
Abstract. Hierarchical networks of pulse-coupled chemical mi-
cro-oscillators (MOs) are considered. The Belousov±Zhabo-
tinsky oscillatory reaction in a microvolume serves as a single
MO. Biological principles of neural networks and the laws of
nonlinear dynamics are used to operate the considered networks,
which we call a `chemical brain.' It has been shown that this
`chemical brain' is capable of adaptive behavior and decision-
making.

Keywords: networks of spike micro-oscillators, Belousov±
Zhabotinsky reaction, decision-making, `chemical brain'

Abbreviations used:
AOTÐreverse (inverted) aerosol OT-microemulsion, OT
stands for a trademark;
BZÐBelousov±Zhabotinsky reaction;
BZC solutionÐcatalyst-free BZ solution
AIÐartificial intelligence;
MAÐmalonic acid;
MOÐmicrooscillator;
CFURÐcontinuously fed unstirred reactor;
CSTRÐcontinuous stirred tank reactor;
FKNÐField±K�ores±Noyes mechanism;
FISÐ ferrocyanide±iodate±sulfite reaction system;
CIMAÐchlorite±iodide±malonic acid reaction system;

APÐantiphase mode, out-of-phase oscillations;
AIPÐalmost in-phase oscillations of two oscillators;
CPGÐcentral pattern generator, central rhythm generator;
DMÐdecision-making block;
EÐexecuter;
FAPÐfast antiphase oscillation;
IPÐ in-phase oscillation;
IPAPÐ in-phase antiphase, amode that occurs in a system of
four coupled oscillators;
OSIÐa mode in which one oscillator is suppressed (SÐ
suppressed) and is in a stationary oxidized state while the
second oscillator is in an oscillatory regime (OÐoscillatory);
OSIIÐa mode in which one oscillator is suppressed (SÐ
suppressed) and is in a stationary excited state while the
second oscillator is in an oscillatory regime;
PRCÐphase response curve;
RÐreader;
WÐwalk;
WRÐwalk reverse

1. Introduction

Some researchers believe that humankind is approaching the
end of the era of `silicon computers'; therefore, alternative
computing systems will soon be needed, such as networks of
coupled oscillators that provide the natural environment for
parallel processing of information and may compete, in the
future, with habitual von Neumann computers both in speed
and energy efficiency [1, 2].

Networks of coupled oscillators have received increasing
attention in recent years. They are studied and exploited by
specialists engaged in different fields of research and science,
viz. physicists, neurophysiologists, nonlinear chemists (as
chemists concerned with nonlinear dynamics of chemical
reactions are usually called), biophysicists, mathematicians
(including those involved in discrete mathematics problem
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solving), and experts in artificial intelligence, as well as
amateurs interested in the latest scientific achievements. This
list of specialists, even though incomplete, reflects the
interdisciplinary nature of the topic of `networks of coupled
oscillators' and suggests a differential approach to its
handling in relation to the goals and objectives of the work.
As a biophysicist who has long dwelt on nonlinear (oscilla-
tory) chemical reactions and has eventually become a non-
linear chemist, I find it important to briefly describe the
evolutionary development of nonlinear chemistry that has led
many to study networks of coupled oscillators.

The starting point is the discovery of the Belousov±
Zhabotinsky (BZ) oscillating chemical reaction [3, 4]. It was
this discovery andPrigogine's theory [5, 6] that gave rise to the
boom in nonlinear chemistry [7±13]. Five Soviet scientists,
G R Ivanitsky, V I Krinsky, A N Zaikin, A M Zhabotinsky,
and BN Belousov, were awarded the Lenin Prize in 1980 ``for
the discovery of a new class of autowave processes and the
study of their role in disturbing stability of excitable
distributed systems.'' Autowave processes in this formula-
tion are understood as chemical waves in a spatially
distributed BZ reaction. Three years earlier (1977), I R Prigo-
gine received the Nobel Prize in chemistry ``for his contribu-
tions to nonequilibrium thermodynamics, particularly the
theory of dissipative structures.''

These events gave an impetus to the avalanche-like
increase in research activities concerning `point' chemical
oscillatory systems [7±10]. The word `point' (i.e., an entity of
zero dimensions like that of a point) refers to chemical
reactions occurring in a well-stirred chemical reactor system
continuously fed with fresh reagents. Dozens of new
oscillatory reactions were discovered; in fact, the total
number reaches hundreds if various modifications of these
reactions are taken into account. Their main types, apart
from the BZ reaction, include the CHIM (chlorite±iodide±
malonic acid) reaction [14], pH oscillators [15, 16], and a
particular case of pH oscillators referred to as the ferrocya-
nide±iodate±sulfite (FIS) reaction [17±19] and held to be of
importance due to the formation of dissipative spatial
structures in special two-dimensional reactors where this
reaction proceeds.

In the course of this work, the basic rules and patterns
were discovered that underlie the generation of oscillatory
modes in chemical reactions, the transition from the bista-
bility mode to the oscillatory one [20], the presence of positive
and negative feedback, as well as the time delay between the
moments of maximum manifestation of these two types of
connections [21, 22]. Speaking mathematically, they are the
chemical-kinetic conditions for the appearance of the Andro-
nov±Hopf bifurcation that follow from the analysis of the
Jacobian eigenvalues of the linearized system [5]. In the case
of subcritical Hopf bifurcation, low-amplitude sinusoidal
(harmonic) oscillations appear, while supercritical Hopf
bifurcation gives rise to high-amplitude relaxation oscilla-
tions [23]. Relaxation oscillations are directly related to the
concept of `spike oscillators' on which we shall dwell in this
review. In neurophysiology, a spike is understood as the rapid
excitation of a neuron and the passage of the action potential
along the axon. The explosive excitation of the oscillator in
the case of relaxation oscillations resembles the appearance of
a spike. Unlike harmonic oscillations, each period of
relaxation oscillations can be divided into two distinct
stages: fast and slow changes in the state of the system. The
stage of fast and short-term changes with a pronounced peak

(the maximum change in the state of the system) is called a
spike.

Following the early stage of the study of point oscillating
systems, nonlinear chemistry entered the stage of research on
`dissipative structures.' It cannot be definitely asserted that the
initial stage of investigation into point oscillatory systems was
directly followed by the next stage of studying dissipative
structures in spatially distributed systems. Indeed, these stages
are superimposed at the time scale; nevertheless, they are
readily distinguishable in the historical process of the
development of nonlinear chemistry. The stage of studying
`dissipative structures' began with the invention of continu-
ously fed unstirred reactors (CFURs) [24] and the experi-
mental discovery of Turing structures [25, 26]. Almost 40 years
passed since the prediction of stationary dissipative structures
by Alan Turing [27] and their observation in experiment.

