
Abstract. The radiative energy loss of a relativistic charge in
media with photon absorption and scattering is discussed. The
solution to the Tamm problem in a medium with absorption is
given. Expressions for the radiation loss are given with the
inclusion of multiple scattering of the radiating charge.

Keywords: Vavilov±Cherenkov radiation, radiative energy
loss

1. Introduction

Vavilov±Cherenkov radiation (VCR) [1] is one of the most
striking effects of the electrodynamics of continuous media.
Its theoretical interpretation in terms of the emission of light
by a uniformly moving charge with a speed exceeding the
speed of light in the medium was given by I E Tamm and
I M Frank [2]. The spectrum of the average radiation energy
from a unit charge trajectory, d2�D=�h do dx, for example, an
electron, is given by the well-known Tamm±Frank formula:

d2 �D
�h do dx

� �ho
d2 �N

�h do dx
� ao

c

�
1ÿ 1

b 2n 2

�
; �1�

cos y � 1

bn
< 1 :

Here, �D and �N represent the emitted energy and the number of
photons, and the relation d �D � �ho d �N is valid in a narrow
frequency range (o;o� do). The speed of the charge in units
of the speed of light is b � v=c, and the medium is
characterized by the refractive index n. The radiation is
directed forward along the charge motion at a fixed angle y
relative to the direction of the particle's velocity. The emitted

energy and the number of photons are distributed according
to the generalized and ordinary Poisson distributions,
respectively, and formula (1) includes their mean values in
this sense. Uniformity of motion is implied in the section of
the trajectory which is much longer than the radiation length,
formally infinite in Ref. [2]. Note that the condition of speed
constancy is approximate, since, for a relativistic charge with
Lorentz factor g4 1, the relative change in speed is about g 2

times less than the relative change in energy, and the loss of
speed can be ignored. Formula (1) is valid in a transparent
medium, when radiation is observed far away from the charge
trajectory. In real media, however, there is absorption and
scattering of photons; therefore, from amethodological point
of view, it is of interest to consider a generalization of formula
(1) for these cases, including the effect of multiple charge
scattering.

In this paper, proceeding from the Umov±Poynting
theorem, a generalization of the VCR for the case of
absorbing and scattering media will be formulated in terms
of radiative energy loss. Several methodologically interesting
options for the trajectory of chargemotion will be considered,
including motion with multiple scattering.

2. Umov±Poynting theorem
and radiative energy loss of a relativistic charge

The Umov±Poynting theorem [3] makes it possible to clarify
what can be meant by an analogue of VCR in absorbing
media. It is usually formulated as a balance of changes in the
energy of the electromagnetic field due to the work done by
external currents minus the flow of field energy through the
surface of the volume under consideration. The Umov±
Poynting theorem is determined by the ratio in which, for
our purposes, the work of external currents is moved to the
left side, and the field energy, to the right (the system ofGauss
units is used, a � e 2=��hc� ' 1=137):

ÿj eE � 1

4p

�
E
qD
qt
�H

qB
qt

�
� divS ; �2�

where E and D are the electric field and induction, respec-
tively, andH and B are the magnetic field and induction. The
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density of the current external to themedium, for simplicity of
a point charge e, j e � evd�rÿ vt� (r is the spatial position of
the charge at the point in time t, and d is the Dirac delta
function). The Umov±Poynting vector is given by the relation

S � c

4p
E�H : �3�

Expression (2) defines the energy loss of an external charge
per unit volume of the medium per unit time. This loss is
distributed between the change in the energy of the electro-
magnetic field in a unit volume surrounding the charge and
the energy flow of the electromagnetic field through the
surface of this volume. It is the calculation of the flow of the
Umov±Poynting vector through a cylindrical surface sur-
rounding a uniformly moving charge that led the authors of
Ref. [2] to relation (1).

