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Abstract. A system of interacting classical oscillators is dis-
cussed, which is an analog of the quantum-mechanical problem
of a discrete energy level interacting with an energy quasi-
continuum of states considered by Fano. The limiting transi-
tion to the continuous spectrum and the possible connection of
this problem with the generation of coherent phonons are anal-
yzed.
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1. Introduction

This article discusses searches for a classical mechanical
oscillatory system, which, under the effect of external
periodic forces, would feature a spectral dependence of the
oscillation amplitude squared that coincides in appearance
with the Fano resonance line-shape and consists of classical
elements, each of which would be a classical analog of the
corresponding quantum-mechanical element of the Fano
model. We begin with a brief explanation as to why suchlike
attempts are of interest from various points of view.

1.1 History of the issue

and description of the Fano problem

The history of Fano resonance, named after Enrico Fermi’s
student Hugo Fano, who endeavored to explain the
asymmetric shape of experimentally observed absorption
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lines, is very remarkable. The Fano problem arose from the
theoretical description of the characteristic asymmetric
absorption lines of noble gases in the ultraviolet region of
the spectrum, which appear against the background of a
wide nonresonant absorption continuum [1]. It is of interest
to note that, in the archive left after Fermi’s death, a
complete solution was discovered, which he had found
before laying out the problem (Fano himself often talked
about this [2, 3]). However, when Fano finished the
calculations and asked Fermi whether a joint article could
be prepared, Fermi replied that an article could be written,
but it would be sufficient to extend appreciation to him.
Later, the approach of [1] was successfully developed to
describe the scattering of an electron beam by helium atoms
[4]. It turned out that the minimum in the dependence of the
scattering cross section on the energy of incident electrons,
i.e., suppression of scattering, can be explained by the
quantum-mechanical effect of the destructive interference
of the amplitudes of an electron wave not absorbed by an
atom and a wave absorbed with the formation of a
metastable excited state of the atom, which, after some
time, decays again into a continuous spectrum of states. In
other words, the states of the discrete and continuous
spectra can affect each other, and the problem can be
formulated as follows: how will the states of the discrete
and continuous spectra alter if some small interaction is
switched on, which transfers particles from the discrete state
to the continuous-spectrum state.

Fano himself formulated the problem to be solved as
follows [4]. Consider an atomic system with a set of zeroth-
approximation states, and among these states, one state (¢),
which belongs to a discrete configuration, and a continuum of
states Y. Each of these states is nondegenerate, since the
degeneracy is removed by choosing an adequate set of
quantum numbers. The problem is to diagonalize the part of
the energy matrix that refers to the subset of states ¢ and Y.
The elements of this part of the energy matrix, which form
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a square matrix, are denoted as
(p|H|p) = E, ,
(g |HlQ) =V,
<WE/’|H\1//E/> = E/5(E” - E’)~

It is assumed that the discrete energy level E,, lies within the
continuum of values E’.

Such a formulation of the problem turned out to be so
general that it soon became clear that the Fano problem arises
in various fields of physics. It was found that the appearance
of asymmetric Fano lines is a common phenomenon in such
diverse areas of research as nuclear [5], atomic [6-8], and
solid-state [9—12] physics, as well as chemistry [13]. Fano
resonances are of interest for their generality and still spur
lively discussions [14—-16], while the original work [4] is now
one of the most frequently cited publications in the history of
physics [2, 3].

It was believed for a long time that Fano interference is a
purely quantum-mechanical phenomenon that has no classi-
cal analog, since interference phenomena cannot be observed
in the scattering of classical particles; however, spectral reso-
nance lines, the shape of which resembles the Fano resonance
line shape, also arise in considering classical systems repre-
sented by mechanical [17-19] or equivalent electric oscillators
[20, 21]. It is the formal resemblance of the spectra of classical
and quantum-mechanical systems that stimulated the search
for a classical problem similar to the Fano problem. It turned
out that a characteristic asymmetric resonance line shape can
be obtained even in a system of only two interconnected
oscillators [17]. In this case, it is fundamentally important that
one of the oscillators have nonzero damping. Despite the fact
that consideration [17] is very instructive, it is difficult to
recognize a system of two coupled oscillators as analogous to
one consisting of a discrete state that interacts with a
continuum of other states.

The first attempt to explore the classical problem, which is
completely analogous to Fano’s quantum-mechanical prob-
lem, should, apparently, be considered the work of Riffe [18].
He succeeded in obtaining a Fano resonance line shape for
a classical system, very similar to the original quantum-
mechanical one, which consists of a classical oscillator con-
nected with a quasi-continuum of other classical oscillators.
However, Riffe failed to obtain a rigorous solution to the
classical problem; in particular, normal oscillations of a
coupled system of oscillators have not been found. It should
be noted that the Fano problem was formulated in quantum
mechanics for a conservative system, while in the classical
analog [18] a fundamental role is played by the damping of
oscillators, due to which the time reversal symmetry is
violated and equations of motion become nonconservative
[22].

1.2 Physical meaning and mathematical aspects

Interest in searching for links between the classical and
quantum-mechanical descriptions of the world goes back to
Bohr’s correspondence principle, and Fano’s problem looks
very attractive in this respect. Analysis of a classical analog of
quantum-mechanical phenomena is methodically useful and
has often been presented in Physics—Uspekhi’s notes [23-25].
The situation in which one oscillator interacts with an
ensemble of oscillators of a different nature is very common
in solid state physics and in considering the interaction of
radiation with matter. At the same time, many collective

excitations in solids are formed as a result of the coordinated
motion of a large number of charge carriers, and are
essentially quasi-classical states with a fairly well-defined
oscillation phase.

Interest in the search for analogies between the Fano
problem and classical oscillatory systems was partly stimu-
lated by recent advances in the physics of coherent phonons,
including the synchronous vibrational excitation of a crystal
lattice due to the action of a short laser pulse whose duration
is less than the oscillation period of atoms [26-28]. The
spectra of these oscillations feature, under certain condi-
tions, a characteristic asymmetric resonance line shape, which
resembles the Fano resonance one [26]. It should be noted
that asymmetric line profiles of spontaneous Raman scatter-
ing in crystals, which were also observed earlier under
conditions of continuous-wave laser excitation, were inter-
preted as a result of the interaction of a phonon with an
electron continuum [29]. Time-resolved experiments made it
possible to directly measure the phase of atomic vibrations,
and the question naturally arose about the relation of this
phase to the mechanism of excitation of coherent vibrations
[18, 19, 21]. An attempt was made in [18] to carry out a
consistent classical treatment of the Fano problem, in which
the Fano model is used to explain the dependence of the initial
phase of coherent phonons excited by an ultrashort light pulse
in a silicon crystal on the doping level of this crystal with
donor impurities [30]. The classical equations of motion are
derived in this case from the quantum Hamiltonian of the
system based on the assumption that a coherent state of the
vibrational degree of freedom of the crystal is excited, with
which the electronic degrees of freedom, which are also in
coherent states, are weakly coupled. As a result, the coherent
phonon is replaced by a classical harmonic oscillator, which
is assumed to be weakly coupled to the quasi-continuum
of classical harmonic oscillators representing the electronic
degrees of freedom of the crystal. The author of [18] succeeded
in finding a relationship between the initial phase of coherent
vibrations of a crystal lattice after its excitation by an ultra-
short laser pulse and the Fano parameter of the spectral line
of this vibration in the spectrum of spontaneous Raman
scattering of light.