The invention of CFURs raised the level of research on
chemicalwaves carried out since their discoverybyANZaikin
and A M Zhabotinsky [28]. Earlier, they were regarded as
waves in a closed system and therefore unstable in time.
CFURs made it possible to maintain these structures for an
arbitrarily long time. This led to a whole series of discoveries
of new subtler wave phenomena, such as superspirals [29] and
long-wavelength instability [30, 31]. In the early 2000s, new
dissipative structures were found in the so-called BZ-AOT
system in which the BZ reaction proceeds not in an aqueous
solution but in a reverse (inverted) aerosol microemulsion
(AOT) [32]. Such structures include antiwaves [33], packet
waves [34], segment waves [35], oscillon [36], and new types of
Turing structures [37±39].

However, by the end of the first decade of the 2000s,
nonlinear chemists' interest began to switch to the study of
large and small ensembles of coupled oscillators. Of course,
coupled oscillators attracted the attention of researchers
much earlier than that, but the appearance of chemical
microoscillators about 10 years ago made possible experi-
mental studies of ensembles of coupled MOs [40, 41]. There
are a small number of scientific groups in the world that are
able to carry out such experiments. First of all, there is the
group of Professor Showalter from the University of West
Virginia (USA) [42±45] and the group of Professor Taylor
from the University of Sheffield (UK) [46±48], two groups
from Brandeis University (USA) (one headed by Professor
Epstein [40, 41, 49, 50] and the other by Professor Fraden [51,
52]), the group of Professor Gorecki in Warsaw (Institute of
Physical Chemistry, Polish Academy of Sciences) closely
collaborating with the group of Professor Adamatzky from
the University of the West of England, Bristol [53±55], the
group of professor Rossi in Italy (Universit�a degli Studi di
Siena) [56, 57], the group of professor Yoshikawa (Japan)
[58±60], and our group from Immanuel Kant Baltic Federal
University (Russia) [61±63].

A large number of chemical MOs is not yet a network of
oscillators. They need to be connected by short-range (i.e.
diffusive) or long-range (i.e., impulsive) forces. In the second
decade of the 2000s, a method for pulse coupling with a time
delay between two chemical oscillators [64, 65] and an optical
method for establishing a pulse coupling between BZ MOs
with the immobilized photosensitive catalyst Ru�bpy�2�3 [66]
were proposed. These techniques made it possible to start
experimental investigations into networks of pulse-coupled
chemical MOs.

The path of mathematicians and theoretical physicists to
knowledge of networks of coupled oscillators was much
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shorter, because many of them passed the stage of dissipative
spatially distributed structures and immediately switched
from point oscillators to their ensembles [67±71]. The birth
of the theory of neural networks is assumed to date to 1959
[72], i.e., it preceded the discovery of oscillations in the BZ
reaction, but occurred later than the famouswork ofHodgkin
and Huxley on the propagation of an electrical signal along
the axon [73]. With the increase in the counting speed of
computers, it became possible to solve dynamic problems
involving hundreds and thousands of coupled oscillators;
also, this promoted the extension of research on network
problems. Finally (if not primarily), the mysteries of the
functioning of the brain, which consists of a huge number of
coupled oscillators and excitable cells (neurons), support the
continued interest of the scientific community in the problems
associated with networks of active elements.

This review is designed to present relatively new net-
works of spike oscillators in which a single oscillator is a
chemical oscillatory reaction occurring in a microvolume. In
contrast to previous work in which the dynamic regimes of
MO networks were studied, we wish to show that new
hierarchical networks are also capable of performing some
`intelligent' operations related to adaptation to external
signals and decision-making. Networks of chemical MOs
can operate without electricity using `chemical fuel' alone.
The review is divided into several sections. In Section 2, we
consider ways to classify various networks of oscillators and
active elements. Section 3 is focused on neural networks and
discusses the possibility of using the principles of their
operation to create artificial networks of chemical MOs.
Section 4 describes MOs based on the Belousov±Zhabo-
tinsky (BZ) reaction. Section 5 is intended to describe pulse
coupling with time delay and a detailed analysis of its
characteristics. Dynamic modes of BZ MOs coupled by
diffusion or impulsive forces are considered in Section 6.
Small networks of spike oscillators, clustering, multi-
rhythms, and the formation of functional hierarchy are
dealt with in Section 7. Section 8 is devoted to the principles
of operation of the `chemical brain.' In Section 9, we discuss
the operation of the central decision-making block which
endows the networks of coupled oscillators with `intelli-
gence.' The review ends with a short conclusion and the
assessment of further prospects for research (Section 10).

2. Classification of networks

Networks of coupled oscillators can be classified according
to several criteria, for example, by the type of differential
equations describing the dynamics of a single oscillator: a
network can consist of the simplest phase oscillators [70, 74]
or complete models of real (chemical or neurophysiological)
oscillators [75]. Also, classification can be based on the
network topology, e.g., links of oscillators with each other,
links only with the nearest neighbors, or links like those in
the small-world model [76]. Finally, it can take into account
the architectural complexity inherent in hierarchical net-
works [62, 77] or be focused on the type of connections
between network nodes (i.e., oscillators). These can be either
local diffusive connections, as between chemical MOs [40],
or long-range pulse coupling similar to connections between
neurons through axons and dendrites [64]. In a real neural
network, local diffusion connections correspond to electrical
synapses (contacts) between neighboring cells. Neurophy-
siologists note that both types of connections, impulsive (i.e.,

chemical synapses) and diffusive (electrical synapses) cou-
pling, are important for the functioning of the nervous
system, even in primitive invertebrates [78, 79]. The
coupling can be either inhibitory (i.e., suppressive) or
excitatory (via an activator) [64, 80], with or without time
delay [81], unidirectional or mutual, constant or adjustable
(i.e., changing over time) [82]. Only pulse coupling can be
unidirectional, whereas diffusive coupling is obviously
bidirectional (i.e., reciprocal). The literature on artificial
neural networks also distinguishes between recurrent net-
works and so-called `feedforward' networks [83]. There are
no feedback loops in networks of the latter type, although all
their elements are interconnected and information is trans-
mitted only in one direction, from inputs to outputs. The
classical perceptron belongs to this class of networks [84, 85].
Such classification of networks may not give an answer to
the question about the dependence of dynamic modes of a
network on its architecture, but there is still no deeper
classification providing a prediction of dynamic modes
based on topology.

