
Abstract. Tomark 220 years since the appearance of Gerstner's
paper that proposed an exact solution to the hydrodynamic
equations, an overview of exact solutions for water waves is
given, each of which is a generalization of the Gerstner wave.
Additional factors are coastal geometry, fluid rotation, varying
pressure on the free surface, stratification, fluid compressibil-
ity, and background flows. Waves on a rotating Earth are
studied in the f-plane approximation, and, in the near-equator-
ial region, also in the b-plane approximation. The flows are
described in Lagrangian variables. For all waves in the absence
of background flows, the trajectories of liquid particles are
circles, as in the Gerstner wave (hence, their common nameÐ
Gerstner-like).

Keywords: Gerstner waves, Lagrangian coordinates, vorticity,
Cauchy invariants, edge waves, Ptolemaic flows, rotating fluid,
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On the 220th anniversary of the first exact solution
in nonlinear wave theory

1. Introduction

The birth of the science studying nonlinear waves is
traditionally associated with the first experiments by Scott
Russel who, in the 1830±1840s, was the first to observe
solitons propagating on the surface of a shallow channel [1].
In 1895, Korteweg and de Vries described this phenomenon
mathematically based on an equation that came to be known
later under their names [2]. However, the historically first
analytical representation for nonlinear waves, describing a
stationary wave with a trochoid profile on deep water,
published by Franz Joseph Gerstner in 1802 [3,4], remained
(and remains even now) out of the sight of many researchers.
By virtue of some factors, which are discussed below, the
Gerstner wave did not enjoy even `one thousandth' of the
attention paid to Korteweg±de Vries solitons. But the fact
remains: first there was the Gerstner wave (Fig. 1).

The Korteweg±de Vries equation is derived from full
equations of hydrodynamics (fluid dynamics) in the approx-
imation of small nonlinearity and dispersion. Its soliton
solution is a classical example of the nonlinear wave in
which the effects of nonlinearity and dispersion equilibrate
each other. On the other hand, the Gerstner wave is an exact
solution of full equations of hydrodynamics, and it is to date
the only example where these equations can be integrated for
gravity waves on deep water. It would therefore be difficult to
deny that, from a mathematical standpoint, the Gerstner
wave is a much more significant achievement in the analytical
theory of waves on water than shallow water solitons.

As is well known, more fame and much more attention
than the Gerstner wave garnered was attracted by the weakly
nonlinear Stokes wave [7]. This circumstance at first glance
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looks even more surprising, because the Stokes solution is
written as a series in the small parameter of wave steepness.
And yet such a representation for a periodic surface wave
proved to be more practically important than the exact
solution. The reason is the problem of realizability of the
Gerstner wave. In contrast to the Stokes wave, the Gerstner
wave is a vortical wave, and cannot occur in nature under the
action of potential forces (Lagrange's theorem). Either the
action of external nonpotential forces or special boundary
conditions are needed to create Gerstner waves. For instance,
HLamb proposed that theGerstner wave can be created from
a shear flow with the same vorticity as in the wave [4]. In this
case, the translational motion of fluid particles in the flow
must be transformed into circular rotation (there is no drift
flow in a Gerstner wave). The apparently special character of
such a scenario did not favor the popularity of the Gerstner
solution and its wide applications in practical computations.
Nevertheless, based on the Gerstner formulas, A N Krylov
developed the theory of ship pitching on a wavy sea [8] that
``found wide applications in ship construction'' [9]. Dubreil-
Jacotin showed that Gerstner waves may exist in a fluid with
arbitrary stratification [10].

The discovery of the mechanism of modulational instabil-
ity for potential waves on water [11] seemed to finally turn
the Gerstner theory into a hydrodynamical artifactÐan
elegant exact solution that is not realized in natureÐbut,
unexpectedly, at about the same time, new examples of its
applications started to emerge. Pollard modified the Gerstner
solution for waves in a rotating fluid in the f-plane

approximation [12]. Yih [13], Mollo-Christensen [14, 15],
and, in a more complete form, Constantin [16] applied the
Gerstner solution to describe edge waves propagating along a
sloping coast (Refs [13±16] show that the results for a
homogeneous fluid can be generalized to the case of stratified
and rotating fluid). Furthermore, Mollo-Christensen gave a
description of billows of Gerstner waves (clouds of trochoidal
form) in a stratified atmosphere [17], and the authors of
Refs [18, 19] found a cylindrical analog of Gerstner wavesÐ
epicycloidal waves propagating along the free surface of a
cavity in a uniformly rotating fluid.

All these advances raised the status of the Gerstner
solution to a substantial degree, but the question of its
physical realization remained open. However, Monismith et
al. [20] managed to solve this old problem by creating a
Gerstner wave in laboratory conditions. The principle of
the experiment was as follows. In a Gerstner wave, fluid
particles move along circles, so there is no drift flow, which
makes this wave different from the Stokes wave, whose
propagation is accompanied by particle displacement
(Stokes drift) to the wave propagation side. Thus, when
generating a Gerstner wave, a flow was created in the
direction against the wave. The absence of fluid particle drift
in individual realizations pointed in favor of observing a
Gerstner wave in experiment. The care with which the authors
of Ref. [20] formulated their conclusions is worthy of special
note. For their additional confirmation, they turned to
analogous experiments carried out in other laboratories and
showed that Gerstner waves were also observed earlier in
three basins [21±23].

All the mentioned results were obtained in bounded
channels with artificially (mechanically) generated waves.
But, as noted by the authors of Ref. [20], similar observations
(i.e., the absence of fluid particle drift) were also made for
waves in the open ocean [24]. Thus, the existence of Gerstner
waves was also confirmed in field conditions. Admittedly,
for a wave steepness in excess of 1=3, Gerstner waves are
unstable against three-dimensional perturbations [25], but it
has become possible to refer to them now as real physical
waves. In turn,Weber pointed out that a drift flowmay occur
in a Gerstner wave, taking into account viscosity and surface
films [26]. In Weber's opinion, wave motions of this type
could plausibly have been observed by experimentalists since
long ago (without realizing this and without attributing the
observations to Gerstner waves) in laboratory basins.

During the last decade, the topic of Gerstner waves has
got a second life, although it is difficult to say whether this is
related to the experimental work [20] that could have inspired
theoreticians. Numerous papers appeared generalizing Gerst-
ner's solution to the case of nonconstant pressure on a free
surface due to the action of wind, and taking into account
Earth's rotation and stratification (a selection of such papers
is given in the table in Section 2). Some of these papers used
the term `Gerstner-like' (or Gerstner type) waves, reflecting
the link between the solutions obtained and the classical
Gerstner wave, which, under some approximation, is their
particular case.

The aim of present paper is to give a survey as complete as
possible of works devoted to the Gerstner wave, its modifica-
tions, and its various generalizations. Not long ago, mono-
graphs focused on the Lagrangian description of fluid motion
were published both in Russia and abroad [27, 28], but
they barely touched this topic. In this respect, the present
work is seen as rather important and timely. Besides, it seems

Figure 1. Prague engineer and mechanic Franz Joseph Gerstner

(1756±1831).

A short biographic reference. The name of Franz Joseph Gerstner was well

known in the Czech lands and Austria. He was a professor at and the

director of the Polytechnic Institute in Prague and the head of all hydraulic

engineering. There was practically no engineering endeavor in the Czech

lands that was undertaken without his involvement or advice [5]. The

director of the Federal Institute of Technology in Zurich, Hans Straub

(1895±1964), included F J Gerstner in the list of names of ``great

researchers and engineers'' [6], not only as a scientist who proposed

railway construction, but also as the creator of the trochoidal wave

theory. As a matter of curiosity, his son (also a renowned engineer)Ð

Franz AntonGerstnerÐwas the constructor of the first Russian railroad.
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appropriate to draw additional attention to Lagrangian fluid
dynamics, the methods of which are used by a rather narrow
circle of physicists. Finally, and perhaps most importantly, it
makes great sense to compile at one time a full list of known
exact solutions to this problem, especially because the year
2022 marks the 220th anniversary of the Gerstner paper.

