
Abstract. The duality of four-dimensional electrodynamics and
the theory of a two-dimensional massless scalar field leads to a
functional coincidence of the spectra of the mean number of
photons emitted by a point-like electric charge in 3+1 dimen-
sions and the spectra of the mean number of scalar quanta pairs
emitted by a point mirror in 1+1 dimensions. The spectra differ
only by the factor e 2=�hc (in Heaviside units). The requirement
that the spectra be identical determines unique values of the
point-like charge e0 � �

�����
�hc
p

and its fine structure constant
a0 � 1=4p, which have all the properties required by Gell-
Mann and Low for a finite bare charge. The Dyson renormali-
zation constant Z3 � a=a0 � 4pa is finite and lies in the range
0 < Z3 < 1, in agreement with the K�all�en±Lehmann spectral
representation sum rule for the exact Green's function of the
photon. The value of Z3 also lies in a very narrow interval
aL < Z3 � a=a0 � 4pa< aB between the values aL � 0:0916
and aB � 0:0923 of the parameters defining the shifts
EL;B � aL;B�hc=2r of the energy of zero-point fluctuations of
the electromagnetic field in cubic and spherical resonators with
the cube edge length equal to the sphere diameter, L � 2r. In
this case, the cube is circumscribed about the sphere. That the
difference between the coefficients aL;B is very small can be
explained by the general property of all polyhedra circum-
scribed about a sphere: despite the difference between their
shapes, they share a topological invariant, the surface-to-vol-
ume ratio S=V � 3=r, the same as for the sphere itself. Shifts of

the energy of zero-point oscillations in such resonators are also
proportional to this invariant: EL;B � aL;B�hcS=6V. On the
other hand, the shifts EL;B � aL;B�hc=2r of the energy of zero-
point oscillations of the electromagnetic field essentially coin-
cide with the energy of the mean squared fluctuations of the
volume-averaged electric and magnetic fields in resonators,
equal to Z3�hc=2r in order of magnitude. It hence follows that
aL;B � Z3, as it should for the coefficients ac of the shifts
Ec � ac�hc=2r in other resonators c circumscribed about a
sphere. The closeness of aL and aB to the Z3 factor is confirmed
by the K�all�en±Lehmann spectral representation and agrees with
asymptotic conditions relating the photon creation amplitudes
for free and interacting vector fields.

Keywords: nonperturbative methods, physical charge, bare charge,
renorminvariant charge, duality of 4-dimensional and 2-dimen-
sional field theories, spectral representation of Green's functions,
sum rule, zero-point fluctuations of a field in a vacuum, cavity
resonator, topological invariant, conformal invariance

1. Introduction

It is known that, at a very high energy of a charge and large
momenta transferred by the charge to other charges or fields,
the charge itself increases. The charge that determines the
amplitude of the emission of soft photons to infinity increases
simultaneously. These photons do not change the current that
emitted them, and therefore the emission and absorption of
such photons is described by the vacuum-to-vacuum ampli-
tude

h0�j0ÿiJ � exp

�
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�h
W�J�

�
;
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which depends on a fixed external classical current J�x�.
According to Schwinger and his theory of sources [1], this
amplitude provides a comprehensive description of themany-
particle emission and absorption processes for particles
obeying the Bose±Einstein statistics.

The doubled imaginary part of the action W divided by
Planck's constant �h is equal to the average number �N of
particles emitted by the source over the entire time. In turn, �N
is an integral over the spectrum of the mean number d�nk of
emitted quanta,

�N � 2 ImW

�h
�
�
d�nk ;

each of which has the momentum �hk and energy �ho
determined by the wave vector k a � �k; k 0�, where
k 0 � o=c. Such is the direct relation between a very
important semiclassical quantity and the central object in
quantum physics, the quanta of a source field.

In the series of studies [2±9] initiated by the author in
collaboration with Nikishov, we discovered a functional
coincidence of the spectra of the mean number of photons
(in another version, scalar quanta) emitted by a point electric
(scalar) charge in 3� 1 dimensions with the spectra of the
mean number of pairs of scalar (spinor) massless quanta
emitted by a point mirror in 1� 1 dimensions. The spectra,
which are functions of two variables and functionals of the
common trajectory of the charge and the mirror, differ only
by the factor e 2=�hc (inHeaviside units), because the boundary
condition set on the mirror is purely geometric and does not
contain any parameters. It is natural to call such a functional
coincidence a holographic duality [8].

The requirement that e 2=�hc � 1 leads to unique values of
the point charge e0 � �

�����
�hc
p

and its fine structure constant
a0 � 1=4p. Very importantly, these values satisfy the general
properties stated by Gell-Mann and Low [10] for a finite bare
charge:

(1) a0 is independent of the fine structure constant a;
(2) a0 > a;
(3) the bare charge distribution density is described by the

spatial delta function times e0: e0d�x�.
The requirement e 2=�hc � 1 follows from the holo-

graphic principle of bare charge quantization proposed
by the author [8], according to which the quanta and pairs
emitted by the charge and the mirror respectively propa-
gating in four-dimensional space and on a two-dimensional
surface embedded into it must have coinciding spectra. The
duality is due to the integral connection of the causal
Green's functions for 3� 1 and 1� 1 dimensions and the
relation between the current (charge) densities in 3� 1
dimensions and scalar products of scalar (spinor) massless
fields in 1� 1 dimensions [8].

The relations underlying the duality, as well as theGreen's
functions themselves, are of purely geometric origin. The
values found for the bare charge, e0 � �

�����
�hc
p

, and the
corresponding fine structure constant a0 � 1=4p satisfying
Gell-Mann and Low's properties for a finite bare charge also
have a purely geometric origin, which is natural, because the
spectra are calculated using solutions of wave equations for
massless fields with zero boundary conditions and time-like
curves for the trajectories of a point charge and a mirror.

The discovered duality connects wave processes in four-
dimensional and two-dimensional Minkowski spaces. It is
in such spaces of even dimension that the propagation of

massless waves obeys theHuygens geometric principle [11]. In
addition, electrodynamics in 3� 1 dimensions and the theory
of a massless scalar field in 1� 1 dimensions, related by
duality, admit conformal symmetry.

In his lecture at the University of New SouthWales, Dirac
referred to the fine structure constant a and the ratio of the
proton mass to the electron mass and noted that such
constants are likely to be made of simple quantities like 4p
[12]. Dirac's insight would seem truly amazing had he meant
not a but a0, the fine structure constant of the bare charge,
which, according to the duality under discussion, is exactly
equal to 1=4p. The difference between these two quantities is
due to the polarization of the vacuum by a point electric
charge, and their ratio a0=a � 10:90 . . . is the permittivity
of the vacuum. The inverse ratio a=a0 � Z3 is the most
important of the three renormalization constants introduced
by Dyson [13]. The constant Z3 also has the meaning of the
probability that an excitation of the electromagnetic field
A�x� coupled to a dynamic current jm�x� propagates as a free
zero-mass photon in the vacuum. Such an interpretation was
given to Z3 by K�all�en [14] and to a similar quantity Z for a
scalar field by Lehmann [15], who obtained spectral repre-
sentations of the exact Green's functions for electromagnetic
and scalar fields.

These representations are discussed in Section 3. It is
preceded by Section 2, where the exact Green's functions are
regarded as vacuum expectation values of interacting opera-
tor fields. The exact causal Green's function arises as the
vacuum expectation value of the chronological product of
fields. Following Schwinger [16, 17], the radiative (Coulomb)
gauge is used for the electromagnetic field Am�x�, which is
convenient in view of a straightforward probabilistic inter-
pretation of its components and which ensures the three- and
four-dimensional transversality of the radiation field.

The central expression in these two sections is the spectral
representation for the causal Green's function

G�xÿ x 0� � Z3DF�xÿ x 0� �
�1
0�

dm 2 r�m 2�DF�xÿ x 0;m�

and the sum rule

Z3 �
�1
0�

dm 2 r�m 2� � 1 ;

where Z3 has the meaning of the probability that an on-shell
photon is produced by a weak external current Jm�x� coupled
to fluctuations of the vacuum field A�x�, and its propagation
from the location of its production to the location of its
absorption by the current Jm�x 0� is then governed by the
propagatorDF�xÿ x 0�. At the same time, r�m 2� dm 2 has the
meaning of the probability that a virtual photonwithmassm 2

is produced by the same current Jm�x� coupled to vacuum
fluctuations of the jm�x� current, and its subsequent propaga-
tion until its absorption by the current Jm�x 0� is governed by
the propagator DF�xÿ x 0�.

A positive energy shift of zero-point fluctuations of the
electromagnetic field in spherical and cubic cavities was first
obtained by Boyer [18] and Lukosz [19], as well as in [20±25].
Its finiteness means that this shift is observable (see [26, 27]).

The analytic expression obtained in [19] for the energy
shift of zero-point field oscillations in a cubic cavity is
discussed in detail in Section 4. We focus there on high-
frequency divergences inherent in the energy density u of zero-
point field oscillations and their removal from the sum of
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those eigenfrequencies of the cavity that determine the finite
shift Du of the energy density in the cavity. The divergences
are removed by introducing a form factor into the energy
density to cut off high frequencies and by discarding terms
that grow with the cutoff frequency.

In Section 5, the energy shift of zero-point oscillations
in a cubic cavity is represented in terms of the values of
the Riemann and Epstein analytic zeta functions. Such a
representation avoids the divergences arising from the direct
summation of the energy spectrum of zero-point fluctuations
of the electromagnetic field in the vacuum.

A comparison of the shifts EB (Boyer) and EL (Lukosz) of
the energy of zero-point oscillations in spherical and cubic
cavities shows that they practically coincide if the edge length
of the cube coincides with the diameter of the sphere, L � 2r.
A possible reason for the weak dependence of the shift on the
cavity shape is described in Section 6. In the case L � 2r, the
cube is circumscribed about the sphere, and all polyhedra
circumscribed about a sphere, despite the variety of their
shapes, share the exact same surface-to-volume ratio with the
sphere itself: S=V � 3=r. It is a topological invariant of these
polyhedra. On the other hand, the characteristic scale of the
energy shift in the cavities is chosen as �hc=2r, which is
proportional to their topological invariant.

In Section 7, we discuss the relation between the
coefficients aL and aB that determine the shifts in the energy
of zero-point oscillations in cubic and spherical cavities, on
the one hand, and the Z3 factor on the other hand. The
coefficients aL and aB characterize the interaction of the
current on the conducting shell of the cavity with vacuum
fluctuations of the electromagnetic field during the formation
of the cavity. As a result, standing electromagnetic waves
appear inside it, carrying the energy aL;B�hc=2r. The Z3 factor
characterizes the coupling of the external current Jm�x� to the
same field fluctuations in the vacuum that give rise to on-shell
photons.

The closeness of aL and aB to theZ3 factor is confirmed by
the K�all�en±Lehmann spectral representation in (3.1) and
(3.12) and agrees with asymptotic conditions (3.11) and (8.2).

In Section 8, we discuss the measurability of the energy
shift of zero-point fluctuations of an electromagnetic field in a
cavity. The shift appears as a result of the work of external
forces during the adiabatic formation of the cavity and the
currents on its conducting shell, which interact with the field
fluctuations. The interaction leads to the formation of on-
shell waves in the cavity, with the energy determined by the
work of external forces.

Cavities whose shells are circumscribed about a sphere
and are characterized by the topological invariant S=V � 3=r
are discussed in detail in the Conclusion. Calculating the
energy shift of zero-point field oscillations in one more such
cavity, for example, of a cylindrical shape, could entirely
clarify the dependence of the shift on the cavity shape. We
show that, in cavities circumscribed about a sphere, the
excess pressure p and the volume are related by the adiabat
pV 4=3 � const �hc, which is similar to the black-body radiation
adiabat.