3. Neural networks

There is a very extensive literature on networks of coupled
oscillators and excitable elements (see, for example, the
review co-authored by the well-known Professor Ermentrout
[86]). However, little progress has thus far been made in
understanding how the brain works [87]. Well-known
neurophysiologists insist on the necessity of combining
empirical and theoretical approaches [87±89]. Such an
appeal sounds a bit strange to physicists who believe such an
approach to be the only way to address a problem.Hopes that
the identification of all connections between brain neurons
(`connectome' [90±92]) would make it possible to understand
how the brain works have gone. Even determination of the
structure of all interneuronal connections in the simplest
nervous system of the nematode Caenorhabditis elegans
composed of 302 neurons [93] did not provide a complete
understanding of how this neural network operates, although
some interesting local connections (so-called `motives') were
identified [94, 95].

It became clear that the structure of neural networks can
not be properly understood until their dynamics, ability, in
principle, to change the structure is elucidated. In neu-
roscience, new terms, such as `dynome' [96] and `chronnec-
tome' [97], were coined to describe the relationship between
the network structure and dynamics. It became clear that the
functional connectome is not identical to the anatomical
connectome. The manifestation of one dynamic mode or
another in the anatomical connectome depends on neuromo-
dulators [78] released together with neurotransmitters near
synapses. Unlike neurotransmitters, neuromodulators can
diffuse over long distances. In addition, they can be liberated
from specialized neuroendocrine cells lacking synaptic con-
tacts. They can be transported around the body like
hormones. The time of their action can be both relatively
short (seconds or minutes) and long (hours) [98]. In other
words, an anatomical connectome is a set of potential
configurations of connections between neurons (or neural
networks), whereas the real functional configuration depends
on neuromodulators. Moreover, neuromodulators can qual-
itatively change the properties of neurons by transferring
them, for example, from the tonic spike mode to the excitable
stationary regime [98].
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The term `chronnectome' implies that the neural network
of the brain changes in time, with alterations in both the
activity of individual neurons and their connectivity (func-
tional connectivity). A relatively new research subject has
emerged, defined as `adaptive dynamic networks' [82], i.e.,
those networks whose topology (connectivity) is rebuilt over
time. Naturally, a question arises about the laws of such
restructuring. In real neural networks, neuromodulators (and
not them alone) are responsible for the restructuring,
whereas, in `mathematical' networks assembled from phase
oscillators, the restructuring of connections is described
mathematically [99±101] as a function of the strength of the
connection between the network nodes of the current phases
of these oscillators. In such models, it remains unclear how
the mathematical rules for the restructuring of connections
correlate with molecular processes in real networks.

Understanding the important role of plasticity (or
adaptability) of neural networks promoted the understand-
ing of the inevitability of self-structuring in neural networks.
Ideas arose about the brain as a multiscale network system
[88], about hub neurons that connect different functional
areas of the brain [102], and about the hierarchy of neural
networks [103]. One of the options for hierarchy is themodern
theory of multilayer neural networks [104]. The mathematical
apparatus for describing and analyzing the dynamics of
networks of coupled oscillators, including oscillatory neural
networks, is presented by Professor Ashwin in Ref. [105].

Finally, it is worth noting that neural networks are
essentially the networks of spike oscillators with chemical
synapses (given that electrical synapses are disregarded).
Therefore, the long-standing interest in networks of spike
oscillators [106] has recently grown even more than ever
before [107±109]. Sometimes, spike neural networks are
referred to as the third generation of artificial neural net-
works [108]. Note also that scientists engaged in cognitive
research are calling for a greater integration between
neuroscience and artificial intelligence (AI) [104]. One of the
incentives for this is the fact that modern AI devices consume
quite a lot of power, while spike oscillator networks are much
more energy efficient. For example, Microsoft has developed
the True-North chip, which operates based on the same
principles as networks of spike neurons [110]. It consumes
about 70 mW to perform 46 billion `synaptic operations per
second per watt.' Such power consumption is roughly four
orders of magnitude lower than that of a conventional
computer.

Because it is rather difficult to work with networks of
oscillators described by complete models of real processes,
researchers have to use a technique for reducing such systems
to networks of phase oscillators. Recently, two excellent
reviews have appeared in which reduction methods are
described in full and systematically [111, 112]. For complete-
ness of the description of neural networks, it is necessary to
mention about such phenomenon as a chimera. This word
denotes such a dynamic mode of the network in which some
oscillators oscillate in phase while others exhibit asynchro-
nous (chaotic) behavior. A recent review,Ref. [113], allowsme
to drop a description of this important behavior of neural
networks.

Numerous studies on spike neural networks bring dis-
parate information. Putting the pieces of the puzzle together
into one big picture is not yet possible. To exemplify such a
piece of information, suffice it to cite only one study [114]
showing that strong inhibitory connections contribute to the

maintenance of working memory. What to do next with this
and similar information is a problem facing the researcher.
Hopefully, working with small neural networks will allow us
to come closer to understanding how the brain operates.

Finally, it should be mentioned that artificial spike neural
networks are widely used in AI devices [115±121]. However,
since we are describing the `chemical brain' that works
without electricity and without mathematical formulas,
artificial intelligence schemes are not considered in the
present review.

4. Microoscillators based
on the Belousov±Zhabotinsky reaction

The BZ reaction has been studied perfectly well [9, 10]. It
involves oxidation of malonic acid (although other substrates
can be used) with bromate in an acidic medium, the process
being catalyzed by metal ions or their complexes. The most
commonly used catalysts are suchmetal complexes as ferroin,
Fe�phen�2�3 , or Ru�bpy�2�3 . In a certain (very wide) range of
concentrations of the initial reagents, this reaction proceeds in
an oscillatory mode with fast autocatalytic oxidation of the
catalyst, followed by its relatively slow reduction, after which
the process is repeated.

