

4
ÿ
�
R

~Rc

�1ÿl=2�
:

�120�

We observe that the critical radius ~Rc (119) increases with
increasing l and eventually diverges at the quantum BKT
phase transition point l � 2. In the ordered phase l > 2,
QPSs are bound in `neutral' pairs and, hence, become
practically irrelevant. In this case, the supercurrent is
determined by Eqn (49) for any value of R.

5.2 Supercurrent noise in quantum phase slip rings
Let us now analyze fluctuations in supercurrent in QPS rings.
Taking the derivatives of the generating functional Z�J�t��
over the source variable J�t� and setting this variable equal to
zero afterwards, we obtain

I � hI�t�i � ÿ ie

p



qtw�x; t�

�
; �121�

whereas the irreducible Matsubara current±current correla-
tor (55) now reads

P�t1 ÿ t2� � 4e 2lv
pL

d�t1 ÿ t2�

ÿ e 2

p2L2

�
dx1 dx2



qt1w�x1; t1�qt2w�x2; t2�

�ÿ I 2 : �122�

One can also decompose the source variable as J�t� �
J0 � qtJ1�t� and perform a shift under the functional
integral

Z�J0 � qtJ1�t�
� �X

mn

exp

�
2pinfx � 2eJ0nÿ 2e 2vlJ 2

0 b
pL

�

�
� mn

Dw exp

�
ÿ Seff

�
w�x; t� � 4evlJ1�t�

L
; 0

��
: �123�

Expanding both sides in powers of J0 and J1�t�, we again
recover Eqn (111) for the current and arrive at the following
exact relations:�

dtP�t� � 4e 2lv
pL

�
1� L

4plbv
q2lnZ
qf2

x

�
; �124�

P 00�t� � ÿ 16gQPSe
2l2v 2

L2

�
dx


cos
ÿ
w�x; t1�

��
d�t�

� 16g2QPSe
2l2v 2

L2

�
dx1 dx2



sin
ÿ
w�x1; t�

�
sin
ÿ
w�x2; 0�

��
:

�125�

Let us restrict our attention to the low temperature limit
T! 0. We are going to evaluate the imaginary time current±
current correlator (55), (122) and then carry out its analytic
continuation to real times. Setting R5 ~Rc and proceeding
perturbatively in gQPS, in the leading approximation,
Eqn (125) can be reduced to the form

P 00�t� � 8g2QPSe
2l2v 2

L

�
dx


cos
ÿ
w�x; t� ÿ w�0; 0���

0

ÿ 8g2QPSe
2l2v 2

L
d�t�

�
dt1 dx



cos
ÿ
w�x; t1� ÿ w�0; 0���

0
;

�126�
where averaging h. . .i0 is now performed with the noninter-
acting effective action

S0 � 1

8plv

� b

0

dt
� L

0

dx
ÿ�qtw�2 � v 2�qxw�2� : �127�

The task at hand is to evaluate the correlation function



exp

�
i
ÿ
w�x; t� ÿ w�0; 0����

0
�

X1
m; n�ÿ1

exp �2pinfx�

�
� mn

Dw exp
�
i
ÿ
w�x; t� ÿ w�0; 0��ÿ S0

�
; �128�

which can be rewritten through the zero topological sector
m � n � 0 as


exp
�
i
ÿ
w�x; t� ÿ w�0; 0����

0

� 1

Z0

� 00Dw exp
�ÿS0 � i

ÿ
w�x; t� ÿ w�0; 0���� 00Dw exp �ÿS0�

�
X
mn

exp

�
ÿ 2pgvb�fx �m� t=b�2

L
ÿ pbvn 2

2lL
� 2pinx

L

�
;

�129�
where

Z0 �
X
mn

exp

�
ÿ 2plvb�m� fx�2

L
ÿ pbvn 2

2lL

�
: �130�

Performing Gaussian integration in Eqn (129), we obtain



exp

�
i
ÿ
w�x; t� ÿ w�0; 0����

0
� exp

�
G�x; t� ÿ G�0; 0��

Z0

�
X
mn

exp

�
ÿ 2pgvb�fx �m� t=b�2

L
ÿ pbvn 2

2lL
� 2pinx

L

�
;

�131�

where G�x; t� is the noninteracting Green's function (with
subtracted zero mode) obeying the equation

�ÿq2t ÿ v 2q2x�G�x; t� � 4plv
ÿ
d�t�d�x� ÿ 1

� �132�
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with periodic boundary conditions. The solution of this
equation reads

G�x; t� ÿ G�0; 0� � 2plvt2

bL

ÿ l
X1

m�ÿ1
ln

�
cosh

�
2pv�t� bm�=L�ÿ cos �2px=L�
cosh

�
2pv�bm�=L�ÿ 1

�
:

�133�
The divergent term with m � 0 in this sum is regularized by
means of the replacement G�0; 0� ! G�x0; t0�, which is
appropriate since the above expressions do apply only at the
space and time scales exceeding x0 � x and t0 � 1=D,
respectively. With this in mind, we obtain the m � 0 term in
the form

� ln

�
cosh �2pvt=L� ÿ cos �2px=L�

4p2x 2
c =L

2

�
: �134�

In the zero temperature limit, the above equations yield

cos
ÿ
w�x; t� ÿ w�0; 0���

0
�
�
4p2x 2

c

L2

�l

� cosh �4plvfxt=L��
cosh �2pvt=L� ÿ cos �2px=L��l : �135�

Integrating this expression over x, we get� L

0

dx


cos
ÿ
w�t; x� ÿ w�0; 0���

0
� L

�
2p2x 2

c

L2

�l

�
X1
n�0

�n� 1=2� �l� n����
p
p �l� 2�n� 1�

cosh �4plvfxt=L�
cosh 2n�2l�pvt=L� ; �136�

where again �x� is the gamma function. Performing now the
Fourier transformation in Eqn (136) with the aid of the
relation�1

ÿ1
dt exp �iot� cosh �4plvfxt=L�

cosh 2n�2l�pvt=L�

� 22n�2lL
4pv

X1
m�0

�2l� 2n�m��ÿ1�m
�2l� 2n� �m� 1�

�
�

1

l�1ÿ 2fx� � n�mÿ iLo=�2pv�

� 1

l�1� 2fx� � n�mÿ iLo=�2pv�

� 1

l�1ÿ 2fx� � n�m� iLo=�2pv�

� 1

l�1� 2fx� � n�m� iLo=�2pv�
�

�137�

and combining the result with Eqn (126) after simple algebra,
we arrive at the following expression:

Pio �
8g2QPSe

2l2v 2

2�l�

�
8p2x 2

c

L2

�lX1
k�0

2�l� k�
2�1� k�

�
�

1

Ok�fx�
ÿ
o2 � O 2

k �fx�
�� 1

Ok�ÿfx�
ÿ
o2 � O 2

k �ÿfx�
� � ;
�138�

where

Ok�fx� �
2plv�1� 2fx�

L
� 4pvk

L
�139�

denotes the energy differences between the exited states and
the ground state of our ring. Equation (139) applies for
ÿ1=2 < fx 4 1=2. Outside this interval, Ok�fx� should be
continued periodically with the period equal to unity.

What remains is to perform an analytic continuation of
Eqn (138) with the aid of Eqn (59). As a result, we obtain the
expression for the supercurrent noise power spectrum at
T � 0:

So �
4pg2QPSe

2l2v 2

2�l�

�
8p2x 2

c

L2

�lX1
k�0

2�l� k�
2�1� k�

�
�

1

O 2
k �fx�

d
ÿ
oÿ Ok�fx�

�� 1

O 2
k �fx�

d
ÿ
o� Ok�fx�

�
� 1

O 2
k �ÿfx�

d
ÿ
oÿ Ok�ÿfx�

�
� 1

O 2
k �ÿfx�

d
ÿ
o� Ok�ÿfx�

��
: �140�

In accordance with general considerations [35, 56], the
spectrum So depends periodically on the external magnetic
flux fx and consists of sharp peaks at the frequencies Ok

corresponding to the system eigenmodes. These features
clearly illustrate the coherent nature of supercurrent noise.

The effect of inter-QPS interactions on supercurrent noise
turns out to be richer than that of the average supercurrent
value analyzed above. In contrast to the latter, fluctuations in
the supercurrent cannot in general be correctly described by
Hamiltonian (108), even if the renormalization of gQPS (117) is
taken into account. This is because virtual tunneling of flux
quanta across a superconducting wire in general leads to the
creation of plasmon modes, thereby causing extra peaks with
k 6� 0 in the supercurrent noise power spectrum (140). The
simplest process of this kind is associated with the simulta-
neous creation of two plasmons with opposite momenta
values propagating clockwise and counterclockwise around
a ring. This process is illustrated in Fig. 9. Thus, by
experimentally detecting these peaks, one can directly
demonstrate the existence of Mooij±Sch�on plasma modes in
superconducting nanorings.

Let us emphasize again that, owing to its coherent nature,
supercurrent noise can be tuned by an external magnetic flux
piercing the ring. Both the positions of the peaks and the
magnitude of this noise essentially depend on fx. Here, we
evaluated the dependence So�fx� in the experimentally
relevant limit R < ~Rc, in which case we can proceed
perturbatively in the QPS rate gQPS. In the opposite limit

F0 F0

Â b

Figure 9. Schematic of the process of coherent flux tunneling (a) without

and (b) with excitation of a pair of Mooij±Sch�on plasma modes.
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R > ~Rc, supercurrent noise also has the form of sharp peaks,
although its dependence on the magnetic flux becomes much
weaker [54]. As follows from Eqn (140), in the immediate
vicinity of level degeneracy points fx � �1=2, supercurrent
fluctuations become strong, and our analysis perturbative in
gQPS fails, even for R5 ~Rc. In this case, it is necessary to
account for level splitting and regularize the corresponding
terms in Eqn (140) by substituting the value � U0 instead of
O0�fx� whenever the former exceeds the latter.

At nonzero temperatures, supercurrent noise is modified
in two ways: (i) a zero frequency peak (61) appears which is
not related to QPS and (ii) numerous extra QPS-related peaks
at nonzero frequencies emerge (cf. (56)). At low enough T,
quantum coherence is still maintained; however, with increas-
ing temperature, the dependence on fx comes to be less
pronounced and supercurrent noise eventually becomes
incoherent.

Finally, we point out a certain physical similarity between
the supercurrent noise studied here and that in superconduct-
ing weak links analyzed elsewhere [57±59]. In addition, in the
latter case, the noise power spectrum depends on the phase
difference across the weak link and has the form of peaks at
both zero and nonzero frequencies. Similarly to our problem,
at T! 0, the zero frequency peak disappears, while all other
peaks persist except in the limit of fully transparent barriers
[57±59]. Unlike here, however, in the case of superconducting
weak links, nonzero frequency peaks originate from subgap
Andreev levels and are not related to quantum phase slips.

6. Shot noise from quantum phase slips

In Section 5, we demonstrated that quantum phase slips may
strongly affect the equilibrium properties of superconducting
nanorings and even cause supercurrent noise in the ground
state of such systems. Here, we will continue studying QPS-
generated noise in a different physical situation. To this end,
we will get back to a thin superconducting wire embedded in
an external circuit as shown in Fig. 6 (see Section 4.1).

Can such a superconducting wire generate voltage
fluctuations? Furthermore, can this wire produce shot noise
provided it is biased by an external current I � Vx=Rx? In
posing these questions, we imply that temperature T and
typical values of voltage, frequency, and all other relevant
energy parameters remain well below superconducting gap D,
i.e., the superconductor is either in or sufficiently close to its
quantum ground state.

At first sight, positive answers to both these questions can
be rejected on fundamental grounds, because a superconduct-
ing state is characterized by zero resistance. Hence, the system
can sustain a nondissipative current below some critical value,
and neither nonzero average voltage nor voltage fluctuations
can be expected.