We show that the functional coincidence of the spectra of
photons and pairs is completely determined by holographic
duality (9.12) between propagators in four-dimensional and
two-dimensional spaces and the purely geometric relation
(9.22) between the Fourier transform of the velocity 2-vector
of the charge and themirror to Bogoliubov's b coefficient that
determines the spectrum of pairs of scalar quanta. Therefore,

the holographic principle of bare charge quantization leading
to the value e 20 =�hc � 1, a0 � 1=4p can be formulated as a
requirement that the spectra of photons and pairs coincide or
that the same mean total number of photons and pairs be
emitted by the charge and the mirror over their entire shared
trajectory. In both cases, the spectra coincide because of their
functional coincidence.

We show that the resulting value of the bare charge, being
finite, satisfies all three conditions of Gell-Mann and Low
[10], and the ratio of the squares of the physical and bare
charges, equal to the Dyson Z3 factor, lies in a very narrow
interval aL < Z3 � a=a0 � 4pa < aB between the purely geo-
metric constants aL and aB that define the finite energy shifts
of zero-point oscillations of the electromagnetic field in cubic
and spherical cavities. We show that the remarkable proxi-
mity of the coefficients aL;B to the finite valueZ3 � 4pa is not
accidental but is a consequence of the fundamental equal-
time commutation relations for the interacting operator
fields, in particular, a consequence of the K�all�en±Lehmann
spectral representation for the exact Green's function of the
photon.

Throughout the paper, we use the metric gab �
diag �1; 1; 1;ÿ1�, the natural system of units �h � c � 1, and
the Heaviside units for charge.

2. Exact Green's functions as vacuum
expectations of interacting operator fields

We follow the concise presentation of the subject by
Schwinger [16, 17] and the notation used there.

We consider the simplest (positive-frequency) Green's
function associated with a vector operator field Am�x�
coupled to a dynamic current jm�x�. This Green's function
can be derived from the vacuum expectation value of the
unordered product of field operators


Am�x�An�x 0�
� � � d4p

�2p�3 exp
�
ip�xÿ x 0�� dm2

� Z��p�d�p 2 �m 2�Amn�p� ; �2:1�

where the factor Z��p�d�p 2 �m 2� restricts the spectrum to
states with a mass m5 0 and positive energy. The spectral
components of vacuum expectation value (2.1) are given by
the invariant positive-frequency functions

D����x;m� �
�

d4p

�2p�3 exp �ipx�Z��p�d�p 2 �m 2�

�
�
d3p exp �ipx�
�2p�32p 0

; p 0 �
�����������������
m 2 � p2

p
; �2:2�

which are eigenfunctions for the operator q2a with the
eigenvalue m 2. The requirement of nonnegative definiteness
of the matrix Amn�p� is satisfied for fields in the radiation
gauge, which leads to the structure

AR
mn�p� � B�m 2�

�
gmn ÿ �pmnn � pnnm��np� � pm pn

p 2 � �np�2
�
; �2:3�

introducing a gauge-dependent asymmetry between space
and time. In the Lorentz frame where quantization is
performed, a unit time-like vector nm is directed along the
time axis: n m � �0; 0; 0; 1�. In that frame, the nonvanishing
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components of the matrix in square brackets are given by

� �mn � di j ÿ pi pj
p2

for m � i; n � j ; i; j � 1; 2; 3 ;

� �mn � ÿ
p 2

p2
for m � n � 0 :

�2:4�

Another useful representation is

� �mn �
X2
l�1

em�l�en�l� ÿ p 2nmnn

p 2 � �np�2 ; �2:5�

which corresponds to the radiation field and the Coulomb
field. Here, em�l�, l � 1; 2, are space-like unit vectors of
polarization, which are orthogonal to each other and to the
vectors pm and nm.

The real nonnegative functionB�m 2� satisfies the sum rule�1
0

dm 2 B�m 2� � 1 ; �2:6�

which fully expresses all fundamental equal-time commuta-
tion relations for the interacting operator fields.

Field equations lead to a similar structure of the vacuum
expectation of the product of current density operators
h jm�x� jn�x 0�i, with the nonnegative definite matrix

jmn�p� � m 2B�m 2��pm pn ÿ gmn p
2� �2:7�

replacing AR
mn�p�. An important corollary of the appearance

of the factor m 2 is that the zero mass m � 0 is not in the
spectrum of vacuum fluctuations of the current density.
Fluctuations of the current vector determine B�m 2� for
m > 0 but leave the possible delta-function contribution at
m � 0 not fully fixed:

B�m 2� � B0d�m 2� � B1�m 2� : �2:8�

The nonnegative constant B0 is then fixed by the sum rule

1 � B0 �
�1
0

dm 2 B1�m 2� : �2:9�

It follows that the spectrum of vacuum fluctuations of the
vector Am consists of two parts. One part, corresponding to
m > 0, is directly related to current density fluctuations, and
the other part, corresponding to m � 0, can be associated
with a pure radiation field, which is transverse in both three
and four dimensions and is not related to a current.

We consider the vacuum expectation of the T-product of
fields Am�x� and An�x 0�,
Gmn�xÿ x 0; n� � i



TAm�x�An�x 0�

�
� i

�
d4p

�2p�3 exp
�
ip�xÿ x 0� ÿ ip 0jtÿ t 0j� dm 2

� Z��p�d�p 2 �m 2�AR
mn�p� : �2:10�

The invariant function

i

�
d4p

�2p�3 exp
�
ipxÿ ip 0jtj�Z��p�d�p 2 �m 2�

� i

�
d3p

�2p�32
�����������������
m 2 � p2

p exp
�
ipxÿ i

�����������������
m 2 � p2

p
jtj�

�
�

d4p

�2p�4
exp �ipx�

p 2 �m 2 ÿ ie
; �2:11�

which is a spectral component of the vacuum expectation
value in (2.10), is well known. This is the causal Green's
function (Feynman propagator). It was introduced by
Stueckelberg in [28±30] and denoted byD c�x� there. Schwing-
er and Feynman use the notations D��x;m� [1, 31] and
I��x;m� [32, 33] for it, and other authors [34, 35] use the
notation DF�x;m� or D f�x;m� [36, 8]. It follows from
representation (2.11) that this function is even in xm and
satisfies the equation

�ÿq 2
a �m 2�D��x;m� � d4�x� : �2:12�

In calculating physical amplitudes in quantum field
theory, the propagator Gmn, Eqn (2.10), is always placed
between conserved currents that are sources of the electro-
magnetic field. In particular, in the action

W � 1

2c

�
d4x d4x 0 J m�x�Gmn�xÿ x 0; n�J n�x 0� ; �2:13�

which defines the vacuum-to-vacuum amplitude h0�0ÿiJ �
exp �iW=�h� for the external current J m�x�, the current
conservation relation qmJ m�x� � pmJ

m�p� � 0 results in the
vanishing of n m-dependent terms in the matrix AR

mn. As a
result, the propagator Gmn�x; n� reduces to a manifestly
Lorentz-invariant expression

Gmn�x� � gmnG�x� � gmn

�
d4p

�2p�4 exp �ipx�G�p� ;

G�p� �
�1
0

dm 2 B�m 2�
p 2 �m 2 ÿ ie

:
�2:14�

Using the function B�m 2� in (2.8), we obtain the K�all�en±
Lehmann spectral representation [14, 15] for G�x� in both
momentum

G�p� � B0

p 2 ÿ ie
�
�1
0

dm 2B1�m 2�
p 2 �m 2 ÿ ie

�2:15�

and coordinate

G�x� � B0DF�x� �
�1
0

dm 2 B1�m 2�DF�x;m� �2:16�

representations.
Schwinger emphasizes that one must clearly distinguish

between c-number gauge functions and operator gauge
functions, because different operator gauges do not have the
same justification at the quantum level. Each coordinate
system has a unique operator gauge characterized by three-
dimensional transversality (radiative gauge), which allows a
standard operator construction in a positive-norm vector
space, with a probabilistic physical interpretation. If the
theory is formulated in terms of vacuum expectation values
of chronological operator products, i.e., Green's functions,
then the freedom of formal gauge transformations can be
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restored [37]. The Green's functions in other gauges have a
more complicated operator realization and, generally speak-
ing, do not have the positivity properties available in the
radiative gauge.

An alternative to the K�all�en±Lehmann representation is
given by [17]

G�p� �
�
p 2 ÿ ie� �p 2 ÿ ie�

�1
0

dm 2 s�m 2�
p 2 �m 2 ÿ ie

�ÿ1
; �2:17�

where the function s�m 2� is real and nonnegative.
If we require that m � 0 appear as an isolated mass value

in the physical spectrum of states, then we must have

s�0� � 0 and

�1
d

dm 2 s�m 2�
m 2

<1 for d! 0 : �2:18�

Only in that case does the Green's function have a pole at
p 2 � 0:

p 2 � 0 : G�p� � B0

p 2 ÿ ie
; 0 < B0 < 1 : �2:19�

Under these condition, the spectral function

B�m 2� � B0d�m 2� � B1�m 2�

is related to s�m 2�:

B0 �
�
1�

�1
0

dm 2

m 2
s�m 2�

�ÿ1
; �2:20�

B1�m 2� � s�m 2�=m 2�
1� V:p:

�1
0

dm 0 2 s�m 0 2�
m 0 2 ÿm 2

�2

� ÿps�m 2��2 : �2:21�

The physical interpretation of the functions B�m 2� and s�m 2�
can be deduced from the relation between the Green's
function and the vacuum-to-vacuum amplitude in the
presence of sources. For sufficiently weak external currents
Jm�x�,

h0j0iJ � exp

�
1

2
i

�
d4x d4x 0 J m�x�G�xÿ x 0�Jm�x 0�

�
�2:22�

� exp

�
1

2
i

�
d4p

�2p�4 J m�p�G�p�Jm�p�
�
: �2:23�

The probability that the vacuum is preserved despite the
perturbation by an external current is

��h0j0iJ��2 � exp

�
ÿ
�

d4p

�2p�4 J m�p��Jm�p� ImG�p�
�
; �2:24�

where, according to (2.14),

ImG�p� � p
�1
0

dm 2 B�m 2�d�p 2 �m 2� ; �2:25�

and the integral in the exponent is twice the imaginary part of
the action. After integration over p 0, it takes the compact
form

2 ImW �
�
d3p dm 2

�2p�32p 0
B�m 2�J m�p��Jm�p� ; �2:26�

where p 0 �
�����������������
m 2 � p2

p
, p, and m are the energy, momentum,

and mass of the excitations produced in the vacuum by the
external current.

We next recall that the excitation spectrum consists of an
isolated excitation with zero mass m � 0 and a continuous
spectrum of states with masses m > 0 (see (2.8)). Then,

2 ImW � B0

�
d3p

�2p�32p 0
J m�p��Jm�p�

�
�1
0

dm 2 B1�m 2�
�

d3p

�2p�32p 0
J m�p��Jm�p� ; �2:27�

where the contraction of currents

J m�p��Jm�p� �
��J�p���2 ÿ ��J 0�p���2 �2:28�

is positive both in the first term, where the vector p m is
isotropic, p 2 � 0, and in the second term, where it is time-
like, ÿp 2 � m 2 > 0.