The universally recognized mechanism of the BZ reaction
is the Field±K�ores±Noyes (FKN) mechanism [122] that
includes 12 `elementary' reactions (see also [63]). When
Ru�bpy�2�3 is used as the catalyst, the BZ reaction becomes
photosensitive [123]. Depending on bromate (BrOÿ3 ) and
malonic acid (MA) concentrations, light either inhibits
oscillations (at high MA and low bromate levels) [124] or
activates the autocatalysis and accelerates oscillations (at low
MA and high bromate levels) [125].

The most important intermediates of the BZ reaction are
bromide (Brÿ) inhibiting oscillations and HBrO2 activating
them. In addition to Brÿ, molecular bromine (Br2) also
inhibits oscillations; it is present in approximate equilibrium
with bromine due to fast reactions in which Br2 is converted
into Brÿ and vice versa. Recall that autocatalysis in the BZ
reaction begins when the concentration of inhibitor Brÿ falls
below the critical threshold level [122, 126].

To complete the picture, it should be noted that the BZ
reaction can exhibit birhythmicity [127] and chaotic oscilla-
tions [128±130], as well as stationary dissipative Turing
structures [38], antiwaves [33], packet waves [34], and many
other dissipative structures andwaves [32, 126]. The dynamics
of an oscillatory BZ reaction can resemble those of a neuron
with its spikes, the only difference being the period of
oscillations of the BZ reaction lies in the minute range, while
neuron oscillations occur with a much higher frequency.

In the last decade, BZ MOs have gained interest in
nonlinear chemistry (see Ref. [63]). Their use made possible
experiments with a relatively large number of coupled
chemical oscillators [41, 48, 49, 131±135].

As a rule, the diameter of such MOs varies from several
ten to several hundred micrometers. On the average, a
microoscillator can be represented as a microdroplet or a
microsphere about 100 mm in diameter. BZ microspheres can
be made (synthesized) from organic polymers, e.g., from an
ion-exchange resin [134] or silica gel (an inorganic polymer)
[136] with a catalyst for the BZ reaction immobilized in these
microspheres. If such a BZ microsphere is immersed in a
catalyst-free BZ solution (BZC solution), then the micro-
spheres begin to oscillate as localizedMOs. Because the initial
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reagents of the BZ reaction (bromate and malonic acid)
continuously diffuse from BZC into BZ microspheres, the
oscillations persist for tens of hours without noticeable signs
of amplitude alteration [136]. Such a BZ MO is suitable for
creating networks of oscillators with stable modes.

BZmicrodroplets are usually obtained by themicrofluidic
technique [40, 41, 137], because mixing the aqueous phase
with an immiscible liquid (oil) results in microdroplet
formation in a microhydrodynamic chip. The use of a BZ
solution instead of pure water for mixing with oil yields BZ
microdroplets in a continuous oil phase. The size of BZ
droplets, like that of BZ microspheres, can be varied in a
range from several ten to hundreds of micrometers.

5. Pulse coupling

Along with the methods for creating MOs, a pulsed coupling
technique with a time delay was experimentally developed
and implemented [64, 65, 138±143]. As applied to two
relaxation BZ oscillators with indices i and j, the pulse
coupling with a delay looks like that shown in Fig. 1. If
spike S occurs in oscillator i, it activates, after a time delay t, a
mechanism of pulse impact on oscillator j. In the case of
macrooscillators (macroreactors), this impact may have the
form of a short-term injection of a small portion of a certain
substance (activator or inhibitor) into reactor j. As far as
microreactors are concerned, the impact can be targeted
pulsed photoirradiation of a concrete MO (with number j
in the case of interest). The effect of such a coupling with a
time delay is not described by delay differential equations
[144, 145] in which the state of the system at any time t affects
the same or another system at time t� t. In the case of
synaptic connections between neurons and in the case of the
pulse coupling under consideration, only one (excited) state
of the system (spike) at a given instant t0 affects other neurons
(oscillators) at time t0 � t. In neural networks, the time delay
t is mainly determined by the time of passage of the action
potential along axons.

If the coupling is an inhibitory type, the pulse that
arrives at oscillator j `postpones' the appearance of the
next spike in this oscillator. In contrast, if the incoming
pulse is an activator, it accelerates the onset of the spike in
the j-oscillator. This coupling is sometimes called exciting.
There is a very simple and effective way to characterize a
pulse action with time delay by using phase response curves
(PRCs) [147, 148].

Let the oscillator phasef grow linearly with time and vary
from 0 to 1, where unity corresponds to the total (from spike
to spike) period T. On reaching 1, the phase is reset to zero.
Let us express the moment of pulse perturbation in units of
phasef of the limit cycle asfp � t=T, where time t is counted
from the instant of the previous spike to the moment of pulse
perturbation. Then, the dependence of the phase shift
Df � �Tn ÿ T �=T on fp is the PRC, where Tn is the time
interval from the previous to the next spike provided that a
single pulse perturbation of the oscillator occurs during this
time, with the amplitude and pulse duration remaining
unaltered with a change in phase fp. Typical dependences of
Df on f (the subscript `p' is omitted) for inhibitory and
activatory (excitatory) pulse impacts on the BZ reaction are
presented in Fig. 2 [149, 150].

The convenience of PRC lies in the possibility of
describing a dynamic system (network) with pulse couplings
between oscillators by a sequence of discrete events. Various

aspects related to the stability of such a system, the slope of
the PRC, and the sign of the second derivative of the PRC are
described in Ref. [107].

6. Coupled BZ microoscillators

Let us consider the difference between diffusive coupling and
pulse coupling using the example of two BZMOs. Note that,
for macrooscillators, diffusive coupling in its pure form is
difficult to substantiate, and experimenters use mass transfer
[151] instead, the effect of which differs markedly from
diffusive coupling.

The excitatory or predominantly excitatory diffusive
coupling is exemplified by the behavior of two BZ micro-
spheres with an immobilized catalyst that are placed in an
aqueous BZC solution (i.e., a BZ solution without a catalyst)
[136]. At a large distance, their phases and frequencies are not
synchronized (Fig. 3a). As BZ MOs approach one another
(Fig. 3b, c), an excitatory coupling forms between them,
which equalizes oscillation frequencies of the MOs and
eventually leads to in-phase oscillations.