2. Classical hydrodynamics

In the title of this paper, traditional (classical) hydrodynamics
and geophysical fluid dynamics are separated as distinct
components of general fluid mechanics with the aim of
organizing the material and for the convenience of presenta-
tion. Geophysical fluid dynamics studies such motions of
fluids when ``an essential role is played by the rotation of the
system as a whole and fluid stratification'' (V M Kamenko-
vich, A SMonin, foreword to book [29]). Section 2 is devoted
to traditional fluid dynamics, and Sections 3 and 4 deal with
waves on the rotating Earth and in a stratified fluid,
respectively.

2.1 Equations of hydrodynamics in Lagrangian variables
Traditionally, the motion of an ideal fluid is studied based on
the following system of equations [4]:

qr
qt
� div rv � 0 ;

qv
qt
� �vH�v � ÿHp

r
� F ;

where r is the fluid density, v is its velocity, p is the pressure,
and F is the external force per unit mass. The first of these
equations is the continuity equation, and the second one is the
Euler equation. All the introduced quantities are in the
general case functions of three coordinates and time. In this
description, called Eulerian, an observer is dealing with the
velocity field at a given point.

There is an alternative way to describe fluidmotion, called
Lagrangian, where one follows the motion of fixed `fluid
particles' beginning from some time instant. The coordinates
of such an individual particle, X, Y, Z, are considered to
depend on three spatial coordinates, a, b, c, and time t,

X � X�a; b; c; t� ; Y � Y�a; b; c; t� ; Z � Z�a; b; c; t� : �1�

These spatial variables can be taken as the initial coordinates
of fluid particles X0, Y0, Z0 at the time moment t � 0, i.e.,

a � X0 ; b � Y0 ; c � Z0 : �2�

However, it is convenient to assume that each quantity a, b, c
is some function of the coordinates of the initial fluid particle
position and that they serve as labels for the individual fluid
particle. Following the tradition, we call them Lagrangian
coordinates.

The association of the variables a, b, c with the name of
Lagrange is due to Dirichlet (1860), but, strictly speaking, it
bears in itself an element of inaccuracy [27, 30]. In fact,
Lagrange assumed that the fluid particle labels should
satisfy condition (2). However, Euler, who, by the way,
was ahead of Lagrange in formulating the method of
describing fluid motion which came to be known later as
Lagrangian, assumed the coordinates a, b, c to have a
more general (accepted today) sense, calling them material
variables. The accepted division of the methods describing
fluid motion, as well as variables, into Eulerian and
Lagrangian has a historical connotation, but in our

opinion Dirichlet made a very wise decision in choosing
the name for variables a, b, c.

The continuity equation in the Lagrangian variables is
written in a compact form with the help of the Jacobi matrix
(the Jacobian)

R̂ �
Xa Xb Xc

Ya Yb Yc

Za Zb Zc

 !
; �3�

with elements being the derivatives of current particle
coordinates over the Lagrangian variables. Matrix R̂
describes the change in an infinitesimal fluid element
dRfdX; dY; dZg that corresponds to the increment
dafda; db; dcg in the Lagrangian coordinates,

dR � R̂ da : �4�

The continuity equation in this notation becomes [27, 28]

r det R̂ � r0 det R̂0 ; r0 � r
��
t�0 ; R̂0 � R̂

��
t�0 ; �5�

where r�a; b; c; t� is the density. For an incompressible fluid,
the determinant of matrix R̂ does not depend on time. If
conditions (2) are enforced, matrix R̂0 is a unity one.

In order to obtain the motion equation in the Lagrangian
form, we rewrite the Euler equation in the following way:

Rtt � ÿ 1

r
Hp� F ; �6�

where R � RfX;Y;Zg. Equation (6) expresses Newton's
second law for an individual particle. In order to exclude the
differentiation over unknown functions X, Y, Z on its right-
hand side, we make dot products of (6) with vectors Ra, Rb,
and Rc. The result is

RttRa � ÿ 1

r
pa � FRa ;

RttRb � ÿ 1

r
pb � FRb ; �7�

RttRc � ÿ 1

r
pc � FRc :

With the help of the Jacobian matrix, these equations are
written as [31]

R̂T�Rtt ÿ F� � ÿ 1

r
Ha p : �8�

The upper index T implies a transpose operation, and on the
right-hand side the notation of gradient with respect to the
Lagrangian variables afa; b; cg is used.

2.2 Gerstner wave
Let us consider plane motions of an ideal incompressible fluid
with a free surface in the field of Earth's gravity. Let the axisX
be directed horizontally to the right, and the axisY be directed
vertically upward, and let a be the horizontal Lagrangian
coordinate and b, the vertical one (fluid fills the half plane
b4 0). The fluid is assumed to be infinitely deep. The
equations of fluid dynamics in the Lagrangian form (5), (7)
can then be written as

q
qt

q�X;Y�
q�a; b� �

qD0

qt
� 0 ; �9�
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XttXa � YttYa � gYa � ÿ 1

r
pa ; �10�

XttXb � YttYb � gYb � ÿ 1

r
pb ; �11�

where we took into account that the acceleration g due to
gravity is directed against Y and the force is written as
F � ÿg. The fluid is assumed to be homogeneous. Excluding
pressure by cross-differentiation equations (10) and (11), one
gets the condition that vorticity O is preserved along
trajectories:

q
qt
�XtaXb � YtaYb ÿ XtbXa ÿYtbYa� � q�OD0�

qt
� D0

qO
qt
� 0 ;

�12�

where

O � Dÿ10

�
q�Xt;X�
q�a; b� �

q�Yt;Y�
q�a; b�

�
:

To describe waves on a fluid surface, one should find
solutions of equations (9) and (12), and also satisfy the
conditions that pressure is constant on the free surface,

p
��
b�0 � p0 � const ; �13�

and that vertical velocity oscillations decay with depth,
Ytjb!ÿ1 � 0.

Gerstner proposed an exact solution to this problem [3,
32]:

X � aÿ A exp �kb� sin �kaÿ ot� ; �14�
Y � b� A exp �kb� cos �kaÿ ot� ; b4 0 ;

whereA is the wave amplitude, k is the wave number, ando is
the wave frequency. Just as in linear potential waves, the wave
number and frequency are linked by the relationship

o2 � gk ; �15�
which is a consequence of condition (13). At any time instant,
the free surface presents a trochoidÐa curve drawn by a
point on a circle of radius A that rolls without slip along the
horizontal line Y � ÿA. The trochoid moves with the speed
U � okÿ1 to the right preserving its form, which is why
Gerstner waves are also called trochoidal. Only solutions with
A4 kÿ1 make physical sense; otherwise, the profile crosses
itself. If A � kÿ1, the crests in the profile become acute (with
the angle equal to zero), such a limiting trochoid is called a
cycloid (Fig. 2).

In the 1860s, solution (14) was rediscovered by three
authors simultaneously: Froude [33], Rankine [34], and
Reech [35]. For more than half a century, Gerstner's classical
result stayed unnoticed. And this circumstance characterizes
Gerstner as an outstanding scientist who was ahead of his
time.

The coordinates of trajectory of an individual particle
satisfy the relationship (see (14))

�Xÿ a�2 � �Yÿ b�2 � A2 exp �2kb� ;

whence it follows that, in a fixed reference frame, each particle
moves along circles with radiusA exp �kb� (there is no particle

drift in Gerstner waves). The initial position of fluid particles
in Gerstner's solution does not coincide with Lagrangian
coordinates, namely

X0 � aÿ A exp �kb� sin �ka� ; Y0 � b� A exp �kb� cos �ka� :
One can, certainly, take X0, Y0 as the new Lagrangian
variables, but in this case it would be impossible to propose
explicit expressions for X and Y as functions of X0 and Y0.

The vorticity in the Gerstner wave is expressed as

O� � 2k 3A2U exp �2kb�
1ÿ k 2A2 exp �2kb� : �16�

It is computed by using expressions (12) and (14). In the case
of small wave steepness, when e � kA5 1, the vorticity is
given by the expression

O� � 2kU exp �2kb�e 2�1� exp �2kb�e 2��O�e 6� : �17�

From (17), it follows that, in the linear approximation, the
Gerstner wave is irrotational and coincides with the linear
Stokes wave. In the quadratic approximation, the vorticity in
the Gerstner wave is 2kU exp �2kb�e 2. It is equal in absolute
value but opposite in sign to the vorticity of the Stokes drift
induced by the potential Stokes wave. As demonstrated in
Ref. [36], in the quadratic approximation, the following
statement is valid:

Stokes wave � Gerstner wave� Stokes drift :

The Stokes wave is potential, and its vorticity is identically
zero in all orders of perturbation theory. The Gerstner wave,
as follows from formula (17), acquires additional vorticity in
each even order of perturbation theory. Moreover, the
profiles of both waves coincide up to the third order of
perturbation theory [37] (see also [9]). Only in the fourth
order of perturbation theory is a difference observed between
the wave profiles.