If the medium is absorbing, then it is necessary to not
consider the flow of the Umov±Poynting vector, but directly
the energy loss of the external charge, i.e., the left side of
relation (2). This loss represents the work of the charge
against the electric field created by it and the medium at the
point where the charge is located (Landau's method [4]). In
order to single out the part in this loss that corresponds to the
VCR in a transparent medium, we more with the help of the
Fourier transform to the space of frequencies and wave
vectors k; for example, for an electric field, we have

E �r; t� �
� �

dk do

�2p�4 E �k;o� exp �i�krÿ ot�� ; �4�

the inverse transformation being given by integrals over an
infinitely large spatial volume in units of the radiation
wavelength and a time interval much longer than the
reciprocal frequency of the radiation (formally, the limits
can be assumed to be infinite). The medium is assumed to be
isotropic, homogeneous, and nonrelativistic to the extent that
magnetism is allowed to exist.

By dividing E �k;o� into components parallel and
perpendicular to the wave vector, we define the average
radiative energy loss, i.e., the loss for the production of
photons in the medium as work against the electric field
component perpendicular to the wave vector,

E?�k;o� k � 0 :

Such a definition corresponds to the concept of a photon in a
medium as an excitation of the medium, whose wave vector
and the electric field are perpendicular. The average radiative
energy loss in the entire space of nonzero current densities and
for the entire time of their existence is given by the following
expression:

�D? � ÿ 2

�2p�4
�1
0

do
�
K3

dkRe
ÿ
j ��k;o�E?�k;o�

�
: �5�

The real part of the integrand and the complex conjugate
current density of the particle arose from the contribution of
integration over negative frequencies. We express the electric
field using theMaxwell equations and the continuity equation
in terms of the current density of the external charge to obtain

E? � 4pi m
o
c 2

k 2jÿ �k j� k
k 2
ÿ
k 2 ÿ Emo 2=c 2

� : �6�

Here, m and E are, respectively, the magnetic and dielectric
permittivities of the medium, which depend on the frequency
and, in the general case, on the wave vector. This choice of
response functions is the most common, but not the only one
[5], but for our purposes it will be quite sufficient. Substituting
formula (6) into expression (5), we express the radiation loss
in terms of the current density and the response functions of
the medium:

�D? � ÿ 2

�2p�4
�1
0

do
�
K3

dk

� Re

�
4pim

o
c 2
�kk��j j �� ÿ �k j��k j ��
k 2�k 2 ÿ Emo 2=c 2�

�
: �7�

For a point external charge emoving along the trajectory r�t�
with speed v�t�, the current density is expressed as
j �r; t� � ev �t� d�rÿ r�t��. Its Fourier component is of the
form

j �k;o� � e

�1
ÿ1

dt v�t� exp ÿiotÿ ikr�t�� ; �8�

where the integration is carried out over the time domain of
nonzero velocity. This expression allows us to pass to the
intensity of average radiation loss, as well as to the frequency-
angular spectrum of the average number of photons emitted
by a moving charge per unit time [6]:

d3 �N?�t�
�h do dt dO

� 1

�ho
d3 �D?�t�

�h do dt dO
� a

2p3�hc

� Im

��1
0

m�o� dk
k 2 ÿ E�o�m�o�o 2=c 2

�
�1
ÿ1

dt
ÿ
k 2v�t� t�v�t� ÿ o 2

�
� exp

�
iotÿ ik

ÿ
r�t� t� ÿ r�t���� ; �9�

where O is the solid angle, and the radiation polar angle y is
measured from the direction of the velocity v�t�, i.e.,
dk � k 2 dkdO � 2pk 2 dk d cos y. Expression (9), obtained
by the method of classical electrodynamics, disregards
quantum recoil effects. The time dependence of the velocity
will be required below when considering radiation from a
finite trajectory and a multiply scattered charge.