The inhibitory diffusive coupling is illustrated via an
example of the behavior of two silica gel BZ microspheres
preliminarily saturated with reagents of the BZ reaction and
thereafter placed in the oil phase in which only hydrophobic
molecules of the Br2 inhibitor can diffuse [136]. Figure 4
shows that BZ MOs initially located at a large distance from
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each other are not synchronized and oscillate with slightly
different periods and phase shifts (Fig. 4a). However, an
inhibitory coupling begins to form between them as they
approach one another (Fig. 4b), which lengthens (almost
twofold) and equalizes MO periods and ultimately leads to
antiphase oscillations. Thus, the excitatory diffusive coupling
gives rise to in-phase oscillations, while the inhibitory
diffusive coupling generates out-of-phase oscillations.

A totally different behavior is observed for pulse coupling
[64, 152]. First, the dynamic regime depends on two
parameters: time delay t and pulse amplitude Ap at a
constant pulse duration Dtp (see Fig. 1). Figure 5 shows

regions of different dynamic modes for inhibitory (Fig. 5a)
and excitatory (Fig. 5b) couplings on the Ap ÿ t plane. These
diagrams were obtained for the theoretical model in [152], but
qualitatively similar diagrams are possible to obtain in
experiment [64]. Pulse amplitudes Ap for the inhibitory and
excitatory couplings are designatedCinh andCex, respectively.

It follows fromFig. 5a that there is no region of exclusively
antiphase oscillations for the inhibitory pulse coupling.
Instead, there is a birhythmic region for relatively small Cinh

or t (lower-left corner of the diagram inwhich either theAP or
IP mode can appear, depending on the initial conditions, i.e.,
the oscillator phase ratio). But themost surprising thing is that
only in-phase (IP) oscillations exist for relatively large Cinh or
t (upper-right corner of the diagram). In the region of
excessively large pulse amplitude, one of the oscillators may
be completely suppressed (OSI region).

Figure 5b demonstrates no less interesting dynamic
modes. First, there are no ideal in-phase oscillations in any
region on the Cexÿt plane as in the case of an excitatory
diffusive coupling. At relatively small Cex and t (t is small
with respect to the period of natural oscillations T0, which
corresponds to the lower left corner of the diagram), so-called
almost in-phase oscillations (AIPs) are observed with the time
shift between closely spaced oscillator spikes roughly equal to
time delay t and oscillation period T approximately equal to
T0. As t or Cex increase, a sudden transition from the AIP
mode to the new fast antiphase mode (FAP) occurs). After
time delay t, a pulse from one oscillator instantly causes a
spike in the other oscillator and vice versa. Thus, the
oscillation period is T � 2t. At very large Cex, an OSII mode
is formed in which one oscillator is in a stationary excited
state and the other continues to oscillate as an independent
oscillator with period T0. There is a narrow area B between
the regions of the OSII and FAP modes where bursting
oscillations occur, which looks like trains of high-frequency
spikes separated by periods of rest.

Thus, pulse coupling is not only an energetically advanta-
geous way of `communication' between oscillators but also a
way to obtain new dynamic regimes that are absent in the case
of diffusive coupling.

7. Small networks of spike oscillators

Let us now consider small networks of spike oscillators
consisting of only a few nodes (oscillators or excitable cells).

a

b

c

140 s 350 mm

Figure 3. In-phase synchronization emerges as two BZMOs connected via

excitatory diffusive coupling approach each other. Silica gel microspheres

were used. On space-time graphs, timemoves from right to left, and optical

transmission was recorded through a microscope in the central regions of

the microspheres.

a

b

180 s 280 mm

Figure 4. Antiphase synchronization emerges as two silica gel BZ MOs

connected by inhibitory diffusive coupling approach each other. On space-

time graphs, time moves from right to left, and optical transmission was

recorded through a microscope in the central regions of the microspheres.
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Figure 5.Diagrams of dynamic modes. (a) In plane Cinhÿt for inhibitory pulse coupling and (b) in plane Cexÿt for excitatory pulse coupling. Symbols:

IPÐ in-phase oscillations, APÐantiphase oscillations, OSI (OSII) mode implies that one oscillator is completely suppressed and is in a reduced

(oxidized) state, FAPÐ fast antiphase oscillations, AIPÐalmost in-phase oscillations, BÐbursting. Natural oscillation period T0 of an isolated

oscillator is 2150 s. Diagrams are constructed using data from Ref. [152].
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Because we do not aim to provide a comprehensive mathe-
matical description of such networks (as is fairly well done in
Refs [81,107]), suffice it to focus here on those properties of
these networks that can be used to create `intelligent'
autonomous devices. These properties include, first and
foremost, clustering/synchronization and multirhythmicity.
A large number of papers and even special issues of the
journal Chaos [153, 154] have been devoted to these phenom-
ena. In this context, clusters are groups of oscillators that
oscillate synchronously. Networks of almost identical oscilla-
tors can have quite a few clusters. It is possible to count the
number (n) of different states of a network of N almost
identical coupled oscillators. For N � 2, there are two stable
symmetric states: in-phase and antiphase oscillations (see
Fig. 5). Two oscillators in an in-phase state form a cluster. If
N � 3, three states can be counted, viz. the in-phase mode,
with all oscillators oscillating synchronously, the Splaymode,
when the oscillators spike alternately with the time interval
T=n (where T is the common period), and the `2� 1' mode,
when two oscillators oscillate synchronously while the third
one is in antiphase to them. If account is taken of concrete
synchronously oscillating oscillators (i.e., of permutations),
the number of type `2� 1' states goes to three, and the total
number of states n amounts to 5. For N � 10, taking into
consideration permutations and combinations increases the
number of states from n � 40 to n � 487;311 (by more than
4 orders of magnitude).

Accounting for states that differ from one another only in
permutations (replacements) of the oscillators included in
them is extremely important for the theory of heteroclinic
transitions [155±159]. The group of Professor Timme, jointly
with Professor Rabinovich's, also actively developed the
theory of heteroclinic transitions in relation to the function-
ing of the brain and, accordingly, attached great importance
to the permutations (replacements) of elements within
clusters [160±162].

The dependence of the number of states n on the number
of elements (nodes) of the network N is shown in Fig. 6 for
two cases: with and without permutations (replacements).

If the permutations are disregarded, the number of states
n (for small N, e.g., N < 8) grows exponentially as
n � 0:44� 20:63N (the dependence indicated by diamonds in
Fig. 6). But at N > 10, the growth of n slows down and
becomes linear (with a slope of 14.5). If the number of
different states needs to be increased, it makes sense to
break large networks into smaller ones, for example, for the
number of states n � 69 and 11 forN � 12 and 6, respectively.
Therefore, for a combination of two small networks with
N � 6, the total number of modes, i.e., states, may be as large
as 112 � 121 or much more than n � 69.