Given solution (14), the pressure can be found using
Eqns (10) and (11) [30] as

pÿ p0
r
� ÿgbÿ o2A2

2

�
1ÿ exp �2kb�� : �18�

The pressure in the fluid depends only on the coordinate b. As
demonstrated by A S Monin [38], the only type of stationary
waves in which pressure depends only on the vertical
Lagrangian coordinate is trochoidal Gerstner waves. It is a
remarkable fact that solution (14) remains valid in a stratified
fluid with density r�b� [8]. This happens because both the

R

r

Trochoid Cycloid

d0

A B

l

Figure 2.Cycloid �R � kÿ1 � �2p�ÿ1l� and trochoid �r < R�. Middle level

of the cycloid is located lower than that of the trochoid by d0 �
p�R 2 ÿ r 2�lÿ1. As applied to a Gerstner wave (14), this implies that, the

larger the amplitude A, the lower the equilibrium level of fluid [32].
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density and the pressure are functions of a single coordinate b,
and hence a function of each other. In a barotropic fluid, the
condition that vorticity (12) be preserved is the same as in a
homogeneous fluid.

The treatise by Lamb [4] remained for a long time the only
source abroad presenting the Gerstner wave theory. The
discussion of wave properties there was rather concise, in
contrast to that in Soviet textbook [32]. This triggered the
appearance of articles [39, 40] and a chapter in monograph
[41] dedicated directly to the Gerstner wave already in our
time. An original feature of Refs [39±41] is the proof (in
different ways) that transformation (14) is a diffeomorphism
mapping the plane ofmaterial (Lagrangian) labels on the flow
domain.

2.3 Edge waves along a sloping coast
Edge waves is the name for waves propagating along the
coast. These waves attain maximum amplitude at the
boundary with the land and rapidly decay offshore. All their
energy is concentrated in a narrow coastal zone and barely
leaks into the open ocean, so that one says that there is
`trapping' of wave energy, and also refers to these waves as
trapped waves. Their study, as well as that of usual surface
waves, was initiated by Stokes [42]. At present, such studies
already form a separate branch of the theory of water waves
(see, e.g., Refs [43, 44]), but the only exact solution in
nonlinear wave theory is nevertheless related to the Gerstner
approach [13±16] once again. We present this solution based
on Ref. [16].

Let water be bounded by a sloping bottom that is at an
angle a to the horizontal plane �0 < a < p=2�. We will
consider edge waves propagating along the coast. Select the
X-axis parallel to the coast, the Y-axis along the sloping
bottom, and theZ-axis in the perpendicular direction (Fig. 3).
The land-water boundary satisfies the conditions
ÿ1 < X <1, Y � b0, Z � 0, where b0 is a constant
�b0 4 0�. In this frame of reference, a unit mass of fluid will
be affected by the force

f � �0;ÿg sin a;ÿg cos a� : �19�

If waves are absent, the fluid occupies the domain between
the bottom plane �Z � 0� and the plane Z � �b0 ÿ Y� tan a.
Let this fluid domain coincide with the set of Lagrangian
labels, and let the variables a, b, c be counted along the axesX,
Y, Z, respectively. The equation for the free surface in the
Lagrangian frame takes the form

c � �b0 ÿ b� tan a ; b4 b0 : �20�

The problem geometry suggests that themotion inwhich fluid
particles move in planes parallel to the bottom be considered.
In this case, the Z component of velocity is absent and the
impermeability condition along the Z-axis is ensured auto-
matically. By analogy with expressions (14), we write the
expression for such a two-dimensional flow as [16]

X � aÿ 1

k
exp

�
k�bÿ c�� sin ÿka� ���������������

gk sin a
p

t
�
;

Y � bÿ c� 1

k
exp

�
k�bÿ c�� cos ÿka� ���������������

gk sin a
p

t
�
; �21�

Z � c� c tan a� tan a
2k

exp �2kb0�
�
1ÿ exp

�ÿ2kc�1� cot a��	 :

The first two equations of system (21) are similar to the
Gerstner formulas, only the roles of the coordinate b and
acceleration due to gravity is played by bÿ c and g sin a. The
wave frequency is

���������������
gk sin a
p

(naturally, the edge Stokes wave
has the same frequency). The � sign in the arguments of
trigonometric functions implies that the wave is propagating
toward negative X (its speed is U � ������������������

g sin a=k
p

) (see Fig. 3).
The wave profile at the coast �Z � c � 0� corresponds to a
trochoid without cusps �b0 < 0� or a cycloid with cusps
pointing upward �b0 � 0�.

The relationship for Z in (21) ensures that the pressure is
constant on the free surface. Inserting condition (20) into
equations (21), we obtain a parametric representation for the
free surface. From this representation, it can be easily seen
that the wave amplitude exponentially decays in the offshore
direction �b! ÿ1�, i.e., the wave is trapped. The vorticity in
the wave has only the Z component, and its magnitude
follows from formula (16) by replacing A! kÿ1 exp �ÿkc�
and adding a minus after the equal sign (the wave propagates
to the left).

The instability of three-dimensional edge waves (21) was
explored by Ionescu-Kruse [45] with the help of the Leblanc
shortwave perturbation method [25]. It is proven that waves
with a steepness larger than �7=18� sin a are unstable.

2.4 Gouyon waves
Gerstner waves are vortical. However, they have a rather
special form of vorticity (16). If expression (16) is considered
in a weakly nonlinear limit as an expansion in the small wave
steepness parameter, it contains only terms even in powers of
e (see relationship (17)). The multiplier with the powers of the
parameter are the well-defined functions of coordinate b.
However, in the Lagrangian description of stationary flow,
the isolines of the streamfunction and the coordinate b
coincide, and vorticity can be an arbitrary function of this
coordinate. For this reason, a natural extension of the
Gerstner wave is a periodic wave with a more general
distribution of vorticity:

O��b� �
X1
n�1

e nO�n�b� : �22�

The question of the description of a periodic wave with a
general distribution of vorticity was studied for the first time
by Dubreil-Jacotin [46], but Gouyon [47] did it in a more
general form (see also Ref. [9]). Both researchers used
Eulerian coordinates: in formula (22), the variable b should
be replaced by the streamfunction. Gouyon found an explicit

a

a

X

Z

U

Y
b

b0

c

C
oa
st Sloping bottom: c � 0

c � �b0ÿ b� tan aì free
surface equation

g

Figure 3. The problem geometry.
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expression for the correction to the linear wave propagation
speed, which is proportional to the steepness parameter; this
is why it seems appropriate to refer to stationary waves with
vorticity (22) as Gouyon waves.

In Ref. [48], which took into account not onlyO�1 but also
O�2, a quadratic correction to the wave propagation speed
was found. Lagrangian variables were used for computations.
Later, Gouyon's result was generalized to a spatial case [49].
The three-dimensional character of wave perturbations (the
appearance of transverse modulation on the profile of a
weakly nonlinear Gouyon wave) is the reason for the
existence of a near-surface layer inside which the vorticity is
an oscillating function.

In the case O�1 � 0, O�2�a; b� 6� 0, in Lagrangian coordi-
nates, a nonlinear Schr�odinger equation (NSE) is derived
describing the evolution of the complex amplitude of
modulated wave A�a; t� [50]:

i
qA
qa
ÿ k

o2

q2A
qt 2
ÿ k
ÿ
k 2jAj2 � g�a��A � 0 ;

g�a� � 4k 2

o

� 0

ÿ1
exp �2kb�

�� b

ÿ1
O2�a; b 0� db 0

�
db :

In the NSE, the coefficient by the nonlinear term depends on
the vorticity distribution. For Gouyon waves, the magnitude
of g does not depend on the horizontal Lagrangian coordinate
a. In the quadratic approximation, the weakly nonlinear
Gerstner wave is a particular case of the Gouyon wave. Its
vorticity is such (see (17)) that the coefficient by the
nonlinearity in the NSE becomes zero [50, 51]. The effect of
modulation instability is therefore absent for a Gerstner
wave.