Indeed, it follows from the current conservation condition

pJÿ p 0J 0 � 0 �2:29�

that in the first case we have J3 � J 0 in the reference frame
where p1 � p2 � 0 and p3 � p 0, and the contraction reduces
to the contribution of the current components transverse to
the wave vector p: jJ1j2 � jJ2j2 > 0. In the second case, the
same condition implies that J 0 � 0 in the frame where p � 0
and p 0 � m, and the contraction reduces to the contribution
of three components of the current: jJj2 > 0. Thus, zero-mass
excitations are transverse not only in the four-dimensional
sense but also in the three-dimensional sense, and are not
related to a current. The Lorentz invariance of the contrac-
tion of currents and of the on-shell integration measure
ÿp 2 � m 2 5 0 preserves the invariance and positive definite-
ness of integrals that depend only onm 2 and parameters that
determine the external current. Evidently, 2 ImW > 0 for the
excitation current, and, hence, the vacuum-to-vacuum prob-
ability is less than unity.

Finally, we note that, when divided by the Planck
constant, the expression 2 ImW=�h becomes dimensionless
and represents the mean number of on-shell photons (the
first term in (2.27)) and the mean number of on-shell e�eÿ

pairs and photons (second term) emitted by the current over
the entire time.

A nontrivial example of the first term in 2 ImW in (2.27) is
Schott's formula [38] for the radiation from a charge moving
along a circle in a magnetic field with a frequency oH � v=r.
In this case, the integral

1

�h

�
d3p

�2p�32p 0
J m�p��Jm�p� �

X1
n�1

In
�hon

T

� 2a0oH

X1
n�1

�
bJ 0n�2nb� ÿ

1ÿ b 2

b

� nb

0

d�nx� J2n�2nx�
�
T

is proportional to the time T and, after multiplication by B0,
becomes the renormalization-invariant quantity B0a0 � a
that determines the mean number of photons emitted over
the entire time.

We now transform the vacuum-to-vacuum amplitude
(2.22) for an external current into a function of the vacuum
response to a vector potential determined by an external
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current,

Am�p� � G�p�Jm�p� : �2:30�

We note that, due to current conservation, this potential
is transverse in four dimensions: pmA

m�p� � 0. Using the
alternative representation for the Green's function in (2.17),
we obtain the amplitude

h0j0iJ � exp

�
1

2
i

�
d4p

�2p�4 A m�p��G�p��ÿ1Am�p�
�

�2:31�

and the probability

��h0j0iJ��2 � exp

�
ÿ
�

d4p

�2p�4 A m�p��Am�p� ImG�p��ÿ1
�
�2:32�

that the vacuum is preserved despite the perturbation.
Because

ImG�p��ÿ1 � ÿpp 2

�1
0

dm 2 s�m 2�d�p 2 �m 2� ; �2:33�

ÿ p 2A m�p��Am�p� � ÿ 1

2
F mn�p��Fmn�p� �

��E�p���2 ÿ ��H�p���2;
�2:34�

it follows that

��h0j0iJ��2 � exp

�
ÿ
�
d3p dm 2

�2p�32p 0
s�m 2�

�
ÿ 1

2

�
F mn�p��Fmn�p�

�
;

�2:35�

where p 0 �
�����������������
m 2 � p2

p
. This shows that s�m 2� is a measure of

the probability that the external field produces an excitation
in the vacuum, endowing it with on-shell energy and
momentum m 2 � ÿp 2 > 0.

It is noteworthy that (2.35) contains no contribution from
zero-mass states. This is because the electromagnetic field
Fmn�x� is spatially separated from its source, the current Jm�x�,
and is not a source of real photons in and of itself, although it
can be made of them (a plane wave) or of virtual photons (a
Coulomb field).

A plane-wave field of an arbitrary spectral composition is
described by the tensor

Fmn�x� � fmnF�x� ; x � kax
a ; k 2

a � 0 ; �2:36�

where ka is an isotropic vector, fmn is a constant antisymmetric
tensor, and F�x� is an arbitrary function. Such a field has zero
invariants, fmn f

mn � �fmn f mn � 0, and a traceless energy±
momentum tensor that is Maxwellian in form,

Tmn � kmknF
2�x� ; Tm

m � 0 : �2:37�

Such a field does not polarize the vacuum, does not interact
with the vacuum current jm�x�, and does not give rise to
nonlinear vacuum effects. This fundamental result was
obtained by Schwinger [39].

The plane-wave field is a purely geometric object,
although it inherits a nongeometric dimension (erg cmÿ3�1=2
from its source (and detector), the current density Jm�x� �
�rv=c; r�, which has the dimension of charge density, i.e.,
(erg cmÿ5�1=2.

3. K�all�en±Lehmann representation and its
relation to the renormalized photon propagator

We now return to the K�all�en±Lehmann spectral representa-
tion with the aim to relate it to the renormalized photon
propagator. Instead of Schwinger'sB0 andB1�m 2�, we use the
more common notation Z3 and r�m 2�, going back to Dyson,
K�all�en, and Lehmann. In the coordinate and momentum
representations, the exact Green's function is then given by

G�x� � Z3DF�x� �
�1
0�

dM 2 r�M 2�DF�x;M� ;

G�k 2� � Z3

k 2 ÿ ie
�
�1
0�

dM 2 r�M 2�
M 2 � k 2 ÿ ie

:
�3:1�

In their fundamental monograph on quantum electrody-
namics [40], Bialynicki-Birula and Bialynicka-Birula com-
ment on the K�all�en±Lehmann representation as follows.

``The expansion of the photon propagator into a sum
of the free photon propagator DF and the integral of the
propagator DF over M 2 has a clear physical interpretation.
One can say that in a theory with interaction, perturbations
of the electromagnetic field travel in space±time from point
x1 to point x2, x � x1 ÿ x2 as a combination of zero-mass
propagation determined by Z3DF and propagation with a
continuously distributed mass, determined by the function
r�M 2�. The renormalization constant Z3 determines the
weight with which the component describing the free propa-
gation with zero mass enters the superposition. In a theory
without mutual interaction of photons and charges, only the
free component and the constantZ3 � 1 appear in the photon
propagator.

An additional argument in favor of exactly this inter-
pretation of the obtained representation for the propagator is
the sum rule

1 � Z3 �
�1
0�

dM 2 r�M 2� ; �3:2�

whence it follows that in accordance with fundamental
properties of quantum theory, Z3 and r�M 2� dM 2 can be
given the meaning of probability of the different propagation
types.''

Using the sum rule, we write the propagator G�k 2� as

G�k 2� � 1

k 2 ÿ ie

�
1ÿ

�1
0�

dM 2 r�M 2�M 2

M 2 � k 2 ÿ ie

�
: �3:3�

At the same time, the exact renormalized photon propagator
is usually represented as [8, 10, 34, 35]

GR�k 2� � 1

k 2 ÿ ie
dR

�
k 2

m 2
; a
�
;

�3:4�

dR�x; a� � 1

1� apR�x; a� ; x � k 2

m 2
;

with the normalization

dR�0; a� � 1 ; i:e:; pR�0; a� � 0 at k 2 � 0 : �3:5�

It was shown by Dyson [13, 41] that the exact photon
Green's function times the charge squared is a renormaliza-
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tion-invariant quantity, i.e.,

a0 G�k 2; a0� � aGR�k 2; a� ; �3:6�

where a � e 2=4p�hc and a0 � e 20 =4p�hc are the fine structure
constants of the physical and bare charges. The right-hand
side of the last expression is usually written as

aGR�k 2; a� � 1

k 2 ÿ ie
a dR

�
k 2

m 2
; a
�
; �3:7�

and the dimensionless scalar function adR�k 2=m 2; a� is called
the effective interaction parameter, the renormalization-
invariant charge, the running coupling constant, etc.

Using renormalization invariance relation (3.6) and
representations (3.3) and (3.4) with k 2 � 0, together with
sum rule (3.2), we obtain

e 20Z3 � e 2 : �3:8�

Resorting again to (3.6), (3.3), and (3.4), but this time with
k 2 !1, we obtain

e 20 � e 2dR�1; a� : �3:9�

Of the four quantities e 2, e 20 , Z3, and dR�1; a� entering
formulas (3.8) and (3.9), only e 2 is known (experimentally),
with a � 1=137:036. In our work summarized in [8, 9], a
duality relation was found between the four-dimensional
electrodynamics and two-dimensional quantum theory of a
massless scalar field, which allowed determining the value of a
bare point charge. Its fine structure constant turned out to be
a0 � 1=4p. In what follows, we present additional arguments
supporting the obtained purely geometric value of a0, based
on the conformal invariance of four-dimensional electro-
dynamics and the two-dimensional theory of a massless
scalar field.

The merit of the K�all�en±Lehmann representation is that it
is obtained without the use of the perturbation theory. As
Dyson proved, the divergences that arise in quantum
electrodynamics in each order of the perturbation theory,
after their regularization, form a series of three renormaliza-
tion factors relating all nonrenormalized physical quantities
to the renormalized ones. The terms in the series for each
renormalized physical quantity are finite, and the regularized
terms in the series of each renormalization factor allow
treating it as a constant. In particular (and especially), of
fundamental value is the factor denoted as Z3 by Dyson,
which relates the bare charge e0 to the physical charge e and
the corresponding fine structure constants:

e 2 � Z3e
2
0 ; a � Z3a0 :

K�all�en and Lehmann provided the Z3 constant with yet
another, probabilistic interpretation. They found the sum
rule

Z3 �
�1
0�

dm 2 r�m 2� � 1

forZ3 and r�m 2� dm 2, quantities that have themeaning of the
photon propagation probabilities with zero and nonzero
masses.

The derivation of the sum rule relies only on the
assumptions about the spectrum of eigenvalues of the

energy±momentum operator Pm, namely,

�1� ÿ P 2 � P 2
0 ÿ P 2 5 0 ; P 0 5 0 ;

�3:10�
�2� P 0j0i � 0 ; Pj0i � 0 :

The probabilistic interpretation of the Z3 constant is that������
Z3

p
determines the amplitude for a one-particle state to be

created by the field A�x� from a vacuum,

pljA�x�j0� � ������

Z3

p 

pljAin�x�j0

�
�

������
Z3

p 

pljAout�x�j0

� � ������
Z3

p 1������������������
�2p�32p 0

q exp �ipx�e�l�
�3:11�

(see (2.5)). Because the field A also gives rise to many-particle
states,

������
Z3

p
< 1. The value

������
Z3

p � 0 is then excluded, because
many-particle states are determined using the free field
operator Ain�x�, which produces only one-particle states
when acting on the vacuum.

Thirring figuratively describes the vacuum as a state in
which there are no `dressed' particles, but there are `half-
dressed' and `undressed' particles that are not eigenstates of
the energy±momentum operator Pm. If we express Pm in terms
of the operators of creation and absorption of `undressed'
particles, then the eigenstates of Pm are given by super-
positions of various numbers of `undressed' particles, i.e.,
`clouds of virtual particles' [36, Sec. 14].

An on-shell photon is an eigenstate of Pm with zero charge
andmass, but, unlike a vacuum, this state has nonzero energy
and momentum, and spin equal to unity. This excited state
therefore propagates in a vacuum at the speed of light. As
already mentioned, a real photon does not interact with a
vacuum and freely propagates between the locations of its
production and absorption by real external currents Jm�x�
and Jm�x 0�.

But, as we have seen, the propagation of a more complex
electromagnetic excitation of the field A�x� coupled to the
current jm�x� is described by the exact Green's function

G�x� � Z3DF�x� �
�1
0�

dm 2 r�m 2�DF�x;m� ; �3:12�

consisting of two terms.
The production of a real photon is due to the interaction

term in the Lagrangian, with the classical current Jm�x� added
to the current operator jm�x� of vacuum fluctuations. It
primarily interacts with vacuum fluctuations of the Am�x�
field, which is the field of `undressed' particles. If the energy of
the Jm�x� source is sufficient for producing some `dressed'
particle from an `undressed' one, then the formation of the
missing part of the `clothes' by the current can be regarded as
a real process, and the probability of emitting a photon by the
source is the same as for free fields, but this probability must
also be multiplied by the probability of finding a `dressed'
particle among the states that constitute an `undressed'
particle.