These simple considerationsÐalthough applicable to
bulk superconductorsÐbecome obviously insufficient in
the case of ultrathin superconducting wires because of the
presence of quantum phase slips. As we already discussed in
Section 4, each QPS event corresponds to the net phase jump
by dj � �2p, implying positive or negative voltage pulse
dV � _j=2e and tunneling of one magnetic flux quantum
F0 � p=e � � jdV�t�j dt across the wire perpendicular to its
axis. This process is illustrated in the upper part of Fig. 7a.
Biasing the wire by an external current I, one breaks the
symmetry between positive and negative voltage pulses,
making the former more likely than the latter. As a result,

the net voltage drop V occurs across the wire, also implying
nonzero resistance R � V=I, which may not vanish down to
the lowest temperatures [12, 14]. Thus, according to, for
example, the fluctuation-dissipation theorem (FDT), in the
presence of QPS, one should also expect voltage fluctuations
to occur in the system.

While these general arguments suggest a positive answer
to the first of the above questions, they do not specifically
address the issue of shot noise. Let us recall that two key pre-
requisites of shot noise are (see, e.g., Ref. [60]): (i) the presence
of discrete charge carriers (e.g., electrons) in the system and
(ii) the scattering of such carriers on disorder. As for
superconducting nanowires, although discrete charge car-
riersÐCooper pairsÐare certainly present there, they
form a superconducting condensate flowing along the wire
without any scattering. For this reason, the possibility of shot
noise occurring in superconducting nanowires needs special
analysis, which we are going to outline further below.

6.1 Keldysh technique and perturbation theory
An effective Hamiltonian Ĥeff for the structure depicted in
Fig. 6 was already derived in Section 4.1 (see Eqn (74)). In
order to proceed, we will follow Ref. [61] and employ the
Keldysh path integral technique. As usual, we define our
variables of interest on the forward and backward time
branches of the Keldysh contour, i.e., we introduce the
variables jF;B�t� and wF;B�x; t�. We also routinely define the
`classical' and `quantum' variables, respectively, j��t� �
�jF�t� � jB�t��=2 and jÿ�t� � jF�t� ÿ jB�t� (and similarly
for the w-fields). Making use of the Josephson relation
between the voltage and the phase, we can formally express
the expectation value of the voltage operator across the
superconducting wire in the form


V�t1�
� � 1

2e



_j��t1� exp �iSQPS�

�
0
; �141�

where

SQPS � ÿ2gQPS

�
dt

� L

0

dx sin �w�� sin
�
wÿ
2

�
; �142�

h. . .i0 �
�
D 2j�t�D 2w�x; t� �. . .� exp ÿiS0�j; w�

� �143�

implies averaging with the Keldysh effective action S0

corresponding to the noninteracting Hamiltonian Ĥ0 �
Ĥeff ÿ ĤQPS, where HQPS is defined in Eqn (79). Similarly,
for the symmetrized voltage±voltage correlator


V�t1�V�t2�
� � 1

2


ÿ
V̂�t1�V̂�t2� � V̂�t2�V̂�t1�

��
; �144�

we obtain

V�t1�V�t2�

� � 1

4e 2



_j��t1� _j��t2� exp �iSQPS�
�
0
: �145�

Equations (141) and (145) are formally exact expressions
which we are now going to evaluate perturbatively in gQPS. In
the zero order in gQPS, all averages can be handled exactly with
the aid of the Green's functions

GR
ab�X;X 0� � ÿi



a��X�bÿ�X 0�

�
; �146�

GK
ab�X;X 0� � ÿi



a��X�b��X 0�

�
;
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where a�X� and b�X� denote one of the fields j�t� and w�x; t�.
As both these fields are real, the advanced and retarded
Green's functions obey the condition GA

ab�o� � GR
ba�ÿo�,

and the Keldysh function GK can be expressed in the form

GK
ab�o� �

1

2
coth

�
o
2T

�ÿ
GR

ab�o� ÿ GR
ba�ÿo�

�
: �147�

Expanding Eqns (141) and (145) up to the second order in
gQPS and performing all necessary averages, we evaluate the
results in terms of Green's functions (146), expressing them in
the form of `candy' diagrams, displayed in Fig. 10. They
involve four different propagators (GR;K

ww and GR;K
jw ) and

plenty of vertices originating from Taylor expansion of the
cosine terms. Summing up all the diagrams in the same order
in gQPS, we arrive at the final expression containing the
exponents of the Green's functions.

6.2 Current±voltage curve and voltage noise
Let us first re-derive the results [12] for the average voltage
within the framework of our technique. We obtain

hVi � ig2QPS

8e

� L

0

dx

� L

0

dx 0
�
lim
o!0

oGR
jw�x;o�

�
� ÿPx; x 0 �ÿIF0� ÿ Px;x 0 �IF0�

�
; �148�

where Px; x 0 �o� � Px;x 0 �o� � �Px;x 0 �o� and

Px; x 0 �o� �
�1
0

dt exp �iot� exp �iG�x; x 0; t; 0�� ; �149�

G�x; x 0; t; 0� � GK
ww�x; x 0; t; 0� ÿ

1

2
GK

ww�x; x; t; t�

ÿ 1

2
GK

ww�x 0; x 0; 0; 0� �
1

2
GR

ww�x; x 0; t; 0� : �150�

Bearing in mind that limo!0 oGR
jw�x;o� � 2pi, Eqn (148) can

be cast in the form

hVi � F0

ÿ
GQPS�IF0� ÿ GQPS�ÿIF0�

�
; �151�

where we identify GQPS as

GQPS�o� �
g2QPS

4

� L

0

dx

� L

0

dx 0 Px;x 0 �o� : �152�

Comparing result (151) with that found in Ref. [12], we
immediately conclude that GQPS�IF0� defines the quantum
decay rate of the current state due to QPS. In [12], this rate
was evaluated from the imaginary part of the free energy
GQPS�IF0� � 2 ImF. Here, we derived the expression forGQPS

by means of the real time technique without employing the
ImF-method [62].

Making use of the above results, evaluating the Green's
functions (146), and keeping in mind the detailed balance
condition

Px; x 0 �o� � exp

�
o
T

�
Px;x 0 �ÿo� ; �153�

we obtain

hVi � F0Lvg2QPS

4
& 2
�
IF0

2

�
sinh

�
IF0

2T

�
; �154�

where

&�o� � t l0 �2pT �lÿ1
ÿ
l=2ÿ io=�2pT �� ÿl=2� io=�2pT ��

�l� :

�155�
Here, for the sake of simplicity, we assumed that vt0 � x0. It
is satisfactory to observe that the result (154), (155) matches
that derived in Ref. [12] by means of the ImF-technique. A
detailed analysis of the relation between the ImF-approach
and the Keldysh technique employed here can be found in
Ref. [63].

Let us now turn to the voltage±voltage correlator. Our
perturbative analysis allows recovering three different con-
tributions to the noise power spectrum, i.e.,

SO �
�
dt exp �iOt�
V�t�V�0�� � S �0�O � S r

O � S a
O : �156�

The first of these contributions S �0�O defines equilibrium
voltage noise for a transmission line and has nothing to do
with QPS. This contribution reads

S �0�O �
iO 2 coth �O=�2T ��

16e 2
ÿ
GR

jj�O� ÿ GR
jj�ÿO�

�
: �157�

The remaining two terms are due to QPS effects. The term S r
O

is also proportional to coth �O=�2T �� and contains the
products of two retarded (advanced) Green's functions:

S r
O �

g2QPSO
2 coth

ÿ
O=�2T ��

16e 2

� L

0

dx

� L

0

dx 0Re
h
GR

jw�x;O�

� ÿF x; x 0 �O�GR
jw�x 0;O� ÿ F x; x 0 �0�GR

jw�x;O��i ; �158�

where

F x;x 0 �O� � ÿPx;x 0 �O� IF0� ÿ Px; x 0 �Oÿ IF0�

� �Px;x 0 �ÿO� IF0� � �Px;x 0 �ÿOÿ IF0� : �159�

Figure 10. `Candy' diagrams, which determine both average voltage (141)

(upper diagram) and voltage noise (145) (six remaining diagrams) in the

second order in gQPS. Fields j�, w�, and wÿ in the propagators (146) are

denoted by wavy, solid, and dashed lines, respectively.
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The remaining term S a
O contains the product of one retarded

and one advanced Green's functions and scales with the
combinations C� � coth ��O� IF0�=�2T �� ÿ coth �O=�2T ��
as

S a
O �

g2QPSO
2

32e 2

� L

0

dx

� L

0

dx 0 GR
jw�x;O�GR

jw�x 0;ÿO�

�
X
�
C�
ÿPx;x 0 �O� IF0� ÿ Px; x 0 �ÿO� IF0�

�" #
: �160�

Equations (156)±(160), together with the expressions for the
Green's functions, fully account for the voltage noise power
spectrum of a superconducting nanowire in the regime
perturbative in gQPS.

In the zero bias limit I! 0, the term S a
O vanishes, and the

equilibrium noise spectrum SO � S �0�O � S r
O is determined

from the FDT (see also [34]). At nonzero bias values, the
QPS noise becomes nonequilibrium. In the zero frequency
limit O! 0, the terms S �0�O and S r

O vanish, and the voltage
noise SO!0 � S0 is determined solely by S a

O. Then, from
Eqn (160), we get [61]

S0 � F 2
0

ÿ
GQPS�IF0� � GQPS�ÿIF0�

� � F0 coth

�
IF0

2T

�
hVi ;
�161�

where hVi is specified in Eqns (151), (154). Combining (161)
with (154) and (155), we obtain

S0 / T 2lÿ2 ; T4 IF0 ;

I 2lÿ2 ; T5 IF0 :

�
�162�

At higher temperatures T4 IF0 (though still T5D0),
Eqn (162) just describes equilibrium voltage noise S0 � 2TR
of a linear Ohmic resistor R � hVi=I / T 2lÿ3 [12]. In the
opposite low temperature limit T5 IF0, it accounts for QPS-
induced shot noise S0 � F0hVi, obeying the Poisson statistics
with an effective `charge' equal to the êux quantum F0. This
result makes the physical origin of shot noise in super-
conducting nanowires transparent: it is produced by coher-
ent tunneling of magnetic êux quanta F0 across the wire (cf.
also Fig. 7).

Another interesting limit is that of sufficiently high
frequencies and/or long wires v=L5O5D0. In this case,
we obtain

S �0�O �
l

8pe 2
O coth

ÿ
O=�2T ��

�O=2EC�2 � �l=p�2
: �163�

Note that this contribution is independent of the wire length
L. At lowT andO=l0EC � e 2=2C, we have S �0�O / 1=O, i.e.,
in a certain regime, the wire may generate 1=f voltage noise.
Evaluating the QPS terms S r

O and S a
O, we observe that the

latter scales linearly with wire length L, whereas the former
does not. Hence, the term S r

O can be disregarded in the long
wire limit. For the remaining QPS term S a

O, we get

S a
O �

Ll2vg2QPS

8e 2

�
&

�
IF0

2
ÿ O

�
ÿ &
�
IF0

2
� O

��

� sinh
ÿ
IF0=�2T �

�
& �IF0=2�ÿ�O=2EC�2 � �l=p�2
�
sinh �O=�2T �� : �164�

At T! 0, from Eqn (164), we find

S a
O /

I lÿ1
�
Iÿ 2O

F0

�lÿ1
; O <

IF0

2
;

0 ; O >
IF0

2
:

8>><>>: �165�

This result can be interpreted as follows. At T � 0, each QPS
event excites (at least) two plasmons with total energy
E � IF0 and zero total momentum propagating in opposite
directions along the wire. One plasmon (whose energy equals
E=2) gets dissipated at the grounded end of the wire, while the
other one (also with energy E=2) reaches its opposite end,
causing voltage fluctuations (it emits a photon) with fre-
quency O measured by a detector. Clearly, at T � 0, this
process is only possible at O < E=2, in agreement with
Eqn (165).

The result (164) is also illustrated in Fig. 11. At sufficiently
small O (though we still keep O4 v=L), we observe a
nonmonotonic dependence of SO on temperature, which
serves as a clear manifestation of the quantum coherent
nature of QPS noise.

To conclude our analysis of QPS-induced shot noise in
superconducting nanowires, we point out that the approach
employed here that is perturbative in gQPS is fully justified in
the `superconducting' regime, i.e., for not too thin wires with
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Figure 11. (a) Frequency dependence of QPS noise spectrum SO (164) at

l � 2:7, large EC, and different values of T in the long wire limit. (b) SO as

a function of T.
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l > 2. In wires with l < 2 (characterized by unbound QPS±
anti-QPS pairs), the perturbation theory becomes unsuitable
at quite low energies and large distances, since gQPS gets
effectively renormalized to higher values (see, e.g., BKT-like
RG equations (116)). Even in this case, however, our results
may still remain applicable at relatively high temperatures,
frequencies, and/or current values. In the low energy limit,
long wires with l < 2 show an insulating behavior, as follows
from the exact solution to the corresponding sine-Gordon
model [64]. This solution suggests that voltage fluctuations
also become large in this limit.