This is a rigorous result, but it could be foreseen by taking
into account the dispersion relation for the Gerstner wave
(15). Since it misses the amplitude, by virtue of the Lighthill
criterion [52] the wave does not satisfy the conditions for
modulational instability.

2.5 Epicycloid waves on the surface of a rotating cavity
There is a cylindrical analog of plain Gerstner waves.
Consider wave motions in a fluid that partly fills a cylinder
(a centrifuge) that is set in fast rotation with frequency o
around a horizontal axis. Under the action of centrifugal
force, the fluid turns out to be pressed against the cylinder
wall and rotates together with it around the central air core.
The oscillations of the free surface occurring in this case are
called centrifugal waves [53]. Their description in the linear
approximation is well known [53, 54]. However, if the
external radius of the centrifuge is considered infinite (much
larger than the radius of air coreR), the problem can be solved
exactly [18, 19]. We will follow Ref. [19] in presenting the
solution method.

Let the fluid rotation axis coincide with the direction of
the Z-axis. Consider fluid motion in the XY plane. We
introduce complex coordinates of fluid particle trajectory

W � X� iY ; �W � Xÿ iY

and complex Lagrangian coordinates

w � a� ib ; �w � aÿ ib :

In this case, the system of equations of plane hydrodynamics
(9), (12) can be written as the condition that two Jacobians be

time independent [55, 56],

q
qt

q�W; �W�
q�w; �w� �

qD0

qt
� 0 ;

q
qt

q�Wt; �W�
q�w; �w� � 0 : �23�

Through direct substitution, one can see that the expression

W � G�w� exp �ilt� � F��w� exp �imt� ; �24�

where G and F are analytical functions and l and m are real
numbers, is an exact solution of system (23). The functions G
and F are to a substantial degree arbitrary, since the only
limitation on their choice is that the Jacobian D0 does not
become zero in the flow domain.

A particle in flows (24) moves along a circle with radius
jF jwhose center, in turn, rotates along a circle with radius jGj.
If the ratio of frequencies m and l is positive, the particle
trajectory will be an epicycloid, and if it is negative, it will be a
hypocycloid (Fig. 4); the number of petals in the curves
depends on the frequency ratio. Such orbits were followed
by planets in the Ptolemaic picture of the world, which is why
this type of flows is called Ptolemaic [55, 56].

Gerstner waves (14) in complex variables are written as

W � w� iA exp
�
i�k�wÿ ot�� ; Im w4 0 : �25�

They belong to the set of Ptolemaic motions (24), but, since
frequency l for them is equal to zero, fluid particles simply
move over circles.

If we assume that waves on the surface of a rotating cavity
also belong to the class of Ptolemaic flows, then the functions
G and F should be defined by boundary conditions. Since at
infinity the fluid rotates as a whole, in formula (24) we should
set

G�w� � R exp �ikw� � n ; l � o ; �26�

and assume that jF j ! 0 at jnj ! 1; in the plane of
Lagrangian variable w, the domain corresponds to a half-
band in the lower half-plane Im w4 0, 04Re w4 2p or the
outer part of a circle of radius R in the plane of complex
variable n.

The function F will be found from the condition that
pressure be constant on the free surface of a cavity, which
corresponds to the equality jnj � R. Taking into account
relationships (10) and (11), the expression for pressure can

Â b c d

e f g h

Figure 4. (a, b) Hypocycloids. (c, d) Epicycloids. (e) Elongated hypo-

cycloid. (f) Shortened hypocycloid. (g) Elongated epicycloid. (h) Shor-

tened epicycloid.
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be written as (we neglect the action of the gravity force)

p

r
� 1

2
o2jnj2 � 1

2
m2jF j2

�Re

�
�o2n �F 0 � m2 �F � exp �i�lÿ m�t�dn :

In order that the pressure be constant on the free surface, it is
necessary that the coefficient with the temporal multiplier
become zero. This happens when

F��n� � A�nÿq
2

; q � m
o
; �27�

where A is a constant. The final expression for W will be
obtained by inserting equalities (26), (27) into expression (24):

W � n exp �iot� � A�nÿq
2

exp �iqot� ; �28�

from where it can be easily concluded that the trajectories of
fluid particles are shortened epicycloids �q > 0� and hypo-
cycloids �q < 0�, and profiles of propagating waves are
epicycloids with the number of petals q 2 ÿ 1, and for the
profile to be closed, q 2 should be an integer. For the constant
that defines the amplitude of waves, there is an upper limit
Rq 2�1=q 2, when cusps are forming on a free surface (for larger
values of A, the profile has loops (Fig. 4a, c, e, g), which
cannot be realized physically).

Epicycloidal waves are vortical. The vorticity in them is
written as

O� � 2o�1ÿ q 5A2jnjÿ2�q 2�1��
1ÿ q 4A2jnjÿ2�q 2�1� ;

whence it can be seen that the magnitude of vorticity depends
on the sign of q, among other factors.

Let us find the angular velocity o0 of rotation of a
stationary wave profile. The rotation of fluid as a whole
with this frequency is characterized by a common multiplier
exp �iot� in the expression for W; therefore, in the reference
frame where the profile is at rest, solution (28) will take the
form

W � n exp
�
i�oÿ o0�t

�� A�nÿq
2

exp
�
i�qoÿ o0�t

�
:

In this frame, the particle trajectories coincide with the profile
shape; hence, the equality

qoÿ o0 � q 2�oÿ o0�

is valid, from which we find

o0 � qo
q� 1

:

In the reference frame rotating with angular velocity o, the
frequency of profile rotation is �q� 1�ÿ1o, so that waves that
correspond to negative q move in the rotation direction, and
those that correspond to positive values move against it.

We note that Inogamov [18] arrived at an analogous
result, also using complex Lagrangian coordinates. He,
however, did not introduce the concept of Ptolemaic flows,
having guessed the solution in the form (28) [18], and did not
consider possible generalizations.

The waves just studied have an interesting parallel in
magnetohydrodynamics. If the centrifugal force pushes the

rotating particles to the periphery, the Lorentz force in a
magnetic field, by contrast, keeps charged particles in a
rotating core. Reference [57] solves two problems: (1) on
azimuthal waves in a column of uniformly charged electron
gas placed in a homogeneous longitudinal magnetic field,
taking into account the effect of finite temperature; (2) in an
equilibrium form of a plasma cylinder in an analogous
external field. In both cases, the boundary of the transverse
section is a hypocycloid. For azimuthal waves, the spectrum
of eigenfrequencies is found. The frequency, as in all
Gerstner-type waves, does not depend on the amplitude.

2.6 Generalized Gerstner waves
for variable free surface pressure
Traditionally in the theory of water waves, it is required that
pressure be constant on a free surface. However, this
condition can be violated in the presence of wind. Then, the
effect of this violation can be modeled through the formation
of inhomogeneous and nonstationary pressure distribution
on the free surface, and one can study the influence of given
boundary conditions on the wave evolution.

Let us consider the generalizations of Gerstner waves of
this kind. Assume that the flow domain in the Lagrangian
variables occupies the lower half-plane, and the fluid motion
is described by the expression

W � G�w� � F��w� exp �ÿiot� : �29�
This motion belongs to the family of Ptolemaic flows, but
function G can in this case differ from the linear one, and
function F can differ from the exponential one (see (25)). In
expression (29), function G defines the level with respect to
which the particles on the free surface rotate, and the module
of function F defines the radius of their circular rotation (the
wave amplitude). The particles are at rest in deep regions, so
the following condition should be obeyed:

jF j ! 0 at b! ÿ1 :

Since function F is an analytical one, it reaches its maximum
on the free surface. Hence, it follows that the free surface
particles will oscillate with the largest amplitude.