4. Zero-point fluctuations of the electromagnetic
field in a vacuum and in resonant cavities

We consider two ideally conducting planes pressed against
each other. If we move them apart, creating a vacuum gap
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between them, then the fluctuation currents flowing along the
interface are forced to split in half into parallel currents
separated by the gap. But parallel currents attract and resist
gap formation, which is consistent with the energy conserva-
tion law and Lenz's rule.

According to the thermodynamic relation

dE � T dSÿ p dV ; �4:1�

under an adiabatic (dS � 0) increase in the volume of the gap,
the work of external forces is spent to increase the internal
energy of the vacuum, and hence dE � ÿp dV > 0. This
means that ÿp > 0: the pressure inside the gap is negative.
DeWitt [42] remarks on this: ``Maxwell would be very happy
with this result. It almost makes one believe in the existence of
the ether.''

We now consider the formation in a vacuum of a cubic
cavity resonator made of six ideally conducting square faces
with an edge length L. We assume that these faces are first
located far from each other, placed in pairs on the axes of a
Cartesian coordinate system symmetrically about its center
(which is the center of the cavity to be assembled). Fluctua-
tions of the electromagnetic field in the vacuum exert equal
pressure on the inner and outer (relative to the center) sides of
each face while they are far apart. But as the faces approach
each other, the pressure on them from the inside increases
compared to the pressure from the outside due to more and
more multiple reflections of the fluctuating electromagnetic
field. At the instant the assembly is completed, the excess of
pressure and energy density inside the cavity over the values
outside becomes constant and maximum.

Quantum fluctuations of the electromagnetic field induce
circular currents on the conducting surface of each face,
running either clockwise or counterclockwise; according to
Lenz, they provide the maximum resistance to the approach
of the cavity faces. In fact (see the figure), these currents flow
in opposite directions on opposite sides of the cavity and near
the edges of neighboring faces, and the repulsion of the
currents from each other creates an excess of pressure and
energy density inside the cavity.

We see from thermodynamic equation (4.1) that, under an
adiabatic decrease in the cavity volume, the work of external
forces increases the internal energy of the cavity, because the
pressure inside the cavity is positive, p > 0. By p, we must of
course understand the difference between the pressure inside
the cavity and in the vacuum in the absence of the cavity.

Below, we follow the remarkable work by Lukosz [19],
who obtained an analytic expression for the energy shift of
zero fluctuations of the electromagnetic field in a rectangular
cavity with conductingwalls. For our purposes, it is natural to
confine ourselves to a cubic cavity.

Already in the assembly process, the cavity forces the
electromagnetic field in the vacuum to satisfy the boundary
condition

Et � 0 ; Hn � 0 �4:2�

on the ideal conducting surface of the cavity. The subscripts t
and n indicate the tangential and normal components. As a
result, the electromagnetic field energy inside the cavity
becomes greater than the one that was contained in the same
volume in the vacuum, before inserting the cavity with its
conducting shell. Both these energies are infinite, but their
difference, as we now see, is finite and positive.

The energy of zero-point oscillations summed over the
cavity eigenfrequencies

on1n2n3 � ckn1n2n3 �
pc
L

���������������������������
n 2
1 � n 2

2 � n 2
3

q
; �4:3�

after averaging over time (a factor of 1=2) and taking the
double degeneracy of the frequencies with nonzero n1n2n3
into account (a factor of 2), gives the following expression for
the energy density:

u � 1

V

X
n1n2n3 5 0

1

2
�hon1n2n3

� p�hc

VL

X1
n1n2n3�0

��
1ÿ �dn1dn2 � dn2dn3 � dn3dn1�

� ���������������������������
n 2
1 � n 2

2 � n 2
3

q
:

�4:4�

Here,
P�means that frequencies with one of the ni, i � 1; 2; 3,

vanishing are nondegenerate and must be multiplied by 1=2.
Due to theKronecker symbols dni � dni0, the expression in the
square brackets vanishes for modes propagating along the
cavity edges, because they do not satisfy boundary condition
(4.2) and are not eigenmodes of the cavity.

To find the variation in the vacuum energy density due to
the conducting cavity shell, we consider the energy density u 0

inside a very large cubic cavity with an edge L 04L. Using
(4.4) with L, V, and ni replaced with their primed counter-
parts, we obtain a sum over n 01, n

0
2, and n 03,

u 0 � p�hc

V 0L 0
X1

n 0
1
n 0
2
n 0
3
5 0

� �
1ÿ �dn 0

1
dn 0

2
� dn 0

2
dn 0

3
� dn 0

3
dn 0

1
��

�
�������������������������������
n 0 21 � n 0 22 � n 0 23

q
;

which is equal to 1/8 times the integral

� p�hc

8VL

��1
ÿ1

�
dn1 dn2 dn3

n
1ÿ �d�n1�d�n2� � d�n2�d�n3�

� d�n3�d�n1�
�o ���������������������������

n 2
1 � n 2

2 � n 2
3

q
; �4:5�

extended over the entire space of continuous variables
ni � �L=L 0�n 0i , i � 1; 2; 3. They are continuous because,
when the discrete n 0i changes by unity, Dn 0i � 1, their
variation Dni � �L=L 0�Dn 0i becomes arbitrarily small as
L=L 05 1. The Kronecker symbols then also transmute into

Â b

Figure. Circular currents (a) on the faces of a cube and (b) on spherical

surfaces of octants can be considered to be made of similar currents on a

smaller scale flowing clockwise or counterclockwise and, in accordance

with Amp�ere's rule, mutually repulsive.
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delta functions. We also note that, when moving from one to
eight octants, the points lying on the boundary of two
adjacent octants belong to both octants and their contribu-
tion is shared in equal parts between these octants. Therefore,
the prescription indicated by the asterisk at

P
is implemented

automatically.
To work with finite quantities, we introduce a form factor

exp �ÿakn1n2n3�, a! 0, which cuts off high frequencies both in
the sum for u in (4.4) and in the integral for u 0 in (4.5). The a
parameter has the meaning of the cutoff wavelength. We let

f �n1; n2; n3� �
�
1ÿ �dn1dn2 � dn2dn3 � dn3dn1�

�
�

���������������������������
n 2
1 � n 2

2 � n 2
3

q
exp �ÿakn1n2n3� �4:6�

denote the function involving the form factor in the new
expression (4.4) for the density u, and pass from the sum in
one octant (the first) to the sum in eight octants:

X1
n1n2n3�0

�
f �n1; n2; n3� � 1

8

X1
n1n2n3�ÿ1

f �n1; n2; n3� : �4:7�

By the Poisson resummation formula, the sum over a discrete
variable reduces to the integral over continuous ones:X1

n1n2n3�ÿ1
f �n1; n2; n3� �

�
d3n f �n�

X1
m1m2m3�ÿ1

exp �2pimn�

�
�
d3n f �n�

�
1�

X1
m1m2m3�ÿ1

0
exp �2pimn�

�
: �4:8�

Here, mn is the scalar product of two three-dimensional
vectors: m � �m1;m2;m3� with discrete components and
n � �n1; n2; n3� with continuous components.

The first term in this expression comes from the sum for
the vector m � 0. It is identical to the integral for u 0 in (4.5)
with the form factor introduced into it. Therefore, this terms
vanishes in the difference uÿ u 0 � Du:

Du � p�hc

8V

�
ÿ q
qa

�

�
" X1
m1m2m3�ÿ1

0
�
d3n exp �ÿakn1n2n3 � 2pimn�

ÿ 3
X1

m�ÿ1

0
�
dn exp �ÿakn � 2pimn�

#
: �4:9�

The derivativeÿq=qa is used here to simplify the integrands in
the triple I3 and single I1 integrals in (4.9): they lost the factors
kn1n2n3 � �n 2

1 � n 2
2 � n 2

3 �1=2=L and kn �
�����
n 2
p

=L.
Integrating over the angles in a spherical coordinate

system where m and n are absolute values of the vectors m
and n, we reduce the triple integral to a tabulated one (see [43,
44]):

I3 � 2

m

�1
0

dn n exp

�
ÿ an

L

�
sin �2pmn�

� 1

2p3L
aÿ�a=2pL�2 �m2

�2 :

Differenting with respect to a and passing to the limit as
a! 0, we obtain

lim
a!0

�
ÿ q
qa

�
I3 � ÿ 1

2p3L�m 2
1 �m 2

2 �m 2
3 �2

; m2 6� 0 ;

�4:10�

� 24p
L

�
L

a

�4

; m2 � 0 ;

which represents the finite and singular terms, respectively,
entering Du and u 0. The single integral in (4.9) also reduces to
a tabulated one (see [43, 44]),

I1 � 2

�1
0

dn exp

�
ÿ an

L

�
cos �2pmn�

� a

2p2L
��a=2pL�2 �m 2

� ;
whence, differentiating with respect to a and passing to the
limit as a! 0, we obtain the finite and singular terms

lim
a!0

�
ÿ q
qa

�
I1 � ÿ 1

2p2Lm 2
; m 6� 0 ;

�4:11�

� 2

L

�
L

a

�2

; m � 0 ;

respectively, entering Du and u 0.
It follows that the variation in the zero-point energy

density inside a cubic cavity is

Du � p�hc

8VL

"
ÿ 1

2p3
X1

m1m2m3�ÿ1

0 �m 2
1 �m 2

2 �m 2
3 �ÿ2

� 3

2p2
X1

m�ÿ1

0 1

m 2

#

� p�hc

16VL

"
1ÿ 1

p3
X1

m1m2m3�ÿ1

0 �m 2
1 �m 2

2 �m 2
3 �ÿ2

#
: �4:12�

It is useful to indicate the vacuum energy density u 0 diverging
as a! 0, which drops out from the finite expression for the
shift Du:

u 0 � p�hc

8VL

�
24p
�
L

a

�4

ÿ 6

�
L

a

�2�
; a! 0 : �4:13�

We conclude that the shift in the energy of zero-point
oscillations of the electromagnetic field in a cubic cavity can
be represented as [19]

EL � aL
�hc

L
;

aL � p
16

"
1ÿ 1

p3
X1

m1m2m3

0 �m 2
1 �m 2

2 �m 2
3 �ÿ2

#
; �4:14�

aL � 0:0916574 . . . :

This value was confirmed by Mamaev and Trunov [24], who
calculated the shift of the vacuum expectation value of theT00

component of the energy±momentum tensor of the electro-
magnetic field.
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We quote a similar expression for the shift in the energy of
zero-point electromagnetic field fluctuations in a spherical
cavity of radius r, first found by Boyer [18]:

EB � aB
�hc

2r
; aB � 0:0923531 : �4:15�

The constant aB � 0:09 found by Boyer turned out to be
positive, contrary to Casimir's expectations [45]; it was sub-
sequently refined by Davis [20], Balian and Duplantier [21],
and Milton, DeRaad, and Schwinger [22]. The numerical
value given in (4.15) was obtained in the last study. The
analytic expression for aB found there is not as transparent as
the one for a cubic cavity.

The dimensionless constants aB and aL are the most
important Poincar�e-invariant characteristics of zero-point
oscillations of the electromagnetic field in a vacuum, meas-
ured by spherical and cubic cavities. If L � 2r (the cube is
circumscribed about a sphere), then EB and EL differ only in
the constants aB and aL.

Several questions arise in connection with these results.
(1) Do the quantities �hc=2r and �hc=L, which have the

dimension of energy, correctly express the scale of the
expected zero-point energy shifts of the electromagnetic field
in spherical and cubic cavities? We adduce physical and
geometrical arguments supporting the above scales for those
cavities whose shells are circumscribed about a sphere. For
cubic and spherical cavities, this implies that L � 2r.

