
Abstract. The solution of Maxwell's equations for a plane
electromagnetic wave and a Gaussian beam propagating in a
Pendry lens has been obtained. The mathematical form of the
solution explains details of image formation in such a structure.
It is shown that not only the plane wave but also the Gaussian
beam in this case is characterized by the absence of diffraction,
so the Gaussian beam does not expand when propagated in a
multilayer Pendry lens of any size.

Keywords: Maxwell's equations, metal±dielectric piecewise homo-
geneous medium, Pendry lens, Gaussian beam diffraction

1. Introduction

A classical optical element or a system cannot produce an
exact image of an object: the angular distance between the
points of the object (measured from the position of the image),
distinguishable in the image, is bounded. The criterion
limiting the ability to distinguish between two points in the
image is named after Rayleigh and is also referred to as the
diffraction limit. The limit is due to light wave diffraction. A
wave bounded in space is subject to diffraction. It is no longer
a plane wave, but a wave beam, which may include com-
ponents with imaginary wave numbers that correspond to
evanescent waves. Such waves decay fast in space and do not
reach the image plane. This is why the image is not precise: it
lacks the contribution from the decaying waves. According to
the Rayleigh criterion, object details that are smaller than half
the wavelength cannot be discerned in the image.

Advances in such branches of nano-optics as nano-
photonics and nanoplasmonics observed over the last several
decades have allowed researchers to surpass the diffraction
limit and obtain an image of object details that are much
smaller than the wavelength. This achievement is linked to
studies of plasmon waves and the creation of composite
media called metamaterials [1±13]. The existence of struc-
tures where a wave has negative refraction was known by
1967, but the fundamental contribution to the theory of
media with negative refraction, also called Veselago media
or left media, was made by VGVeselago in a study published
in 1967 [14] on the peculiar electrodynamics of media with
negative refraction. In 2000, V G Veselago's idea was
advanced by the British physicist J Pendry [15], who showed
that, in this case, the diffraction limit intrinsic to conventional
lenses can be surpassed, and coined the term `perfect lens' for
respective optical elements. Thus, diffraction is not mani-
fested in these optical elements [15±17].

A three-layer structure is considered as a model of a
superlens, in which the two outer layers are dielectric half-
spaces and the middle layer is made of metal or a metamater-
ial. A Veselago superlens, with the parameters of the outer
and middle layers, respectively, e1 � 1, m1 � 1, e2 � ÿ1,
m2 � ÿ1, is distinguished from a Pendry superlens, in which
layers are characterized by the material parameters e1 � 1,
m1 � 1, e2 � ÿ1, m2 � 1. The experimentally studied Pendry
superlens has the form of a thin silver plate (film) sandwiched
between dielectric half-spaces. The experiment was carried
out for plane-polarized monochromatic waves with a fre-
quency that corresponds to a dielectric permittivity of ÿ1 on
the dispersion curve of silver [18]. The resolution in the
experiment was 1/5 of the light wavelength, whereas the
resolution of a refractive lens is bounded by half of the light
wavelength.

A superlens is not a proper lens in the sense that it does not
collect or scatter a plane-parallel light beam. There is no
notion of `focal depth.' For this reason, in contrast to a
refractive lens, a superlens allows one to obtain the image of
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an object not only in the focal plane but also in any other
plane parallel to the film. Each of these planes can be viewed
as the planes placed on both sides of an illuminated object in
the absence of a film. If light illuminates the outer film
boundary, as in experiment [18], the image corresponds to
the observation position on the closest film boundary.

Suchmedia as metamaterials (the Veselago lens) or metals
(the Pendry lens) allow the propagation of inverse waves with
oppositely directed phase and group velocities [19]. Since the
phase of an evanescent wave has a large imaginary part,
which defines wave damping, purely mathematically (both in
traditional computations of the image in a superlens and in
computations in this work), the inverse count of the wave
phase leads to the effect of wave amplification. In order to
form a correct object image, the wave fields must be amplified
on the optical path in a metamaterial (metal) just as much as
they decay on the optical path in a dielectric.

A theoretical explanation of the Pendry lens phenomenon
encompasses an analytical derivation of the amplification law
for evanescent waves in metal layers of the metal±dielectric
structure and a proof of the absence of diffraction in the lens
for a spatially bounded wave. Let us consider how the
solution to this problem is reflected in the scientific litera-
ture. In order to theoretically explain the effect of super-
resolution of a three-layer metal±dielectric structure, the
amplitude and phase of an electromagnetic wave transmitted
by the metal film were computed [20±25]. Based on the
expressions obtained, an estimate was given of the minimum
distance distinguishable in the image. The result leads to
a practically important conclusion: metals with minimum
losses are preferable as the film material.