Wave solution (29) corresponds to the following pressure
distribution:

pÿ p0
r
� ÿg Im �G� F exp �ÿiot��� 1

2
o2jF j2

�Re

�
exp �iot�

�
o2G 0 �F dw

�
;

where p0 is a constant. In the general case, the pressure varies
periodically with time and is nonuniform along the free
surface Im w � 0. In essence, we have a whole class of exact
solutions which describe complex free surface dynamics for
inhomogeneous and harmonically varying pressure along it.
The vorticity of waves (29) is given by the equality

O� � 2ojF 0j2
jG 0j2 ÿ jF 0j2 :

Different examples of generalized Gerstner waves (29) are
studied in a series of papers [58±62]. Their details are
summarized in the Table. The Ptolemaic solutions allow a
broad class of nonstationary phenomena to be analyzed on a
model level. We look at two of them.
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2.6.1 Breather overturning. Consider a Ptolemaic flow of the
following form [59]:

W � wÿ ib

�wÿ i�2 �
ib

��w� i�2 exp �ÿiot� ; Im w < 0 : �30�

In expression (30), the quantities W, w, b are assumed to be
dimensionless. The transition to dimensional variables is
carried out by the transformations W! a�W, w! a�w,
b! a 3

� b, where a� is some scale with the dimension of
length. The dynamics of a free fluid surface for flow (30) are
presented in Fig. 5. Solution (30) evolves differently, depend-
ing on the magnitude of b [59]. We begin the analysis from
t0 � p=o. At this timemoment, the shape of the free surface is
symmetric with respect to the vertical axis passing through the
point of maximum deflection (Fig. 5a) with a height of 2b (or
2a�b in the dimensional form). For negative b, the free surface
has a trough. When b > 0, the profile has a crest.

Figure 5 plots the evolution of a breather during one
period of oscillations. The perturbation of the free surface
changes its form but does not move as a single whole. For this
reason, we can call it a breather. The breather profile varies
with time. Two qualitatively different regimes are possible: (a)
for b � ÿ0:25 or b � 0:5, the profile has no inflection points;
(b) for b � 0:85, the profile has inflection points, and breather
overturning is observed.

We are interested in the profile with b � 0:85 plotted by
the solid line in Fig. 5. The steepness of its forward front
increases with time, and at t1 � 4:25=o (Fig. 5b) an inflection
point appears for the first time. This point is characterized by
the vertical tangent to the profile shown by the dashed line.
Further, the profile has two inflection points until the time
instant t3 � 5:9=o, when they coalesce. The inflection point
disappears afterwards. At the moment t � 2p=o, the surface
becomes flat.

During the following half-cycle, all evolution stages are
symmetrically repeated (Fig. 5e ± g), and the inflection points
form on the left breather slope. An inflection point appears at
t4 � 6:7=owhen the steepness is rather small. Observing such
a situation in natural conditions is hardly possible. However,

the breather dynamics during the first half-cycle resemble
very much the breakup of oceanic waves. Closer to the time
moment when a vertical tangent appears in the profile, one
needs to account for viscosity, which will destroy the solution
considered at some moment t� > t1. Thus, expression (30)

Table. Examples of generalized Gerstner waves (a and b are constants that are different in each example).

Wave model G�w� F��w� Reference

Oscillating standing soliton w b
��w� i�n ; b > 0 ; n5 2

[58]

Oscillating soliton
in the background of a Gerstner wave

w
iA exp �ik�w� � b

�w� i�n
[58]

Breather overturning on calm water
wÿ ib

�wÿ i�2
ib

��w� i�2
[59]

Nonstationary Gerstner waves
w� b

wÿ ia
iA exp �ik�w� [60]

Rogue wave inside
a packet of Gerstner waves w� i

k
ln

�
1� P

�
w
a

��
;

P

�
w
a

�
� ib

iaÿ w

iA

�
1� P

�
w
a

��
exp �ik�w�

[61]

Rogue wave in the background
of a Gerstner wave wÿ ib

�wÿ ia�2 ÿiA exp �ik�w� � ib

��w� ia�2
[62]

1

1

1

1

1
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t0 � 3.14=o

t1 � 4.25=o

t2 � 4.9=o

t3 � 5.9=o

t4 � 6.7=o

t5 � 7.7=o

t6 � 8.3=o

Figure 5. Evolution of a breather profile for various values of b. Solid
black line corresponds to b � 0:85, thin black line, to b � 0:5, and light

line, to b � ÿ0:25. X and Y coordinates are normalized with a�.
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describes wave overturning in the interval �t0; t��. For
example, one can choose t� � t2.

We stress that expression (30) corresponds to inhomoge-
neous and nonstationary pressure distribution on the free
surface. The pressure oscillates in anti-phase with profile
oscillations.

2.6.2 Rogue wave in the Gerstner wave background. Figure 6
depicts the dynamics of a wave surface for expression (29)
with functions G and F that correspond to the last row in
table [62]. Numerical computations were carried out for the
case A � 0:5 m, k � 0:074 mÿ1, a � 12 m, b � 328 m3,
o � �����

gk
p � 0:85 sÿ1, l � 84:9 m. At the initial moment

�t � 0�, the shape of the free surface (the upper curve)
coincides exactly with the Gerstner wave profile. Later on, a
peak starts to grow on the profile, reaching a maximum at the
moment t � p=o, and then decreasing and disappearing near
the end of the period. The largest peak height, h �
2b=a 2 � A � 5:1 m, is eight times larger than the amplitude
of Gerstner wave A. This is why the peak formation can be
considered the birth of a rogue wave (see Ref. [63] for details
of the rogue wave phenomenon). The reason is the pressure
applied at the surface. The lowest curve in Fig. 6 shows the
deviation of free surface pressure from atmospheric pressure
p0. At each free surface point, the pressure varies with time,
but its negative jump in the region of the wave peak is about
100 mm Hg.

3. Exact solutions for waves
taking into account Earth's rotation

We select the reference frame on the rotating Earth as shown
in Fig. 7. Its origin is at latitude F, the X-axis is directed
eastward, the Y-axis is directed northward, and the Z-axis is
directed vertically upward. In this reference frame, the vector
of Earth's rotation X lies in the plane YZ. In the rotating
reference frame, each particle will be affected by the Coriolis
force and centrifugal force in addition to the gravity force,
and the equation of motion takes the following form [29]:

Rtt � 2X� Rt � ÿ 1

r
Hp� HFÿX� �X� R� ; �31�

where F � ÿgZ is the geopotential, the Coriolis acceleration
is on the left-hand side, and the centrifugal acceleration is on
the right-hand side, but with a minus sign. The centrifugal
force has a gradient character, and equation (31) can be

rewritten as

Rtt � 2X� Rt � ÿ 1

r
HH ;

�32�
H � p

r
ÿ F� Fc ; Fc � ÿ 1

2
�X� R�2 ;

where Fc is the potential of centrifugal forces.
Forming a dot product of equation (31) andRai , we obtain

motion equations in the Lagrangian coordinates:

RttRai � 2�X� Rt�Rai � ÿHai ;

i � 1; 2; 3 ; faig � fa; b; cg : �33�
Together with the continuity equation (5), three equations
(33) make a system of equations of an ideal incompressible
fluid in Lagrangian variables in a rotating reference frame.

In Sections 3.1 and 3.2, we will study various wave
motions when:

(a) the projections of Earth's angular velocity can be
considered nonvarying in the entire flow domain: the
Coriolis parameters f � 2OZ � 2O sinF and ~f � 2OY �
2O cosF are assumed to be constant (the f-plane approxima-
tion);

(b) near-equatorial flows are in the band of low latitudes
F � Y=R�, R� is Earth's radius, the Coriolis parameters are
f � bY, b � 2O=R and ~f � 2O (the b-plane approximation).

The representation of vector X in each case will be
different, but a general result can be formulated for these
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Figure 6. Formation of a rogue wave in the background of a Gerstner wave.
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Figure 7. Coordinate system on Earth's surface.