(2) Why do the parameters aL and aB, which are
independent of the cavity size, depend on the cavity shape so
weakly, the relative difference between aL and aB being less
than 0.8%?

(3) Why are aL and aB more than an order of magnitude
less than the values that follow for the lowest (fundamental)
eigenfrequencies of cubic and spherical cavities? Each eigen-
frequency of the cavity whose shell is circumscribed about a
sphere can be associated with a dimensionless number kNr:

oN � ckN � �kNr� c
r
;

1

2
�hoN � �kNr� �hc

2r
:

For a spherical cavity, the fundamental frequency corre-
sponds to kminr � 2:74 (E110 mode). For a cubic cavity
(L � 2r), kminr � 2:22 (E110 mode) (see [46, Sec. 90] or [47,
48]). It is clear that the physical meaning of aB and aL is quite
different.

At the fundamental frequency and other eigenfrequencies,
the cavities are excited by an external source that transfers
the electromagnetic energy to them. The oscillation spectrum
of the excited cavity reflects the frequency spectrum of the
source, but the frequencies that are close to the eigenfrequen-
cies of the cavity are especially pronounced.

In our case, the cavity is excited because of the appearance
of an excess of vacuum energy in its cavity during cavity
assembly due to the `raking' of energy and due to the
boundary conditions on an ideally conducting shell imposed
on the energy-carrying field.

We note that, for a cylindrical cavity with radius r and
generatrix length L � 2r, the fundamental frequencies of the
E and H modes are very close: kminr � 2:420 for the H111

mode and kminr � 2:405 for the E010 mode [47, 48]. Thus, all
the given values of the fundamental frequencies and their
dimensionless values kminr for these three cavities circum-
scribed about a sphere are of the same order of magnitude,
increase when passing from a cubic cavity to a cylindrical one
and from a cylindrical to a spherical one, and exceed the

values of the parameters aL and aB by more than an order
of magnitude. It is clear that the physical meaning of the
parameters aL and aB is entirely different.

To analyze Du, it is convenient to return to the density u
and represent it in the form

u � p�hc

8VL
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L
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The first line shows the contribution to the energy density of
all modes, including those propagating along the cavity edges,
or more precisely, along the x, y, and z axes of the Cartesian
system. This contribution consists of two terms given in
(4.10): the leading contribution of all modes and frequencies
increasing aso4 with the cutoff frequencyo � c=a!1, and
the low-frequency, finite contribution of all modes with
frequencies ranging from zero to the fundamental frequency
� c=L of the cavity. These frequencies are not cavity
eigenfrequencies, and therefore the density inside the cavity
decreases by this finite low-frequency contribution compared
to the density u 0 outside the cavity. But the leading
contribution, which contains non-eigen-modes along with
the eigenmodes, overestimates the true density inside the
cavity. This overestimation removes the contribution of the
second line.

The second line contains the contribution of modes
propagating along the x, y, and z axes, modes that are not
cavity eigenmodes. This is the contribution of the eigenmodes
of three identical one-dimensional cavities of length L,
oriented along the x, y, and z axes. The contribution of each
of them consists of two terms (4.11): the leading term,
increasing like o2, cut off at the frequency � c=a!1, and
a finite contribution of modes with frequencies ranging
from zero to the fundamental frequency pc=L of a one-
dimensional cavity. This contribution is subtracted from the
leading one, because low frequencies are not eigenmodes of a
one-dimensional cavity of length L. But because they are
eigenfrequencies of a one-dimensional cavity of length
L 0 ! 1, the finite low-frequency contribution of one-
dimensional modes reduces the leading contribution of the
second line. Thus, the second line of (4.16) is the contribution
of one-dimensional modes with frequencies ranging from
the fundamental frequency � pc=L to the cutoff frequency
c=a!1 and the negative contribution of one-dimensional
low-frequency modes with o9 pc=L. Because the one-
dimensional modes are not cavity eigenmodes, the entire
contribution of the second line is subtracted from the first-
line contribution. The divergent contribution of one-dimen-
sional modes with frequencies in the range from the funda-
mental frequency� pc=L to the cutoff frequency� c=a!1
reduces the leading, divergent contribution of the first line,
and the finite contribution of the low-frequency o9 pc=L of
one-dimensional modes increases the cavity energy density.

All this can be seen from representation (4.16) for the
density u � u 0 � Du, where u 0 is given by formula (4.13) with
a strongly divergent leading term and a gentler diverging
term, whose effect is to decrease the first one.

Similarly, Du is represented in (4.12) by a positive term,
the sum of one-dimensional low-frequency modes, which
amounts to twice the value of the Riemann zeta function
z�s� at s � 2, and by a negative term, the triple sum of all low-
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frequency modes, which amounts to a particular value of
the Epstein zeta function Zp�s� at s � 1� 1=p with p � 3 [49,
Sec. 17.9].

5. Representation of the energy density shift
in a cubic cavity in terms of the Riemann
and Epstein zeta functions

We focus on the very instructive representation for Du just
obtained at the end of Section 4:

Du � p�hc

16VL

�
6

p2
z�2� ÿ 1

p3
Z3

�
4

3

��
: �5:1�

It would have emerged if we had not introduced a cutoff form
factor into the function f �n1; n2; n3� but still wished to use the
Poisson resummation formula. Instead of (4.9), we would
then have obtained

Du � p�hc

8VL

" X1
m1m2m3�ÿ1

0
�
d3n

���������������������������
n 2
1 � n 2

2 � n 2
3

q
exp �2pimn�

ÿ 3
X1

m�ÿ1

0
�
dn

�����
n 2
p

exp �2pimn�
#
; �5:2�

which, by the Poisson formula, is identically equal to the
difference between a triple sum and three one-dimensional
divergent sums:

Du � p�hc

8VL
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According to Epstein, the divergent sum in a space of p
dimensions,

X1
n1n2 ...np�ÿ1

�������������Xp
i�1

n 2
i

vuut � ÿ 1

2p
pÿ�1=2��1�p� G

�
1

2
�1� p�

�

�
X1

m1m2...mp�ÿ1

0
 Xp

i�1
m 2

i

!ÿ�1=2��1�p�
; �5:4�

is equal to a negative converging sum.
For p � 1 and p � 3, we have the familiar expressions (see

(4.12))X1
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The difference between the divergent sumsÐ the triple one
and three one-dimensional onesÐ is certainly positive.
Therefore, also positive is the corresponding difference
between the convergent sums, and hence Du > 0 (see (4.12)).

We note that the first line in (5.5) is nothing but a relation
between a finite value of Riemann's zeta function

z�s� �
X1
m�1

mÿs ; Re s > 1 �5:6�

at the point s � 2 and the divergent sum naively obtained
from the Dirichlet representation (5.6) at the point s � ÿ1
that does not belong to the domainRe s > 1. Physicists would
call this value nonregularized. We let it be denoted by ~z�ÿ1�.
According to advanced mathematics, however, the Riemann
zeta function, as an analytic function of swith a pole at s � 1,
satisfies the functional equation [49, Sec. 17.7]

z�1ÿ s� � 2G�s�
�2p�s cos

ps
2

z�s� ; �5:7�

which analytically relates its values at s and 1ÿ s. Therefore,
the statement in the first line of (5.5) is equivalent to
regularizing the sum ~z�ÿ1� by removing its divergence and
reducing it to a finite value z�ÿ1�:

~z�ÿ1� ! z�ÿ1� � ÿ 1

2p2
z�2� :

The Epstein zeta function is defined by the p-fold sum [49]

Zp�s� �
X1

m1m2 ...mp�ÿ1

0
 Xp

i�1
m 2

i

!ÿ�1=2�ps
; Re s > 1 : �5:8�

For p � 1, it coincides with twice the Riemann zeta function.
Being an entire function of s with a pole at s � 1, Zp�s�
satisfies the functional equation

Zp�1ÿ s� � p�1=2� p�1ÿs� G��1=2�ps�
p�1=2� ps G��1=2�p�1ÿ s�� Zp�s� ; �5:9�

which analytically relates its values at s and 1ÿ s.
Formula (5.4) relates the divergent sum obtained naively

from representation (5.8) at the point s � ÿ1=p outside the
domain Re s > 1 to the finite value Zp�ÿ1=p� determined by
functional equation (5.9).We let ~Zp�ÿ1=p� denote this diverg-
ing sum. Then, formula (5.4) can be regarded as a regulariza-
tion of the sum ~Zp�ÿ1=p�, which amounts to removing its
divergence and reducing it to a finite value Zp�ÿ1=p� equal to
the right-hand side of (5.4), in accordance with functional
equation (5.9).

We summarize the foregoing. The series
P1

m�ÿ1
�������
m 2
p

in (5.3), represented in the form
P1

m�ÿ1�
�������
m 2
p

�ÿs, diverges at
s � ÿ1, but the doubled Riemann zeta function defined by
this series for s > 1, being analytically continued to s � ÿ1,
has the finite value given in (5.5).

Similarly, the seriesX1
m1m2m3�ÿ1

�������������������������������
m 2

1 �m 2
2 �m 2

3

q
in (5.3), represented as
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� �������������������������������
m 2

1 �m 2
2 �m 2

3

q �ÿ3s
;

diverges at s � ÿ1=3, but the Epstein zeta function Z3�s�
defined by this series for s > 1 (see (5.8)), being analytically
continued to the point s � ÿ1=3, takes the finite value given
in (5.5).

Thus, the same finite result for Du in (4.12) and (5.1) can
be obtained by two different methods. The first amounts to
introducing a high-frequency cutoff form factor into the
density u and discarding the divergent part dependent on the
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cutoff wavelength a! 0. It is then asserted (see, e.g., book
[25]) that the finite result is independent of the choice of the
cutoff function, and its explicit introduction is in fact not
necessary.

This is indirectly confirmed by another method of
removing divergences from u, where the terms of a linearly
divergent series for u are raised to a negative power ÿps,
where s is a parameter and p is the spatial dimension. As a
result, the series becomes convergent and determines an
analytic function of complex s in the domain Re s > 1. This
function can be analytically continued to the vicinity of
s � ÿ1=p, where the original series diverges. However, the
value of the analytically continued function at s � ÿ1=p is
finite and is the desired result.

Boyer [26] relates the independence of the forces acting on
conducting bodies from the high-frequency cutoff to the
vector nature of the electromagnetic field responsible for the
observed phenomena. A similar opinion is held, as we see
below, by Lukosz [27].

DeWitt [42], disagreeing with Boyer, shows that a
massless scalar field in a vacuum would also lead to
observable pressures on the walls, bounding it if we assume
that it vanishes on the boundary and if we use the conformally
invariant scalar field with a traceless energy±momentum
tensor.

Regardless of whether a massless scalar field exists in
Nature or is useful only to theorists to discover symmetry
relations between observable physical quantities, it is clear
that conformal invariance of the quantum theory of massless
fields (with spins 1 and 0, in particular) conceals not yet fully
understood information, as does the closely related analyti-
city of the functions describing these observable quantities.

At the same time, Todorov [50] stated that, in the region
where themomenta of all particles aremuch greater than their
mass, quantum field theory becomes conformal field theory if
the effective charge tends to a finite value as the momenta
increase.

This opinion is shared by the current author.
Boyer and Lukosz consider the electromagnetic field in

a cavity with ideally conducting walls. This field satisfies
Maxwell's equations with boundary conditions (4.2), which
require that the field be a set of monochromatic waves with
the cavity eigenfrequencies. Being a solution of Maxwell's
equations, such a field is conformally invariant.