3. Radiation energy loss
of a uniformly moving charge

In the case of uniform motion with velocity v �r�t� � vt�, the
integral over t in expression (9) leads to the following result:�1
ÿ1

dt
ÿ
k 2v 2ÿo 2

�
exp

�
i�oÿkv�t��2pk 2v 2 sin2 yd �kvÿo� :

Then, the frequency-angular spectrum per unit time of the
average number of photons emitted by the charge will assume
the form

d3 �N?�t�
�h do dt dO

� a
2p3�hc

Im

� �1
0

m�o�2pk 2v 2 sin2 yd�kvÿo� dk
k 2 ÿ E�o�m�o�o 2=c 2

�
;

and, in order to subsequently obtain the angular dependence,
the delta function can be used to integrate modulo the wave
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vector:

k � o
v cos y

; d �kvÿ o� ! 1

v cos y
;

dO � 2p d cos y � p
d cos2 y
cos y

:

Finally, we have (dx � v dt)
d3 �N?

�h do dx d cos2 y
� a

�hc
Im

�
m tan2 y

p�1ÿ Emb 2 cos2 y�

�
:

To expand the imaginary part, we introduce the complex
variable x � Em � x1 � ix2, where E � E1 � iE2, m � m1 � im2.
Then,

d3 �N?
�h do dx d cos2 y

� a
�hc

�
m1 sin

2 y�m2 tan
2 y

x2b
2

ÿ
1ÿx1b 2 cos 2 y

��
� Gx

p
��cos2 yÿ cos 2 yx�2 � G 2

x

� ; �10�

cos2 yx � x1
b 2jxj2 ; Gx � x2

b 2jxj2 ;

where x1 � E1m1 ÿ E2m2, x2 � E1m2 � E2m1, jxj2 � �E 21 � E 22 ��
�m 2

1 � m 2
2 �.

In a nonmagnetic medium (m � 1), relation (10) reduces
to

d3 �N?
�h do dx d cos2 y

� a
p�hc

�1ÿ cos 2 y�G
�cos 2 yÿ cos 2 y0�2 � G 2

; �11�

where

cos 2 y0 � E1
b 2jEj2 ; G � E2

b 2jEj2 : �12�

Expression (11) was obtained by U Fano in Ref. [7] in a
slightly different form based on the quantum mechanical
approach. One can see that the radiative energy loss of a
uniformly moving charge in a medium experiences a
Lorentzian angular broadening proportional to the imagin-
ary part of the permittivity. Figure 1 illustrates this broad-
ening in Freon C6F14 for two values of radiation energy:
�ho � 6:8 eV (dashed curve) and �ho � 7:7 eV (solid curve),
and it is assumed that v � c [6]. This broadening, being
proportional to the ratio of the emission wavelength to the
absorption length, is extremely small in the visible and
ultraviolet regions of the spectrum and is usually not visible
against the background of chromatic aberration due to the
frequency dispersion of the emitted light, which is especially
pronounced in the ultraviolet domain.

Integrating expression (11) over the angular variable,
cos 2 y, gives an expression for the spectrum of the average
number of photons emitted by a uniformly moving charge
from a unit path:

d2 �N?
�h do dx

� a
p�hc

��
1ÿ E1

b 2jEj2
�
arg
ÿ
1ÿ b 2E �

�

� E2
b 2jEj2 ln

�
1

j1ÿ b 2Ej

��
: �13�

Expression (13) was first obtained by E Fermi in Ref. [8], who
considered it to be closely related to VCR. Note that
expression (13) shows a slow logarithmic increase depending
on the Lorentz factor of the relativistic charge, changing in
the region g � 103 to a plateau (Fermi plateau), which reflects
the density effect noted by EFermi [9]. Figure 2 illustrates this
effect, showing the relative relativistic increase in the ioniza-
tion loss of charge energy in a 6-cm-thick 93% Ar�7% CH4