Further interesting features of the shot noise of the
voltage in superconducting nanowires under different mea-
suring systems were analyzed in Refs [43, 63, 65, 66].

7. Full counting statistics of quantum phase slips

In order to fully describe voltage fluctuations in the system
under consideration, it is generally necessary to evaluate all
cumulants of the voltage operator. Various aspects of
voltage fluctuation statistics were already discussed in the
case of quasi-one-dimensional wires [15] and resistively
shunted Josephson junctions [67, 68]. The authors of [15,
67, 68] restricted their analysis to thermal fluctuations and,
hence, their results remain applicable only at sufficiently
high temperatures. Here, in contrast, we will set up a fully
quantum mechanical treatment of the problem that
essentially operates with interacting quantum phase slips
and allows us to fully describe full counting statistics of
voltage fluctuations at any temperature down to T! 0. In
our further analysis, we will to a large extent follow
Ref. [69].

As in Section 6.1, we can again make use of the Josephson
relation between the voltage and the phase variables. Then,
analogously to the averages in Eqns (141) and (145), we can
express the general correlator of voltages in the form


V�t1�V�t2� . . .V�tn�
�

� 1

�2e�n



_j��t1� _j��t2� . . . _j��tn� exp �iSQPS�
�
0
:

�166�
Here, we stress that Eqn (166) defines the symmetrized
voltage correlators. For example, for n � 2, this equation is
equivalent to Eqn (151), whereas for n � 3 one can verify that
[63, 70]


V�t1�V�t2�V�t3�
� � 1

8

n

V̂�t1�

ÿT V̂�t2�V̂�t3���
� 
ÿ ~T V̂�t2�V̂�t3�

�
V̂�t1�

�� 
V̂�t2�ÿT V̂�t1�V̂�t3���
� 
ÿ ~T V̂�t1�V̂�t3�

�
V̂�t2�

�� 
V̂�t3�ÿT V̂�t1�V̂�t2���
� 
ÿ ~T V̂�t1�V̂�t2�

�
V̂�t3�

�� 
T V̂�t1�V̂�t2�V̂�t3��
� 
 ~T V̂�t1�V̂�t2�V̂�t3�

�o
; �167�

where T and ~T are, respectively, the forward and backward
time ordering operators.

7.1 Cumulant generating function
In order to proceed with our calculation of higher voltage
correlators, it will be convenient for us to define the cumulant

generating function

W�J � � ln
ÿZ�J �� � ln

�
exp

�
i

�
dt J�t�V�t�

��
; �168�

where

V � 1

F0C

�
qxw
�
ÿ L

2

�
ÿ qxw

�
L

2

��
�169�

is the voltage drop across a wire and h. . .i denotes the
quantum average fulfilled with the total Hamiltonian of our
system. Evaluating the Nth variational derivative of W�J �
with respect to J�t�, theNth cumulant of the voltage operator
is recovered.

The function Z�J � can be conveniently derived with the
aid of the Keldysh path integral technique already described
in Section 6. Defining the voltage values V (169) on both
forward and backward time branches of theKeldysh contour,
respectively, VF and VB, and introducing, as before,
`classical' and `quantum' variables v� � �VF � VB�=2 and
vÿ � VF ÿ VB, one can verify that the voltage cumulants of
(166) are exactly equivalent to the cumulants of the `classical'
variable v��t� in our path integral formalism. With this in
mind, the function Z�J � can be expressed as

Z�J� �
�
exp

ÿ
iSQPS�w�; wÿ�

�
exp

�
i

�
dt J�t�v��t�

��
0

;

�170�

where SQPS is defined in (142). Function (170) generates
voltage correlators


v��t1�v��t2� . . . v��tn�
�

� 
v��t1�v��t2� . . . v��tn� exp �iSQPS�
�
0
: �171�

Let us eliminate the second exponent in Eqn (170) by making
a linear substitution wi � li � ~wi and imposing the condition�

~wi exp
�
i

�
dt J�t�v��t�

��
0

� 0 ; �172�

implying that

l��x; t� � w0�x; t� ÿ
�
dt 0 GK

wv�x; t; t 0�J�t 0� ; �173�

lÿ�x; t� � ÿ
�
dt 0 GA

wv�x; t; t 0�J�t 0� : �174�

Here, we denoted w0 � hw�i0 and introduced both Keldysh
and advanced Green's functions

GK
wv�x; t; t 0� � ÿi
w��x; t�v��t 0��0 ; �175�

GA
wv�x; t; t 0� � ÿi
wÿ�x; t�v��t 0��0 : �176�

The latter function coincides with the transposed version of
the retarded Green's function

GR
wv�x; t; t 0� � ÿi
w��x; t�vÿ�t 0��0 : �177�

As a result of the above manipulations, we get

Z�J � � exp

�
ÿ i

2

�
dtdt 0 J�t�GK

vv�t; t 0�J�t 0�
�

� 
exp ÿiSQPS�l� � ~w�; lÿ � ~wÿ�
��

0
; �178�
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where Keldysh Green's function GK
vv�t; t 0� is defined analo-

gously to that in Eqn (175). The remaining average can be
performed with the aid of Wick's theorem and expressed via
two Green's functions,

GK
ww�x; x 0; t; t 0� � ÿi



~w��x; t�~w��x 0; t 0�

�
0
; �179�

GR
ww�x; x 0; t; t 0� � ÿi



~w��x; t�~wÿ�x 0; t 0�

�
0
; �180�

while all h~wÿ~wÿi0 type averages vanish identically due to
causality.

Let us now evaluate the cumulant generating function by
expanding Z�J � up to the second order in gQPS. We obtain

W�J � � ÿ i

2

�
dtdt 0 J�t�GK

vv�t; t 0�J�t 0�

� i


SQPS�l� � ~w�; lÿ � ~wÿ�

�
0

ÿ 1

2



S 2
QPS�l� � ~w�; lÿ � ~wÿ�

�
0

� 1

2
hSQPS�l� � ~w�; lÿ � ~wÿ�

�2
0
: �181�

Substituting now the QPS action SQPS (142) into Eqn (181),
we can verify that the first order contribution in gQPS

vanishes, while the second order one takes the form

W�J � � ÿ i

2

�
dt dt 0 J�t�GK

vv�t; t 0�J�t 0� � g2QPS

� L=2

ÿL=2
dx dx 0

�
�
dt

� t

dt 0
ÿ
P�x; x 0; t; t 0� ÿ P�x 0; x; t 0; t��

� sin
ÿ
l��x; t� ÿ l��x 0; t 0�

�
sin

�
lÿ�x; t�

2

�
cos

�
lÿ�x 0; t 0�

2

�
ÿ g2QPS

2

� L=2

ÿL=2
dx dx 0

�
dt

�
dt 0
ÿ
P�x; x 0; t; t 0� � P�x 0; x; t 0; t��

� cos
ÿ
l��x; t� ÿ l��x 0; t 0�

�
sin

�
lÿ�x; t�

2

�
sin

�
lÿ�x 0; t 0�

2

�
;

�182�

where the function P�x; x 0; t; t 0� is defined in

P�x; x 0; t; t 0� �
�
exp

�
i

�
~w��x; t� ÿ ~w��x 0; t 0�

ÿ 1

2
~wÿ�x; t� ÿ

1

2
~wÿ�x 0; t 0�

���
0

�
�
exp

�
i

�
~w��x 0; t 0�

ÿ ~w��x; t� �
1

2
~wÿ�x; t� �

1

2
~wÿ�x 0; t 0�

���
0

� exp

�
iGK

ww�x; x 0; t; t 0� ÿ
i

2
GK

ww�x; x; t; t�

ÿ i

2
GK

ww�x 0; x 0; t 0; t 0� �
i

2
GR

ww�x; x 0; t; t 0� ÿ
i

2
GA

ww�x; x 0; t; t 0� :
�183�

Equation (182) enables us to directly evaluate all voltage
correlators by taking variational derivatives of W with
respect to J�t�. It follows immediately from Eqn (182) that
in the absence of QPS all voltage cumulants except for the
second one (describingGaussian noise) vanish identically.We
conclude, therefore, that at fairly low temperatures only
quantum phase slips give rise to both shot noise of the

voltage and all higher cumulants of the voltage operator in
superconducting nanowires.

We also note that, in the case of a constant in time
current bias I, we have w0�x; t� � IF0t and the function P
depends only on the time difference, i.e., P�x; x 0; t; t 0� �
P�x; x 0; tÿ t 0�. This property will be employed in our
subsequent calculations.

7.2 Voltage cumulants in the zero frequency limit
As a first step, let us make use of the above general results and
evaluate all cumulants of the voltage operator in the zero
frequency limit. As we already know, an instantaneous
voltage value V�t� fluctuates in time due to a sequence of
voltage pulses produced by QPS. It is instructive to define the
time average

�v � 1

t

� t=2

ÿt=2
dt V�t� ; �184�

where the time interval t exceeds any relevant time scale for
our problem. It is easy to demonstrate that the cumulants of �v
are identical to the corresponding cumulants of the voltage
operator evaluated in the zero frequency limit. For instance,
for the first two cumulants, we readily find

h�vi � 
V�t�� � V�I � ; �185�
ÿ
�vÿ h�vi�2� � 1

t

�
dt
ÿ

V�t�V�0��ÿ V 2

� � 1

t
S0�I � ; �186�

where So�I � is the frequency dependent voltage noise power
for our wire, already evaluated in Section 6.

In order to derive the cumulant generating function for �v

w� j� � ln


exp �i j�v�� ; �187�

it suffices to make use of Eqn (182) and set J�t� � j=t for
ÿt=2 < t < t=2 and J�t� � 0 otherwise. For quite large time
intervals t, the combination l��x; t� ÿ w0�x; t� becomes
practically independent of both x and t, implying that
l��x; t� ÿ l��x 0; t 0� � IF0�tÿ t 0�. Employing the equation
of motionÿ

q2t ÿ v 2q2x
�
ŵ�x; t� � 0 ; �188�

we obtain

lim
o!0

GA
wv�x;o� � lim

o!0
GR
vw�x;o� � F0 ; �189�

and, hence, we have lÿ�x; t� � ÿF0 j=t. As a result, we get

w� j�
t
� ÿ i j 2

2t2
GK
vv�0� ÿ

g2QPS

2
sin

�
F0 j

t

�� L=2

ÿL=2
dx dx 0

�
�1
0

dt
ÿ
P�x; x 0; t� ÿ P�x 0; x;ÿt�� sin �IF0t�

ÿ g2QPS sin
2

�
F0 j

2t

�� L=2

ÿL=2
dx dx 0

�
�1
0

dt
ÿ
P�x; x 0; t� � P�x 0; x;ÿt�� cos �IF0t� : �190�

Performing the Fourier transformation

P�x; x 0;o� �
�1
0

dt exp �iot�P�x; x 0; t� �191�
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and introducing

GQPS�o� �
g2QPS

4

� L=2

ÿL=2
dx dx 0

ÿ
P�x; x 0;o� � P ��x 0; x;o�� ;

�192�

we find

w� j�
t
� ÿ i j 2

2t2
GK
vv�0� � GQPS�IF0�

�
exp

�
iF0 j

t

�
ÿ 1

�
� GQPS�ÿIF0�

�
exp

�
ÿ iF0 j

t

�
ÿ 1

�
: �193�

This expression fully describes the statistics of QPS-induced
voltage fluctuations in superconducting nanowires in the zero
frequency limit.

It follows immediately fromEqn (193) that this statistics is
Poissonian in the above limit. In particular, combining
Eqns (187) and (193) and evaluating the first and the second
derivatives of w with respect to j, we again recover the first
two voltage cumulants in Eqns (151) and (161).