Taking into account permutations leads to a multiple rise
in the number of different states, and n begins to grow
approximately as 22:5N (the dependence indicated by red
circles in Fig. 6). Note that the number of states n in a group
of unconnected cells, each capable of taking only two states
(e.g., 0 and 1), grows as 2N, in contrast to the slower growth of
the number of states n (as 20:63N) if permutations are
disregarded. However, taking the permutations into con-
sideration results in the growth of n approximately as 22:5N,
i.e., much faster than that of the number of states in a group of
uncoupled cells.

An example of symmetric regular dynamic modes for four
oscillators coupled via inhibitory pulse coupling with a delay
is presented in Fig. 7. The words `symmetric regular' mean

that each oscillator generates only one spike (regular
oscillations) during one full period and that all oscillators
have similar dynamics (symmetric oscillations).

There are other stable modes in addition to symmetric
regular ones. Some of them are shown in Fig. 8. As a rule,
such asymmetric modes appear when the pulse coupling is
sufficiently strong [75].

When a network of oscillators has a large number of
dynamic modes, the phenomenon of multistability often
takes place, i.e., the coexistence of various stable states
(modes or attractors) with the same set of system para-
meters. The implementation of one mode or another depends
in this case only on the initial conditions [154]. Our
calculations and experiments with small networks of pulse-
coupled BZ oscillators show that multistability as a rule
increases with increasing coupling strength [75, 141, 164].

Small networks consisting of only two or three quasi-
identical pulse-coupled oscillators can have dozens of
different modes and exhibit a high degree of multirhythmi-
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Figure 6. (Color online.) Dependence of the number of states (n) on the

number of almost identical coupled oscillators (N ). Blue diamonds mark

the number of states without regard for permutations and combinations

(left vertical axis), while red circles (which refer to the right logarithmic

scale) denote the number of states n taking into account permutations and
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city if the amplitudes and delays of pulse signals are properly
selected [165]. Thus, they are called `cognitive modes,' which
are highly sensitive to external impacts and at the same time
resistant to small perturbations/noises.

A large number (tens) of different modes were identified
theoretically when considering both one and two identical BZ
MOs enclosed in a small capsule with impenetrable walls
[166]. Such BZMOs proved to be diffusively coupled. It turns
out that the dynamic behavior of a pair of BZ MO inside the
capsule strongly depends on the distance between MOs and
even on the position of the pair in the capsule. Complex
oscillations with alternating large and small peaks, various
types of chaotic oscillations, and a stationary regime
(suppressed oscillations) were detected, while an isolated BZ
MO demonstrated ordinary regular oscillations.

Various dynamic modes, especially those associated with
the formation of clusters in oscillator networks, are of
importance, because different modes can serve as neural
network memory, e.g., associative memory. Indeed, any
stable dynamic mode is an attractor to which phase trajec-
tories belonging to the basin of this mode converge. In
complex networks, the attractor basins may have highly
intricate and difficult to accurately define boundaries [167].
However, it is qualitatively understandable that small distor-
tions of the input signal that do not leave the basin of a given
mode will eventually lead to the same most stable mode.

Multirhythmicity of the central pattern generator (CPG)
allows many animals to control the movements of their limbs
and contraction of the stomach wall by switching from one
mode to another [168±171]. A large number of studies have
been devoted to the methods of switching between modes (see
Refs [163, 172] and references therein). We have developed a
special small block of cells called a reader (R) to identify
concrete dynamical modes of CPGs [61, 163]. Knowing the
current CPG rhythm and the final (desired) mode allows us to
select pulses that `correctly' switch CPGs.

The well-known neurophysiologist Buzsaki argues that
a rationally organized neural network must have a special
reading system to read out information from another
special part of the neural network called the CPG or
receiving unit [173]. In other words, any information
entering the brain makes sense only when some of its other
subsystems (the reader) can read and understand it [173].
The reader, in turn, sends this information to the integrator
collecting information about external signals and the state
of its own neural network. Thus, we move on to hierarchical
networks containing various functional blocks that consist
of spike oscillators or excitable cells. At the same time, the
chemical nature of all microcells remains exactly the same:
it is the BZ reaction that can proceed in different regimes.

The operation of the reader in a generalized form is
illustrated by Fig. 9. There are several ways to customize
reader cells to various modes of the CPG block, e.g., the
regular modes shown in Fig. 7. It is possible to sum the
amplitudes of all pulses coming fromCPG cells to each reader
cell provided that these pulses arrive at the reader cells
immediately after the spikes of the CPG block oscillators,
which corresponds to zero delay. If all delays are equal, the
result will be the same. Another condition is equal amplitudes
of all pulses.

Next, one can configure the reader cells so that they have
different spike excitation thresholds. For BZ MOs with the
Ru�bpy�2�3 complex, different thresholds are achieved by
simply increasing the intensity of constant illumination of
the desired MO. The thresholds of cell nos 1, 2, and 3 can be
made such that they will fire only when four, three, and two
pulses, respectively, arrive at them simultaneously. The
remaining cells (if any) can be triggered by single pulses.
Obviously, the total maximum amplitudes will be different for
the IP mode, the `3� 1' cluster mode, and `2� 2' cluster
modes. Cell no. 1 and all other cells will respond to the IP
mode. Cell no. 1 will no longer respond to the `3� 1' mode,
whereas all other cells will produce spikes. Cell no. 1 and no. 2
will not respond to the `2� 2' and the `2� 1� 1' modes, but
all other cells of the reader will give spikes. Thus, it will be
impossible to distinguish between `2� 2' and `2� 1� 1'
modes, and even more so, between the AP (Fig. 7d) and
IPAP modes (Fig. 7c).