The dispersion equation corresponds to the excitation of
interfacial plasmonwaves on the film surface, which confirms
numerical computations [26]. Moreover, determining the
field inside the middle layer can rigorously confirm the
existence of surface waves on the film surfaces. For multi-
layer media, it is particularly important to know the field
inside the structure, at least at the interfaces between the
layers.

Computation of light transmission in a multilayer aper-
iodic structure in the framework of traditional matrix theory
does not give a universal instrument for a precise analytical
study of how varying parameters of the structure affect its
optical properties, because the product of a large number of
matrices is unwieldy for analysis. For a layered structure with
super-thin layers, the equations of the matrix theory are
simplified, and a new exact theory, enabling computations
of the phase and amplitude of a light wave inside a multilayer
structure, can help in the analysis of the optical properties of
such a medium. Also, the generalization of the theory to
planar layered media and its extension to similar structures
with a cylindrical and spherical symmetry can be useful for
the design of three-dimensional structures with metal nano-
inclusions.

Thus, at the present stage of theoretical studies dealing
with the optical properties of layered media, one needs new,
simple, and effective instruments which can also be applied
to structures with a different symmetry. This work describes
the algorithm of a computational method intended for
multi-component media with plane, cylindrical, and spherical
symmetries.

The traditional matrix theory of spherical and cylindrical
waves, which include eigenmodes of spherically and cylin-
drically symmetric layered media, relies on the Bessel func-

tions, which strongly complicates computations. The theory
proposed in this study relies on another solution of the Bessel
equation, which follows from the Pr�ufer transformation [27].
Such a presentation of the result also requires solving a
transcendent equation, but computations are simpler, and
the layers can be handled in a cycle.

There are static and wave theories of electromagnetic field
localization on interfaces in metal-dielectric structures [22].
Interfacial waves on the boundaries between metals and
dielectrics are responsible for the localization of static fields
at the image point of the Pendry lens. Here, a question arises
on the applicability of the term `overcoming the diffraction
limit,' since one is not dealing with a wave. However, the wave
theory confirms the localization of the wave field at the point
considered [20, 21]. For aGaussian beam, diffraction needs to
be explored with the help of wave theory applied to the
Helmholtz equation, because the wave function of the beam
is derived from this equation. The present paper presents
namely such a solution to the formulated problem.

2. Propagation of a plane-polarized
monochromatic wave in a Pendry lens.
Data from the literature

The idea of a perfect image was formulated by John Pendry
[15] in 2000. To describe the propagation of an electromag-
netic wave in a three-layermedium composed of two dielectric
half-spaces separated by a thin metal film, Pendry applied the
theory of multilayer planar structures [28]. The final equa-
tions of this theory are in the matrix form and would lead to
rather complex computations if the number of layers were
large. However, the characteristics of a three-layer structure
can be computed quite easily. Optical super-resolution of
such a metal±dielectric structure can be explained by
analyzing the reflection and transmission formulas for a thin
metal film [28],

R � r� r 0 exp �4ikzd�
1ÿ rr 0 exp �4ikzd� ; T � tt 0 exp �2ikzd�

1ÿ rr 0 exp �4ikzd� ; �1�
r � ÿr 0 � k 0z ÿ kze

k 0z � kze
; t � 2kze

k 0z � kze
; t 0 � 2k 0z

k 0z � kze
;

where R and T are, respectively, the film reflection and
transmission coefficients, kz is the wave number of the
incident wave in the direction transverse to the film, k 0z is the
transverse component of the wave vector on the other side of
the film, e is the metal dielectric permittivity, and 2d is the film
thickness; the film is surrounded by air.

For further computations, we introduce the wave number
of an electromagnetic wave in a vacuum k0:

k 2
0 �

o2

c 2
:

In the quasistatic limit �k 2
0 5 k 2

x � k 2
y �, when kz � k 0z �

i�k 2
x � k 2

y �1=2, the formula for transmission takes the form

T � 4e 2 exp �2ikzd�
�1� e�2 � �1ÿ e�2 exp �4ikzd�

:

The quasistatic limit deals with evanescent waves; their
transmission on the exit surface of the film in the limit
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e! ÿ1 is given by the expression

T � lim
e!ÿ1

4e 2 exp �2ikzd�
�1� e�2 � �1ÿ e�2 exp �4ikzd�

� exp �ÿ2ikzd� � exp
�
2d

����������������
k 2
x � k 2

y

q
d
�
:

From this expression, it follows that, at the distance 4d from
the object plane, the phase of a wave emitted initially from the
object plane repeats the phase the wave had in this plane. An
evanescent wave decays on the dielectric part of its path and is
amplified in the film.