Higher voltage cumulants in the zero frequency limit can
be found in the same manner. Let us define them as

CN�I � � �ÿi�NtNÿ1 qNj w� j�
���
j!0

: �194�

After simple algebra, all zero frequency cumulants can be
expressed through the current±voltage characteristics for our
system. In particular, for odd cumulants, we have

C2N�1�I � � F 2N
0 V�I � ; �195�

whereas for even ones we obtain

C2N�I � � F 2Nÿ1
0 V�I � coth

�
IF0

2T

�
: �196�

The above results demonstrate that in the long time limit the
effect of interacting QPS reduces to that of independent sharp
voltage pulses which occur with the effective rate GQPS�IF0�
and are described by Poisson statistics. Note that this
conclusion holds only for not too thin wires with l > 2
described by quantum phase slips bound in close pairs.

7.3 Noise power in the short wire limit
At nonzero frequencies, the system behavior becomes more
involved and the statistics of voltage fluctuations deviate
from Poissonian, as will be demonstrated below. The general
expression for the noise power is defined as

So�I � � ÿ
�
dt exp �iot� d2W�J �

dJ�t�dJ�0�
����
J!0

: �197�

Making use of Eqn (182), we find

So�I� � iGK
vv�o� �

g2QPS

2

� � L=2

ÿL=2
dx dx 0 GK

vw�x;o�GR
vw�x 0;o�

�
�1
0

dt
ÿ
P�x; x 0; t� ÿ P�x 0; x;ÿt�� cos �IF0t�

� �exp �iot� ÿ 1
�� 1

4

� L=2

ÿL=2
dx dx 0 GR

vw�x;o�

� GR
vw� x0;ÿo�

�1
ÿ1

dt
ÿ
P�x; x 0; t� � P�x 0; x;ÿt��

� cos �IF0t� exp �iot� � fo! ÿog
�
: �198�

With the aid of the FDT, this result can be transformed into
that already derived in Section 6, where we merely addressed
the long wire limit. Here, in contrast, we will specify the
expression for the noise power for shorter wires. This limit
also includes the case of Josephson junctions and other types
of short superconducting weak links.

Let us note that each term in the square brackets in
Eqn (198) contains a combination of the form factors
P�x; x 0; t� describing the intrinsic dynamics of a supercon-
ducting nanowire during the QPS process, as well as two
vw-type Green's functions indicating how the detector `feels'
voltage fluctuations inside the nanowire. Provided the wire is
short enough, we can retain only the dependence of these
Green's functions on frequency and ignore their spatial
coordinates. We then get

GR
vw�x;o� � F0�1ÿ iotR � . . .� ; �199�

where tR is the effective RC time of the system. Accordingly,
we obtain

GK
vw�x;o� � ÿiotR coth

�
o
2T

�
: �200�

Employing these approximations, from Eqn (198), we obtain

So�I� � iGK
vv�o� ÿ iF 2

0 tRo coth

�
o
2T

��
GR
QPS�o� IF0�

� GR
QPS�oÿ IF0� � GR

QPS�ÿo� IF0�

� GR
QPS�ÿoÿ IF0� ÿ 2GR

QPS�IF0� ÿ 2GR
QPS�ÿIF0�

�
� 1

2
F 2

0

�
GQPS�o� IF0� � GQPS�oÿ IF0�

� GQPS�ÿo� IF0� � GQPS�ÿoÿ IF0�
�
; �201�

where we introduced the function

GR
QPS�o� �

g2QPS

4

� L=2

ÿL=2
dx dx 0

ÿ
P�x; x 0;o� ÿ P ��x 0; x;ÿo�� ;

�202�

related to GQPS�o� (192) as

GR
QPS�o� �

�
dz

2pi
GQPS�z� ÿ GQPS�ÿz�

zÿ oÿ i0
: �203�

As an illustration, let us consider a short superconducting
nanowire embedded in a linear dissipative external circuit
modeled by an Ohmic shunt resistor RS. This situation is
equally relevant for resistively shunted Josephson junctions in
the limit of large Josephson coupling energiesEJ. In this limit,
one has

GR
ww�x; x 0;o� � ÿ

2pim
o� i0

; �204�
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where m � RQ=RS is the shunt dimensionless conductance
and RQ � p=�2e2� is the `superconducting' resistance quan-
tum. The QPS rate then equals

GQPS�o� � g2QPS�2pTtR�2m exp
�

o
2T

�

�
ÿ
m� io=�2pT �� ÿmÿ io=�2pT ��

8pT �2m� ; �205�

where �y� is the Euler gamma function and tÿ1R plays the
role of effective high-energy cutoff frequency. Evaluating
the corresponding integrals in the short wire limit
o;T; IF0 5 tÿ1R and also for 1 < m < 3=2, we obtain

GR
QPS�o� � constÿ iGQPS�o� exp

�
ÿ o
2T

�
� sin

ÿ
pm� io=�2T ��
cos �pm� : �206�

These expressions can be simplified in certain limits. For
example, by setting 0 < mÿ 15 1, we get

GQPS�o�

�
g2QPS�2pTtR�2m exp

�
o
2T
ÿ 2C�mÿ 1�

� �����������������������������������������
o2 � 4p2T 2�mÿ 1�2

q
16pT 2 �2m�

����������������������������������������������������������������
sin

�
pm� io

2T

�
sin

�
pmÿ io

2T

�s ;

�207�
where C is a Euler±Mascheroni constant. Also, the expres-
sions for both QPS rates get significantly simplified in the
limit joj4T. One has

GQPS�o� � pg2QPSy�o�
�otR�2m
2o �2m� ; �208�

GR
QPS�o� � const� pg2QPS

jotRj2m exp
ÿÿipm sign �o��

4o �2m� cos �pm� :

�209�
Accordingly, in the zero-temperature limit, one finds

CN�I� � pg2QPS sign
N�I�F

N�2mÿ1
0 t2mR
2 �2m� jI j2mÿ1 : �210�

The above results are consistent with ones previously derived
for ultrasmall Josephson junctions [71].

7.4 Higher voltage cumulants
We now turn to higher voltage cumulants at nonzero
frequencies. We adopt the following definition for the Nth
voltage cumulant:

So1;...;oNÿ1�I � �
�
dt1 . . . dtNÿ1 exp �io1t1 � . . .

� ioNÿ1tNÿ1��ÿi�N dNW�J�
dJ�tNÿ1� . . . dJ�t1�dJ�0�

����
J!0

: �211�

In the zero frequency limit, this definition yields

S 00...0|{z}
N

�I � � CN�I � : �212�

Under the condition T;o5 tÿ1R or, in other words, provided
the detector immediately `feels' QPS-generated voltage

fluctuations, one can set tR ! 0 and explicitly evaluate all
voltage cumulants at nonzero frequencies. In this case, the
cumulant generating function takes the form

W�J� � ÿ i

2

�
dt dt 0 J�t�GK

vv�tÿ t 0�J�t 0� ÿ g2QPS
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ÿ
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�
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2
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ÿL=2
dx dx 0

�
dt

�
dt 0
ÿ
P�x; x 0; tÿ t 0� � P�x 0; x; t 0 ÿ t��

� cos
ÿ
IF0�tÿ t 0�� sin�F0J�t�

2

�
sin

�
F0J�t 0�

2

�
: �213�

One can observe that the second term in Eqn (213) can only
contribute to odd cumulants, whereas the last term deter-
mines all even cumulants. After some algebra, we arrive at the
following expressions for both even and odd voltage
cumulants, respectively:

So1;...;o2M
�I � � F 2M�1

0

22M�2M�!
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X2M
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ÿ GR

QPS
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�i
; �214�
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2M� 1
2m� 1

�
�
h
GQPS

ÿ
IF0 � �op1 � . . .� op2m�1�

�
� GQPS

ÿÿIF0 � �op1 � . . .� op2m�1�
�

� GQPS

ÿ
IF0 ÿ �op1 � . . .� op2m�1�

�
� GQPS

ÿÿIF0 ÿ �op1 � . . .� op2m�1�
�i
; �215�

where the sum is taken over all permutations of frequencies.
The above results allow us to extend the relation between

the voltage cumulants and the current±voltage characteristics
of our device to nonzero frequencies. For the odd cumulants,
we obtain

So1;...;o2M
�I� � F 2M�2

0 I

22Mÿ1�2M�!
�
dI 0

2pi
V�I 0�

X
p2perm

X2M
m�0

�
2M
m

�

� 1ÿ
I 0F0 � �ÿ1�m�op1 � . . .� opm� ÿ i0

�2 ÿ �IF0�2
; �216�

while the expression for the even cumulants reads

So1;...;o2M�1�I� �
F 2M�1

0

22M�1�2M� 1�!
X

p2perm

XM
m�0

�
2M� 1
2m� 1

�

�
"
coth

�
IF0 � �op1 � . . .� op2m�1�

2T

�

� V

�
I� op1 � . . .� op2m�1

F0

�
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� coth

�
IF0 ÿ �op1 � . . .� op2m�1�

2T

�
� V

�
Iÿ op1 � . . .� op2m�1

F0

�#
: �217�

These expressions can be evaluated numerically with
the aid of Eqns (205)±(209) for GQPS�o� and GR

QPS�o�
derived above. The corresponding results for the third
voltage cumulant as a function of two frequencies are
displayed in Fig. 12 at low and high temperatures. The
third voltage cumulant generally consists of real and
imaginary parts

So1;o2
�I� � ReSo1;o2

�I� � i ImSo1;o2
�I� : �218�

As can be seen in the plots, both these functions become
considerably smoother at higher T.

To conclude our analysis of voltage fluctuation statistics
in superconducting nanowires, we emphasize again that in the
zero-frequency limit this statistics reduces to Poissonian,
similarly to the situation encountered in a number of other
tunneling-like problems. In this limit, all (symmetrized)
cumulants of the voltage operator can be expressed in a
simple manner through the current±voltage characteristics
of the system V�I� (cf. Eqns (195), (196)). At nonzero
frequencies, quantum voltage fluctuations in superconduct-
ing nanowires are no longer described by Poisson statistics,
because inter-QPS interaction produced by an effective
environment (due to the wire itself and/or an external
dissipative circuit) starts playing a more important role at
shorter time scales, making the whole problem much more
involved. Remarkably, in this case, it is also possible to
establish a relation between the voltage cumulants and the
current-voltage characteristics of our deviceV�I�, though in a
much more complicated form than that in the zero frequency

limit (cf. Eqns (216), (217)). This observation could be
important for possible experimental verification of the
above results.

8. Topology-controlled phase coherence
in superconducting nanowires

It is by now well established that at T! 0 a long super-
conducting nanowire suffers a quantum phase transition
(QPT) controlled by the wire cross section s or, equivalently,
by the parameter l � g=8, whichwe already introduced above
and which sets the magnitude of (logarithmic in space±time)
interaction among different quantum phase slips [12]. For
l > 2, this interaction is strong enough, and close QPS±anti-
QPS pairs are formed in the wire, which then demonstrates
vanishing linear resistance R / T 2lÿ3 (cf. Eqns (154), (155)).
Hence, as long as l > 2 (or, equivalently, g > 16), the ground
state of the system can be considered superconducting. In
contrast, for l < 2, inter-QPS interaction is weak, quantum
phase slips are unbound, and the wire acquires nonzero
resistance, which tends to increase with decreasing T. The
last feature allows calling the wire behavior insulating
provided l < 2. Thus, at g � 16 and T! 0, one expects a
superconductor-to-insulator quantum phase transition (SIT)
to occur in the systems under consideration.

Let us emphasize that possible insulating behavior of
superconducting nanowires is essentially linked to a certain
type of experiment performed with such nanowires and may
not always be realized. For example, an ultrathin super-
conducting nanowire forming a closed ring does not lose the
ability to carry supercurrent even for l < 2, as we have
already demonstrated in Section 5. In this case, a character-
istic length scale (119)

Rc � Lc / exp

�
agx
2ÿ l

�
�219�
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Figure 12. Real and imaginary parts of third voltage cumulant at T! 0 (a) and T � IF0 (b) for m � 1:1.
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emerges, beyond which phase coherence (and, hence, super-
current) gets exponentially suppressed by QPS. The correla-
tion length (219) diverges at l! 2, thus signaling the
transition to the ordered phase l > 2 with bound QPS±anti-
QPS pairs and more robust superconductivity.