DeWitt draws attention to the fact that finite effects
of pressure on the cavity walls must also appear in the
4-dimensional conformally invariant theory of a scalar mass-
less field. In that theory, the Lagrangian contains the scalar
Ricci curvature instead of the squared mass,m 2 ! xR, where
x is a dimensionless parameter depending on the space±time
dimension. The energy±momentum tensor obtained by vary-
ing the Lagrangian with respect to the metric then contains
x-dependent terms, even in the zero-curvature limit, and its
trace in the 4-dimensional theory vanishes only for x � 1=6.

However, in this and our preceding papers, we use
the duality of 4-dimensional electrodynamics and the two-
dimensional theory of a massless scalar field, in which x � 0
and the energy-momentum tensor is traceless. Conformal
invariance of the two-dimensional theory of a massless scalar
field with a zero boundary condition on the world line of a
point mirror is well known (see [51, Sec. 4.4]). Conformal
invariance of 4D electrodynamics with the current of a point
charge on the world line coinciding with that of the mirror
follows from the duality between these two theories, at least as

regards their radiation fields. Conformal invariance of
Maxwell's equations was proved by Bateman in 1909 (see
[40, Sec. 9]).

6. Closeness of the values
of aL, aB, and a=a0 � 4pa obtained
by nonperturbative methods

In [8], we drew attention to the fact that the value a0 � 1=4p of
the fine structure constant of a bare point charge, obtained in
[2±9] by a purely geometrical nonperturbative method, is
closely related to the parameters aB and aL characterizing the
shiftsEB andEL of the energy of zero-point oscillations of the
electromagnetic field in spherical and cubic cavities. Indeed,
the finite value a0 � 1=4p leads to a finite value of the Dyson
renormalization factor Z3 � a=a0 � 4pa, which lies in the
narrow interval

aL < Z3 � a
a0
� 4pa < aB �6:1�

between aL and aB, which are small compared to unity:

aL � 0:0916574 ; aB � 0:0923531 : �6:2�

Aswe have already noted, the values of aL and aB differ by
less than 0.8%, and the values of aL and a=a0, by less than
0.05%.

Because all three quantities aL, aB, and a=a0 � Z3 5 1 are
directly related to the fluctuations of the electromagnetic field
A�x� and the current jm�x� in a vacuum, such a proximity of
these values can hardly be considered accidental. Moreover,
this proximity only confirms that the finite value a0 � 1=4p is
correct, as is the nonperturbative method whereby it was
obtained. We also note that the parameters aL and aB were
found without any recourse to the perturbation theory.

Because Z3 � e 2=e 20 has the physical meaning of the
inverse permittivity of a vacuum, relation (6.1) gives the
parameters aL and aB the meaning of approximate inverse
permittivities determined by cubic and spherical cavities.

With formula (6.1) rewritten in terms of purely geo-
metrical quantities

a0aL � 1

137:101
; a0aB � 1

136:069
; �6:3�

obtained by nonperturbative and unrelated methods, we
arrive at a constraint on the fine structure constant a �
1=137:036:

a0aL < a < a0aB : �6:4�
The analytic expression for a0aL, whose numerical value
differs from the experimental a by less than 0.05%, is

a0aL � 1

4p
p
16

"
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m1m2m3�ÿ1
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2 �m 2
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#
: �6:5�

The sum that appears here (Epstein's zeta function) is equal to
16.53231596... [19]. This formula for a0aL suggests that Dirac
was not altogether in error after all.

Epstein's zeta functions for three-dimensional and one-
dimensional spaces were used in deriving (6.5). The remark-
able analytic properties of the Epstein functions allow
reducing divergent series to convergent series that have a
physical meaning (see functional equation (5.9) and its special
case (5.7)).

May 2022 Finite value of the bare charge and the relation of the éne structure constant ratio 479



The qualitative and quantitative relations between aL, aB,
and a=a0 discussed above raise the following questions.

(1) Why are the parameters aL and aB so weakly
dependent on the cavity shape?

(2) Why is aL less than aB?
(3) Why is Z3 � a=a0 � 4pa closer to aL than to aB?
Cubic and spherical cavities, despite the difference in their

shapes, are characterized at L � 2r by the same topological
invariant, the surface-to-volume ratio

S

V
� 3

r
: �6:6�

This global geometric invariant is shared by all polyhedra
circumscribed about a sphere (see [9]). But the small
difference between the coefficients aL and aB is nevertheless
caused by the fact that subjecting the zero-point fluctuations
of the electromagnetic field to the same local boundary
conditions on the conducting shells of the cube and the
sphere requires different energy expenditure when these
cavities are formed.

In this regard, the parameter aL turns out to be smaller
than aB because the fulfillment of the boundary conditions by
a superposition of plane waves with mutually orthogonal
vectors E,H, and

�
EH
�
on the orthogonal adjacent faces of a

cube requires less energy than their implementation on the
surface of a sphere.

We return to the discussion of these issues in the
Conclusion.

7. Relation of the aB;L parameters
to the Dyson Z3 factor: the ratio of the squared
physical and bare charges

Our aim in this section is to qualitatively explain why the
change in the energy of zero-point oscillations of the
electromagnetic field inside a cavity with ideally conducting
walls is proportional to the renormalization factor Z3. For
this, we use the operator field theory formalism expounded
above to describe quantum mechanical fluctuations of the
electromagnetic field in a vacuum. Because the expectation
values of the field and current operators are equal to zero in
the vacuum, we can surmise that the vacuum expectation
values of the squares of these operators are nonzero and can
characterize the vacuum fluctuations. Indeed, it can be shown
that the squared fluctuations of the fieldA�x� and the current
j�x� in the vacuum do not vanish, but turn to infinity (see [36,
Sec. 7]).

To avoid such divergences, we consider not the operator
A�x� itself but its average

�A � Lÿ3
�
V

d3xA�x; t� �7:1�

over some spatial volume L 3; we also introduce the mean
squared fluctuation of the ith component of this averaged �A:
�D �Ai�2

� � 
� �Ai ÿ h �Aii�2
�

� Lÿ6
�
V

d3x d3x 0


Ai�x; t�Ai�x 0; t�

�
: �7:2�

We note that, because �Ai is a volume average, the products of
the same averages �Ai

�Ai involve the same time t, just as they
involve the same index i (these are the continuous and discrete
parameters of the spatial integral for �Ai).

We now use vacuum expectation value (2.1) and formulas
(2.2) and (2.3) with m � n � i, i � 1; 2; 3, to obtain a spectral
representation for the sum of vacuum expectation values:

X3
i�1



Ai�x; t�Ai�x 0; t�

�
� �hc

�1
0

dm 2

�
d3p exp

�
ip�xÿ x 0��

�2p�32
�����������������
p2 �m 2

p 2B�m 2� : �7:3�

Here, we used the fact that the sum

X3
i�1

AR
ii �p� � 2B�m 2� �7:4�

is independent of p. The momentum-space integral remaining
in (7.3) coincides with the real part of the positive-frequency
Green's function and with the function �1=2�D1�z;m�
(Hadamard's elementary function) for z2 > 0:�

d3p exp �ipz�
�2p�32

�����������������
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The Hadamard function is the imaginary part of the causal
Green's function (2.11); for z 2 > 0, it can be expressed in
terms of the Macdonald function, and for z 2 < 0, in terms of
the Neumann function:
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For m � 0 both representations reduce to the function
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which contains the leading singularity of representation (7.6)
near the light cone z 2 � 0:
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Hence, in accordance with (7.2) and (7.3), the sum of mean
squared fluctuations of theA�x; t� components averaged over
the volume V � L 3 becomes
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where z 2 � �xÿ x 0�2.
We are of course interested in the first term in curly

brackets, which is proportional to B0 and is a purely
geometric quantity, depending only on the size and shape of
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the averaging volume and equal to Lÿ2 by order of
magnitude. Together with the factor �hc but without the
summation over the A field polarizations, it is given in
Eqn (2.99) in Thirring's book [36]. This quantity, however,
tells us that the electromagnetic field is a free massless field of
a standing wave in the selected volume. As regards B0, we
have already mentioned that it is the probability that a
photon is produced from the vacuum by the field A�x�; like
any probability, it lies between zero and one.

In his book [36], Thirring makes an important remark
about finite-volume averages of fluctuating vacuum fields.

``However, all the quantities discussed above should not
be taken too seriously because they are all space integrals of
local variables at precisely fixed time. We have seen that they
have infinite root-mean-square fluctuations. Therefore, they
cannot be called observables, because any measurement
process takes some time, and one should consider local
variables integrated over some space±time volume with
blurred boundaries. To make the vacuum fluctuations small,
one must spread the boundaries of the volume over an area
larger than �h=mc.''

Apparently, this remark is also applicable to his formula
(2.99),
�D�A�2� � �hcLÿ6

�
V

dV dV 0
1

2
D 1�xÿ x 0� � �hcLÿ2 ;

which expresses the mean square of vacuum fluctuations of
the expectation value of the electric potential in a spatial
volume � L3. But the above mean square of the fluctuations
is finite and is independent of time, even if it was found only
for tÿ t 0 � 0. This is becauseD 1�z� is even with respect to z a,
a � 0; 1; 2; 3.

We note that the Thirring formula contains the mean
square fluctuation of the free field A�x� that is not coupled to
the vacuum current jm�x�. Moreover, it is not summed over
the two polarizations of the A field. Taking the coupling and
the two polarizations into account is equivalent to multi-
plying the Thirring formula by 2B0, making it coincident with
the first term in (7.8).

If the averaging volumeV is chosen as a cube with an edge
L, then a purely geometric dimensionless quantity in
Minkowski space

Lÿ4

2p2

�
V

d3x d3x 0

z 2
� Lÿ4

�
V

d3x d3x 0D 1�z� ;

where z 2 � z 2 ÿ z 20 , z � xÿ x 0, z 0 � c�tÿ t 0�, can be
straightforwardly represented by the triple integral

1

2p3
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d3K
K

�
sin K1 sin K2 sin K3

K1K2K3

�2

cos

�
2z 0K
L

�
; K � jKKj ;

over the variables Ki � kiL=2, i � 1; 2; 3, where ki are the
component of the wave vector k in the Fourier representation
of D 1�z�.

In (7.8), this quantity, accompanied by the factor Lÿ2,
features at z 0 � 0, where the cosine becomes unity.We use the
value of the integral

R �
�
d3K
K

�
sin K1 sin K2 sin K3

K1K2K3

�2

� 17:70

(S L Lebedev, private communication), whence �1=2p3�R �
0:2854. But even for jz 0j < L=2, the cosine has little effect on

the integral, dominated by Ki � 1. Averaging over z 0 in the
range ÿL=2 < z 0 < L=2 replaces the cosine with its mean,

Lÿ1
� L=2

ÿL=2
dz 0 cos

�
2z 0K
L

�
� sin K

K
:

Because the mean squared fluctuation of the averaged value
of A in the volume V is finite, the objection regarding its
observability can be dispensed with.

The quantity under consideration is finite due to the fact
that it is expressed in terms of D 1�z�, a function that is even
under z! ÿz. This unique property is shared by the causal
Green's function

D��z� � �D�z� � i

2
D 1�z� ;

whose imaginary part is �1=2�D 1�z�. Therefore, D��z� and
D��z;m� depend only on z 2. Other singular functions in
addition depend on the sign of the time z 0. For example, the
Pauli±Jordan commutator function [52]

D�z;m� � 2e�z 0� �D�z;m� �
�
d3p exp �ipz�
�2p�3p 0

sin �p 0z 0�

vanishes at z 0 � 0, because it is odd under z 0 ! ÿz 0. Being
an invariant function of z 2, it is then equal to zero in the entire
space-like domain z 2 > 0.