May 2022 Gerstner waves and their generalizations in hydrodynamics and geophysics 461



cases [64, 65]. We eliminate the gradient term from equations
(33) by taking cross derivatives and, after intermediate
computations, obtain the equation

q
qt

�
RtajRai ÿ RtaiRaj � 2�X� Raj�Rai

� � 0 ; i 6� j ;

which is equivalent to the preservation condition for three
invariants, S1, S2, S3,

RtbRc ÿ RtcRb � 2�X� Rb�Rc � S1�a; b; c� ; �34�
RtcRa ÿ RtaRc � 2�X� Rc�Ra � S2�a; b; c� ; �35�
RtaRb ÿ RtbRa � 2�X� Ra�Rb � S3�a; b; c� ; �36�

which are functions of only Lagrangian coordinates. Equa-
tions (34)±(36) are the consequence of motion equations.
Together with continuity equation (5), they constitute a
system of fluid dynamical equations of an ideal incompres-
sible fluid in a rotating reference frame.

IfX � 0, equations (34)±(36) take the following form:

RtbRc ÿ RtcRb � S10�a; b; c� ; �37�
RtcRa ÿ RtaRc � S20�a; b; c� ; �38�
RtaRb ÿ RtbRa � S30�a; b; c� ; �39�

where the index 0 denotes the motion in a nonrotating
reference frame. Expressions (37)±(39) were first written by
Cauchy (1815), and Lamb gives them in his book [4]. The
functions S10, S20, S30, called the Cauchy invariants [27, 28,
66±71], are equal to circulations around three infinitesimal
closed contours with planes perpendicular to the coordinate
axes [4]. Formulas (37)±(39) offer generalizations of the
Cauchy invariants for motion in a rotating reference frame.

3.1 Gerstner waves in a rotating fluid
For the f-plane approximation ( f is the constant Coriolis
parameter), Pollard gave the following exact solution of
equations of fluid dynamics [12]:

X � aÿ Am

k
exp �mc� sin �k�aÿUt�� ;

Y � b� f
Am

k 2U
exp �mc� cos �k�aÿUt�� ;

Z � c� A exp �mc� cos �k�aÿUt�� ;

8>>>>><>>>>>:
�40�

where A and m are positive constants, k and U are,
respectively, the wave number and phase velocity of the
wave. Inserting (40) into continuity equation (5), we obtain

det R̂ � 1ÿm 2A2 exp �2mc� :
The flow domain is given by the condition c4 c0 < 0, and, to
preserve the one-to-one character of mapping (40) (the
determinant should not turn to zero), it is required that the
inequality A4 1=�m exp �mc�� be valid, which ensures that
there are no self-crossings in the wave profile (in a Gerstner
wave, the role of parameterm is played by the wave number).

Inserting (40) into expressions (34)±(36), on the one hand,
we check that they are correct, and on the other hand, we
compute the values of generalized Cauchy invariants

S1 � 0 ;

S2 � m�k 2 ÿm 2�UA 2 exp �2mc� � ~f
�
1ÿm 2A2 exp �2mc�� ;

S3 � f :

Equation (35) also defines the parameter m as

m 2 � k 4U 2

k 2U 2 ÿ f 2
: �41�

Thus, in solution (40), there remains the only free parameter
A defining the wave amplitude.

Wave oscillations of fluid particles decay exponentially
with the depth, ensuring bottom impermeability �c � ÿ1�.
In order to find the pressure, we should insert expressions (40)
into equations (33) and neglect the centrifugal force. The
expression for the pressure takes the form

pÿ p0 � r
mgA2

2

�
exp �2mc� ÿ exp �2mc0�

�ÿ rg�cÿ c0� :
�42�

Just as for a Gerstner wave, the pressure depends only on
the vertical Lagrangian coordinate. When deriving expres-
sion (42), the wave dispersion relation is found by requiring
that the pressure at the free surface be time independent:

U 2�k 2U 2 ÿ f 2� � �gÿ ~f U�2 :

If rotation is absent (the Coriolis parameters are zero), the
latter expression coincides with that for Gerstner waves. The
wave travels from the west to the east, and its crests are
parallel to the Y-axis.

From relationships (40) and (41), it follows that fluid
particles move along circles:

�Xÿ a�2 � �Yÿ b�2 � �Zÿ c�2 � m 2A 2

k 2
exp �2mc� :

The center of each such circle is located at the point �a; b; c�,
which does not coincide with the initial particle position, and
the rotation radius ismA exp �mc�=k. Comparing the last two
expressions of solution (40), we conclude that the motion
looks similar in all planes that are parallel to the plane

Yÿ f
m

k 2U
Zÿ b� f

m

k 2U
c � 0 ;

which makes an angle arctan � fm=�k 2U��with theZ-axis. The
trajectories of circular motion lie in these planes. At the
equator, f � 0, m � k, and the Pollard solution transforms
into theGerstner solution (see (14): the role of b is now played
by coordinate c). At the equator, the particles oscillate in the
plane XZ; for f 6� 0, the plane of their oscillations is inclined
in each hemisphere to the respective pole. However, as
concluded by Pollard himself [12], the magnitude of this
angle is extremely small.

The stability of Pollard waves was studied in a short-wave
limit. When some slope threshold is surpassed, these waves
become unstable against perturbations that are perpendicular
to the propagation direction (west±east) [69].

Constantin and Monismith analyzed the propagation of
Pollard waves in the background of homogeneous zonal flow
U0. If we add the termÿU0t in the first of equations (40), they
will continue to be an exact solution to the equations of
rotating fluid. But the dispersion relation will be modified.
Exploring it, the authors of Ref. [72] pointed out that two
types of waves are possible. The first one, described by
Pollard, presents a slightly modified Gerstner wave in which
there is no particle drift. The second type (an inertial Gerstner
wave), characterized by a slower propagation speed, is
`attached' to the mean flow and cannot occur in its absence.
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The effect of Earth's rotation can also be taken into
account for edge Gerstner waves [15]. The form of the exact
solution resembles expressions (21), but the scales of
exponential decay along the vertical and horizontal direc-
tions are now different. The papers byMollo-Christensen [14,
15] are written in an exclusively concise way. Their ideas are
discussed in a more exhaustive and complete way in Ref. [73]
for the near-equatorial domain and in Refs [74, 75] for an
arbitrary latitude.

3.2 Waves in a near-equatorial domain
Close to the equator, in the b-plane approximation, equations
(34)±(36) take the form [65]

q�Xt;X�
q�b; c� �

q�Yt;Y�
q�b; c� �

q�Zt;Z�
q�b; c�

� 2O
q�Z;X�
q�b; c� � bY

q�X;Y�
q�b; c� � S1�a; b; c� ;

q�Xt;X�
q�c; a� �

q�Yt;Y�
q�c; a� �

q�Zt;Z�
q�c; a� �43�

� 2O
q�Z;X�
q�c; a� � bY

q�X;Y�
q�c; a� � S2�a; b; c� ;

q�Xt;X�
q�a; b� �

q�Yt;Y�
q�a; b� �

q�Zt;Z�
q�a; b�

� 2O
q�Z;X�
q�a; b� � bY

q�X;Y�
q�a; b� � S3�a; b; c� :

The f-plane approximation at the equator follow from these
equations if one takes b � 0 (in this case, f � 0, ~f � 2O).

3.2.1 The f-plane approximation. Consider two-dimensional
near-equatorial flows in planes parallel to the plane XZ, i.e.,
Y � b. Continuity equation (5) takes the form

q�X;Z�
q�a; c� � S0�a; c� ; �44�

where S0 is a time-independent function, and from the
equations for the Cauchy invariants it follows that

q�Xt;X�
q�a; c� �

q�Zt;Z�
q�a; c� � ÿS2�a; c� ÿ 2OS0�a; c� : �45�

Systems of equations (44) and (45) are equivalent to systems
(9) and (12), with the only difference being that the role of
coordinate b is now played by the variable c. Relationships
(44) and (45) are the system of equations of two-dimensional
fluid dynamics, so that all exact solutions for plane waves in a
nonrotating fluid will also be valid in the f-plane approxima-
tion. However, the expressions for wave vorticity and
dispersion relations will change. Following similar reason-
ing, Hsu described the Gerstner wave in the near-equatorial
latitude band in the f-approximation [76], and Kluczek
studied the effect of a homogeneous flow on this wave [77].
The steepness threshold after which the Gerstner wave
becomes unstable is found in Ref. [78].