On the other hand, a closed ring geometry seriously
restricts the space for phase fluctuations, thereby enhancing
the tendency towards superconductivity (see, e.g., Ref. [72]
for further discussion of this point). For this reason, it is
highly desirable to analyze ground state properties of super-
conducting nanowires where no fluctuation configurations
are suppressed by geometry constraints and/or boundary
conditions. An example of a system of that kind is depicted
in Fig. 13. A long superconducting nanowire with sufficiently
small cross section s, geometric capacitance (per length) C,
and kinetic inductance (times length) Lkin is attached to two
big superconducting reservoirs at its ends. In order to probe
fluctuation effects inside the wire, it is connected to a bulk
superconductor forming an open ring by two identical small
area tunnel junctions with Josephson energy EJ located at a
distance L from each other at the points x � 0 and x � L.
External magnetic flux F piercing the ring controls the phase
difference f � 2pF=F0 between the bulk sides of the point
contacts. As desired, within this setup, fluctuations in the
superconducting phase j�x; t� remain unrestricted at any
point x of the wire.

Below, we will analyze the effect of these fluctuations on
the supercurrent I�f� flowing through the wire segment of
lengthL between the two Josephson contacts [73]. As I�f� is a
2p-periodic function of f, in what follows, it suffices to
restrict the phase interval to jfj4 p. Below, we will demon-
strate that, in the setup displayed Fig. 13, a `disordered' phase
l < 2 (or g < 16) for a superconducting nanowire itself
consists of two different phases: a nonsuperconducting one
with g < 2 as well as a `mixed' one with 2 < g < 16
characterized by two different correlation lengths, Lc (219)
and

L� / g1=�1ÿ2=g� ; g5 2 : �220�

The latter phase is characterized by a nontrivial interplay
between supercurrent and quantum fluctuations, resulting in
superconducting behavior of the wire at shorter length scales
combined with its vanishing superconducting response in the
long scale limit.

8.1 Effective action
Low energy processes in the system under consideration can
be described by the effective action

S�j� � STL�j� � SJ

�
j�0�;j�L�� ; �221�

where, as before,

STL�j� � C

8e 2

� 1=T

0

dt
�
dx
��qtj�2 � v 2�qxj�2� �222�

is the low energy effective action for a superconducting
nanowire in the j-representation [12±14] and

SJ�j1;j2� � ÿEJ

� 1=T

0

dt
�
cos

�
j1 �

f
2

�
� cos

�
j2 ÿ

f
2

��
�223�

accounts for the Josephson energy of the contacts, where we
set j1 � j�0; t�, j2 � j�L; t�. For simplicity, in Eqn (223),
we do not include the charging energy of the point contacts,
which could always be absorbed into the first term of the wire
action (222).

As the wire action (222) is Gaussian, it is possible to
exactly integrate out the phase variable j�x� at all values of x
except for x � 0;L. Then, we arrive at the reduced effective
action SR which depends on the two phase variables j1 and
j2. The grand partition function Z reads

Z �
�
Dj�x� exp�ÿSTL�j�x�� ÿ SJ�j�0�;j�L��

	
�
�
Dj1Dj2 exp

�ÿSR�j1;j2� ÿ SJ�j1;j2�
	
; �224�

where

SR�j1;j2� �
1

2
tr

�
�j1 j2 �

�
G0�0� G0�L�
G0�L� G0�0�

�ÿ1�
j1
j2

��
:

�225�
Here, the trace also includes integration over imaginary time.
The Green's function G0 � hj�x; t�j�0; 0�iS0

has the form

G0�on; x� � 4e 2

C

�
dq

2p
exp �iqx�
o2

n � v 2q 2
� 4p

gjonj exp
�
ÿ
����onx

v

����� :
�226�

In order to diagonalize the quadratic part of the action, it is
convenient to express SR in terms of the variables
j� � �j1 � j2�=2. Then, we obtain

SR � SJ � 1

2

X
a��

tr
�
jaG

ÿ1
0; aja

�
ÿ 2EJ

� 1=T

0

dt cos �j�� cos
�
jÿ ÿ

f
2

�
�227�

with the propagators

G0;��on� � 2p
gjonj

�
1� exp

�
ÿ
����onL

v

������ : �228�

Let us stress that phase variables j� and jÿ account for
different physics in our problem. The phase jÿ �
�j�L� ÿ j�0��=2 determines the supercurrent flowing
between two contacts inside a wire segment of length L.
Hence, configurations with nonzero jÿ have nonzero
energies due to the kinetic inductance of the wire, and the
mode corresponding to jÿ has a mass equal to gv=2pL. The
variable j�, in contrast, describes simultaneous shifts of both
phases j�0� and j�L� by the same value without producing
any phase gradient along the wire. Thus, in the absence of

F

ÿf=2 f=2

L

Figure 13. Bulk open superconducting ring attached to a superconducting

nanowire via two ultrasmall tunnel barriers located at a distance L from

each other. The ring is threaded by the magnetic flux F.
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interactions, themode corresponding toj� is massless. At the
same time, below, wewill observe that fluctuations inj� yield
renormalization of Josephson coupling energies EJ of the
contacts and, as such, should also be taken into account.

8.2 Variational analysis and propagators
Let us make use of the variational perturbation theory as
described, for example, in Ref. [74]. The main idea here is to
improve the standard perturbation expansion by adding an
extra term dSwhich depends on the variational parameters in
the quadratic part of the action SR. In order to accomplish
this goal, partition function (224) can be identically rewritten
as

Z �
�
Dj1Dj2 exp �ÿStr� exp

�ÿ�SJ ÿ dS�� �229�

with the trial action Str � SR � dS. The last exponent can
then be conveniently expanded in powers of SJ ÿ dS. Being
expanded to all orders, partition function (229) obviously
remains independent of the choice of dS and the variational
parameters. However, such a dependence emerges as long as
only a énite number of terms of this expansion are kept. Then,
the most accurate approximation is achieved by minimizing
the result of the perturbative expansion with respect to the
variational parameters.

In what follows, we choose the trial action in the form

Str � 1

2
tr
�
j��Gÿ10� �m��j�

�
� 1

2
tr
��jÿ ÿ c��Gÿ10ÿ �mÿ��jÿ ÿ c�� ; �230�

which corresponds to effectively performing a self-consistent
harmonic approximation (SCHA). Here, the parameters m�
represent the interaction-generated effective masses for the
modes associated with the phase variables j�. The parameter
c accounts for the average value of the combination
�j�L� ÿ j�0��=2. We note that a somewhat similar varia-
tional calculation with a mass term was proposed in the
context of Brownian motion of a quantum particle in a
periodic potential with linear Ohmic dissipation [75]. The
results obtained within the framework of this variational
approach agree with those derived by means of more
rigorous techniques [41].

Expanding the last exponent in Eqn (229) in powers of
SJ ÿ dS and evaluating the integrals, for the free energy
F � ÿT lnZ we get

F � F 0 � F 1 � higher order terms ; �231�

where

F 0 � T

2

ÿ
tr lnGÿ1� � tr lnGÿ1ÿ

�
; F 1 �



Sint ÿ dS

�
tr
: �232�

Neglecting all higher order terms in expansion (231) and
evaluating the average in Eqn (232) with respect to Str (230),
we obtain

F 1 � ÿm�
2

G��0� ÿmÿ
2

Gÿ�0� � 1

2
cGÿ10ÿ �on � 0�c

ÿ 2EJ cos

�
cÿ f

2

�
exp

�
ÿG��0� � Gÿ�0�

2

�
; �233�

where Gÿ1� � Gÿ10;� �m� and G��0� � T
P

on
G��on�, with

on � pT�2n� 1� being the Matsubara frequency. Evaluating
variational derivatives of F with respect to m� and c, we
readily find

dF 0

dm�
� G��0�

2
; �234�

dF 0

dc
� 0 ; �235�

dF 1

dm�
� ÿG��0�

2
ÿ 1

2

dG��0�
dm�

�
m� ÿ 2EJ cos

�
cÿ f

2

�
� exp

�
ÿG��0� � Gÿ�0�

2

��
; �236�

dF 1

dc
� 2EJ sin

�
cÿ f

2

�
exp

�
ÿG��0� � Gÿ�0�

2

�
� Gÿ10ÿ �on � 0�c : �237�

Imposing the extremum conditions dF=dm� � dF=dc � 0
and making use of Eqns (234)±(237), we arrive at the
following set of SCHA equations:

m� � mÿ � m ; �238�

2EJ cos

�
cÿ f

2

�
exp

�
ÿG��0� � Gÿ�0�

2

�
ÿm � 0 ; �239�

2EJ sin

�
cÿ f

2

�
exp

�
ÿG��0� � Gÿ�0�

2

�
� gv

2pL
c � 0 :

�240�

Note that the mass parametersm� in Eqn (238) remain equal
to each other, since the two Josephson junctions involved in
our problem are identical. Equation (239) provides the
relation between the effective mass m and the fluctuation-
induced renormalization of the Josephson coupling energy
EJ. Equation (240) represents the equation of motion for c. It
coincides with the equation of motion for the phase jÿ with
EJ renormalized by quantum fluctuations.

As we already pointed out, the wire effective action in the
form (222) applied in the low energy limit, i.e., for o; vq5D.
Hence, a proper ultraviolet cutoff should be imposed which
respects both causality and the fluctuation±dissipation rela-
tion. This goal is achieved by modifying the spectral density

J��o� � ÿ 1

p
ImGR

� �o� ;

making it decay at o > D. The retarded Green's function
GR
� �o� can be obtained from its Matsubara counterpart by

means of the standard analytic continuation procedure

GR
� �o� � ÿG��ion�

��
ion!o�i0 ; on > 0 :

Then, the Matsubara frequency summation in G��0� can be
performed with the aid of the contour integration in the
complex plane. Employing our regularization procedure, we
obtain

G��0� � T
X
on

G��on�

� 2p
g

T
X
on

� jonj
1� exp

ÿÿjonL=vj
�� m

�ÿ1
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� 1

4pi

�
C
dzG��ÿiz� coth z

2T

� i

4p

�1
ÿ1

do
ÿ
GR
� �o� ÿ GA

� �o�
�
coth

o
2T

�
� D

0

do J��o� coth o
2T

; �241�

where the spectral density functions J��o� read

J��o� � ÿ 1

p
Im

�
2p
g

�
io

1� exp �ioL=v� ÿ m
�ÿ1�

; �242�

and we define m � 2pm=g. In the limit mL=v5 1, these
expressions reduce to

J��o� � 4

g

o
o2 � 4m2

; Jÿ�o� � 0 : �243�

8.3 Quantum phase transition and supercurrent
Let us now evaluate the supercurrent I flowing in a wire
segment of length L between two Josephson junctions. This
current can be defined as

I � ÿ2eT 1

Z
dZ
df
� 2e

dF
df
� ÿ2eEJ sin

�
cÿ f

2

�

� exp

�
ÿG��0� � Gÿ�0�

2

�
� gev

2pL
c : �244�

Thus, within the framework of our approach, the effect
of phase fluctuations is accounted for by effective
renormalization of the critical current by the factor
exp

�ÿ�G��0� � Gÿ�0��=2
�
. In the zero temperature limit

T! 0, the solution of Eqn (239) takes the form

m � D
�
4pEJ cos �cÿ f=2�

gD

�g=�gÿ2�
; g > 2 ;

0 ; g < 2 ;

8<: �245�

while the renormalized equation of motion (240) can be
rewritten as

mL
v

tan

�
cÿ f

2

�
� c � 0 : �246�

We observe that for g < 2 one has c � 0 and, hence, the
supercurrent I inside the wire is completely suppressed by
strong quantum fluctuations of the phase. On the other hand,
at bigger values of g > 2, a nonvanishing supercurrent I can
flow across the wire segment between the two Josephson
junctions.

We arrive at an important conclusion: a quantum phase
transition occurs at g � 2 separating two different phases
with nonsuperconducting (g < 2) and superconducting-like
(g > 2) behavior. This dissipative QPT belongs to the same
universality class as the so-called Schmid phase transition in
resistively shunted Josephson junctions [41, 76]. It is curious
that this QPT occurs at exactly the same value of the
parameter g where the superconducting gap singularity in
the local electron density of states gets suppressed due to
interaction between electrons and a dissipative bath formed
by Mooij±Sch�on plasmons.