The approach developed by Fano can be used to describe
the dispersion of quasiparticles, which was noticed by the
authors of [31] in considering the dispersion of exciton
polaritons in a microcavity. In this case, the same result is
obtained as when the standard apparatus of Green’s func-
tions is used. It turns out that the analysis of the resonant
interaction of an electromagnetic wave in such a microcavity
with an ensemble of two-level systems in a random potential
[32] leads to an equation for the energy eigenvalues coinciding
with the secular equation for interacting classical oscillators,
which directly indicates that the semiclassical consideration is
well justified. A similar situation arises in considering the
interaction of light with an ensemble of atoms in light echo
problems, when the energy of a light wave is transferred to an
ensemble of local oscillators.

As noted above, from a mathematical point of view, the
Fano problem is reduced to finding the eigenstates of a
quantum-mechanical Hamiltonian, which has both a dis-
crete and a continuous spectrum, with the inclusion of a
weak resonant coupling between the states of the discrete and
continuous spectra [4]. The solution to the problem is the
superposition of the initial states of these spectra. When such
states are excited, the matrix elements of the excitation of a
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discrete level and continuum are summed with different
phases. This leads to the emergence of a characteristic
frequency dependence of the system excitation, now called
the Fano resonance line shape or Fano interference, which
differs significantly from the Breit-Wigner dependence
(Lorentzian form of the spectral line). The problem is thus
reduced to the study of a system of equations in partial
derivatives. As for the classical analogies mentioned above,
they all explore systems of ordinary differential equations.
This circumstance is discussed below.

1.3 Remaining problems

Despite the formal resemblance between the spectral profile
of classical and quantum-mechanical resonances, a strict
analogy between these cases has not yet been established.
Currently known classical systems that exhibit the spectral
dependence of the resonance, resembling the Fano resonance,
are described by Hamiltonians that are not classical analogs
of the quantum-mechanical Hamiltonian of the Fano
problem. The formal resemblance of the resonance spectral
profile is obviously not a sufficient basis for drawing an
analogy between quantum and classical problems. Attempts
to model the Fano problem on classical oscillators that
perform finite motion encounter problems arising from the
conservative nature of the system: the effect of harmonic
forces at the resonant frequency of such a system leads to an
unlimited increase in the oscillation amplitude. The oscilla-
tion phase of an oscillator excited by an external harmonic
force is known to change by a jump when the frequency of the
exciting force passes through the resonant frequency. It is
only possible to obtain a smooth phase change, as is the case
in the Fano problem, by introducing nonzero damping. As a
result, classical approaches have to consider dissipative
systems with damping, while the Fano quantum-mechanical
problem does not contain damping. The introduction of
damping turns out to be fundamental for classical calcula-
tions, since it is included in expressions for the Fano
parameter, and the transition to the zero damping limit
yields a Lorentz-symmetric resonance spectral profile. Never-
theless, although for the above reasons no strict analogy can
be set between the Fano problem and a system of interacting
classical oscillators, finding out the conditions under which
such a system demonstrates a spectral resonance profile
resembling the Fano profile is of undoubted interest.

We present here an analysis of the motion of a system of
coupled classical mechanical oscillators, which is largely
equivalent to the system considered in [18]. A new element,
when compared with [18], is the discussion of the properties
of normal oscillations of such a system. An analog of the
diagonalization of the quantum-mechanical Hamiltonian for
a classical oscillatory system is the determination of its
normal oscillations. We tried to track a normal oscillations
system under an unlimited increase in the number of oscil-
lators it contains. A problem arises then, which is related to
the unlimited increase in the amplitude of oscillations of a
classical conservative system when it is excited at the normal
oscillation frequencies. In expressions similar in meaning to
quantum-mechanical ones, in this case, irremovable diver-
gences appear, and it is not possible to determine the Fano
parameter. This problem was avoided in [18] by introducing
phenomenological damping for oscillators, which has no
analog in the original Fano problem. Note that in Fano’s
first study [1], a calculation was carried out for a restricted
quantum system, which, as its size increases, transforms into a

system with a discrete level and a continuous spectrum.
Similar divergences are eliminated in such an approach due
to the normalization of the wave functions, which changes
with the size of the system. It is physically clear that the reason
for the divergence in a limited conservative system in the
process of its resonant excitation is the conservation of energy
in it, which continuously increases as a result of the action of a
resonant exciting force in the absence of dissipation. It seems
reasonable to assume that, in the transition to an unrestricted
system in which the energy can go to infinity, a method to
solve the problem of the mentioned divergences without
introducing additional damping should be found. This
possibility is discussed in Section 2 after a detailed analysis
of the classical model of coupled local oscillators, and it is
shown that the latter cannot be an analog of the Fano
problem for an arbitrarily high spectral density of oscillators
that form a quasi-continuum.

2. Model of coupled mechanical oscillators.
Study of the secular equation
for two coupled mechanical oscillators

We begin with a description of the model of coupled classical
harmonic oscillators, which is similar to that considered in
[18] but does not contain damping. We consider the
mechanical system shown in Fig. 1. A cart of mass M
connected by a spring with stiffness K to a fixed wall can
perform one-dimensional motion along the guides. By means
of weak springs with stiffness y;, this cart is connected to a set
of 2N + 1 spring pendulums attached to the opposite fixed
wall (the mass of each ball is m; and the spring stiffness is k).
The formulas for the kinetic and potential energy of such a
system have the form

1., 1 .
TZEMX2+5[;mix’2’ (1)
1 1 1 &
HIEKX2+5,-; ix,-2+§i;uf(xf—X)2
1 N s 1 N s N
=5 <K+i—ZNM)X +§i;\](ki+,uf)xj *i;VﬂixiX~

Figure 1. (Color online.) Schematic representation of coupled harmonic
oscillators (top view). Cart of mass M located on a horizontal plane is
connected by weak springs with a set of spring oscillators. Cart can move
along rails under the action of a spring with stiffness K.
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From these formulas, the Lagrange equations for the motion
of the system follow:

myXy + (ky + py)xy — uyX =0,

My 1 Xn-1 + (k-1 + py_1) Xn-1 — piy1 X =0,

moXo + (ko + po)Xo — e X =0, (2)

N N
MX + (K+ > m)X— > mxi=0,
i=—N i=—N

ey

m_nyX_y+ (k,N + H,N)X,N — ﬂ,NX: 0.