Reader cells can be tuned to the frequency of pulses
coming to them. This approach also has advantages and
disadvantages [163]. The question of how a neural network
encodes and decodes information is one of the central ones
in neuroscience [174]. A common method for encoding
information by a neural network is phase coding [108]. A
special case of the method being considered is information
encoding based on the synchronization of neuron spikes
[175]. In our case, the phase encoding method in which
pulses from different CPG oscillators arrive at the reader
cells synchronously also proved most sensitive to different
modes.
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Figure 8. Asymmetric modes detected in a system of four BZ spike

oscillators. (a) Oscillator nos 2 and 4 oscillate synchronously and produce

two spikes for a common period, oscillator nos 1 and 3 produce three

spikes for one common period and oscillate in antiphase. (b) Oscillator

nos 1 and 3 oscillate synchronously and give two spikes during one

common period, while oscillator nos 2 and 4 exhibit antiphase behavior

and give one spike per period [75].
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Cells of the R block are in a stationary excitable state and are waiting for
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The idea of the method under discussion is illustrated in
Fig. 10. Pulses from cell no. 1 and no. 2 of the CPG blockmust
reach definite cells of the reader at the same time, since all these
cells produce a spike only in response to two simultaneously
arriving pulses. In this case, we consider, for simplicity, the
CPG block in which all oscillators are connected in a circle by
unidirectional inhibitory pulse couplings.

This CPG block has four regular modes, viz. IP (in-
phase), WR (walk reverse), AP (antiphase), and W (walk),
shown in Fig. 10. Because the difference between phases of
oscillator no. 1 and no. 2 is different for all four modes, time
delays corresponding to the phase difference in different
modes must be introduced if simultaneous arrival of pulses
at cells 5±8 of the reader block is to be ensured. So, for the IP
mode and cell no. 5 tuned to it, the time delay is zero. For the
WR mode and cell no. 6 tuned to it, the time delay should be
equal to a quarter of the oscillation period of the WR mode.
For the AP andWmodes and the corresponding cells 7 and 8,
the time delay should be equal to half and 3=4 of the
oscillation periods of either mode, respectively.

8. Principles of operation of the `chemical brain'

Before demonstrating in practice how a hierarchical network
of pulse-coupled oscillators and excitable cells can mimic
intelligent behavior, let us briefly consider the principles or
properties that such a network borrows from dynamical
systems and biological neural networks. The following
properties of dynamic systems are currently of interest for
us: (a) oscillatory (limit cycle) and excitable states of a
dynamic system (BZ oscillator); (b) adjustable excitation
thresholds for cells in standby mode; (c) clustering of
ensembles of almost identical coupled oscillators, (d) multi-
stability or multirhythmicity, which is equivalent to the
presence of several stable attractors. (Note that multistabil-
ity is also inherent in neural networks, and there is an opinion
that time delays in neural networks contribute to the creation
ofmultistability [176]); (e) switching between stable attractors
under the action of short external pulses; (f) the presence of
attractors allows for some `inaccuracy' in both switching
between attractors and perceiving external information.

In our case, an external signal (i.e., information) activates
one of the possible attractors of the receiving device (antenna)
that is initially in a stationary standby mode. Our antenna
does not work like a camera and does not remember all the
details of the external signal. On the contrary, the external
signal is transformed in the antenna into one of the possible
attractors to which this signal is closest. The more attractors
the antenna contains, the more accurate the perception of the
external signal should be.

As far as biological principles underlying the organization
of neural networks are concerned, we use the following ones:

(a) network hierarchy; (b) compression of the original informa-
tion; (c) replacement of an original external signal by its image,
by analogy with the substitution of a word in our mind for real
objects and actions; (d) feedback; (e) unidirectional information
flow between some blocks achieved by using pulse couplings;
(f) energy saving through the use of spike oscillators; (g)mutual
inhibition of neurons (cells) thatmust notwork simultaneously.

Putting together all the blocks described above yields a
diagram of the `chemical brain.' In this case, this is a network
of pulse-coupled MOs simulating adaptability to external
signals [62 ,77]. The scheme is presented in Fig. 11.

The CPG block consists of four BZ MOs connected in a
circle via inhibitory pulse couplings. Such a CPG topology
allows it to have four stable regular modes (see Fig. 10). The
antenna block likewise consists of four BZ microcells in an
excitable state. They are also connected in a circle, but by
excitatory pulse couplings. Moreover, this block has the same
four stable regular modes that are shown in Fig. 10. The
numbers of modes in CPG and antenna blocks are purposely
made to coincide to avoid the problem of choosing which
antenna mode should be imitated in front of the CPG block.
Readers R and RA read the state of the current modes of the
CPG and antenna blocks, respectively. Only one cell is
activated in each reader.

For definiteness, consider the case when the AP mode
appeared in the antenna (such was the external signal Sp) and,
accordingly, only one cell, no. 7, was activated; the current
mode in the CPG block is the IP mode, and only one cell,
no. 13, tuned to the IP mode is active in the reader R. We
assume that our `chemical brain' behaves reasonably if the
current mode of the CPG block always corresponds to the
antenna mode, i.e., the internal state of the device for which
the CPG is responsible always adjusts to the external
conditions recorded by the antenna. In this concrete case,
our device must carry out the IP!AP switch.

The switching is done by the E block (executer) [61, 62],
which must be able to switch any of the four modes of the
CPG block to one of the other three modes at the request of
the antenna. All cells of block E are in standby mode and can
be activated by at least two simultaneously arriving pulses.
Each activated cell of the E block sends three pulses to CPG
cell nos 10±12 that implement switching between the given
modes. Accordingly, the sets of these pulses are different for
different transitions. To implement the considered IP!AP
transition, only one cell of block E (no. 17) must be activated
from active cell nos 7 and 13.
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Figure 10. Figure illustrates the phase method of reader cell work. See the

text for explanations. Numbers of CPG cells (left) are the same as in Fig. 9,

and the four reader R cells (right) are numbered from 5 to 8.
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Figure 11. (Color online.) Schematic diagram of `chemical brain.' Antenna

block includes excitable cell nos 1±4. Reader block for the antenna (RA)

consists of excitable cell nos 5±8 (only cell no. 7 is shown). CPG block

consists of oscillator nos 9±12. Reader for CPG (R) consists of excitable

cell nos 13±16. Excitable cell nos 17±30 form block E (executer). Inhibitory

pulses are indicated by segments or arcs with a small dot at the end,

excitatory pulses by sections with an arrow at the end. Sp denotes external

signals (pulses) that can arrive at any antenna cell [62].
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As soon as the IP!AP transition has occurred, another
cell, no. 14, responsible for recording the AP mode, is
activated in block R. Now, two active cells, no. 14 and no. 7,
activate another cell (no. 27) in block E. This cell (as well as
similar cell nos 28±30) is intended to bring the antenna back to
the stationary standby regime by sending inhibitory pulses to
the antenna cells. This completes the switching operation and
makes the device ready to receive new external signals.