gas mixture at normal pressure and temperature. The curve is
the result of calculations using the photoabsorption model of
Ref. [10], while the circles are experimental data fromRef. [11]
obtained using a drift proportional multiwire chamber.
Therefore, the relativistic increase in the ionization loss of a
charged particle is entirely determined by the absorption of
Cherenkov photons near its trajectory, which makes a
contribution to the total losses that grows with increasing
Lorentz factor. Note that the photoabsorptionmodel, despite
the fact that it does not take into account the spatial
dispersion of the permittivity, which is significant near the
absorption bands (see, for example, Ref. [4, æ 106]), describes
the experimental results quite well. The reason is the accuracy
of the photoabsorption cross sections used in the model for
the outer shells of an atom with an energy of less than 100 eV,
which make the main contribution to the ionization energy
loss. Therefore, integrally, in terms of average energy losses,
the model agrees with the experimental data.

In a medium with random inhomogeneities, for example,
in aerogel Cherenkov detectors [12], the electric field and
induction, averaged over a volume that includes many
inhomogeneities, can be related to the effective permittivity.
Being a complex quantity, for a uniformly moving charge it
leads to a picture of radiation loss, which is equivalent to an
absorbing medium. It is assumed that a volume with a size of
the order of the radiation wavelength contains many
inhomogeneities. Physically, this is understandable, since
both absorbing and scattering media lead to a decrease in
photon flux in the direction of their main VCR emission,
destroying the coherence inherent in this effect. Compared to
detectors based on a homogeneous medium, aerogel Cher-
enkov detectors show a more pronounced angular aberration
of the VCR (which is averaged over a volume that includes
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Figure 1. Angular distribution of radiative energy losses of a relativistic

charge, g4 1, in freon C6F14 for radiation energies �ho � 6:8 eV (dashed
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many inhomogeneities) and a more extended threshold for its
occurrence.

In the limit of a transparentmedium, whenG! 0, the real
permittivity can be expressed in terms of the square of the
refractive index, E! E1 � n 2�o�. Since the Lorentz line of the
angular distribution in expression (11) tends to the delta
function in this case, we arrive at the VCR frequency-angular
spectrum:

d3 �Nc

�h do dx d cos2 y
� a

�hc

�
1ÿ 1

b 2n 2

�
d
�
cos 2 yÿ 1

b 2n 2

�
:

�14�

This expression explicitly fixes the VCR radiation angle, and
subsequent integration over the angle (moreover, the natural
angular variable for VCR is cos 2 y) gives relation (1).

We consider a transparent medium in which the magnetic
permeability is not equal to unity, but E2 ! 0 and m2 ! 0. In
such a medium, the square of the refractive index is expressed
in terms of the dielectric and magnetic permeabilities,
n 2 � E1m1, and the frequency-angular spectrum of Cheren-
kov photons emitted from a unit path is expressed as

d3 �Nc

�h do dx d cos2 y
� sign �Gx� am1

�hc

�
1ÿ 1

b 2n 2

�

� d
�
cos 2 yÿ 1

b 2n 2

�
: �15�

Here, we can consider an interesting case when E1m1 > 0, but
both permeabilities are less than zero, E1 < 0 and m1 < 0 (left
media or metamaterials [13, 14]). Then, the radiation follows
the group velocity qo=qk, which is opposite to the wave
vector k, while the radiation is emitted backwards in the
angular range (p=2; p). Taking into account the sign of
sign �Gx�m1 allows us to consider not only the emission but
also the absorption of Cherenkov photons. Figure 3 shows
variants of emission or absorption of Cherenkov photons in
conventional media and metamaterials.

4. Tamm problem in an absorbing medium

Consider the uniform motion of a charge with velocity v in a
finite interval of a trajectory (Tamm's problem [15]). The
Fourier component of the current density in this case is of the
form

j �k;o� � 2ev
sin
��kvÿ o� t=2�
kvÿ o

; �16�

where t is the total time of charge motion (Fig. 4). Repeating
the calculations given in Sections 2, 3 (see also Ref. [6]), we
obtain the following expression for the frequency-angular
spectrum of the average radiation intensity:

d3 �D?�t�
�h do dt d cos y

� a
p
b 2o sin2 y

� Re

� ��
E
p

exp
�ÿ iot �1ÿ b

��
E
p

cos y��
� sin

�
ot �1ÿ b

��
E
p

cos y��
1ÿ b

��
E
p

cos y

�
: �17�

Expression (17) is a complete solution to the Tamm problem
in an absorbing medium. Its integration over time within
(ÿt=2; t=2) leads to the frequency-angular spectrum of the
average energy radiated from a trajectory interval of length
vt:

d2D?
�h do d cos y

� 2a
p

b 2 sin 2 y

� Re

� ��
E
p

sin2
��ot=2��1ÿ b

��
E
p

cos y��
�1ÿ b

��
E
p

cos y�2
�
: �18�

Integration of expression (18) over the photon emission angle
in the limit ot4 1 leads to two contributions to the total
spectrum of radiative energy loss. The first is expression (13)
multiplied by vt, which reflects the radiation loss from a
segment of uniform charge motion. The second contribution
relates to radiative energy loss during instantaneous (over a
time much shorter than the reciprocal of the characteristic
radiation frequency) acceleration and deceleration at the ends
of the trajectory (bremsstrahlung). These contributions,
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Figure 2.Relative relativistic increase in ionization loss of charge energy in

a 6-cm-thick gas mixture of 93% Ar� 7% CH4 at normal pressure and

temperature. Curve is the calculation made according to the photoabsorp-

tion model of Ref. [10], circles are the experimental data of Ref. [11]
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respectively, are of the form

dD?
�h do

� a
pb

Re

�
1

E

�
ln

1� b
��
E
p

1ÿ b
��
E
p ÿ 2b

��
E
p ��

� �E! E1 � n 2�o��
� a

pbn 2�o�
�
ln

1� bn�o���1ÿ bn�o���ÿ 2bn�o�
�
: �19�

Expression (19) for a transparent medium obtained by
I E Tamm in Ref. [15] transforms in a vacuum into the well-
known expression

dD?
�h do

� a
2p

b 2

� p

0

sin 3 y dy

�1ÿb cos y�2 �
a
pb

�
ln

1� b
1ÿ b

ÿ 2b
�
; �20�

given in Ref. [3].

5. Radiative energy loss
of a multiply scattered charge

In a number of experiments using liquid Cherenkov detectors,
it is necessary to evaluate the accuracy of reconstructing the
vertices of rare, for example neutrino, events by analyzing the
amplitudes of light signals of VCR relativistic electrons in
photomultipliers (PMs) or LEDs distributed around a liquid
(water) radiator. Multiple scattering of electrons in liquid
VCR radiators affects the accuracy of reconstructing the
kinematics of events [16]. Consideration of the radiation loss
of amultiply scattered chargemakes it possible to analytically
estimate the change in the frequency-angular spectrum of
emitted photons [17]. The effect of multiple scattering on the
radiation of a relativistic, g4 1, charge in amedium is usually
considered for small radiation angles, on the order of 1=g, in
the X-ray frequency range (see, for example, reviews [18, 19]
and references therein).

Here, we dwell on the problem in the optical region, when
the radiation angle in a dense medium is y � 1 at small
multiple scattering angles compared to unity. Let us consider
a charge e, which moves along an arbitrary but close to
straight trajectory r�t� in a homogeneous isotropic nonmag-
netic absorbing medium with a complex permittivity
E � E1 � iE2. For simplicity, we confine ourselves to the case
of only the frequency dispersion E�o� in the optical range. We
consider the frequency-angular intensity spectrum of the
emitted photons averaged over all possible trajectories that

are parallel to the unit vector n0 at a given time (Fig. 5). Then,
relation (9) averaged over trajectories gives�

d3 �N?
�h do dt dO

�
� a

2p3�hc
Im

��1
0



I �k;o�� dk

k 2 ÿ E�o�o 2=c 2

�
; �21�



I �k;o�� � 2

v
Re

� �1
0

ds exp

�
i
o
v
s

�

�
�
4p
dn f �s; k; n�ÿk 2v 2n n0 ÿ o 2

��
:

It is assumed that the averaging over the previous and
subsequent trajectories is the same, which allows us to
restrict ourselves to integration over positive values of the
trajectory length, s > 0. Here,

f �s; k; n� �
�
R3

dr f �s; r; n� exp �ÿikr�

represents the Fourier component of the probability density
function f �s; r; n�, where n is the unit direction vector of the
trajectory for its length s, and the unit vector n0 corresponds
to the time t at s � 0. It satisfies the following kinetic equation
[20]:

q f �s; k; n�
qs

� ikn f �s; k; n�

� N

�
4p

�
f �s; k; n 0�ÿf �s; k; n��sÿjn 0 ÿ nj�dn 0 ;

with initial condition

f �0; k; n� � d�nÿ n0� :

Here, s is the elastic cross section responsible for multiple
scattering andN is the number of atoms per unit volume. It is
assumed that the multiple scattering angle # is much smaller
than the radiation angle y, which allows us to put kn ' kn0 in
a simplified way. Now, the distribution function can be
expanded into a series of Legendre polynomials Pl�cos#�
(cos# � nn0):

f �s; k; n� �
X1
l�0

fl �s; k�Pl �cos#� : �22�

The expansion coefficients fl �s; k� satisfy the following
equation:

q fl �s; k�
qs

� �sl � ik cos y� fl �s; k� � 0 ;

v

v

t
2

ÿ t
2

t

Figure 4. Uniform motion on a finite interval of the trajectory (Tamm's

problem).

k

n0

n�s�
#(s)y

Figure 5.Notation in the treatment of multiple scattering.
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where the cross sections sl are of the form

sl � 2pN
� p

0

s�w�ÿ1ÿ Pl �cos w�
�
sin w dw :

The normalized distribution function is expressed by the
following sum:

f �s; k; n� �
X1
l�0

2l� 1

4p
Pl �cos#� exp

�ÿ �sl � ik cos y� s� :
Due to the orthogonality of the Legendre polynomials,
only the first two terms of this sum contribute to
hI �k;o�i. Integration of series (22) over s and extraction
of the real part, taking into account k cos y � kn0, leads to
the relation



I �k;o���ÿ 2po 2

v
d
�
k cos yÿ o

v

�
� 2k 2v s1
�k cos yÿ o=v�2�s 2

1

:

Here, the first term on the right-hand side corresponds to the
contribution of the on-average-straight trajectory, and it is
associated with the VCR. The second term shows the average
effect of multiple scattering on the angular radiation distribu-
tion. To simplify calculations in expression (21), we consider
the case of an almost transparent medium; then, the
contribution from multiple scattering reduces to (instead of
k we introduce the complex variable z)�

d3 �N?msc

�h do dt d cos2 y

�
� a

�hc

v s1
p2 cos3 y

Im

��
C

g�z� dz
�
;

g�z� � 1

2

z 2

z 2 ÿ a 2

�
1

�zÿ b��zÿ b �� �
1

�z� b��z� b ��
�
;

a 2 � E
o 2

c 2
; b � 1

cos y

�
o
v
� is1

�
:

Here, integration over z can be carried out over the entire real
axis, closing the contour in the upper half-plane with a
semicircle with an infinitely long radius. The integral along a
semicircle is infinitely small, and the contribution of singular-
ities in the limit of an almost transparentmedium is limited by
the first-order pole at point a. As a result, we arrive at
(dx � v dt)�

d3 �N?msc

�h do dx d cos2 y

�
� a

�hc

b�n 2 cos2 y� bÿ2 � e 2�
2n cos y

� Gmsc

p
��cos 2 yÿ cos2 ymsc�2 � G2

msc

� ;

cos 2 ymsc � 1ÿ b 2e 2

b 2n 2
; Gmsc � 2e

bn 2
; e � cs1

o
:

The calculation for a straight-on-average trajectory is carried
out immediately and gives�

d3 �N?cr
�h do dx d cos2 y

�
� ÿ a

�hc

1

n 2b 2
d
�
cos 2 yÿ 1

n 2b 2

�
:

In the case of negligibly small multiple scattering, e! 0,
the frequency-angular distribution of the average number
of photons per unit length of the trajectory reduces to
VCR:�

d3 �N?
�h do dx d cos2 y

�
�
�

d3 �N?msc

�h do dx d cos2 y

�

�
�

d3 �N?cr
�h do dx d cos2 y

�

� a
�hc

�
1ÿ 1

n 2b 2

�
d
�
cos2 yÿ 1

n 2b 2

�
: �23�

The value of the transport cross section s1 for small angles of
multiple scattering #5 1 is determined by its rms angle. The
relative broadening of the angular distribution can then be
estimated from Gmsc= cos ymsc � 2e=n90:1. This value for
typical liquid or solid radiators is much greater than the
absorption effect but does not exceed several milliradians in
water for electrons with an energy of 1±10 MeV.

6. Discussion

The above examples show that the radiative loss of a
relativistic charge in absorbing and scattering media can
serve as a generalization of its radiation observed far from
the charge in transparency windows. The radiative energy loss
of a uniformly moving charge makes it possible to obtain an
expression for the frequency-angular spectrum of the average
number of photons emitted by a charge from a unit path,
which, in the limit of a transparent medium, gives a similar
spectrum for VCR. Absorption and/or scattering of photons
lead to a Lorentzian broadening of the angular distribution,
with cos 2 y acting as a natural angular variable, and the
relative broadening is determined by the ratio of the emission
wavelength to the absorption (scattering) wavelength.

The threshold for the occurrence of VCR in absorbing
media experiences spreading dependent on the charge energy,
which is experimentally observed as a relativistic increase in
the ionization loss of a charged particle. This increase is due to
ionization associated with photoabsorption, near the trajec-
tory of the charge, of photons emitted by it in the region of
atomic shell energies above the first ionization potential.

Similarly, multiple scattering leads to a Lorentz broad-
ening of the VCR angular spectrum even in a transparent
medium, although, strictly speaking, this broadening is
determined by bremsstrahlung with an instantaneous change
in the direction of velocity due to elastic scattering of the
charge by the nuclei of the medium. Within the framework of
this paper, we limited ourselves to a consideration of
radiation loss for the motion of a charge along an almost
straight trajectory, simultaneously obtaining expressions for
bremsstrahlung with an instantaneous change in velocityÐ
at the ends of the trajectory in the Tamm problem or during
elastic scattering by the nuclei of the medium in the case of
multiple scattering.

It is interesting to represent the radiation of a relativistic
charge in a medium in terms of the coherence length. For a
transparent medium, according to review Refs [21, 22], it is
introduced as

L�o; y� � pv
o

1

1ÿ bn cos y
: �24�
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Its generalization to an absorbing medium is the complex
quantity

Z�o; y� � pv
o

1

1ÿ b
��
E
p

cos y
; �25�

which is usually defined as a complex radiation formation
zone. Its real part in a transparent medium is reduced to the
coherence length. Note that, in a transparent medium under
the VCR condition, the coherence length (24) becomes
infinite, while the real part of expression (25) remains a finite
value, which corresponds by the order of magnitude to the
absorption (scattering) length of Cherenkov photons. The
VCR coherence length acquires a natural physical meaning in
real media when absorption, scattering, and/or multiple
scattering are taken into account. In the last case, it is
determined by the transport length of elastic scattering by
the nuclei of the medium, � sÿ11 .

Consideration of radiation loss according to expression
(9) is not limited to the above cases. Dipole, undulator, and
magnetic breaking radiative loss in an absorbing medium, as
well as VCR in absorbing media with spatial dispersion,
remain beyond the scope of this paper. They will be
considered in other studies.
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