To find the normal oscillations, we present the coordinates of
the spring pendulums and the cart in the form

X; = u;sin (ot + o) , )
X =Usin(wt+a).

The values u; and U are the displacement amplitudes of
individual spring pendulums and the cart, respectively.
Given that the amplitude can be both positive and negative,
the phase of the normal oscillation « is defined in the interval
(0, 7). Substituting formulas (3) into the equations of motion
(2), we obtain a system of algebraic equations for finding the
amplitudes of normal vibrations:

(kn + py —myA)uy — puyU =0,
N N
(K+ Y = ant) U= =0, @
=N =N
(kv +p_y —Am_yu_y —u_yU=0,

where 1 = w?. We introduce the notation
N
ki + 1 2 U K+> i vt 2
_— O‘)i 5 — =C;, —_— Y = Q .
m; m; M

System of equations (4) then takes the form

(w3 — Duy —exyU =0,

(0 y — Du_y —c_yU=0.
Nonzero solutions to system of equations (5) only exist if its
determinant is equal to zero, which yields the secular equation
for our system of oscillators:

m; C~2

) (6)

Q- )= — .
i:_NMw?—i

This is an algebraic equation with respect to 4 of order
2N + 2, which is equal to the number of degrees of freedom,
whose roots determine the normal oscillations of the system
under consideration.

We now proceed to studying secular equation (6). To date,
no assumptions have been made about eigenfrequencies
and coupling between oscillators. Since the purpose of our
consideration is to give a classical analog of the interactions
between elementary excitations in solids, it is necessary for
such an analogy to be sensible, and it must be assumed that
the stiffness values of the springs that connect the spring
pendulums with the cart are small in comparison with those of
the oscillator springs, u; < k;, K. The ‘renormalization’ of the
initial eigenfrequencies of the oscillators due to the interac-
tion is in this case small:

Sl =10 )

m; m;
For the cart, condition (7) leads to a stronger constraint, since
it is required that the total stiffness of all links be small
compared to the cart spring stiffness,

N
Z < K. (8)
i=N

It should be noted that the frequencies contained in secular
equation (6) are the ‘renormalized’ frequencies of the original
oscillators, i.e., the values altered due to additional elastic
coupling between the cart and the oscillators. In referring to
oscillator frequencies below, we always mean these ‘renor-
malized’ frequencies.

The secular equation for two coupled oscillators is easily
solved algebraically, but the algebraic approach fails with an
increase in the number of oscillators in the system and a
corresponding increase in the order of the secular equation.
We therefore consider a graphical solution of the secular
equation, which provides an easily comprehensible visual way
to qualitatively analyze the properties of the considered
system of coupled oscillators. Suppose first that we are only
dealing with one oscillator coupled with the cart (N =0,
i =0). Then, the left side of the secular equation is linear,
while the right side is a hyperbolic function of the variable 4:

my Co2

Q== )
M w} -2

©)

The case where the frequencies coincide is shown in Fig. 2a.
The intersection points of the plots of the left and right parts
of the secular equation determine the frequencies of normal
oscillations of the system. Equations (5) then assume the
following form:

2 — — =
(COO },)uo coU 0, (10)

(QZ—A)U—%COMO ~0.

It can be easily seen in the equations that, for 1 < Q2, the
signs of the amplitudes U and u, are the same, i.e., the cart and
the spring pendulum move in phase, while in the case of
/> Q2 the phases of their motion are opposite. The two
solutions of the secular equation yield a complete set of
normal oscillations, so that any movement can be repre-
sented as their superposition. Even this simplest model of
coupled oscillators is often used to describe the occurrence of
polaritons, elementary excitations in the problem of polariza-
tion oscillations of a medium that strongly interact with an
electromagnetic field. Interestingly, our mechanical system
makes it possible to give a visual representation of the Rabi
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P2
Q0

Figure 2. Graphical solution of the secular equation in the problem of two coupled oscillators when (a) frequencies of the spring pendulum and the cart are
the same and (b) these frequencies are different, and also if degeneracy is removed when, as dimensions of the system increase, (c) eigenfrequency wy of
one of the oscillators differs from that of cart Q and the eigenfrequency w, of other 2N oscillators and (d) all eigenfrequencies of the pendulums are

different.

frequency. Indeed, let us at the initial moment we deflect only
one of the oscillators, for example, a spring pendulum, while
the second one (cart) is at rest. This initial state is, obviously, a
superposition of the in-phase and anti-phase oscillations of
the system, which enter with the same absolute values of the
coefficients. The further movement of the system consists of
beats with a frequency equal to the difference between the
frequencies of normal oscillations, during which all the energy
is periodically transferred from the spring pendulum to the
cart and back. The frequency of energy exchange between
oscillators, which is equal to the difference between the
frequencies of normal oscillations, is the mechanical analog
of the Rabi frequency [33]. Equations (10) immediately yield

my

—h=a 71 (11)

Hence, for the frequencies of normal vibrations @, and w_
and the Rabi frequency Qg, we obtain

I’no 1
=/Q? —%Q =
R A

It can be seen that the Rabi frequency is directly proportional
to the elasticity of the spring that connects the cart and the
spring pendulum.

The case when the oscillation frequencies of the cart and
the spring pendulum are different is shown in Fig. 2b. A
feature that is new in comparison with the previous case is
the predominance of the properties of one of the pendulums
in a specific normal oscillation of the system. Indeed, the
frequencies of normal oscillations, as can be seen from Fig. 2b,
come closer to each other as the frequency difference of the
oscillators increases to the frequencies of the corresponding
oscillators, and the oscillation amplitude of the oscillator, the
frequency of which is approached by the normal oscillation
frequency, dominates, as can be seen from Eqns (10). Never-
theless, the oscillators, as before, move in normal oscillation
with a lower frequency in phase, and out of phase in an
oscillation with a higher frequency. This implies that, by
choosing the appropriate superposition, a configuration can
be arranged in which one of the pendulums periodically
completely transfers its energy to the second one (i.e., it
stops moving), while the second oscillator only exchanges
part of the energy stored in it.