The minimum size of a light spot behind the film was
estimated from the following considerations [16]: the spot
boundary corresponds to the points where the wave intensity
is half of that in the center of the spot. This leads to the
relationship

D � 4pd
ln �eÿ 1� �

4pd
ln e 00

; �2�

where e � e 0 � ie 00 � ÿ1� ie 00, D is the minimum spot size
behind the film.

The size of a light spot is therefore defined by the
imaginary part of metal dielectric permittivity, and can be
arbitrarily small if losses in the film are such.

Some other methods of exploring optical properties of the
structure considered here are mentioned in the literature. For
example, Ref. [23] analyzed transmission formula (1), but
conclusions were made for the general case, without consider-
ing the quasistatic limit. The uncertainty relation was used,
and the result is close to estimate (2).

An estimate of the size that can be distinguished in the
plane behind the film is also obtained in Ref. [25], and it has
the form of dependence (2). Computations were based on
the Fourier±Bessel transform for the field inside and behind
the film, while the formula for film optical transmission
was also used. The wave field was conditionally split into
dynamic and static parts, with which the lens super-resolu-
tion is namely linked. There are also studies presenting
numerical computations for the field in the structure; they
confirm analytical results [27, 29]. The literature also
proposes a theoretical analysis of a multilayer structure
with the Pendry lens parameters [30, 31] and a cylindrical
structure with these parameters [32].

The theory presented in this work contains transmission
formula (1), derived directly from Maxwell's equations, as
one of its results. As applied to a metal film, its conclusions
show that the amplitudes and phases are equal in the planes of
an object and its image that are at a distance 4d apart and are
separated by the metal film. Based on this theory, an analysis
of the size that can be distinguished in the image can be
carried out by the methods described in Refs [15, 24], which
lead to formula (2).

The proposed theory has some advantages over thematrix
description of layered structures.

(1) The theory is applicable to harmonic electromagnetic
waves with any type of wave front symmetry, satisfying the
Helmholtz equation in a homogeneous medium, which also
includes axisymmetric beams.

(2) Its formulas do not become more complex if the
number of layers is increased [33]. There is no need to expand
the material characteristics of a finite-sized structure in a
Fourier series, and the solution for infinite periodic structures
also preserves a simple form. The solution can be generalized

for two- and three-dimensional periodic structures, for
example, for a metal film with parallel slots [34, 35].

(3) The solution can be generalized to layered structures
with cylindrical and spherical boundaries between its compo-
nents [36±39], including combined structures, for example, a
metal probe with a pointed end [39].

3. Propagation of a plane-polarized
monochromatic wave in a periodic Pendry lens.
Theoretical consideration

In this section, we consider an infinite periodic structure with
the Pendry lens parameters, shown schematically in Fig. 1. In
the structure with two components, the layers of different
components (with dielectric permittivities 1 and ÿ1) alter-
nate, and all the layers have the same thicknesses. We turn to
Maxwell's equations for a plane-polarized transverse mag-
netic (TM) wave propagating in such a composite medium.

The coordinate system will be selected in the following
way: the z-axis is perpendicular to the structure layers; the xy
plane is parallel to the layers and divides the central metal
layer into two equal parts. In this section, we will assume that
a plane monochromatic electromagnetic wave with TM
polarization impinges on the lens; its wave vector lies in the
plane xz. Because of polarization, only the y component of
the magnetic field is nonzero.

Propagation of an electromagnetic wave is described
by the wave equation which is derived from Maxwell's
equations for the wave electric and magnetic fields [40,
p. 420, formula (88.2)],

DH� 1

e
�grad e� rotH� � eo2

c 2
H � 0 ; �3�

where e is the medium dielectric permittivity,

e�x; z� � e1 � �e2 ÿ e1�T�x; z� ;
T�x; z� is the Heaviside step function, region 2 is a dielectric
with dielectric permittivity e2, region 1 is a metal with
dielectric permittivity e1, and

T�x; z� � 1 ; e�x; z� � e2 ,

0 ; e�x; z� � e1 :

�
The equation for the only magnetic field component follows
from (3) by taking into account that the dielectric permittivity
varies only in the direction z,

q2Hy

qz 2
ÿ 1

e
qe
qz

qHy

qz
� ÿHy�ek 2

0 ÿ k 2
x � : �4�

yx

z

e � ÿ1

e � 1

e � 1

e � ÿ1

e � ÿ1

2d

2d

2d

2d

2d

Figure 1. Schematics of plane-parallel layered structure with the Pendry

lens parameters.
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Since we are dealing with a piecewise homogeneous medium
with two possible values of dielectric permittivity, wewrite the
squared wave vector as emk 2