If we consider the fluctuations not of the field A�x� but of
the electric field E�x� � ÿqA=c qt, then, for its average over a
volume V, we can approximately set �E � �o=c��A, where o is
some effective fluctuation frequency of the fields A and E
inside V. It is close to cLÿ1, and hence E � Lÿ1 �A. As a result,
we obtain the mean squared fluctuation of the average of E
over the volume V in the form

X3
i�1


�D �Ei�2
� � �hcZ3

Lÿ8

2p2

�
V

d3x d3x 0

�xÿ x 0�2 � . . . : �7:9�

Here and hereafter, we switch to the notation Z3 and r�m 2�
instead of Schwinger's B0 and B1�m2�.

The purely geometric factor depending on the shape of the
volume is now of the order of Lÿ4. The resulting quantity,
which has the dimension erg cmÿ3, can be considered (when
multiplied by 1=2) the energy density of the fluctuating
electric field in the volume V. Obviously, the energy density
of the fluctuating magnetic field in the volume V is the same,
becauseH�x� � rotA�x� (see [46, Sec. 90] for a direct proof of
the equality of these densities).

Summing both densities and multiplying by the volume,
we obtain the estimate

�hcZ3
Lÿ5

2p2

�
V

d3x d3x 0

�xÿ x 0�2 � Z3
�hc

L
�7:10�

for the energy of a fluctuating electromagnetic field in the
volume V � L3. Comparing this energy with the shift of the
zero-point electromagnetic field energy in spherical and cubic
cavities,

EB;L � aB;L
�hc

L
; �7:11�

we see that, regardless of the shape of the averaging volume
and the shape of the cavity volume, the coefficients aB;L are
proportional to Z3. This means that the striking closeness of
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the dimensionless coefficients aB;L to the finite value 4pa that
we obtained for the constant Z3 � a=a0 � 4pa [8, 9] is not
accidental but is a corollary of fundamental equal-time and
non-equal-time commutation relations for the interacting
operator fields. In particular, it is a consequence of the
K�all�en±Lehmann spectral representation for the exact
Green's function of the photon.

We return to formula (7.10), which estimates the energy of
the fluctuating electromagnetic field in a volume V, and write
it for a cube using the value of the integral

Lÿ4

2p2

�
L3

d3x d3x 0

�xÿ x 0�2 �
R

2p3
� 0:2854

found by Lebedev. Formula (7.10) then takes amore concrete
form:

�hcZ3
Lÿ5

2p2

�
L3

d3x d3x 0

�xÿ x 0�2 � Z3 � 0:2854
�hc

L
: �7:12�

Because the finite value Z3 � 4pa that we obtained is very
close to aB;L, the estimated energy (7.12) inside a cube with
`blurred boundaries' is 3.5 times less than the exact energy
inside spherical and cubic cavities with perfectly conducting
walls (7.11):

EB;L � aB;L
�hc

L
:

The spectra of eigenoscillations of the electromagnetic field
inside the cavities, the eigenfrequencies, the degenerate
modes, and other features are here determined by boundary
conditions (4.2) on the conducting boundaries. The work of
external forces during the formation of the cavity was needed
for the vacuum fluctuations to satisfy the boundary condi-
tions, and this work, in accordance with the energy conserva-
tion law, increased the energy of zero-point oscillations of the
field inside the cavity compared with the energy in the same
volume in the absence of the cavity.

We note that the difference between the approximate
estimate of the field energy in a spherical cavity and estimate
(7.12) for a cubic cavity amounts to replacing the number
0.2854 with 0:2962 � �3=4p��6=p�1=3. The right-hand side of
(7.12) then becomes

Z3 � 0:2962 �hc

L
� Z3 � 0:3675 �hc

2r
; �7:13�

because the length L, which makes the variables dimension-
less, is the cube root of the volume, L � V 1=3.

It follows that the approximate estimates in (7.12) and
(7.13) are about three times lower than the exact energy
values. We emphasize that, in contrast to exact calculation
of the energy shift of zero-point oscillations in cavities, its
approximate estimate in the same volume with `blurred
boundaries' is not plagued with divergences and does not
require their removal.

8. Shift of the zero-point energy
of the electromagnetic field in a cavity
as a measurable physical quantity

Concerning the calculation of theCasimir energy,DeWitt [42]
writes, referring to the layer of a vacuum between two ideally
conducting parallel planes:

``Using the thermodynamic law (4.1) for pressure in a
Casimir vacuum, I required that the conductors move slowly.
If I allowed the presence of some noticeable acceleration, then
the conductors would begin to emit photons and the entropy
inside the layer would begin to increase. At first, it may seem
surprising that by accelerating a neutral conductor, one can
produce photons, but one will immediately remember that the
surface layers of a real conductor carry currents. Free
electrons near the surface interact with quantum fluctuations
of the electromagnetic field in the same way as they interact
with the classical field, and form (microscopic Ð VR)
currents of just such a magnitude that guarantee standard
(macroscopic Ð VR) boundary conditions. Because the
boundary conditions are sufficient to determine all (macro-
scopic Ð VR) physical phenomena outside the conductor,
there is no need at all to refer to currents, as was done now.''

Indeed, the classical boundary conditions on a perfectly
conducting cavity shell are sufficient to explain all the
physical processes of propagation and reflection of electro-
magnetic waves inside the cavity. But there is a considerable
difference between the excitation of the eigenfrequencies of a
cavity placed in the field of an external classical source, whose
spectrum and power are always bounded, and the excitation
of eigenfrequencies of a cavity placed in a vacuum with a
constantly fluctuating quantum electromagnetic field, whose
energy spectrum

�ho
2

V4po2 do

�2pc�3 2 �8:1�

differs drastically from the spectrum of classical sources. Such
a spectrum would lead to the energy inside the cavity volume
V diverging as o4, had that energy been an observable
quantity.

In fact, the observable quantity here is the change in the
zero-point energy of the electromagnetic field in the cavity
due to the emergence and repeated reflection of electromag-
netic waves from the conductive walls of the cavity during its
formation, as described above.

As a result, excessive zero-point energy and pressure
appear in the assembled cavity as compared to their values
in the same volume in the absence of the cavity.

This energy and pressure are carried by quite real,
observable electromagnetic standing waves that satisfy the
known boundary conditions (4.2) due to a self-consistent
coupling to microcurrents given by the displacement currents
on a perfectly conducting surface. If a wave incident on the
surface has a nonzero tangential component of the electric
field, then a magnetic field normal to the surface appears in
accordance with the Maxwell equation rotH � qE=c qt.
In turn, this magnetic field, according to another Maxwell
equation rotE 0 � ÿqH=c qt, creates an opposite electric field
E 0 � ÿE on the conducting surface, and qE 0=qt creates the
field H 0 � ÿH, and condition (4.2) is thus restored.

The fields E and H appearing here are nothing but the
fields

������
Z3

p
Ein and

������
Z3

p
Hin that found themselves inside the

cavity and became on-shell fields as a result of the adiabatic
compression of the electromagnetic field fluctuations in the
vacuum in the course of cavity formation. They received
energy due to the work of compressing forces against the light
pressure force. Experts in waveguides and cavity resonators
call the process of the appearance of these energy-carrying
waves the `raking' (compression) of vacuum fluctuations (see
[53, 54]). They are related to interacting operator fields by the

482 V I Ritus Physics ±Uspekhi 65 (5)



asymptotic conditions

A�x; t� !
������
Z3

p
Ain
out
�x; t� at t! �1 ;

�8:2�

0jA�x�jpl� � ������

Z3

p 

0jAin

out
�x�jpl� ;

and are uniquely determined by the matrix elements of these
fields between the vacuum and one-photon states (see [34,
Sec. 111 and 112], [35, Sec. 5.1.2]).

Thus, the change in the zero-point energy of electromag-
netic oscillations in the cavity has become an observable
physical quantity. Here is what Lukosz writes on the subject
[27].

``The work required to change the size or shape of a cavity
can be measured. Due to the law of conservation of energy, it
is equal to the change in zero-point energy shift. Therefore,
the change in zero-point energy shift is an observable
and hence a finite quantity. However, the cavity must be
physically realizable, at least in principle. The assumed
perfect conductivity of the boundary for all frequencies
seems to be an acceptable extrapolation from experience,
consistent with the fundamental laws of physics.''

9. Conclusion

We return to the question of why the dimensionless para-
meters aB and aL, and together with them the energy shifts EB

and EL of zero-point oscillations of the electromagnetic field
in spherical and cubic cavities, are so close, their relative
difference being less than 0.8% (see (4.15) and (4.14)).

Because the radius r of the spherical cavity and the edge L
of the cubic cavity are related as L � 2r, the cube is
circumscribed about the sphere. At the same time, it can be
shown [9] that, for any polyhedron circumscribed about a
sphere, the ratio of its surface area S to its volumeV is exactly
the same as for the sphere itself,

S

V
� 3

r
: �9:1�

Moreover, this formula also applies to a truncated cone and a
cylinder circumscribed about a sphere. The surfaces of these
polyhedra consist of pieces that have zero Gaussian curva-
ture. They are homeomorphic to the surface of the inscribed
sphere and are characterized by topological invariant (9.1).
We let g denote cavities with topological invariant (9.1).

In passing from a three-dimensional to a d-dimensional
space, the right-hand side of (9.1) expressing the ratio of the
generalizedS andVmust be replacedwith d=r. In particular, a
cube in d dimensions has 2d faces, each Ldÿ1 in area, whence
S=V � 2dLdÿ1=Ld � 2d=L � d=r.

It would be very interesting to find a polyhedron G
circumscribed about a sphere whose ideally conducting
surface shifts the energy of the vacuum electromagnetic
fluctuations by the quantity

EG � aG
�hc

2r
; �9:2�

with the parameter aG just equal to 4pa, i.e., a0aG � a. The
symmetry of such a surface would be indicative of a certain
intrinsic symmetry of zero-point electromagnetic oscillations
in the vacuum.

Each polyhedron circumscribed about a sphere, in addition
to the general topological invariant (9.1), also has its own

topological invariant, the numbers of faces f, edges e, and
vertices v, which satisfy the Euler identity fÿ e� v � 2. This
invariant, taken together with (9.1), characterizes a class of
equivalent maps of a polyhedron onto a sphere, and is called a
homotopy invariant (see Sec. 1.3 in [57]).

Unfortunately, the energy shift of zero-point oscillations
of the electromagnetic field caused by a cylindrical cavity
whose conducting surface is circumscribed about a sphere (a
cylinder of radius rwith the generatrix length L � 2r) has not
yet been calculated. A cylindrical cavity was considered in
detail in Feynman's lectures [55]. In book [56], moreover,
Feynman notes that the fine structure constant can be related
to the zeros of the Bessel functions.

Indeed, the eigenfrequencies of a cylindrical cavity whose
shell is circumscribed about a sphere are given by (see [48])

oE
mnp �

c

r

�����������������������������
n 2mn �

�
pp
2

�2
s

; �9:3�

oH
mnp �

c

r

�����������������������������
m 2
mn �

�
pp
2

�2
s

for E- and H-waves. Here, m, n, and p are integers, and nmn

and mmn are zeros of the Bessel functions and their derivatives:

Jm�nmn� � 0 ; J 0m�mmn� � 0 : �9:4�

It is possible that a cylindrical cavity with the shell
circumscribed about a sphere is the same cavity G in which
the energy shift of zero-point oscillations of the electromag-
netic field is determined by formula (9.2) with the parameter
aG just equal to 4pa.

Because the ratio S=V � 3=r is the same for any cavity g
whose shell is circumscribed about a sphere, the zero-point
energy shift Eg can be represented as the work of external
forces against the overpressure force inside the cavity over the
length r,

Eg � ag
�hc

2r
� ag

�hc

6

Sg

Vg
� Eg

3Vg
Sgr � pgSgr ; �9:5�

where pg � Eg=3Vg is the difference between pressures inside
and outside the cavity.