2.1 Case of identical oscillators

We now proceed to the case of many oscillators coupled with
the cart. We start with a degenerate situation, when the
frequencies of all oscillators are the same but do not
necessarily coincide with the frequency of the cart. We
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assume for simplicity that all the oscillators and their
couplings with the cart are identical. Then, the secular
equation takes the form

N
m; 2 1 my 2
- ,II;VMC’_@N—‘_I)@%_)LWCO

(13)

Equation (13), with an accuracy up to notation, coincides
with Eqn (9), so all the conclusions made for two oscillators
remain valid for the degenerate case as well. It is also
physically clear that a large number of spring oscillators,
whose frequencies coincide, can be made to oscillate synchro-
nously with each other. Moreover, from the point of view of
interaction with the cart, the set of these pendulums behaves
like one pendulum, the mass of which is equal to the sum of
the masses of the individual oscillators, and the stiffness is
the sum of the stiffness values of the springs of these
oscillators. If the frequencies of the oscillators coincide with
the cart eigenfrequency, a collective Rabi frequency can be
introduced [33]. We call these two normal oscillations of the
system under consideration, which are analogous to normal
oscillations in a two-oscillator system, boundary normal
oscillations, in the sense that they determine, as will be clear
from what follows, the upper and lower boundaries of the
normal oscillation spectrum. The entire set of spring
oscillators coupled with the cart performs as a single effective
oscillator. Our mechanical analogy describes well the case of
multi-atomic Rabi oscillations in a system of identical two-
level atoms interacting with a resonant electromagnetic field
[32]. The collective Rabi frequency is then proportional to the
root of the total number of oscillators. Study [32] is of interest
because it considers the general case of resonant interaction
of an electromagnetic field with a nondegenerate ensemble
of two-level systems with frequencies that are in a certain
vicinity of the electromagnetic wave frequency. The equation
for the energy eigenvalues derived in [32] coincides with
secular equation (6) with an accuracy up to notation, and
the behavior of our mechanical system, as will be clear from
further consideration, is quite similar to that for a system of
quantum mechanical oscillators.

We now return to the consideration of a degenerate
system of oscillators. What are the remaining 2N normal
oscillations of the system? It is easy to see that the remaining
nontrivial solutions to system of equations (5) satisfy the
condition

N

Z %C,‘L{[:O.

=N

U=0, (14)

This condition is nothing but the condition of orthogonality
of vectors in a space of 2N + 1 dimensions, which defines a
2N-dimensional plane in this space. The number of indepen-
dent mutually orthogonal vectors that define this plane is
exactly 2N, which coincides with the number of missing
normal oscillations of the system. Physically, these oscilla-
tions occur in such a way that the resulting force acting on the
cart is always strictly equal to zero. As a result, all the
vibrational energy contained in the system is concentrated in
the ensemble of spring oscillators and no exchange with the
cart occurs. In this case, the oscillation frequency is degen-
erate and coincides with the common frequency of all spring
oscillators (on the plot, these solutions correspond to the
point 4 = w3). This can be seen by considering the determi-

nant of system of Eqns (5). If the oscillators are identical, all
the diagonal elements of this determinant, with the exception
of one (which corresponds to the cart oscillation amplitude),
simultaneously vanish. Expanding the determinant in rows, it
can be verified that it vanishes if at least two of its diagonal
elements are equal to zero at the same time. This implies that,
if there are at least two spring oscillators with the same
eigenfrequencies, then their common frequency becomes the
frequency of the normal oscillation of the system. Indeed, two
such oscillators can apparently oscillate in antiphase with
each other, so that the total force acting on the cart is always
equal to zero. The oscillation amplitudes of all other
oscillators and the cart can be set equal to zero, and system
of equations (5) will be satisfied.

2.2 2N identical oscillators and a single oscillator

We now track the changes in the normal oscillations of
the system of oscillators if the degeneracy is removed. A
qualitative visual analysis of the changes can be carried out by
considering the graphical solution of the secular equation. Let
the eigenfrequency wy of one of the oscillators differ from the
common eigenfrequency g of the remaining 2N oscillators
and the eigenfrequency of oscillations of the cart €; then, the
secular equation takes the form

1 N-1

(15)

The emergence of a new pole on the right side leads to an
additional discontinuity in its graph and to an additional
intersection point, with the linear function representing the
left side (Fig. 2c¢). In this case, the number of degenerate
solutions decreases by one. Now, let all the frequencies of the
spring oscillators be different and concentrated in a certain
interval around the frequency of the cart. None of the
eigenfrequencies of the oscillators now coincides with the
frequency of any normal oscillation of the system, and the
plot of the right side of the secular equation now has 2N + 1
points of discontinuity and 2N + 2 points of intersection of
this graph with the linear function of the left side (Fig. 2d).
The sign and magnitude of the ith oscillator amplitude in the
jth normal oscillation follow from formula (5):

((,U,2 — /1]')“[ = C,'U. (16)
In all normal oscillations with 4; < ?, the oscillator oscillates
in phase with the cart, while in normal oscillations with
J; > o7, it oscillates in antiphase with it (Fig. 3). The normal
oscillation with the lowest frequency is the in-phase boundary
oscillation, and that with the highest frequency, the antiphase
boundary oscillation of the ensemble of oscillators and the
cart, which is schematically illustrated in Fig. 4.

It can be seen that, although there are no fundamental
differences between boundary oscillations in degenerate and
nondegenerate systems, an important feature of a degenerate
(or close to degenerate) system is that the amplitudes of
individual oscillators in boundary normal oscillations in
such a system can be close, and this implies the possibility of
an almost complete exchange of energy between the cart and
spring pendulums in the course of collective Rabi oscillations.
A fundamental distinction of a degenerate system is also
the existence of normal oscillations, in which the combined
interaction between the oscillators and the cart is zero.
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Figure 3. (Color online.) Visual representation of the motion of spring
pendulums under excitation of normal oscillation Z;: pendulums with
eigenfrequencies w? > 4; move in phase with the cart, while those with
o? < J; move out of phase.

Figure 4. (Color online.) Motion of spring pendulums and the cart under
excitation of in-phase boundary oscillation Ay .

3. Behavior of the system
under the effect of external forces

We now consider the behavior of our system under various
excitations. First, we consider whether the mechanisms of
excitation of coherent phonons can be modeled in this way.