Let us now focus our attention on the superconducting-
like phase g > 2 and evaluate the supercurrent I affected by
quantum fluctuations of the phase j inside the wire. For this
purpose, let us combine the solution of the equation

DL
v

�
4pEJ

gD

�g=�gÿ2�
sin

�
cÿ f

2

��
cos

�
cÿ f

2

��2=�gÿ2�
� c � 0

�247�

with Eqn (244). We observe that there is a new length scale L�

in our problem associated with the effective mass m. Making
use of the Ambegaokar±Baratoff formula for the Josephson
coupling energy EJ � gND=8 (where gN is the dimensionless
normal state conductance of each tunnel junction), we can
express L� in the form

L� � v

D

�
2g

pgN

�g=�gÿ2�
: �248�

Here, we are merely interested in the case of small-size tunnel
junctions with few conducting channels serving as probes
aiming to disturb the superconducting wire as little as
possible. Accordingly, we typically have gN 5 g, and L�

diverges at g! 2, remaining much longer than the character-
istic length scale v=D at any value of g > 2.

Length scale (248) separates two different fluctuation
regimes. For L4L�, the wire kinetic inductance contribu-
tion remains small compared to that of the Josephson
junctions. Then, the phase difference across the wire segment
between the junctions does not fluctuate, being equal to
j�L� ÿ j�0� � f. In this case, we reproduce the standard
mean field current±phase relation

I�f� � gev

4pL
f : �249�

In the opposite limit L5L�, the renormalization of EJ

becomes important and phase fluctuations tend to suppress
the supercurrent flowing inside the wire. In this limit, we
arrive at the L-independent result

I�f� � gev

2pL�
sin

�
f
2

��
cos

�
f
2

��2=�gÿ2�
: �250�

Comparing results (249) and (250), we observe that quantum
fluctuations can strongly affect both the supercurrent
magnitude and the current±phase relation. The dependence
I�f� (250) in the presence of fluctuations becomes smoother
than in Eqn (249), and the absolute value of the supercurrent
is reduced by the factor � L=L�. Additional reduction in I
originates from the term in the square brackets in Eqn (250).
The supercurrent gets suppressed more strongly for bigger
values of f. This effect becomes particularly significant for g
sufficiently close to 2. For f! p and any g > 2, the super-
current tends to zero as I�f�/ �pÿ f�g=�gÿ2�.

We also point out that, for L not much smaller than L�,
the supercurrent I�f! p� behaves somewhat differently: it
vanishes only for 2 < g < 4, whereas at g > 4 we have

I�f! p� � geD
2p

�
DL
v

�2=�gÿ4��pgN
2g

�g=�gÿ4�
; �251�

i.e., for such values of g, the current±phase relation remains
discontinuous at f � p. The dependences I�f� evaluated for
different values of g and L are also displayed in Fig. 14.
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Finally, we note that the form of the current±phase
relation (250) derived here resembles that obtained for
resistively shunted Josephson junctions in the presence of
quantum fluctuations of the phase [77].

8.4 Effect of quantum phase slips
and localization of Cooper pairs
Let us recall that the effective action STL (222) employed
in the above analysis only accounts for the effect of
Gaussian fluctuations of the superconducting phase and
does not yet include quantum phase slips. In order to
describe QPS effects inside the wire, it is convenient to turn
to the dual w-representation for the wire effective action
Seff�J�t� � 0� (107) derived in Section 5. As we already
discussed, this effective action defines the sine-Gordon
model, which has a QPT at T! 0 and l � 2 (or g � 16)
separating two different phases [12]. Provided g > 16,
`positive' and `negative' quantum phase slips are bound in
close `neutral' pairs which do not disrupt phase coherence
at any relevant scales exceeding the superconducting
coherence length x. For such values of g, QPS effects are
irrelevant for any of the above results for the supercurrent
I�f�, and all solutions remain applicable without any
modifications.

On the other hand, for g < 16, quantum phase slips are no
longer bound in pairs. In this phase, relevant excitations of
our sine-Gordon theory are kinks and anti-kinks (as well as
their bound states) with an effective gap in the spectrum [78,
79]

~D/ g 1=�2ÿl�
QPS : �252�

The appearance of this gap for g < 16 (or l < 2) gives rise to
the correlation length Lc / 1= ~D, which, similarly to the case
of superconducting nanorings, can be evaluated by equating
the renormalized QPS amplitude at this length scale
Lc~gQPS�Lc� (see Eqn (117)) to the inductive energy
F 2

0 =�2LkinLc� � xDgx=Lc with some numerical prefactor.
Keeping track of all relevant prefactors, in the most relevant
limit x5 v=D, we obtain

Lc �
�

p

8
�����
2b
p

�1=�1ÿl=2�
x exp

�
agx
2ÿ l

��
xD
v

�l=�2ÿl�
�253�

(cf. also Eqn (119)). The appearance of this fundamental
length scale in our problem is directly related to the phase±
charge (or flux±charge) duality. It can be interpreted as a
result of spontaneous tunneling of magnetic fluxons F0 back
and forth across the wire, as illustrated in Fig. 15. These
strong quantum fluctuations of magnetic flux wipe out phase
coherence at distances0Lc and yield effective localization of
Cooper pairs at such length scales. Accordingly, one may
interpret the energy

~E � xDgx
Lc
/ ~D �254�

as an effective Coulomb gap for a wire segment of length
� Lc. Viewing our nanowire as a chain of N � L=Lc

independent segments, it may be concluded that its total
Coulomb gap in the insulating regime could be as high as
� xDgxL=L2

c .
In the context of the setup considered here, the correlation

length (253) is essentially irrelevant for g < 2, since, in this
case, the supercurrent I is totally suppressed already by
smooth phase fluctuations.
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On the other hand, for 2 < g < 16, the length scale (253)
becomes important. At such values of g, two correlation
lengths exist, L� and Lc, defined in Eqns (248) and (253),
respectively. The first of these two lengths diverges at one of
the phase boundaries g � 2, whereas the second one tends to
infinity at another phase boundary g � 16.

Consider the situation with L� < Lc, in which case three
regimes exist. At L < L�, the supercurrent is strongly
affected only by smooth phase fluctuations and not by
quantum phase slips. This regime is accounted for by
Eqn (250). At L� < L < Lc, the supercurrent is insensitive
to any kind of phase fluctuations and, hence, it is given by a
simple mean field formula (249). Finally, for L > Lc, the
supercurrent gets exponentially suppressed by quantum
phase slips and, similarly to Eqn (120), we have

I�f� � egxD
����
L
p���
x
p

�
v

LD

�3l=4

exp

�
ÿ 3agx

4
ÿ
�
L

Lc

�1ÿl=2�
sinf :

�255�

In practical terms, the last regime can be regarded as
nonsuperconducting, provided L greatly exceeds Lc. It is
also possible to realize the opposite situation with L� > Lc,
in particular, for values of g close to 2. In this case, the length
L� becomes irrelevant, and one distinguishes only two
regimes: L < Lc and L > Lc. The first one is again super-
conducting with the supercurrent I�f� affected by smooth
phase fluctuations according to Eqn (250), whereas the
second regime corresponds to exponential suppression of
the supercurrent due to proliferating QPS (cf. Eqn (255)).
No room for the mean field regime (249) exists at L� > Lc.

8.5 Alternative setup
As we already emphasized, the setup displayed in Fig. 13
enables passing an equilibrium supercurrent across a wire
segment of an arbitrary length L without restricting phase
fluctuations inside the wire by any means. Below, we will
consider an alternative setup that allows us to effectively
restrict the space available for phase fluctuations by `pinning'
the superconducting phase j at one point inside the wire [80].
This setup is schematically shown in Fig. 16. As before, it
includes a long and thin superconducting nanowire with one
of its ends attached to a bulk superconducting reservoir. This
reservoir has the form of an open ring whose opposite end is
attached to the wire via a small-area tunnel junction at a
distance L along the wire. The open ring is pierced by an
external magnetic flux F which controls the phase difference
f � 2pF=F0 between its ends. Accordingly, the phase at the

left end of the wire is pinned by the reservoir and is set equal to
zero, i.e., j�x � 0� � 0.

We will demonstrate that such topology controlled phase
pinning severely enhances the ability of the wire to conduct
supercurrent. This effect can be interpreted in terms of the
absence of a massless mode responsible for the destruction of
superconductivity at g < 2 in the setup in Fig. 13. Instead, the
nanowire embedded in our present setup exhibits a transition
between `more' and `less' superconducting phases character-
ized by different types of long-range behavior. Our observa-
ble of interest is again the supercurrent I�f� flowing through
the wire segment of length L between the left wire end and the
junction. As before, the phase f is restricted to the interval
jfj4 p.

In order to proceed, wewill again describe our systemwith
the aid of the effective action (221), where the wire contribu-
tion STL (222) remains the same, whereas the Josephson term
SJ now has a somewhat simpler form

SJ

�
j�L�� � ÿEJ

� 1=T

0

dt cos
ÿ
j�L� ÿ f

� �256�

than Eqn (223). Our further analysis will be fully analogous to
that already carried out above for the setup of Fig. 13.
Integrating out the phase variable j�x� at all points along
the wire except for its value at x � L, we arrive at the reduced
effective action

SR � SJ � 1

2
tr
�
jGÿ10 j

�ÿ EJ

� 1=T

0

dt cos �jÿ f� ; �257�

with

G0�on� � 8p
gon

tanh

�
onL

v

�
: �258�

Weobserve that fluctuations in the phase variable aremassive
with m0 � gv=�8pL�. The absence of a massless mode in our
setup (in contrast to that in Fig. 13) is a direct consequence of
phase pinning at x � 0, which prohibits uniform shifts of the
phase inside the wire. Again, employing the SCHA-type of
analysis, we define the trial action

Str � 1

2
tr
��jÿ c��Gÿ10 �m��jÿ c�� ; �259�

where the variational parameter m accounts for the interac-
tion-induced effective mass for the j-mode and c determines
the average value of the phase difference. Evaluating the free
energy of the system as a function of these two parameters
and minimizing it with respect to both m and c, we arrive at
the following SCHA equations:

EJ cos �cÿ f� exp
�
ÿG�0�

2

�
ÿm � 0 ; �260�

EJ sin �cÿ f� exp
�
ÿG�0�

2

�
� gv

8pL
c � 0 ; �261�

where

G�0� � T
X
on

ÿ
Gÿ10 �on� �m

�ÿ1
: �262�

As before, the effect of phase fluctuations reduces to effective
renormalization of EJ by the factor exp �ÿG�0�=2�. The

0 L x

F

Figure 16. Superconducting nanowire directly attached to a bulk open

superconducting ring at its left end. Ring is also attached to the wire via a

small-area tunnel junction at distance L from its left end. Open ring is

pierced by external magnetic flux F.
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supercurrent I is then found from the equation

I � gev

4pL
c : �263�

At L9 v=D, phase fluctuations are strongly suppressed and
the system remains in the mean-field regime. In the opposite
limit of large L, the solution of Eqn (260) exhibits two
qualitatively distinct regimes. At g < 4, we find jmj5 v=L.
Therefore, the emergent mass is negligible, and the effect of
fluctuations is purely Gaussian. The equation ofmotion (261)
is then rewritten as

EJ sin �cÿ f�
�
DL
v

�ÿ4=g
� gv

8pL
c � 0 : �264�

In the limit of small EJ interesting for us, we may readily set
8pEJ=�gD� < 1. In this case, the sine term is renormalized to
zero faster than the kinetic inductance contribution / Lÿ1,
and, hence, we obtain

I�f� � 2eEJ

�
v

DL

�4=g

sinf : �265�

This expression demonstrates that, for g < 4, phase fluctua-
tions (i) modify the current±phase relation, making it sine-like
instead of sawtooth-like, and (ii) yield a decrease in super-
current compared to the standard Josephson formula
I�f� � 2eEJ sinf that applies in the limit L! 0. In addi-
tion, we observe that, in the presence of fluctuations, the
supercurrent (265) decays faster with increasing L than the
standard mean field dependence I / 1=L.

Let us now turn to the case g > 4. Resolving Eqn (260) in
the limit L!1, we obtain

m �

�
EJ cos �cÿ f�

�
8p
Dg

�4=g �g=�gÿ4�
; cos �cÿ f� > 0 ;

ÿ gv

8pL
� o

�
1

L

�
; cos �cÿ f� < 0 :

8>>><>>>:
�266�

This solution remains valid only as long as L exceeds the
length scale

L� � v

D

�
g

pgN

�g=�gÿ4�
�267�

(cf. Eqn (248)). This length separates the regime L > L�,
where fluctuations yield non-Gaussian renormalization of the
interaction potential from the Gaussian regime L5L�,
where jmj5 gv=8pL. As long as v=D5L5L�, the current
is again given by Eqn (265).