0 � k 2
x � k 2

zm, m � 1; 2.
Writing equation (4) in such notations, and also adding

and subtracting the expression�
e
e1

�2� e1
eH

qHy

qz

�2

on its left-hand side, we transform this equation into the form

e
e1

q
qz

�
e1
eHy

qHy

qz

�
�
�

e
e1

�2� e1
eHy

qHy

qz

�2

� ÿk 2
z ; �5�

where kz � kz1 in regions with e�x; z� � e1 and kz � kz2 in
regions with e�x; z� � e2. Such a grouping of multipliers in the
terms in equation (5) hints that it is possible to introduce a
phase function b in the direction z which is common to all
regions of a piecewise homogeneous medium according to the
equality

1

Hy

qHy

qz
� ÿ e

e1
kz1 tan b : �6�

Starting from Maxwell's equations for the components of an
electromagnetic field, we note that, given the continuity of the
function �e1=�eHy��qHy=qz introduced above, the tangent
components of electric and magnetic fields are preserved on
crossing the interfaces between layers. We will construct the
solution so that the function �e1=�eHy��qHy=qz is continuous
in the whole space.

Taking into account equation (6), we transform equation
(5) into the form

kz1
q tan b
qz

ÿ e
e1

�
�kz1 tan b�2 � k 2

z1

� T�x; z�
�
k 2
z2

e 21
e 22
ÿ k 2

z1

��
� 0 : �7�

From equation (7), it follows that, in the region filled with
medium 1, the derivative of function b�x; z� is

qb�x; z�
qz

� kz1 :

For this region, a solution to equation (6) is found by
integrating (6), which leads to

Hy�x; z� � H0 cos b :

Let us write equation (7) for the region filled with the
second medium. For this, we introduce the notation

1

b 2
� k 2

z2

k 2
z1

e 21
e 22
:

Equation (7) for the region filled with medium 2 in compact
notation becomes

q arctan
ÿ
b tan b�x; z��
qz

� kz2 :

Integration leads to the following result for the phase
function:

b�x; z� Dz�

� arctan

�
1

b
tan

�
kz2Dz� arctan

ÿ
b tan b�x; z���� :

In order to write equation (7) in a form invariant for
any homogeneous region, we introduce the function ~b�x; z�
according to the equality

~b�x; z� � arctan
ÿ
b tan b�x; z�� :

The wave equation for a wave with TM polarization is
satisfied in all regions of the structure if the coordinate z in
differentials in this equation is everywhere replaced by the
function ~b. This is possible, because the derivatives of
function ~b and the coordinate zmultiplied by the wave vector
coincide. As a result, we obtain the equation

ÿ q tan ~b

q~b
� tan2 ~b� 1 � 0 ;

which is valid in all layers of the structure.
The function ~b is a universal one, and equations including

it are invariant to a change in the components of a plane-
parallel structure, in particular, the structure with the Pendry
lens parameters. The change in function ~b on the homo-
geneous interval of wave propagation coincides with the value
kz2Dz, which in turn coincides with the traditional solution in
a homogeneous domain, only, instead of `matching' at the
boundaries of regions, we write the constant in the phase
function using the general rule:

~b�x; z� �

kz1�z� ; 0 < jzj < d ;

kz2�zÿ d� � C1 ; d < jzj < 3d ;

kz1�zÿ 3d� � C2 ; 3d < jzj < 5d ;

kz2�zÿ 5d� � C3 ; 5d < jzj < 7d ;

kz1�zÿ 7d� � C4 ; 7d < jzj < 9d ;

8>>>><>>>>:
C1 � arctan

ÿ
b tan kz1�d�

�
;

C2 � arctan

�
1

b
tan
ÿ
kz2�3d� � C1

��
;

C3 � arctan
�
b tan

ÿ
kz1�5d� � C2

��
;

C4 � arctan

�
1

b
tan
ÿ
kz2�7d� � C3

��
:

The solution to a wave equation written in this notation takes
the form

Hy�x; z� � H0 cos ~b � cos b��������������������������������������
1� �b 2 ÿ 1� cos2 b

q :

We find the film transmission based on the equalities
obtained here. The condition for a plasmon resonance or, in
other words, the dispersion relation describing the eigen-
modes of a three-layer structure, is expressed by the equation

1� �b 2 ÿ 1� cos2 b
�

������������������������������
sin b� ib cos b

p ������������������������������
sin bÿ ib cos b

p
� 0 :