3.1 Physical illustration — coherent phonons

In the physics of coherent phonons, as a result of direct
measurements of time-resolved vibrations of a crystal lattice,
a new experimentally measurable quantity appears: the initial
phase of coherent vibrations. It is well established that the
initial phase is different for different crystals, and it is
generally associated with the mechanism of excitation of
coherent phonons. This initial phase essentially depends on
the equilibrium position of the vibrating atoms. When
coherent phonons are excited, oscillators are subjected to
the short-term impact of the pulsed force. The effect of a short

pulsed force on a system in equilibrium (the duration of the
action is much shorter than any of the oscillation periods of
the pendulums) can be replaced by introducing an initial
condition with nonzero initial velocities and further consider-
ing the free evolution of such a system. It is clear that, after
the end of the laser pulse, the system begins to move away
from the equilibrium position, and the initial phase of the
oscillations can be either zero or m. Such an initial phase is
indeed observed in many crystals transparent at the laser
excitation frequency, in which the energy gap width exceeds
that of the exciting photons [25, 28]. This excitation of
coherent phonons is usually called dynamic and is associated
with the dynamic Raman excitation mechanism. In nontran-
sparent crystals, coherent oscillations, on the contrary,
usually begin from the position of maximum amplitude, i.e.,
with an initial phase equal to ©/2 or —n/2. In this case, as a
result of the laser pulse action, the equilibrium position of
atoms instantly changes. Such a change in the equilibrium
position can be described by a parametric excitation mechan-
ism when, due to the pulse effect, the wall to which the
oscillator springs are attached is instantly displaced by a finite
distance, or the stiffness of the springs instantly changes. This
corresponds to an instantaneous change in the interatomic
potential in a crystal, which is usually associated with a high
density of photoexcited electrons and screening of intera-
tomic interaction. The atoms then begin to oscillate with zero
initial velocity; this excitation is usually called kinematic.

If we compare the Fourier spectra of coherent oscilla-
tions under dynamic and kinematic excitation (kinematic
or dynamic with respect to an oscillator with a discrete
spectrum), the dynamic excitation spectrum only contains the
excited-phonon frequency, while the kinematic excitation
spectrum also contains a continuum of frequencies due to
the stepwise emergence of a finite amplitude. The relationship
between the discrete frequency and the continuum in the
Fourier spectrum of coherent oscillations should thus depend
on the initial phase of the oscillations. In this connection, it is
of interest to take a slightly different look at Fano’s formula.
If the spectrum corresponding to the Fano formula is that
of some coherent oscillation, then the time evolution of
this oscillation can be determined by performing the inverse
Fourier transform of the Fano resonance line shape. The
result of such a transformation, carried out by us in [21], is the
oscillation of a damped harmonic oscillator with eigenfre-
quency @, the initial phase of oscillations of which is actually
determined by the Fano parameter.

By solving the secular equation, it is possible to determine
the frequencies of all normal oscillations of coupled oscilla-
tors and expand any initial state of the system that arises as a
result of the pulsed action into its normal oscillations. The
impact of an ultrashort pulse can be modeled, as mentioned
above, by the corresponding initial condition: the action of
the pulsed force on the cart can be replaced by accelerating it
at the zero moment of time to some initial speed, while the
action of the excitation pulse on the spring oscillators can be
described by setting at the zero moment of time their initial
deviation from the equilibrium position. The further evolu-
tion of the system can be easily calculated on the basis of
expansion into normal vibrations.

We have performed numerical simulations of the system
under consideration with the number of spring pendulums
equal to 200. After setting the eigenfrequencies and couplings,
the secular equation was numerically solved, and the
evolution of the system with some initial condition was
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determined. It turned out that it is not possible to obtain
damped cart oscillations with different initial phases, as might
be expected based on the coherent phonon excitation model.
If at the initial moment the oscillations of the cart are excited,
at first their amplitude actually begins to decrease due to the
transfer of energy to the spring oscillators and the rapid
dephasing of their oscillations, as is usually assumed in the
physical picture of a light echo. Later, however, a reverse
energy transfer — from the spring oscillators to the cart—is
also observed, so the exponential damping of its oscillations
over time is not relevant.

Leaving aside subtle issues related to the frequency
measurement accuracy, errors in setting the initial condi-
tions, and the related general predictability of the behavior of
a deterministic system, we only note that, in the general case,
the energy exchange between the cart and oscillators can turn
out to be quite nontrivial in time, which has been confirmed
by our computer modeling. The number of oscillators in our
numerical simulation is, of course, very small compared to
physically interesting situations, when their number can
reach values on the order of the Avogadro number, i.e.,
10%. One can therefore hope that, with a very large number
of oscillators, an exponential damping of oscillations will
appear in accordance with the Fourier transform of the Fano
formula. Another option to ensure exponential damping of
the amplitude of coherent oscillations is to introduce damping
for spring oscillators.

In some cases, detailed information about excited normal
oscillations is not required. It is apparent, for example, that,
under pulsed excitation with the width of the excitation force
spectrum greater than the total width of the normal vibration
spectrum, virtually all normal vibrations of the system are
excited. The evolution after such a pulsed action essentially
depends on the ratio of the frequencies of normal oscillations.
Indeed, imagine that all frequencies of normal oscillations are
multiples of some fundamental frequency, as is the case for
oscillations in cavities. Then, the initial state, which arose
immediately after the end of the excitation, is periodically
repeated. If the pulsed action was only applied to the cart, the
energy in the process of evolution would first be transferred to
the spring oscillators, but after a time equal to the oscillation
period of the fundamental frequency, of which frequencies of
normal oscillations are multiple, the spring oscillators would
again be stationary, and all the energy would again concen-
trate in the oscillation of the cart. It can be shown that such a
fundamental frequency always exists if the ratio of the
frequencies of normal oscillations is represented by rational
numbers.

3.2 Effect of harmonic forces on the system

We now consider a system of oscillators to be nondegenerate
and assume that it is subject to the effect of harmonic driving
forces:

Ji(t) = fiw) sin (o1 + o),
(17)
F(t) = F(w) sin (wt + oF) .

We only focus on the forced motion of the system and look for
solutions also in the form of harmonic functions:

x; = ui(o) sin (of + ;) , (18)
X = U(w) sin (ot + a) .

As in the case of the search for normal oscillations, it can be
easily seen that, if the phases of the acting forces are equal,
oy = ap, only in-phase and antiphase motions of oscillators
are possible, which are reflected in the signs of corresponding
amplitudes, i.e.,

A = 0 = 0f, = UF.

We then arrive at a system of algebraic equations:

@ﬂmﬂquUzﬁ,i:fM”wN,
m; (19)
N
m; F
(Q*— U - — iU =—.
2 M=

3.2.1 The force only acts on the cart. We consider first the case
when all f; = 0, i.e., the force only acts on the cart. We find

(,’,'U
uj = )
oo (20)
F 1
U:M N 2 .
02— ) — mi_ G
( ) [.;N M o? — w?