For g > 4, the renormalized Josephson coupling energy
decreases more slowly than 1=L and at L � L� it becomes of
the same order as the kinetic inductance contribution. At even
larger distances, mass renormalization saturates to the value
defined in (266). The kinetic inductance contribution, on the
contrary, decreases as 1=L. Therefore, at L4L�, the phase is
pinned to the lowest minimum of the renormalized Josephson
junction potential, i.e., we have c � f. In this case, the
current±phase relation reduces to the standard mean field
form (249).

Finally, we note that the effects of QPS inside the
superconducting nanowire are analyzed in exactly the same
manner as was already done above in Section 9.4, except we

should now distinguish two phases, g < 4 and 4 < g < 16
(instead of g < 2 and 2 < g < 16), and replace the expression
for L� (248) by Eqn (267).

For g < 4, only one correlation length (253) exists in our
problem. At L5Lc, QPS effects are irrelevant, and the
supercurrent suppression is merely due to smooth phase
fluctuations. In this limit, Eqn (265) applies, and the super-
current decays as a power law with increasing L. As soon as L
exceeds Lc, quantum phase slips come into play, and the
supercurrent decay becomes exponential with L according to
Eqn (255).

At 4 < g < 16, there are already two different correlation
lengths, L� and Lc. The first one diverges as g! 4, while the
second tends to infinity at g! 16. Depending on the relation
between these two lengths, different regimes can occur.

Consider, for example, the limit L�5Lc, which can
always be realized for sufficiently large values of gx. In this
case, at shorter length scales L < L�, only smooth phase
fluctuations affect the supercurrent, causing its power-law
suppression with increasing L and the sinusoidal current±
phase relation (see Eqn (265)). At L� < L < Lc, both smooth
phase fluctuations and quantum phase slips are irrelevant,
and the supercurrent is defined by the standard mean field
result I / 1=L (249) describing the sawtooth-shaped current±
phase relation. Finally, atL4Lc, the current is exponentially
suppressed, and the current±phase relation again reduces to
the sine form (255).

8.6 Discussion
The above analysis demonstrates that superconducting
properties of metallic nanowires depend not only on their
parameters but also on the topology of the experimental
setup and on the way the experiment is performed. The
ability of the wire to carry supercurrent also varies at
different length scales, being affected by different kinds of
fluctuations, including, on the one hand, sound-like
collective plasma modes forming a quantum dissipative
environment for electrons inside the wire and, on the other
hand, quantum phase slips. As the bath of plasma modes is
(almost) Ohmic, the low temperature system behavior
resembles that involving a Schmid-like dissipative QPT
[41, 76] either at g � 2 or at g � 4, depending on the setup
under consideration. The presence of quantum phase slips
naturally leads to a BKT-type quantum phase transition at
g � 16 [12].

While the system displayed in Fig. 13 allows for unrest-
ricted fluctuations in the superconducting phase, the setup in
Fig. 16 effectively pins the phase at one of the wire ends. In the
former case, a gapless Ohmic mode (associated with uniform
phase shifts along the wire) appears at any L. Fluctuations
associated with this gapless mode cause a Schmid-like QPT at
g � 2. As a result, the wire completely loses superconductivity
at g < 2, whereas the phase with 2 < g < 16 is mixed, i.e., it is
nonsuperconducting in the long length limit and super-
conducting at shorter scales, even though the gapless mode
causes additional suppression of current in the limit L! 0.
Comparing this situation with the one encountered for the
structure of Fig. 16, we observe that, in the latter case,
superconductivity is greatly enhanced as a result of the soft
mode suppression due to phase pinning. This effect turns the
QPT into a transition between `less' and `more' superconduct-
ing phases at g � 4. Note that a similar phase transition was
also discussed in Ref. [81] in the context of superconducting
nanorings interrupted by a Josephson junction.
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9. Quantum phase slips in capacitively coupled
superconducting nanowires

Let us now extend our analysis of QPS-related effects to yet
another structure, which consists of capacitively coupled
superconducting nanowires. We will demonstrate that quan-
tum fluctuations in one of the two wires effectively `add up' to
those of another one even without any direct electric contact
between them, thereby giving rise to a number of interesting
effects, such as splitting of plasmon modes and interaction-
induced SIT shifting in each of the wires.

9.1 The model
Consider a system of two long superconducting nanowires
that are parallel to each other, as schematically shown in
Fig. 17. As before, the wires are described by geometric
capacitances C1 and C2 (per unit wire length) and kinetic
inductances L1 and L2 (times length) effectively representing
the two transmission lines. Capacitive coupling between
these two nanowires is accounted for by the mutual
capacitance Cm. Generalizing our analysis in Section 4.1 to
the above structure, we arrive at the contribution to the
system Hamiltonian that keeps track of both electric and
magnetic energies in these coupled transmission lines. It
reads [82, 83]

ĤTL � 1

2

X
i; j�1; 2

�
dx

�
Lÿ1i j F̂i�x�F̂j�x�

� 1

F 2
0

Cÿ1i j

ÿ
qxŵi�x�qxŵj�x�

��
; �268�

where x is the coordinate along the wires, and Li j and Ci j

denote the matrix elements of the inductance and capacitance
matrices

�L � L1 0
0 L2

� �
; �C � C1 Cm

Cm C2

� �
: �269�

As before, Hamiltonian (268) is expressed in terms of the dual
operators ŵ�x� and F̂�x� which obey the canonical commuta-
tion relation�

F̂i�x�; ŵj�x 0�
� � ÿidi jF0d�xÿ x 0� : �270�

Provided the wires are thick enough, the low energy
Hamiltonian in Eqn (268) is sufficient. However, for thinner
wires, one should also account for the effect of quantum
phase slips. The corresponding contribution to the total
Hamiltonian for our system can be expressed in the form (cf.
Eqn (79))

ĤQPS � ÿ
X
j�1; 2

gj

�
dx cos

ÿ
ŵj�x�

�
; �271�

where

gj �
gjxD
x

exp �ÿagjx� ; a � 1 ; j � 1; 2 �272�

are the QPS amplitudes per unit wire length, D is the
superconducting order parameter in each of the wires,
gjx � Rq=Rjx, and Rjx is the normal state resistance of the jth
wire segment equal in length to the superconducting coher-

ence length x. The total Hamiltonian for the system under
consideration equals the sum of the two terms in Eqns (268)
and (271),

Ĥ � ĤTL � ĤQPS ; �273�

representing an effective sine-Gordon model, which will be
treated below.

9.2 Plasma mode splitting
Any QPS event causes a redistribution of charges inside the
wire and generates a pair of voltage pulses propagating
simultaneously in opposite directions along a wire with
velocity v (see also Fig. 18a). In a single wire, this process is
controlled, e.g., by wave equation (188) for the operator ŵ. In
the case of two capacitively coupled wires, a QPS event in one
of the wires generates voltage pulses in both wires. The
corresponding generalization of wave equation (188) for the
operators ŵ1; 2 in each of the two wires follows directly from
system Hamiltonian (268), and the corresponding voltage
operators V̂1; 2 read

V̂i�t� � 1

F0

X
j�1; 2

Cÿ1i j

ÿ
qxŵj�x1; t� ÿ qxŵj�x2; t�

�
: �274�

It will be convenient for us to move to the phase
representation and express the corresponding equation of
motion for the phases j1; 2 in both wires in the form (cf., e.g.,
Eqn (86))ÿ

�1q2t ÿ �V 2q2x
� j1�x; t�

j2�x; t�
� �

� 0 ; �275�

where �V � � �C�L�ÿ1=2 is the velocity matrix that accounts
for plasmon modes propagating along the wires. Assume
now that a QPS event occurs at the initial time moment
t � 0 at the point x � 0 inside the first wire. As we just
discussed, at t > 0, voltage pulses originating from this
QPS event will propagate in both wires. Resolving
Eqn (275) together with the proper initial condition
corresponding to a QPS event (cf., e.g., Eqn (87)), we
arrive at the following picture.

In the first wire, each of the two voltage pulses propagat-
ing in opposite directions turns out to be split into two pulses
of the same sign propagating with different velocities v� and
vÿ, as also illustrated in Fig. 18b. Each of the voltage pulses
generated in the second wire by a QPS event in the first one is
also split into two, and they also propagate with two different
velocities v� and vÿ; however, the signs of these voltage pulses
are now opposite to each other (Fig. 18c). The velocities of
these split plasmon modes are determined by the eigenvalues

Phase slip g1

Phase slip g2

Cm

C2, L2

C1, L1

v2

v1 v1

v2

Figure 17. Two capacitively coupled superconducting nanowires.
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of the velocity matrix �V. They read [84]

v� � 1

2k

" �����������������������������������
v 2
1 � v 2

2 � 2v1v2k
q

�
���������������������������������������������������������������
�v 21 ÿ v 22 �2 � 4C 2

mv
2
1 v

2
2 =�C1C2�

q
�����������������������������������
v 2
1 � v 22 � 2v1v2k

q
375; �276�

where k � ��������������������������������
1ÿ C 2

m=�C1C2�
p

and vi � 1=
����������
Ci Li

p �i � 1; 2� is
the velocity of the Mooij±Sch�on modes in the ith wire for
Cm ! 0. In the case of identical wires with C1 � C2 � C and

L1 � L2 � L, result (276) reduces to a particularly simple
form:

v� � 1�����������������������L�C� Cm�
p : �277�

This expression indicates that one of these velocities may
strongly increase, provided the wires are located close enough
to each other, in which case the cross-capacitance Cm may
become of order C. In the absence of inter-wire interaction,
we have k � 1, and Eqn (276) obviously yields v� � v1 and
vÿ � v2.

9.3 Quantum phase transitions:
renormalization group analysis
Let us now turn to the issue of a superconductor±insulator
QPT in capacitively coupled superconducting nanowires with
proliferating quantum phase slips. As we just demonstrated,
the presence of capacitive coupling between nanowires may
significantly affect plasmon propagation in our system and,
hence, alter the interaction between quantum phase slips. In
this case, the SIT in each of the wires is controlled not only by
the parameters of the corresponding wire but also by those of
the neighboring one, as well as by mutual capacitance.
Interestingly enough, superconducting nanowires with prop-
erly chosen parameters may turn insulating once they are
brought sufficiently close to each other [83].

In order to quantitatively describe QPT in coupled
superconducting nanowires, we will employ the renormali-
zation group (RG) analysis. This approach is well devel-
oped and has been successfully applied to a variety of
problems in condensed matter theory, e.g., the problem of
weak Coulomb blockade in tunnel [41, 85±87] and non-
tunnel [88±90] barriers between normal metals or that of a
dissipative phase transition in resistively shunted Joseph-
son junctions [41, 76, 91, 92]. In the case of superconduct-
ing nanowires, QPT was described in [12] with the aid of
RG equations equivalent to those initially developed for
two-dimensional superconducting films [11] which exhibit
classical BKT phase transition driven by temperature. In
contrast, as we already discussed above, the quantum SIT
in quasi-one dimensional superconducting wires is con-
trolled by the parameter l, proportional to the square root
of the wire cross section s.