Solution of equations (44), (45) in the form X � X�a; c; t�,
Z � Z�a; c; t� can be generalized by assuming

Y � b� s�a; c�t ;

which corresponds to adding a meridional flow with the
profile s�a; c� to the known two-dimensional flow. This
changes the vorticity of the net flow and the invariants S1

and S3, which now become S1 � ÿs 0c and S3 � s 0a. Henry
studied the effect of such flows on a Gerstner wave [79],
Kluczek, on aGerstner wave in a flow [77], andAbrashkin, on
Ptolemaic flows in the near-equatorial band [64].

This repository of exact solutions should be enlarged with
a description of the Gerstner wave generated by a traveling
harmonic pressure wave [64]. The pressure p on the profile of
the Gerstner wave is expressed as (see (14), b! c)

pÿ p0
r
� ÿgc� o�o� 2O�

2
A 2 exp �2kc�

� �o�o� 2O�kÿ1 ÿ g
�
A cos �kaÿ ot� : �46�

Traditionally, the boundary condition for the free surface for
water waves is that the pressure be constant �c � 0�. Then,
equating the factor by the cosine in equation (46) to zero, the
wave dispersion relation is derived [76]. However, one may
assume that a pressure distribution in the form of a harmonic
traveling wave is maintained at the free surface because of
wind,

p � � p1 � p2A cos �kaÿ ot� ; �47�

where p1 and p2 are constants that satisfy the following
relationships:

p1 � p0 � o�o� 2O�
2

rA 2 ;
�48�

p2 � r
�
o�o� 2O�kÿ1 ÿ g

�
A :

When conditions (48) are observed, one may say that
Gerstner solution (14) corresponds to stationary trochoidal
waves on a fluid surface maintained by an external pressure
(47). For knowno and k, the second relationship specifies the
wave amplitude A, and the first one, the quantity p0. The
free surface elevation is expressed through the formula
Y � A cos �kaÿ ot�; thus, in the case of positive p2, the
pressure varies in phase with the profile; otherwise, in anti-
phase. The case p2 � 0 corresponds to a Gerstner wave with
constant pressure on the profile.

Solving the quadratic equation in (48) with respect to o,
one finds the dispersion relation for the waves:

o � �
�������������������������������������
O 2 �

�
g� p2

rA

�
k

s
ÿ O : �49�

Let us assume that �g� p2=rA� > 0. Taking the � sign, we
obtain a wave propagating to the east, while the minus sign
corresponds to westward propagation. It is interesting to
compare dispersion relation (49) with that for equatorial
waves on a homogeneous flow [77]. The quantity p2=�2rAO�
is analogous to the flow velocity. Thus, wind either accel-
erates or decelerates waves, depending on the sign of p2.

The solution considered here is interesting from the
standpoint of both creating Gerstner waves in the laboratory
and natural conditions. As hinted at by our analysis, wind can
be one of its generation mechanisms.

3.2.2 Trapped waves (b-plane approximation). For the case
when the Coriolis parameter varies linearly with latitude (this
approximation is called the b-plane), Constantin found an
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exact solution of system (43):

X � aÿ 1

k
exp

�
k
�
cÿ h�b��	 sin �k�aÿUt�� ;

Y � b ;

Z � c� 1

k
exp

�
k
�
cÿ h�b��	 cos �k�aÿUt�� ;

8>>><>>>: �50�

where h�b� � bb 2=�2�kU� 2O��, and the wave phase velocity
is expressed as

U �
�����������������
O 2 � kg

p
ÿ O

k
:

The Lagrangian variables a, b vary in the limits �ÿ1;1� and
c lies in the limits �ÿ1; c0�, where c0 < 0. Relationships (50)
describe equatorial surface waves traveling at speed U
eastward [80]. They are spatially periodic waves with
amplitude decaying exponentially in the meridional direc-
tion, which is why they are called trapped. For h � 0,
expressions (50) reduce to the Gerstner solution. The
additional exponentially decaying multiplier by the ampli-
tude is the highlight of this exact solution.

The expressions for the generalized Cauchy invariants in
waves (50) take the following form [65]:

S1 � 0 ; S2 � 2Oÿ 2�kU� O� exp �2z� ;
�51�

S3 � bb
�
1ÿ 2�kU� O�

kU� 2O
exp �2z�

�
; z � k

�
cÿ h�b�� :

The zonal component of vector S fS1;S2;S3g equals zero.
The vorticity x for waves (50) is expressed as follows [80]:

x� Sÿ10

�ÿbkU 2gÿ1b exp z sin y; ÿ2kU exp �2z�;
bkU 2gÿ1b

�
exp z cos yÿ exp �2z��	 ; �52�

Sÿ10 � 1ÿ exp �2z� ; y � k�aÿUt� :

All three vorticity components differ from zero, and the zonal
and vertical components depend on time. A comparison of
formulas (51) and (52) gives a clear indication of the
difference between the vectors of vorticity and Lagrangian
invariants.

The pressure in a fluid is written as

pÿ p0 � rg
�
exp �2z�

2k
ÿ c

�
ÿ rg

�
exp �2kc0�

2k
ÿ c0

�
: �53�

The shape of the free surface at the equator where b � 0 is
obtained from (50) by setting c � c0. The trapped equatorial
waves can be qualitatively compared with edge waves along a
vertical coastal wall at the equator.

Trapped equatorial waves, just like their simpler ana-
logsÐGerstner waves and Gerstner-type edge wavesÐare
linearly unstable when their steepness exceeds some threshold
[81].

Expressions (50) are a unique example of an exact solution
of fluid dynamics equations in the equatorial domain. They
can be generalized to the case of uniform zonal near-surface
flow [82±84], to account for centrifugal forces [85], to correct
the gravity force in the framework of the standard b-plane
model [86], and for edge waves by a sloping bottom lying
parallel to the equator [87]. References [88, 89] use relation-
ships (50) to describe waves propagating in the background of

zonal flow at an arbitrary latitude. They use a nontraditional
b-plane approximation when the parameter f varies with
latitude and the parameter ~f is assumed to be constant. This
approximation for the spatial problem is rather rough, and
the solutions obtained for waves cannot be called exact.

4. Waves in a stratified fluid

A vast bibliography devoted to Gerstner-type waves in a
rotating fluid is chiefly based on three solutions for a
homogeneous fluid that describe:

Ð Gerstner waves [3];
Ð waves over a sloping bottom [13±16];
Ð trapped near-equatorial waves [80].

Namely these will also remain in our focus in this section.

4.1 Continuous stratification
Assume that some exact solution X�a; b; c; t�, Y�a; b; c; t�,
Z�a; b; c; t� is known for Gerstner-type waves in a homo-
geneous fluid with density r 0. One of characteristic features
of such waves is that their pressure depends only on two
Lagrangian variables: p 0 � p 0�j�b; c��, where j�b; c� is a
function constant on the free surface (the superscript
indicates that it is pressure in a homogeneous fluid).

Assume that the expressions for X, Y, Z are the same in a
stratified fluid, but now the density rs is some function of
j�b; c�. This implies that rs � rs�p 0�. Since the density of a
stratified fluid does not depend on time, continuity equation
(5) will be satisfied. In order to also keepmotion equations (7)
valid, we need to set

1

r 0

qp 0

qai
� 1

rs�p 0�
qps
qai

; ai � fa; b; cg ;

where ps is the pressure in the stratified fluid. As a
consequence of the written condition,

ps �
�
rs�p 0�
r 0

dp 0 :

Pressure ps is a function of pressure in a homogeneous fluid.
By choosing the constant of integration, we satisfy the
condition that pressure be constant on the free surface.

Through similar reasoning, it was found that Gerstner
waves [10], edge waves over a sloping bottom (both classical
[13, 90] and equatorial in the f-plane approximation [13, 91]),
and also trapped near-equatorial waves [80], can exist in
stratified fluids. The Gerstner solution remains valid in a
stratified fluid with an arbitrary distribution rs�b� [8]. For all
other solutions, the profile of stratification depends on some
particular expressions already containing two coordinates b
and c. This is a rather wide class of stratifications, but,
understandably, not the most general.