We transform this equation as

ÿ sin b� ib cos b � i

2

ÿ
exp �ib��1� b� � exp �ÿib��bÿ 1��

� i

2
�1� b� exp �ÿib�

�
exp �2ib� � bÿ 1

b� 1

�
:
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Thus, the plasmon resonance condition becomes

exp �2ib� � bÿ 1

b� 1
� exp �2ib� � b 2 ÿ 1

�b� 1�2 � 0 ;

where

b 2 ÿ 1

�b� 1�2 �
k 2
z1=e

2
1 ÿ k 2

z2=e
2
2

�kz1=e1 � kz2=e2�2

� k 2
0 =e1 ÿ k20=e2 ÿ �k 2

x � k 2
y ��1=e1 ÿ 1=e2��1=e1 � 1=e2�

k 2
0 =e1� k 2

0 =e2ÿ �k 2
x � k 2

y ��1=e21� 1=e22�� 2�kz1=e1��kz2=e2� :

The following equality holds in the quasistatic limit:

lim
kx; ky!1

e1�1
e2�ÿ1� ie 00

b 2 ÿ 1

�b� 1�2 �
ie 00

2
:

Hence, it follows that

exp �2ib� � ÿ ie 00

2
:

This implies that, in the case under consideration, the field at
the lens boundaries may increase without limit if losses in the
film material are reduced accordingly.

We additionally explore the resonance condition for a
three-layer structure (infinite dielectric half-spaces separated
by a thinmetal film) where both boundaries, located infinitely
far from the film, have the coordinates z � ÿh, z � h, h!1.
The eigenmodes of the structure satisfy the matching
condition at the structure boundaries:

~b�x; d� � kz2�hÿ d� � arctan
ÿ
b tan �kz1d�

�
�8�

� kz2�hÿ d� � pm ; m � 0; 1; 2; . . . ; h!1 :

We obtain the useful identity

arctan
�
b tan �kz1d�

� � kz2�dÿ h� : �9�

The last identity, with account for wave numbers being
complex-valued, expresses the condition of plasmon reso-
nance:

tan �kz1d�b � ÿ lim
h!1

tan
ÿ
kz2�dÿ h�� � ÿi :

For a symmetric structure that consists of three layers, we
compute the function of the z component of the phase in the
plane of the object and image. The condition of phase
matching (8) sets the phase difference between the bound-
aries of an infinite structure equal to 2pm �m � 1; 2; . . .�.
Thus, the boundaries of a three-layer structure, infinitely
distant from the film, are in our model the planes with a zero
z component of the phase, and we can count the phase from
one of them. Let us assume that the phase is increasing in the
positive z direction. Then, the z component of the phase will
be kz2�hÿ 2d� in the object plane. In turn, the z component of
the phase in the image plane will also be kz2�hÿ 2d�. The
values of the phase in planes that coincide with film surfaces
are expressed as follows:

P1 � kz2�hÿ 2d� � kz2d� j1 ;

P2 � kz2�hÿ 2d� � kz2d� j2 ;

where j1 is the additional phase of the ray illuminating a
point on the object with respect to the phase of the object
location in our model, and j2 is the additional phase of the
image of that point.

Let us compute the difference between two computational
results for the phase on the second film surface:

0 � kz2�hÿ d� � j2

� arctan

�
b tan

�
2kz1d� arctan

�
1

b
tanP1

���
:

We assume j1 � 0; then,

ÿ kz2�hÿ d� ÿ j2

� arctan

�
b tan

�
2kz1d� arctan

�
1

b
tan
ÿ
kz2�hÿ d����� :

We use equality (9),

ÿkz2�hÿ d� ÿ j2 � arctan

�
b tan �kz1d�

�
:

We apply it once more to get

ÿkz2�hÿ d� ÿ j2 � ÿkz2�hÿ d� :

The last equality implies that, if phase j1 equals zero, j2 is
also zero. Thus, the wave has the same phases in the planes of
the object and image.

For a structure made of 2n� 1 layers, instead of (9), one
needs to apply the dispersion relation for the multilayer
structure:

b tan �kz1d� Cn� � ÿ lim
h!1

tan
ÿ
kz2�dÿ h�� � ÿi :

Let us discuss this result. We denote the magnetic field
in the central plane of the structure as H0�x�. Then, at
infinitely distant boundaries of the structure, the field will be
H0�x� exp �i2pm� � H0�x�. Field amplification at film inter-
faces under the conditions of plasmon resonance is fully
compensated only at infinity. If we place a light source at
distance d from the film, we virtually create a wave with phase
kz2�hÿ 2d� at this source location, i.e., the decaying wave is
damped with respect to the infinitely distant plane, and this
damping, together with the amplification at the film bound-
ary (9), gives the final result for the phase:ÿkz2d. In the image
plane, the wave is also damped with respect to an infinitely
distant plane, and the phase addition is the same, ÿkz2d. Net
amplification equals wave damping on the dielectric interval
of the wave optical path in the lens (between the planes of the
object and image).