The equation for the zeros of the denominator of the formula
for the cart oscillation amplitude coincides with the secular
equation. This amplitude increases in a resonant way as the
frequency of the excitation force approaches the frequencies
of normal oscillations of the system (Fig. 5a). It is of interest
to track the amplitudes of the cart and the ith oscillator as the
frequency of the driving force changes in the vicinity of the
oscillator resonant frequency w;, which includes the frequen-
cies of two adjacent normal oscillations w_ = w; — op, and
w4 = w; + og. The oscillator oscillation amplitude, accord-
ing to Eqn (20), is represented as

R 2D
(0 - o) @ - o?)- 3 ]

=N

The value of u;, similar to the cart oscillation amplitude,
increases resonantly as the frequency of the driving force
approaches the frequencies of normal oscillations (Fig. 5b).
The cart oscillation amplitude vanishes at the frequency w;,
while the oscillator amplitude remains finite and equal to
u; = —F/(mjc;), which is apparent if Eqn (21) is represented in
the form

F Ci
U =— .
M 2 2 2 2 my C;f m; o
“’r““){(@ ‘w>‘;ﬁm M
(22)

This effect in a system of two oscillators has been discussed in
[17] in connection with the Fano resonance. The vanishing of
the oscillation amplitude of one of the two coupled oscillators
at a certain frequency of the driving harmonic force by which
it is excited was explained by the antiphase action of the
second oscillator on it. This result is consistent with the
picture presented in Fig. 5, but, in our opinion, it is not
directly related to the Fano problem. The oscillator oscilla-
tion amplitude vanishes at the eigenfrequencies of other
oscillators contained in the system. This leads to a kind of
resonant phenomenon: if the frequency of the driving force
coincides exactly with the oscillator eigenfrequency, the
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Figure 5. Amplitude of oscillations (a) of the cart and (b) of one of the
spring pendulums as a function of the frequency of the harmonic driving
force, which varies in the vicinity of resonant frequency w; of this
pendulum. Force is only applied to the cart.

oscillation amplitudes of all other oscillators and the cart are
equal to zero, i.c., only one oscillating oscillator remains in
the system in which all the oscillatory energy is concentrated.

3.2.2 The force only acts on one of the spring pendulums. Now
let the force acting on only one of the spring pendula be
nonzero. The equations assume in this case the following
form:

(0? — o)y — ;U = Ji ,
m;

(wf—wz)uj—ch:O, J#I,

(23)
(Q% — U §N Mk 0
—w - — cru =0.
=M Chtlk

Multiplying each of these equations for oscillators by
(mi/M)er(@? — )™ and summing up these equations
with the equation for the cart oscillation amplitude, we obtain

N 2
my 4 fi Ci
Ul -0’) = Y — St |=2—5"—.
[( @) Z Mo -] Mo} —o?

It follows from this equation that the cart oscillation
amplitude is

5
M

(24)

U= (25)

Figure 6. Frequency dependence of the amplitudes of oscillation of spring
oscillators and the cart if a harmonic force is only applied to the oscillator
with eigenfrequency w;. Frequencies w_, w,, and w, correspond to
normal oscillations, and ®,; and w, are frequencies of the normal
oscillations of the ‘truncated’ system of oscillators (see text).

For the oscillator oscillation amplitudes, we obtain

g M N i 62 )
(@} Ai- )@= o) - Y ]
J ! k:Z_:N M o} — w?
j#i. (6
W fi ¢
l M N my, 6'2
(0 - |@2 -0t - 3
! /c;N M o} — o?
fi 1
+n7i po—l (27)

;=

All amplitudes have resonances at the frequencies of the
normal oscillations of the system, and Eqn (25) for the cart
oscillation amplitude coincides up to replacement F — f; with
Eqn (21) for the oscillator oscillation amplitude presented in
Section 3.2.1. The behavior of all amplitudes with the
variation in the excitation frequency in the vicinity of
oscillator frequencies w; and w;, j# i, is shown in Fig. 6,
where w and w_ denote, as before, the two frequencies of the
normal oscillations adjacent to the frequency of the excited
oscillator.
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Let us consider the behavior of the oscillators and the cart
in more detail. The cart oscillation amplitude (Fig. 6a) has
resonances at the frequencies of the normal oscillations of the
system. Near the frequencies of normal oscillations that are
smaller than frequency w; of an oscillator excited by the
external force, the cart moves in phase with the exciting force
on the lower-frequency side of the resonance and in antiphase
with it on the higher-frequency side. For the frequencies of
normal oscillations larger than w;, the cart movement phase
changes to the opposite one. At frequency w;, the cart moves
in antiphase with the exciting force, and the amplitude of its
oscillations is finite:

Ji

m;c; '

Ulwi) = — (28)

The cart oscillation amplitude vanishes at frequencies of
other oscillators:

Ulw) =0, j#i. (29)
The oscillator excited by an external force (Fig. 6b) also has
resonances at all frequencies of normal oscillations; however,
the phase of its movement near these resonances always
coincides with the phase of the driving force on the lower-
frequency side and is opposite to it on the higher-frequency
side of the resonance. The amplitude of this oscillator
vanishes at the frequencies given by the equation that follows
directly from formula (27):

S [T R SR Pt

2 _ 2
k:fNka w

= —mc}Hw? — 0?).

(30)
Apart from the singular point w = w;, there are additional
solutions satisfying the equation

U mj. 6’2
2 2 k _
@) =) a0
k=—N k
k#i

(1)

Equation (31) coincides with the secular equation for the
system of oscillators derived from the original system by
excluding the oscillator with frequency ; from it. The roots
of this equation are indicated in Fig. 6 as w,;. The vanishing of
u; at the frequencies of normal vibrations of the ‘truncated’
system of oscillators is consistent with the analogous result of
the previous case, when the force was applied to the cart. The
‘truncated’ system performs with respect to the oscillator
excited by an external force as a separate oscillatory system
with its own resonant frequencies with which the given
oscillator interacts; therefore, the vanishing of u; at the
frequencies of the normal vibrations of the ‘truncated’
system is quite similar to the vanishing in the previous case
of the cart amplitude at the frequencies of normal oscillations
of the original system. At the singular point w;, the amplitude
u; has a finite value, which can most easily be seen directly
from the original equations (23). Substituting w = w; into the
first of the equations, we find U = —f;/(m;c;). This deter-
mines the amplitudes of other oscillators:
uj(wi): _&%7 J7é17

m;c; (1)]2 — W;

Figure 7. Graphical solution of the secular equation for a nondegenerate
system consisting of a cart and oscillators with frequencies wy, ., and w3
(solid curves). It changes after adding one more oscillator to the system
with frequency w; that coincides with the frequency of one of the normal
oscillations (dashed curves). In this case, w; is no longer the frequency of
the normal oscillation of the system. In the reverse process of removing the
oscillator with frequency w; from the system, its frequency again becomes
that of the normal oscillation. A slight change in the frequencies of the
remaining normal oscillations, which are separated from frequency wy, is
not shown in the figure.

and the last equation yields

Mf; [ ) ) mi cf }
Q7 —w?) — — 1 (32
e @D @)

ui(w;) = —

This quantity can be positive, negative, or zero if the
frequency w; turns out to be a root of ‘truncated’ secular
equation (31). The possibility of these situations is illustrated
by Fig. 7.