One more, totally unanticipated, applicability domain for
Gerstner-like solutions wasmentioned byGodin [92, 93], who
noted that, when the pressure, entropy, and density remain
constant in a moving particle, the descriptions of incompres-
sible motions of compressible fluid and flows of incompres-
sible fluid are kinematically equivalent. This means that
the motion of an incompressible medium for which the
mentioned thermodynamical values in a fluid particle are
invariants and satisfy the equation of state for a compressible
medium also describes the motion of this medium. For
Gerstner waves and their `modifications' that were consid-
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ered (an example of an edge wave is treated in detail in
Refs [92, 93]), the pressure and density can be chosen such
that their relation corresponds, for example, to an ideal or
polytropic gas. Then, thewaveGerstner-like solutionwill also
describe the motion of compressible fluid with the chosen
equation of state.

4.2 Waves in layers with density discontinuities
Mollo-Christensen [94] drew attention to two original
circumstances related to the Gerstner wave.

Consider a two-layer model of a fluid (Fig. 8). Let the
densities of the lower and upper layers be constant and equal
respectively to r1 and r� �r1 > r��. Let us assume that a
Gerstner wave (14) is propagating in the lower layer in the
background of a uniform flow U, and the upper layer hosts a
uniform flow with the velocity equal to that of the Gerstner
wave U� o=k. In this case, the velocity at the interface
between the layers will be continuous, and the pressure on
both sides will coincide if we assume that the wave frequency
o satisfies the condition

o2 � r1 ÿ r�
r1

gk ;

which coincides with the dispersion relation for linear waves
at the interface between two fluid layers. The solution
constructed in this way describes an internal Gerstner wave
on a homogeneous flow and can be generalized to the cases of
arbitrarily stratified lower fluid and uniformly rotating fluid
[94].

A particular case of the two-layer model by Mollo-
Christensen when the upper fluid is at rest and U � ÿo=k
was studied in Ref. [95]. This condition corresponds to a
stoppedwave, i.e., to themotion of fluid particles with density
r1 by trochoidal trajectories in the negative direction of the
X-axis (the author of Ref. [95] does not mentions this). The
ideas ofMollo-Christensen were extended in amore complete
form to zonally propagating waves in a near-equatorial
domain. Using the f-plane approximation, a description of
internal Gerstner waves [96], their transformation on the flow
[97], and a meridional current together with it [98] was given.

The second finding of the author of Ref. [94] is even more
elegant. Let us rewrite expressions (14), changing the sign
with the sine and in exponent powers (the flow is studied in the
XY-plane):

X � a� A exp �ÿkb� sin �kaÿ ot� ; �54�
Y � b� A exp �ÿkb� cos �kaÿ ot� :

These relationships also satisfy the system of hydrodynamic
equations (9) and (12), but, in order to constrain them to the
waves with bounded amplitude, it should be assumed that
b > 0. The wave amplitude will decrease with an increase in
the vertical Lagrangian coordinate, which corresponds to a
flipped-over trochoidal Gerstner wave, with its troughs
looking now upward. We will refer to such waves as anti-
Gerstner.

As a final result, Ref. [94] proposed a model of three-layer
fluid flow (Fig. 9):

Ð in the lower fluid �b � b1 < 0� with density r1, a
Gerstner wave with frequency o1 propagates in the direction
X in the background of a uniform flow U1;

Ð in the upper fluid �b � b2 > 0�with density r2, an anti-
Gerstner wave with frequencyo2 propagates along theX-axis
in the background of a uniform flow U2;

Ð in the central part �b1 4 b4 b2�, a fluid with density
r��r1 > r� > r2�, trapped by waves, flows homogeneously in
the direction of the X-axis with the velocity

U1 � o1

k
� U2 � o2

k
;

where k is the same wavenumber for both waves. The
expressions for frequencies are found from the condition of
pressure continuity at the interfaces [94].

This flow scheme serves as a model for clouds trapped by
waves and moving together with them. Mollo-Christensen
introduced for them the term billows to designate big waves
or rollers. Many billows do not contain condensed water and
therefore are invisible, but their characteristic feature is
precisely the finite magnitude of perturbation amplitude.
Reference [94] deals with two cases: gravity billows in a
nonrotating medium and geostrophic billows (g � 0, but the
rotation of the atmosphere is accounted for). A combined
case when both the action of gravity and the rotation of Earth
are taken into account is obtained by merging these two
solutions. As applied to the ocean, the idea of a three-layer
model for theGerstner±anti-Gerstner systemwas used in [99].

Multilayer fluid motions with trapped Gerstner-like
waves in a near-equatorial domain were studied by Con-
stantin [100, 101]. The role of Gerstner waves in these studies
is played by near-equatorial waves [80], discovered by the
same author. Reference [100] considers equatorially trapped
waves in thermocline propagating eastward (symmetric with
respect to the equator). Fluid above the thermocline is
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assumed to be at rest (an analog of the two-layer Mollo-
Christensen model). Reference [101] studies an anti-Gerstner
variant of waves when the amplitude of wave perturbations
is decaying above the thermocline, and there is a uniform
flow below it. The stability of these two-layer models is
explored in Refs [102±104], and Refs [105, 106] deal with
their generalizations for the case of additional background
flows. Kluczek, based on the example of Ref. [101], con-
structed a solution for the internal Pollard wave [107, 108],
which is an anti-Pollard wave in our terminology. However, it
would be more precise to call all the waves considered in this
article Gerstner-like.

Weber, studying the properties of weakly nonlinear waves
at the interface between two fluids [109, 110], proposed that
any wave for which there is no particle drift be called a
Gerstner-like wave. All solutions analyzed or mentioned here
obviously share this property. In this sense, apparently, it is
appropriate to speak about a family of different waves that
can be unified under the name of Gerstner and referred to as
Gerstner-like.

5. Conclusions

This paper presents a complete set of exact solutions for
waves in fluid that are related to the classical Gerstner
solution. We should not fail to note that practically half of
the studies listed in the reference list appeared during the last
decade. One can say without exaggeration that the Gerstner
solution for waves on deep water has acquired a `second
youth.'We speciallymention the extensive contribution of the
scientific school led byUniversity of Vienna Professor Adrian
Constantin in the development of this area. It is also
appropriate to note that the name of Franz Joseph Gerstner
enjoys extraordinary respect in Austria because of his
contributions to education and engineering. However, he
will always be remembered in the history of science as the
author of the first exact solution in the nonlinear wave theory.

All families of Gerstner-like waves are vortical. This is
why there is an unavoidable question on the mechanism of
vorticity generation. In the framework of the model of ideal
fluid, the vorticity can be naturally linked to shear flows (set
initially), in the background of which the waves are generated.
In particular, H Lamb explained the possibility of Gerstner
wave formation namely in this way [4]. This mechanism
operates when epicyclic waves are excited on a cavity surface
in a rotating fluid (cylindrical Gerstner waves [18, 19]).
Monismith et al. observed Gerstner waves by creating a
background flow in the near-surface layer, which compen-
sated the drift of fluid particles in the direction of wave
propagation [20]. Gerstner waves were also observed in
other basins [21±23] and the open ocean [24].

There might exist, however, another scenario for the
formation of vortex surface waves related to the action of
viscosity near the free surface. For example, in the approx-
imation of viscous fluid, standing waves on the water surface
in an oscillating container (Faraday ripples) are potential in
the linear approximation. However, they become vortical
owing to the action of viscosity in the quadratic approxima-
tion [111]. This result reminds us of an analogous property of
the Gerstner wave which carries no vorticity in the linear
approximation but acquires it in the next approximation.
And there is one more interesting circumstance. The vorticity
of capillary ripples measured in the experiment varied directly
proportionally to the wave steepness squared [111]. For

sufficiently small values of steepness, the vorticity in the
Gerstner wave behaves similarly. We admit that the results
for standing waves cannot be directly transferred to traveling
waves; furthermore, in this case, the vorticity vector for
ripples is directed vertically. And yet this example indicates
that on a qualitative level a scenario with a viscous near-
surface layer seems to be quite realistic. Furthermore, if there
is an elastic film on the fluid surface, the effect of vertical
vorticity generation is enhanced [112], indicating the possibi-
lity of more efficient Gerstner wave generation in fluids with
an elastic film on their surface (see also Ref. [24]). The
scenario with a viscous sub-layer also plays a defining role in
problems of surface vortical wave excitation by winds.
However, the generation mechanism for the Gerstner wave
still remains open. This is a task for the future.
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