Infinite amplification of the field between regions hap-
pens in the metal layers.Within this part of the structure, the
field has a high energy density only in narrow subsurface
layers, and decays practically to zero inside the metal.
Mathematically, this is expressed through the contribution
from the arctangent function in the wave phase; under the
conditions of plasmon resonance, the cosine of the function
arctan ��1=b� tan �kz1d� Cn�� is infinite at the boundary. In
physical terms, the arctangent defines the wave phase on
reflection from the metal±dielectric boundary. The cosine of
the arctangent therefore describes a wave inside the film
upon its reflections from two boundaries, infinitely increas-
ing under the conditions of plasmon resonance.
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Let us find the change in the along-lens components of the
phase,

qa�x; z�
qx

� e2
e1

kx1 � ÿkx1 ;

where a�x; z� is the phase in the direction of the x-axis. Just
like the phase component transverse to the lens, the
x component of the wave phase decreases in metal because
the derivative is negative. Hence, the wave is a reverse one,
and the ray direction is changed to the mirror one, which
corresponds to negative refraction. The wave optical path in
this situation is shown in Fig. 2. If the dielectric permittivities
are equal by absolute value, but opposite in sign, the
proportions of the object are preserved in the image.

As follows from the result obtained, in the absence of
losses, the dielectric permittivity should be equal to ÿ1 in
order to get an ideal image.However, inmetals, where the real
part of dielectric permittivity is negative, there are losses,
defining a nonzero imaginary part of dielectric permittivity.
The smaller the last quantity, the more precise the image. In
this sense, materials with minimum losses are preferable.

At present, there are different methods to synthesize
metals that satisfy this requirement [41]. The most suitable
material is silver. A `dream' film, according to specialist
estimates, should have the parameter e 0 2=e 00 > 2000. Good
parameters are achieved in silver polycrystals grown by
certain methods. In polycrystalic samples, because of the
presence of grains and different orientation in their bound-
aries, this parameter is substantially smaller [38].

One of the most important characteristics of samples used
to produce plane-parallel optical elements is the `roughness'

of their surface. This is an essential factor, which might
increase the propagation distance of surface plasmon-polar-
itons or the quality of superlenses. A critical value for this
parameter in constructions based on a superlens is 1 nm;
monocrystals have a roughness of 0.5 nm.

Figure 3a shows the result of wave field computations in
an ideal film. We compare it with an analogous result for a
film with the parameter e 0 2=e 00 � 20 plotted in Fig. 3b. The
comparison shows that, in the first case, the resonance is
expressed more prominently, and the maximum peak width is
narrower than in the second case. Since the maxima on
the plots are rather narrow, in estimates of lens resolving
capability it was assumed that, in this case, the frequency
dispersion of dielectric permittivity can be neglected.

Let us compute the minimum size of the light spot in the
image. With this aim, we use the uncertainty principle
DxDk � 1. The width of the peak in Fig. 3 divided by the
film thickness defines Dk. In the two cases considered,
the minimum sizes computed by the plots in Fig. 3 are
Dx � 30 nm, Dx � 2 mm, respectively. The wavelength of
light that corresponds to the peaks in the plot is � 240 nm
for the structure parameters used in computations. According
to the Rayleigh criterion, the maximum size for a refractive
lens cannot be better than half the light wavelength. Thus, an
ideal film should create an image with a resolved size that is
eight time smaller than the wavelength, which exceeds the
diffraction limit, and a film with the parameters used in
Fig. 3b does not have this property. Note that the plots are
based on formulas derived from Maxwell's equations in a
general case, and the results of computations are not bounded
by the quasistatic limit.

As was shown analytically above, the smaller the
imaginary part of metal dielectric permittivity, the stronger
the field increase at the lens boundaries. The analysis of plots
in Fig. 3 leads us to the same conclusion.

Here, we are considering two limiting cases, one with
optimal and one with unsuitable film parameters. Real
polycrystalline and monocrystalline films have intermediate
characteristics. An optimal lens can be made of monocrystal-
line silver film: it will have improved parameters and high
resolution. As is seen, the lens with less suitable parameters
has a resolution that does not exceed the diffraction limit (the
resolution of a refractive lens). A monocrystalline silver film
with a thickness of 30 nm, i.e., with the parameters used for
the plot in Fig. 3a, can be produced by several contemporary
methods [41].