The question can be reformulated as follows: can the
eigenfrequency of an oscillator become the frequency of
normal oscillations after removing this oscillator from the
system? This question should be answered in the affirmative
by considering the reverse process. We now add another
oscillator to the system of nondegenerate oscillators, the
eigenfrequency of which coincides with the frequency of one
of the normal oscillations of the system. In the new system,
this frequency is no longer the frequency of normal oscilla-
tions, which is obvious from Fig. 7. However, the reverse
process of removing this oscillator again makes this frequency
the frequency of normal oscillations.

At the frequencies of the remaining oscillators, the
amplitude of the excited oscillator takes on the values

ui(wj):£ 21 2 J#la

m; w; —U)i

(33)

whose sign depends on the difference between the oscillator
frequencies. The oscillation amplitude of the oscillator with
j # iis shown in Fig. 6¢, from which it can be seen that the
amplitudes of such oscillators vanish at frequencies wy,
k # i, j of other spring oscillators and take the following
values at frequencies w; and w;:

(34)
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The behavior of the amplitudes of oscillators with frequencies
w;j, j # inear the frequencies of normal oscillations is similar
in appearance to the behavior of the amplitude of the cart, but
the phase of their motion with respect to the acting force
additionally depends on the sign of the quantity (o} — ?).

3.2.3 Concurrent excitation of the cart and the oscillator.
Finally, we consider the case where both the cart and the
oscillator with eigenfrequency w; are excited at the same
frequency. This case is of particular interest, since, as shown
below, it is precisely such a classical problem that has some
similarity with the Fano quantum mechanical problem. The
equations then take the form

((Ul2 — wz)u,- — C,’U = % s (35)
1
(0 =Py — U =0, j#i, (36)
N
m; F
(@ -U- D —u=—, (37)
20
and their solutions are
Ci
1 Fxti o? — »?
1
U= M N ) b (38)
Q2 _ o) — M S
( ) k;N M o} — ?
Ci
F
P AL S R
— 2 b
wi —w? | M @ ) N 2 m;
M o?— »?
k=—N k
W # w;, (39)
. Ci
| ¢ F+f o w0
Uj = 5 > — 40
wj_wM(Q2_w2)_i% C/?
M w} — w?

The element which is new in comparison with the case of
excitation of only one oscillator is the emergence of new zeros
in the plots and a change in the position of the old ones, as
shown in Fig. 8.

The new zero of the cart amplitude is given by the formula

Ci
F+fi———=0. 41
AR (41)
Equation (41) yields
wU:\/w%—&—%ci. (42)

This zero always exists at a reasonable ratio of forces, since, in
our model, ¢; < ®?; however, depending on the sign of the
ratio of the forces, options wy < w; or wy > w; are possible.
The value U(w;) = —f;/(mjc;) remains the same as in the case
of F = 0 and does not depend on the position of the new zero.
The same zero also appears in the plot of u;, as follows from
Eqn (40). No new zeros appear in the graph u;, while at
frequency wy all the vibrational energy again, as in the case of

Figure 8. Concurrent excitation of a cart and an oscillator with eigenfre-
quency w; by harmonic forces with the same phase and frequency w. In
Fig. b, the left arrow points to the previous position of zero, while the right
arrow indicates the new one. Compared to Fig. 6, a new zero of the
amplitude of the cart and other oscillators appears in the vicinity of w;, and
the position of the zeros of oscillator w; changes.

excitation of only one cart (see Section 3.2.1), turns out to be
concentrated in one oscillator. The ‘old’ zeros of u; are
somewhat shifted, which can be easily seen from the equation
for the zeros u;, which now takes the form

N 2
@ - -3 M G _ MG
= M o —o? M

k#i

(43)

=

This equation coincides with the secular equation of the

system, from which the oscillator with frequency w; has been

removed, and the cart’s eigenfrequency has been changed:
m;c; F

Q=%+ .
M f;

(44)
Examining the graphical solution of the secular equation
displayed in Fig. 2d, it is easy to see that the shift of the cart’s
eigenfrequency leads to a shift in the same direction of all the
roots of this equation.

Similarly to the previous case, it is easy to obtain from the
initial equations the amplitude of an oscillator excited by an
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external force at its eigenfrequency:

2

Mf’ 2 2 my Ci F
02 NG | F

(mye;)? {( @) J; M o} —w?]  m
(45)

M[(U),‘) = —

4. Limiting transition to a continuous spectrum
of oscillators

Having gained a fairly detailed understanding of the
behavior of our conservative system under its excitation by
external periodic forces, we now proceed to a search for the
limiting transition to a continuous spectrum of oscillators.
We choose the frequencies of the oscillators as multiples
of some fundamental frequency v =Q/(2N + 1), so the
equality @w; = (2N + 1 4 i)v holds. In order not to violate
our initial assumption (8) about the weakness of the coupling
between the cart and the ever-increasing number of oscilla-
tors, it is necessary to require fulfillment of the condition
SN e < Q% We assume for simplicity that all the
coupling coefficients are the same and decrease with an
increase in the number of oscillators in the system: ¢; =
c=V/(2N+ 1), V < Q2. Since the value of ¥ is limited, the
transition to an infinite number of oscillators results in the
coupling coefficients tending to zero.

The solution to the Fano problem gives formulas for the
eigenvectors of an unrestricted system with a continuous
spectrum. Our system of coupled oscillators always remains
localized in space, but we can try, by increasing the number of
oscillators, to bring their frequency spectrum as close to
continuous as possible. Figure 2 shows that the frequencies
of normal oscillations of our nondegenerate system are
located in an alternating way between the frequencies of
neighboring oscillators, so, with an increase in the frequency
density of oscillators (the number of oscillators per unit
frequency interval), the frequency density of normal oscilla-
tions also increases.

An analog of the equation for the energy eigenvalues of
the finite-dimensional Fano problem [1] for our system is the
secular equation

N
Q2 —w?) — L) 46
R (46)

in which, for simplicity, we set all the masses of the spring
oscillators the same and equal to the mass of the cart and
explicitly indicate the frequency of the normal oscillation ;.
Due to the multiplicity of frequencies for our system, we have

N c? ne? & 1
ot A KON T wen T
nc? 0\’
=7 cotm (7> , (47)
and the secular equation takes the form
nc? \*
(Qz—w§)+v—2cotn(7‘> =0. (48)

This equation is similar to the one for energy eigenvalues
obtained in the first study by Fano in considering the
interaction between a discrete atomic state and a quasi-

continuum of states [1],

2
E=1Tcot En , (49)
T T

if the replacements w? — E, ¢ — ¢, and v> — 1 are made and
Q2 is chosen as the reference point for energy, as was done in
Fano’s study. (It should be noted here that the symbol ¢ is
used in [1] to denote a quantity proportional to the matrix
element of the transition between the discrete state and quasi-
continuum states, which is quite similar to the coupling factor
¢, rather than the parameters of the Fano resonance line
shape.) The value v is the frequency step and 7 is the energy
step of the quasi-continuum.