Because the energy shift Eg and the pressure shift pg of
zero-point fluctuations of the electromagnetic field inside a
cavity g are

Eg � ag
�hc

2r
; pg � Eg

3Vg
; �9:6�

the pressure and volume of the cavity g satisfy the relation

pgV
4=3
g � 1

3
ag

�
Vg

VL

�1=3

�hc ; VL � L3 � 8r3 ; �9:7�

similar to the black-body radiation adiabat

pV 4=3 � 1

4

�
45

4p2

�1=3

S 4=3�hc � p2

45

�
p2N
2z�3�

�4=3

�hc ; �9:8�

ensuring the constancy of the entropy S and themean number
of photons N (see [58, Sec. 63]).

The adiabat of an ultrarelativistic Fermi gas has a similar
structure (see [58, Sec. 61]).

The similarity between formula (9.7) and the adiabat of
black-body radiation allows asserting that the dimensionless
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constant on the right-hand side of (9.7) is the entropy (raised
to the power of 4/3) of zero-point oscillations of the
electromagnetic field inside the cavity g. But here it depends
on the shape of the cavity resonator and is finite at zero
temperature. We note that the volume ratio Vg=VL is a
geometric constant for a cavity g whose shell is circumscribed
about a sphere. For a cube, a cylinder, and a sphere, this ratio
is 1, p=4, and p=6.

The adiabat relating the pressure of zero-point oscilla-
tions of the electromagnetic field inside a cavity g with its
volume, Eqn (9.7), allows interpreting the energy Eg of zero-
point oscillations of the field inside the cavity as the work
ag�hc=2R during its formation plus the work E during
adiabatic (dS � 0) compression that reduces the radius of
the inscribed sphere from R to r with the cavity shape
preserved:

E �
� r

R

dE �
� r

R

�T dSÿ p dV� � ÿ
� r

R

p dV

� ÿ 1

3
ag

�
Vg

VL

�1=3

�hc

� r

R

V ÿ4=3g dVg � ag
�hc

2r
ÿ ag

�hc

2R
: �9:9�

This work E was referred to in Lukosz's remark above.
In [2±8], a duality relation was established between the

emission of photons by a point electric charge accelerated in
3� 1 dimensions and the production of pairs of scalar quanta
by an accelerated pointmirror in 1� 1 dimensions.

The duality is underlain by the fundamental relation
between causal functions in d- and �dÿ 2�-dimensional
Minkowski spaces:

D f
d �x; m� �

1

4p

�1
m2

dm 2 D f
dÿ2�x;m� ; d5 4 : �9:10�

The causal function satisfies the equation

�ÿq2a � m2�D f
d �x; m� � dd�x� �9:11�

and depends only on the invariant x 2, whichmakes it a purely
geometric object. In our case, d � 4 and the function D f

4 �x; m�
on the left-hand side of (9.10) describes the propagation of a
particle with mass m that can have any (say, arbitrarily small
or even zero) value. On the right-hand side, the function
D f
2 �x;m� describes the propagation of a `particle' with a mass

m that takes all possible values in the range m4m <1. Such
a `particle' is made of a pair of two massless particles flying
apart in opposite directions, whose doubled frequencies
coincide with the k� � k 0 � k 1 components of the photon
momentum: 2o � k� and 2o 0 � kÿ. The masslessness of the
particles making up a massive pair in 1� 1 dimensions is a
fundamental purely geometric feature of the duality under
discussion.

We consider the holographic duality relation (9.10)
between the causal Green's functions for four-dimensional
and two-dimensional spaces:

D f
4 �z; m� �

1

4p

�1
m2

dm 2 D f
2 �z;m� ; �9:12�

D f
2 �z;m� � i

�1
ÿ1

dy
4p

exp
�
im�z 1 sinh yÿ jz 0j cosh y�� : �9:13�

Both Green's functions featured here are invariant purely
geometric objects. They are expressed in terms of the

variables z a with the dimension of length and the parameters
m andmwith the dimension of inverse length.We assume that
the m parameter is arbitrarily small.

For a timelike trajectory of the charge and the mirror,

x a�t� � ÿx 1�t�; x 0�t�� ; t is the proper time ; �9:14�

while the two-dimensional vector z a � x a�t� ÿ x a�t 0� is
timelike and lies in the �x; t� plane of the four-dimensional
Minkowski space, as does the x a�t� trajectory itself.

If we use the timelike vector z a for such a trajectory in
formulas (9.12) and (9.13), then ImD f

4 �z; m� can be replaced
with

ImD f
4 �z; m� � Re

�
dok exp �ikaz a�

� Re

�1
m 2

dm 2

4p

�1
ÿ1

dy
4p

exp �ikz� ; �9:15�

where we use the variables

k 0 � o� o 0 � m cosh y ; k 1 � oÿ o 0 � m sinh y ; �9:16�

characterizing the state of a photon emitted by the charge and
the state of a pair of scalar quanta emitted by the mirror.

We also quote the invariant measures of the number of
photon states,

dok � d3k

�2p�32k 0
� dk� dkÿ
�4p�2

dj
2p

; �9:17�

and the number of states of the pair,

dk� dkÿ
�4p�2 � do do 0

�2p�2 �
dm 2 dy

�4p�2 : �9:18�

Here,

k� � k 0 � k 1 � 2o � me y ; �9:19�
kÿ � k 0 ÿ k 1 � 2o 0 � meÿy :

We note that, due to the azimuthal symmetry, the angle j is a
cyclic variable, of which the functions in the integrands are
independent.

We now multiply (9.15) by the invariant product
_x a�t� _xa�t 0� of two-dimensional velocity and integrate over t
and t 0:��

dt dt 0 _x a�t� _xa�t 0� ImD f
4 �z; m�

�
�1
m 2

dm 2

4p

�1
ÿ1

dy
4p

��u a�k���2
�
�
do do 0

�2p�2
���bB

o 0o

���2 � �NB ; �9:20�

where we have a purely geometric 2-vector,

ua�k� �
�1
ÿ1

dt _xa�t� exp
ÿÿikx�t�� : �9:21�

The squared modulus of this vector coincides with the
squared modulus of Bogoliubov's b coefficient,��ua�k���2 � ��bB

o 0o

��2 ; �9:22�
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which determines the spectral density of pairs of scalar quanta
(Bose pairs for brevity) emitted by the mirror in 1� 1
dimensions (see formulas (3.19) and (3.21) in [8]). We note
that the Bogoliubov coefficient bB

o 0o is determined by the
scalar product of the solutions fino 0 and fouto of the wave
equation for a massless scalar field (see (2.9) in [8]), has the
dimension of length, and is a purely geometric quantity
depending on the frequencies and trajectory parameters,
which have the dimensions of powers of length and time.
This is unsurprising, because the quantum theory of a
massless scalar field does not contain Planck's constant.

Because the number of states (9.19) of a bosonic pair is
also a geometric invariant, the mean total number �NB of Bose
pairs emitted by themirror along the entire trajectory over the
entire time, determined by the last integral in (9.20), is an
invariant geometric dimensionless functional of the mirror
trajectory. At the same time, the left-hand side of (9.20) is
related to the photon propagator in 3+1 dimensions,

Im

��
dt dt 0 _x a�t� _xa�t 0�D f

4 �z; m� �
�
dok

��ua�k���2; �9:23�

and it is tempting to compare it with the mean total number
�N �1� of photons emitted by a charge moving along the same
trajectory as the mirror,

�N �1� � 2

�h
ImW �1� � 1

�hc

�
dok

�� ja�k���2 �9:24�

(see Eqn (3.2) in [8]). In our case, the charge has a very large
transferred momentum (acceleration) and can therefore be
considered point-like and unscreened. In this state, its value e0
is greater than the value e at small transferred momenta. The
soft photons emitted by it to infinity do not affect the charge
trajectory, which can be considered fixed. The distribution of
photons is described by the propagator D f

4 �z; m�, and their
mean total number �N �1� and spectrum, by formula (9.24),
where ja�k� is the Fourier transform of the charge current
density. For the trajectories x a�t� of the charge and themirror
coinciding in the �x; t� plane, the Fourier transforms of the
2-vectors of the current density and velocity are proportional
to each other: ja�k� � e0ua�k�.

The holographic principle of quantization of the bare
(point) charge, formulated as the requirement that the mean
total numbers of photons and Bose pairs emitted by the
charge and the mirror coincide, �N �1� � �NB,

�N �1� � e 20
�hc

�
dok jua�k�

��2 ;
�9:25�

�NB �
�
do do 0

�2p�2
��bB

o 0o

��2 ;
then leads to the bare charge quantization e 20 � �hc, and the
coincidence of the spectra then follows from here and the
holographic duality relation (9.12) between propagators in
four- and two-dimensional spaces, together with the non-
trivial connection (9.22) between the Bogoliubov coefficient
and the 2-vector ua (also see (3.19) in [8]).

Hence, for the same trajectory of the charge and the
mirror, the spectra of photons and pairs coincide if, given
the point-like nature of the sources, we consider the charge
to be bare with the fine structure constant a0 � 1=4p. The
discovered duality can therefore be regarded as a holographic
principle of bare charge quantization. The result a0 � 1=4p
satisfies all three conditions obtained by Gell-Mann and
Low [10] for a finite bare charge (see p. 469). Moreover, it

is precisely because of the value a0 � 1=4p that the ratio
a=a0 � 4pa of the fine structure constants of the physical
and bare charges, which has the physical meaning of the
Dyson Z3 factor (or the inverse permittivity of a vacuum),
lies between two geometric constants, aL < Z3 � a=a0 �
4pa < aB, that determine the shifts EL;B � aL;B �hc=2r of zero-
point oscillation energies of the electromagnetic field in cubic
and spherical cavities. In this paper, we have shown that,
regardless of the shape of the cavity, the coefficients aL;B are
proportional toZ3. This means that the remarkable closeness
of the coefficients aL;B to the finite value 4pa that we obtained
for the constant Z3 � a=a0 � 4pa is not accidental, but
follows from the fundamental equal-time commutation
relations for interacting operator fields. In particular, it is a
consequence of the K�all�en±Lehmann spectral representation
for the exact Green's function of the photon.

Indeed, the spectral distribution of the energy of zero-
point oscillations of the electromagnetic field in a vacuum is
well established. It is determined by the mean energy �1=2��ho
of zero-point oscillations with the frequency o (Planck) times
the number of quantum states of photons in a volume V with
the frequencies between o and o� do (Rayleigh and Jeans):

1

2
�ho

V4po2 do

�2pc�3 2 :

Introducing a form factor to cut off high frequencies, we
integrate the spectral distribution of zero-point oscillations
in a cavity with conducting walls and a volume V over
frequencies. Condition (4.2) on the conducting boundary
then leaves only those frequencies that are eigenfrequencies
of the cavity and have the corresponding multiplicities.
Letting the cutoff frequency tend to infinity and omitting
the terms that diverge with the cutoff frequency and relate to
the energy of zero-point oscillations of the field in the vacuum
volumeV, we obtain a finite shift of the zero-point oscillation
energy in the cavity, Eqn (7.11). For cubic and spherical
cavities, the constants aL;B coincide with an accuracy better
than 0.8% with the ratio a=a0 of the fine structure constants
of the physical and bare charges. This means that the ratio
a=a0 � Z3 is proportional to the observed energy shift of
zero-point oscillations of the electromagnetic field, at least in
cubic and spherical cavities.

The correctness of this fundamental result is confirmed
by the method of estimating the energy of mean squared
fluctuations of the electromagnetic field averaged over a
volume with `blurred boundaries,' by the spectral representa-
tion of the exactGreen's functions with its `sum rule,' and also
by asymptotic conditions (3.11) and (8.2) for in- and out-
fields.
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