2d
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Figure 2.Optical path of a wave emitted by a light source in a Pendry lens.
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Figure 3. Dependence of relative intensity of an electromagnetic wave at the boundary of a three-layer structure �H�z� � const cos b�z�� on the wave

frequency; structure parameters are: (a) d � 30 nm, e2 � 1, e1 � ÿ1� i 0:0005; (b) d � 30 nm, e2 � 1, e1 � ÿ1� i 0:05. Frequency dispersion of dielectric
permittivity was not taken into account.
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4. Algorithm for computing the electromagnetic
field in a layered symmetric medium

In Section 3, we dealt with the main idea of the method for
computing electromagnetic fields in a layered structure with
plane-parallel, cylindrical, or spherical symmetry. It can be
summarized in the following algorithm.

(1) Dispersion characteristics are computed and a diagram
is constructed. In layer 1 of a one-dimensional structure which
has the dielectric permittivity e1 and neighbors the ambient
media �e�, the wave phase is

b�z� � arctan

�
1

b1
tanDb1

�
;

where

b1 �
k

k1

e1
e
; k 2 � ek 2

0 ÿ k 2
? ; k 2

1 � e1k 2
0 ÿ k 2

? :

In layer 2 with the dielectric permittivity e2, the wave phase is

b�z� � arctan

�
1

b2
tan

�
Db2 � arctan

�
1

b1
tanDb1

���
;

b2 �
k1
k2

e2
e1
; k 2

2 � e2k 2
0 ÿ k 2

? :

In layer 3, the wave phase is

b�z� � arctan

�
1

b3
tan

�
Db3

� arctan

�
1

b2
tan

�
Db2 � arctan

�
1

b1
tanDb1

�����
;

b3 �
k2
k3

e3
e2
; k 2

3 � e3k 2
0 ÿ k 2

? ;

where e3 is the dielectric permittivity of the material in the
third layer. In other structure layers, the phase increment is
written similarly. In the last layer m, the wave phase has the
form

b�L� � Dbm � arctan

�
1

bm
tan

�
Dbm � . . .

� arctan

�
1

b1
tanDb1

���
; �10�

bm �
kmÿ1
km

em
emÿ1

; k 2
m � emk 2

0 ÿ k 2
? ;

where em is the dielectric permittivity of thematerial in layerm
and L is the linear size of the structure in the direction
perpendicular to the layers.

To compute the component of the wave vector that is
perpendicular to the layers, referred to as the `constant of
mode propagation,' we write the dispersion equation

tan b�L� � i

bm�1
; bm�1 �

km
k

e
em

: �11�

The phase increment inside a homogeneous domain is
expressed differently for different symmetries:

Ð plane-parallel medium (in layer m),

Dbm � kmdm ;

where dm is the layer width;

Ð cylindrical symmetry for the fundamental mode of the
structure (layer m),

Dbm � kmrm � sin2 b�R�
2R

ÿ sin2
�
b�Rÿ rm�

�
2R

;

where rm is the difference between the outer and inner layer
radii and R is the layer radius;

Ð spherical symmetry for the fundamental mode (layer
m),

Dbm � kmrm �
sin2 b�P�

P
ÿ sin2

�
b�Pÿ rm�

�
P

;

where rm is the difference between the outer and inner layer
radii and P is the layer radius.

(2) The magnetic field at a point of a one-dimensional
layered structure is given by the formula

H�z� � const cos b�z� : �12�

The above algorithm for computing the wave electro-
magnetic field in a symmetric layered structure can be used to
analyze, design, or optimize optoelectronic devices based on
super- and hyper-lenses.

For spherical and cylindrical symmetries, one has to
solve a transcendent equation on passing from one layer to
the next one, which involves computational costs, but in
the limit of small sizes (small layer widths) the theory
considered here has rather interesting and important
consequences, which include, for example, a formula for
high-order modes of spherical symmetry, allowing one to
estimate the polarizability of spherical three-layer nano-
particles [36], or a formula describing a decaying disper-
sion branch in the diagram for multilayer nanowires [37].

5. Gaussian beam diffraction in a Pendry lens

In Sections 3 and 4, we arrived at a conclusion about the high
resolution of a Pendry lens based on the computations of
evanescent wave decay. In contrast to evanescent waves in a
classical optical element, which decay fast, these waves are
preserved in full measure in the image plane in the Pendry
lens, which is the reason why the diffraction limit can be
surpassed. Further, we consider the diffraction of a diverging
axisymmetric beam in a plane-parallel structure with the
Pendry lens parameters using a Gaussian beam as an
example.