Provided the two superconducting wires depicted in
Fig. 17 are decoupled from each other, i.e., for Cm ! 0, one
should expect two independent QPTs to occur in these two
wires at l1 � 2 and at l2 � 2, respectively, where l1; 2 �
�Rq=8�

��������������������
C1; 2=L1; 2

p
. In the presence of capacitive coupling

between the wires, these two QPTs get modified. In order to
account for these modifications, let us express the grand
partition function of our system Z � tr exp �ÿĤ=T � in
terms of the path integral

Z �
�
Dw1

�
Dw2 exp

ÿÿS�w1; w2�� ; �278�

where

S � 1

2F 2
0

X
i; j�1; 2

�
dx dt

�
xDLi jqtwiqtwj �

1

xD
Cÿ1i j qxwiqxwj

�

ÿ
X
i�1; 2

yi

�
dx dt cos wi �279�

Voltage pulse

V

v
v

v
v

p

ÿp

j�x; t�

2

1

x

2
1

Â

v�

v� v�

vÿ

vÿ

vÿ

vÿ

v�

ÿp
V1

x

2
1

2
1

b

p
j1�x; t�

v�

v�

vÿ

vÿ

vÿ

vÿ

x

1

2

2

1

V2

j2�x; t� c

v�

v�

Figure 18. (Color online.) Time-dependent phase configurations describ-

ing aQPS event at t � 0 (red curve 1) and t > 0 (blue curve 2) together with

propagating voltage pulses generated by this QPS event in a single

superconducting nanowire (a) and in the first of two capacitively coupled

superconducting nanowires (b). In the case of two wires, each of the

voltage pulses is split into two propagating with different velocities v�.
(c) Time-dependent phase configurations at t � 0 (red curve 1) and t > 0

(blue curve 2) together with propagating voltage pulses in the second of

two capacitively coupled superconducting nanowires generated by a QPS

event in the first one.
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is the effective action corresponding to Hamiltonian (273)
and yi � gix=D denotes the effective fugacity for the gas of
quantum phase slips in the ith wire. For the sake of
convenience, in Eqn (279), we rescaled the spatial coordinate
in units of x0, i.e., x! xx, and the time coordinate in units of
t0, i.e., t! t=D.

As usual, let us divide the w-variables into fast and slow
components wi � w f

i � w s
i , where

w f
i �x; t� �

�
L<o2�q 2<L�dL

do dq

2p
wo; q exp �iot� iqx� ;

w s
i �x; t� �

�
o2�q 2<L

do dq

2p
wo; q exp �iot� iqx� :

Assuming dL=L5 1, expanding in w f
i , and integrating these

fast variables out, we employ the perturbation theory in y1; 2
and observe that, in order to account for the leading order
corrections, it suffices to evaluate the following matrix
Green's function at coincident points

�G f�0; 0� � F 2
0

�
do dq

�2p�2
�
xD �Lo2 � 1

xD
�Cÿ1q 2

�ÿ1
� 2

dL
L

�l ;

�280�

where �l � �Rq=8��V �C. The matrix �l reads

�l � 1���������������������������������������������������
1=v 21 � 1=v 22 � 2k=�v1v2�

q

�
l1

�
1

v1
� k
v2

�
RqCm

8

RqCm

8
l2

�
1

v2
� k
v1

�
0BB@

1CCA : �281�

Following the standard analysis [11] and proceeding to bigger
and bigger scales L, we eventually arrive at the following RG
equations for the QPS fugacities y1 and y2:

dyi
d logL

� �2ÿ lii� yi ; i � 1; 2 ; �282�

where l11 and l22 are diagonal elements of the matrix �l. Note
that, here, we restrict our RG analysis to the lowest order in
y1; 2, in which case other parameters of our problem remain
unrenormalized. It follows immediately from Eqns (282) that
our system exhibits two BKT-like QPTs at l11 � 2 and
l22 � 2. For the first wire, the corresponding phase transi-
tion point is fixed by the condition [83]

l1 � 2

�������������������������������������������
1� v 2

1 =v
2
2 � 2k v1=v2

q
1� k v1=v2

: �283�

The same condition for the second wire is derived from
Eqn (283) simply by interchanging the indices 1$ 2.

These results allow the conclusion that, in the presence of
capacitive coupling, quantum fluctuations in one of these
wires tend to decrease the superconducting properties of the
other one. As a result, the SIT in both wires occurs at larger
values of l1; 2 than in the absence of such coupling.
Equation (283) demonstrates that the magnitude of this
effect depends on the ratio of the plasmon velocities in the
two wires v1=v2 and on the strength of the capacitive coupling

controlled by Cm. Provided the wire cross sections s1 and s2
differ strongly, the plasmon velocities vi / ����

si
p

also differ
considerably. Provided, for example, the first wire is much
thinner than the second one, we have v1 5 v2, and, hence, the
QPT condition (283) in the first wire remains almost
unaffected for any capacitive coupling strength. If, on the
contrary, the first wire is much thicker than the second one,
then we have v1 4 v2, and condition (283) reduces to
l1 ' 2=

��������������������������������
1ÿ C 2

m=�C1C2�
p

, implying that the critical value l1
can considerably exceed 2 for sufficiently large values of Cm.

It is fairly obvious that capacitive coupling depends on the
distance between the wires. While at large distances this
coupling is negligible, as the wires get closer to each other,
the value of Cm increases, and, hence, their mutual influence
increases as well. Let us choose the wire parameters in such a
way that for Cm � 0 both l1 and l2 slightly exceed 2, i.e., the
wires remain in the superconducting phase, being relatively
close to the SIT. Moving the wires closer to each other, we
`turn on' capacitive coupling between them and, hence,
decrease both values l11 and l22 to below 2. As a result, two
superconducting wires become insulating as soon as they are
brought sufficiently close to each other. This remarkable
physical phenomenon is illustrated by the phase diagram in
Fig. 19.

We can also add that transport properties can be
investigated in exactly the same manner as in the case of a
single nanowire. Generalization of the technique [12] is
straightforward and yields

Ri�T � / g 2i T
2liiÿ3 ; i � 1; 2 ; �284�
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Figure 19. (a) Critical surfaces corresponding to SIT at l11 � 2 and

l22 � 2. (b) Phase diagram for two capacitively coupled superconducting

nanowires with l1 � 2:01 and l2 � 2:03. Both curves l11�Cm� and l22�Cm�
decrease and cross critical line lc � 2 with increasing mutual capacitance

Cm.
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where Ri�T � is the linear resistance of the ith wire. This result
remains applicable either for lii > 2 or for any lii at
sufficiently high temperatures.

The effects discussed here can be observed in a variety
of structures involving superconducting nanowires. For
instance, superconducting nanowires in the form of a mean-
der are quite frequently employed in experiments (see, e.g.,
Ref. [93]). Different segments of such a wire remain parallel to
each other, being close enough to develop electromagnetic
coupling. One can expect, therefore, that the wire of such a
geometry should be `less superconducting' than the same wire
that has the form of a straight line.

Let us first mimic the behavior of the wire depicted in
Fig. 20 by considering three identical capacitively coupled
superconducting nanowires that are parallel to each other.
For simplicity we will assume the nearest neighbor interac-
tion, i.e., the second (central) nanowire is coupled to both the
first and the third nanowires via the mutual capacitance Cm,
whereas the latter two are decoupled from each other. The
quantum properties of this system are described by the same
effective action (279), where the inductance and capacitance
matrices now read

�L �
L 0 0
0 L 0
0 0 L

 !
; �C �

C Cm 0
Cm C Cm

0 Cm C

 !
; �285�

and the summation runs over the indices i; j � 1; 2; 3.
Proceeding along the same lines as above, we again arrive at
Eqn (280), where the diagonal elements of the matrix �l now
read [83]

l22 � l
2

����������������������
1ÿ

���
2
p

Cm

C

s
�

����������������������
1�

���
2
p

Cm

C

s0@ 1A ; �286�

l11 � l33 � l=2� l22=4, and l � g=8 with g defined in (3).
We again recover the RG equations (282), now with
i � 1; 2; 3. When combined with Eqn (286), these RG
equations demonstrate that, in the presence of capacitive
coupling between nanowires, the SET in the central nanowire
occurs at l22 � 2, implying l > 2, similarly to the case of two
coupled nanowires.

The RG equation (282) for i � 2 combined with (286) also
accounts for the QPT in the wire having the form of a
meander, displayed in Fig. 20. In this case, within the
approximation of the nearest neighbor, when capacitive

interaction is only between the wire segments, the QPT
occurs at

l � 4����������������������������
1ÿ ���

2
p

Cm=C
q

�
����������������������������
1� ���

2
p

Cm=C
q ; �287�

i.e., the critical value of the parameter l exceeds 2 for any
Cm 6� 0. The approximation of the nearest neighbor interac-
tion appears to be well justified in the limit Cm 5C. For
stronger interactions with Cm � C, this approximation
becomes insufficient for a quantitative analysis. Qualita-
tively, our key observations should also remain applicable in
this case: a nanowire in the form of a straight line with l
slightly exceeding the critical value 2 should demonstrate
superconducting-like behavior with R�T � / T 2lÿ3 [12],
whereas the wire with exactly the same parameters may turn
insulating, provided it has the form of a meander with
capacitive coupling between its segments.

10. Concluding remarks

In this review, we have made an effort to cover a number of
recent developments related to the quantum properties of
superconducting nanowires, emphasizing fundamental
aspects of the theory of such systems. Unlike the case of
bulk superconductors, the low temperature physics of quasi-
one-dimensional nanowires and nanorings is essentially
determined by quantum fluctuations, which are, in turn,
controlled by two different parameters, the dimensionless
normal state conductance of wire segment gx (2) and
dimensionless wire admittance g (3). Both these parameters
decrease with decreasing wire cross section, making quantum
fluctuations progressively more pronounced.

Provided parameter gx remains very large, the low
temperature behavior of the system is determined by small
(Gaussian) quantum fluctuations in the phase of the order
parameter which, for not very large values of g, significantly
affect the electron density of states in superconducting
nanowires and cause supercurrent noise in superconducting
nanorings. As soon as dimensionless conductance gx becomes
not too large, quantumphase slips come into play. As a result,
current-biased superconducting nanowires acquire a nonzero
resistance and exhibit shot noise of the voltage. These
phenomena can be conveniently interpreted in terms of
tunneling of quantum fluxons (i.e., the flux quanta F0)
across the nanowire. In the context of phase±charge duality,
these fluxons can be treated as effective quantum `particles'
exactly dual to Cooper pairs with charge 2e. Such `particles'
obey complicated full counting statistics which, however,
reduces to Poissonian one in the zero frequency limit.

Quantum phase slips may strongly affect both the super-
current and its fluctuations in superconducting nanorings.
This effect can be particularly pronounced if QPSs remain
unbound, i.e., for g < 16 or, equivalently, for l < 2. In this
case and provided the ring radius exceeds the critical value Rc

(119), even at T! 0, strong quantum fluctuations essentially
`dephase' and suppress supercurrent that could flow across
the ring.

The same nonperturbative length scaleLc (253) emerges in
superconducting nanowires. For g < 16 and T! 0, such
nanowires do show an insulating behavior at scales exceed-
ing the typical size of a `superconducting domain'Lc, whereas
at shorter length scales they may exhibit superconducting
properties, albeit possibly affected by quantum fluctuations

Cm

Cm

Figure 20. Superconducting nanowire in the form of a meander.
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in the phase. Hence, Lc can be interpreted as the localization
length for Cooper pairs.

Direct experimental evidence of this kind of behavior and
of the presence of this localization length was very recently
observed in nominally uniform titanium nanowires [94].
Moreover, reanalyzing similar data reported previously in
[22, 23, 95] for a large number of MoGe nanowires, we
conclude that these data are also consistent with the above
physical picture involving the correlation length Lc (253), i.e.,
the superconducting MoGe samples [22, 23, 95] obey the
condition L9Lc, whereas the nonsuperconducting ones
typically have a length L exceeding Lc. It is also important
to emphasize that the nanowires employed in all these
experiments did not contain any grains or dielectric barriers.
Hence, similarly to normal metallic structures [1], these
observations can be interpreted as a manifestation of a weak
Coulomb blockade of Cooper pairs that may occur even in the
absence of any tunnel barriers.

Further nontrivial properties of superconducting nano-
wires may be sensitive to the specific topology of the
experimental setup under consideration. A number of
interesting phenomena associated with quantum phase slips
also occur in capacitively coupled superconducting nano-
wires.

Finally, it is worthwhile to point out that the nontrivial
quantum properties of superconducting nanowires and
nanorings open up plenty of possibilities for their applica-
tions in nanoelectronics, metrology, and quantum informa-
tion technology. Various devices, such as single-charge
transistors [51] and charge quantum interference devices [52]
have already been demonstrated. Superconducting nanowires
can also be employed as central elements for QPS flux qubits
[55] as well as for creating a QPS-based standard of electric
current [48, 53] and single photon detectors [93]. We are
confident that intensive investigations of the intriguing
fundamental properties of quasi-one-dimensional supercon-
ducting structures, as well as their technological applications,
will continue in the near future.
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