Apparently, the eigenstates of the Fano problem with a
given energy E correspond to the normal oscillations of our
system with a given frequency w;. Then, the amplitude of the
wave function will correspond to the amplitude of the normal
oscillation and the square of the modulus of the wave
function, i.e., probability, to the square of the amplitude of
the normal oscillation, i.e., spectrum power. However, the
square of the modulus of the wave function is subject to a
limitation associated with normalization, while the square of
the amplitude of the normal oscillation increases without
limit when the system is excited at its resonant frequency. As a
result, the frequency dependence of the oscillator oscillation
amplitudes will contain discontinuities at the frequencies of
normal oscillations, despite the increase in the spectral density
of the number of oscillators. When such a system is excited at
the frequencies of normal oscillations, an unlimited increase
in the oscillation amplitude will be observed, while, for
an arbitrarily small deviation from this frequency, the oscilla-
tion amplitude will be finite. Thus, the oscillator oscillation
amplitude does not tend to a finite limit with an unlimited
increase in the spectral density of normal vibrations. The
introduction of small damping for oscillators radically
changes the situation, and the transition to the limit of the
continuous spectrum becomes possible. Damping in our
classical model plays the same role as normalization of the
wave function in the quantum problem.

In the case of a frequency continuum, excitation always
occurs at the eigenfrequency of the state included in the
continuum. If the system is excited only at a frequency that
coincides with one of the eigenfrequencies of the oscillators it
contains (Eqns (35)—(37) with @ = w;), and in this case we are
interested in the oscillation amplitude of the excited oscillator
(45), then

Mf; F
ui(w;) = — / S [@% — wf + R(wy)] — =up.(q+e).
(mic;) mic; (50)
Here,

2

my Cr
Rlw)=-) — 5", (51)

! /%:l M of — w?

and coupling coefficients are assumed to be weakly dependent
on frequency w;, so R(w;) # 0 (if the coupling constants do
not depend on frequency in transiting to the continuous
spectrum, the principal value integral vanishes). Equation
(50) contains quantities similar to those used by Fano in [4]:

¢ = Cl [0? — Q% — R(w))] , (52)
le‘
4==7a (53)
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and the amplitude of excitation of the continuum states
upe = (M/m?)(f;/ci;). We obtain a result equivalent to the
numerator in the Fano formula:

M,’(é) 2 2
—) =(qg+¢) . (54)
Uoc
It can be seen that, if
g+e=0, (55)

oscillator oscillations cannot be excited. This result coincides
with the condition of the minimum in the Fano formula.

We now show that, if damping of quasi-continuum
oscillators is introduced, it is also possible to reproduce the
resonance denominator of the Fano formula. To this end, we
introduce in Eqn (39) phenomenological damping y, which is
the same for all spring oscillators:

1
U = -
o? — w? —iyo
c:
Ftfi 5———
¢ 07— 0*—iyw f
x | S = (56)
Yooy ym a "
— o) — Dk %k
M of— o’ —iyo

We introduce the dimensionless energy ¢ as was done above.
In calculating the small correction R(w;) to the resonant
frequency of the cart, we neglect the damping and focus on the
case ® = ;!

oy L[ Fefie/tie) i
(@) ini{Mé—(m,‘/M)Cl—/(i’yw[) ml}

—u qte
“1+iepoM/(mc;)

(57)

For the modulus of the ratio of amplitudes squared, we have

(ui(€)> _ (q+¢)°
Uoc 1+ [yw,-M/(m,-c,—)]262

(58)

Thus, we see that, with the introduction of small damping
for oscillators, an approximate result is obtained, which is
equivalent, in fact, to the quantum mechanical Fano formula.
The physical meaning of damping is to take into account the
energy that leaves the system of oscillators to infinity. If only
the relaxation of a discrete metastable state is of interest,
phenomenological damping can be introduced instead of
considering a continuous spectrum of states. In the extended
formulation of the problem, which includes a continuous
spectrum states, phenomenological damping is no longer
required, since the part of the system that provides relaxation
of the discrete state is explicitly included in the consideration.
Both in the quantum and in the classical problem, the
excitation energy must go to infinity due to infinite motion.
It is this energy behavior that models the phenomenological
damping of the quasi-continuum oscillators. This damping
should scale with the increasing number of oscillators, similar
to scaling of the coupling coefficients. For damping quasi-
continuum oscillators, the amplitude of normal oscillations
becomes finite, and with an unlimited increase in the spectral
density of oscillators, the amplitudes of oscillations will tend

1

Figure 9. Classical oscillatory system that consists of an acoustic cavity of
length L, in which sound vibrations can be excited, and a local spring
oscillator connected to the resonator by means of a flexible membrane. As
L increases, the system can provide energy escape to infinity, while
remaining conservative.

to the same limit as the frequencies come close to each other.
If, when scaling the coupling coefficients, we set

yo;M

mic;

m;c;
C(),'M ’

1, ie, y= (59)

the damping will decrease in proportion to the decrease in the
coupling coefficients, and formula (58) will coincide with the
Fano formula.

Our model does not contain the part of the system that
features a truly continuous spectrum, i.e., performs infinite
motion. For the normal oscillations of our system to trans-
form into those of the Fano problem, it is not enough to make
the frequency of normal oscillations arbitrarily dense; it is
also necessary to enable infinite motion, i.e., allow the energy
that enters the system to go to infinity. The classical model,
which is adequate for the Fano problem, could apparently be
represented by a local oscillator interacting with a waveguide
of finite length, which increases indefinitely in transiting to
the case of a continuous spectrum, which is schematically
shown in Fig. 9. It should provide the transition of normal
oscillations described by standing waves to normal oscilla-
tions of traveling waves.

5. Conclusion

We examined in detail a system of interacting classical
oscillators and showed that under certain conditions it is in
many ways, albeit not everywhere, similar to the quantum
mechanical system of a discrete energy level interacting with
an energy quasi-continuum of states. The limiting transition
to the case of a continuous spectrum and the possible
connection of the problem under study to the generation of
coherent phonons by ultrashort laser pulses were analyzed.
We have shown that, from a fundamental point of view, the
introduction of phenomenological damping does not make
the problem considered above completely equivalent to the
Fano problem, although in practical terms the analogy
established in [18] may turn out to be useful. The classical
analogy with the Fano problem can be valid, however, not in
particle mechanics, but in continuum mechanics, i.e., the
mechanics of waves: it is a local oscillator weakly coupled to
external traveling waves. For a more detailed review of
specific aspects of Fano resonance, we refer the reader to the
articles, reviews, and monographs cited above.
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computer simulation of the discussed system of oscillators.
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