At present, the scheme presented in Fig. 11 has already
been implemented experimentally [62], but cell to cell pulse
couplings are formed by means of irradiation of microcells
with focused beams of light coming from a computer-
controlled projector. Therefore, the overall size of the device
depends on the size of the microscope, computer, and
projector. However, one can do without these big tools if
pulse couplings between cells are created in exactly the same
way as in neurons, i.e., with the use of chemical waves
propagating through narrow channels as shown in Fig. 12.
This method provides all the modes in CPG and antenna
blocks found earlier for optical pulse coupling.

9. Decision-making

In order for the MO network under consideration to be more
like a `chemical brain,' it must be able not only to adapt to
external conditions according to a previously specified
program (see the scheme in Fig. 11) but also to make
independent decisions. A huge number of studies have been
devoted to the problem of decision-making by an artificially
created device. According to the Web of Science, there have
been more than 12,000 reviews published over the past three
years. Therefore, we refer here only to relatively recent
reviews that we find interesting, important, and most closely
related to our approach to the creation of a `smart' device
based on networks of coupled active elements [177±192].

Decision-making depends on many factors, such as the
current state (both physical and emotional) of a given system
or individual, information on previously acquired experience
(memory), ideas about the future, social connections, chance
factors, etc. The relatively small Drosophila brain (about

100,000 neurons) integrates in its central part information
from many (peripheral) regions to make a decision about the
direction of movement of this fly [181]. How decisions are
taken under the uncertainty of the surrounding world and
how Bayesian decision-making models work is discussed in
reviews [182, 188] and [187], respectively. References [179,
190] are focused on the importance of the value of informa-
tion for making decisions under conditions of external
uncertainty and a multiplicity of decisions. The influence of
emotions on decision-making and the role of rewards in the
process of learning and decision-making are considered in
reviews [185, 189], respectively; in the latter review, this
problem is discussed at the level of concrete neurons and
neural networks. Review [178] is devoted to the choice of the
sole correct solution from a large number of options; the
authors claim that they managed to single out six canonical
biologically plausible schemes of neurons (mini-networks)
universal for solving such problems.

How to use the latest achievements in research on artificial
neural networks to solve neuroscience problems is discussed
in review [183]. The relationship between artificial and
natural intelligence is discussed in Ref. [184] in the context
of solvingmultiscale problems with special reference to events
at small and large spatial and temporal scales.

Trying to rethink and simplify the huge amount of
information on decision-making mechanisms in relation to
the `chemical brain' concept being developed by our group,
we proposed the simplest scheme of such a `brain' (see
Fig. 13). Figure 13a suggests that all information about the
internal state of the `chemical brain' expressed by the modes
of the CPGblock and about external (input) signals expressed
by themodes of the antenna enters the decision-making block
(DM) indirectly through theR andRA readers. For simplicity
of the network under consideration, the CPG block has only
two states (two modes): in-phase and antiphase oscillations.
The antenna also has only two stable attractors (IP and AP).

The decision on whether the CPG block should match the
mode in the antenna is made by the DM block, shown as a
yellow square in Figs 13a and 13b. The decision is commu-
nicated to executing block E by cells 11±16, shown in Fig. 13b.
Suppose that the IP mode arises in the antenna (cell no. 7 is
active) and the AP mode exists in the CPG block (cell no. 4 is
active). For some reason, the DM block decides to accept an
external mode. Then, it activates the `Pro' cell (cell no. 11)
that will continue to maintain spike oscillations in itself by
virtue of self-activation. The two active (oscillating) cells,
no. 11 and no. 7, should activate cell 13 if pulses from these
cells arrive at cell no. 13 simultaneously. Then, two active
cells, nos 4 and 13, activate cell no. 9, which switches the CPG
block from the AP mode to the IP mode. A similar way of
reasoning holds for the remaining three combinations of AP
and IP modes in CPG and antenna blocks.

The structure of DM blocks can be rather complicated. In
the simplest case, a DM block retrieves information about
previous switches from memory to make a decision or simply
makes random decisions. Also, decisions can be made by
comparing information originating from two or more
antennas, i.e., different sources, that differently respond to
an external signal, thus giving food for analysis to the decision
block.We believe that DMblocks should be designedmaking
use of the extensive information contained in the reviews
[177±192] cited above jointly with a consulting neurophysiol-
ogist able to evaluate the biological essence of one scheme or
another.

Figure 12. (Color online.) Four microoscillators (depicted as small squares

in the corners of a large square structure) are connected by microchannels

of a special shape to ensure the unidirectionality of chemical waves

propagating through the channels. Area with the maximum concentra-

tion of the catalyst in the left channel along which the wave runs is marked

in red.
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To conclude this section, let us explain why information
about external and internal processes comes to the DM unit
from readers but not directly from the antenna and CPG
blocks. The fact is that active cells of the readers play the role
of names of a concrete mode. Indeed, they introduce a
symbolic language that can be used even when the main
blocks, i.e., the antenna and the CPG, are turned off (sleep).
Imagine that exciting pulses are sent from DM or any other
blocks to readers R orRA, as shown in Fig. 14. This can revive
such blocks and enable them to replace real signals. As a
result, the entire system sorts out possible consequences of
making a decision; hence, a chance to foresee the future.

10. Conclusion

A A Zhdanov writes in his book Autonomous Artificial
Intelligence that asomatous artificial intelligence is funda-
mentally different from the real intelligence of a living
organism [193]. In this review, we have described basic
principles of the `chemical brain' partly borrowed from living
organisms that have a nervous system. It makes our approach
to the creation of the `chemical brain' somewhat similar to
that of A A Zhdanov, although he does not postulate any
chemical MO. The difference between our `chemical brain'
and all other forms ofAI is that it does not need electricity and
can work using chemical fuel alone.

In addition, our `chemical brain' is a dynamical system (a
network of coupled oscillators and excitable cells) and
therefore, unlike other AIs, makes extensive use of nonlinear

dynamics principles. We use dynamic modes of networks and
subnetworks of coupled oscillators for remembering informa-
tion, for the symbolic language used in information exchange
between various dynamic blocks of the `chemical brain,' for
the self-determination of its state by the system, and for
decision-making. But there is still plenty to use. Hopefully,
the `chemical brain' will be made more perfect with further
progress in AI as regards pattern recognition. The first
successful steps toward the creation of a `chemical brain'
capable of adapting to external signals [62, 77] open up
prospects for fruitful research and developments along this
new path.
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