Since the beam is axisymmetric, we perform computations
in a cylindrical reference frame. We assume that the beam
propagation direction is perpendicular to the lens layers. We
begin by writing wave equation (3) in the cylindrical reference
frame,

DHÿ 1

e

�
qe
qz

�
qH
qz
� ÿHek 2

0 : �13�

We transform this equation by analogy with transformations
(4)±(7) of equation (3); the result takes the form

ÿ q2f
qr 2
� 1

r

q f
qr
�
�
q f
qr

�2

ÿ q2f
qz 2
ÿ k 2

z

q tan ~b

q~b

�
�
kz tan ~bÿ q f

qz

�2

� k 2
z � 0 ;
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where

Hy�z� � H0�z� exp f �r; z� ; tan ~b� q f �r; z�
qkzz

� 1

Hy

qHy

qkzz
:

In Section 1, we dealt with the function

tan b � e2
eHy

qHy

qkzz
:

The conditions for preserving the tangent field components
are fulfilled if this function is continuous, and the functionHy

should be continuous too. The beam function will satisfy
these conditions if the variable kzz present in the function
f �r; z� for the beam in a homogeneous medium is replaced by
the function �e=e2�kz2z.

Inserting the expression �1=Hy��qHy=qkzz� into (13), we
arrive at the equation

ÿ q2f
qr 2
� 1

r

q f
qr
�
�

d f

dr

�2

� i
k 2
z

kz2

e2
e
q f
��e=e2�kz2z�

qz
� 0 ; �14�

where kz is the wave vector in the structure, kz � kz1 in the
first medium, and kz2 in the second medium. From Eqn (13)
written for a homogeneous medium, the wave function of a
Gaussian beam is derived [42]:

Hy�r; z� � exp
ÿ
f �r; z� � i

��
e
p

k0z
�

� exp

� ��
e
p

k 2
0 r

2

ik0z� const
� i

��
e
p

k0z

�
: �15�

Analysis of Eqns (14) and (15) leads to the conclusion that, in
a layered structure with Pendry lens parameters, the wave
function of the Gaussian beam is expressed in the form

Hy�r; ~b� � exp
ÿ
f �r; ~b� � i~b

�
� exp

�
ek 2

0 r
2

i�e=e2�kz2z� const
� i~b

�
: �16�

This solution corresponds to a mirror reflection of the beam
phase on the nearest and furthest lens boundaries. The
solution can be generalized to a beam incident at an angle to
the lens, when the beam wave vector has the z and x
components. This conclusion is based on the following
factors.

First, the increment of the along-beam phase between the
lens surfaces isÿ2kz2d, whereas the change in the wave phase
in each of two dielectric intervals of its path between the
planes of the object and image is kz2d.

Second, the ray propagates in the positive z direction and
in the direction opposite to the initial one along the x-axis (kx
changes its sign at the lens boundaries). In the lens, it passes a
distance along the x-axis that is equal to the sum of the
distances passed at the dielectric interval of the path.

Third, since the angle of the beam to the z-axis in metal
equals in absolute value the angle in a dielectric, but is
opposite in sign, the radial coordinate in oblique systems of
coordinates is mirror-symmetric with respect to the lens
surface in media 1 and 2.

The negative increment of coordinates z and x defines not
only a wave with the opposite phase but also the opposite
count for the along-beam coordinate in the function f. If the
beam was diverging before the lens, it starts to narrow in the

lens, increasing the curvature radius of the wave front, and
vice versa. The narrowing before the object position at a
distance from it not larger than d is reflected in the lens region
with a coordinate from the interval �0; d�. A schematic picture
of the beam propagation through the lens is shown in Fig. 4.
As follows from Fig. 4, the beam has the same characteristics
in the planes of the object and image.

The picture presented for the Gaussian beam corresponds
to formulas (15) and (16), because they were derived not only
for evanescent waves in the static limit, as in Ref. [29], but for
all wave types, including propagating ones. Figure 4 depicts
the change in the entire beam in the film; the derivation of
formulas (15) and (16) corresponds to the wave theory of
electromagnetic field localization. Here, the following condi-
tion is at work: the optical path between a point in the object
plane and its image has to be equal to zero, and it should be
observed for each point in the object plane.

Since in the structure studied here there is no phase
accumulation from one cell to another, function ~b, distinct
from coordinate z, varies only within cells, but remains
unchanged on translations between the same points of
different cells. For this reason, the transverse beam size does
not change on the optical path; a Gaussian beam does not
experience diffraction in a layered structure with Pendry lens
parameters.

A layered structure with the Pendry lens parameters
creates a ray image, i.e., translates it through the space. A
similar structure with other relationships between geometric
and material parameters can be used, for example, to focus a
beam; in this case, one will need to determine the position of
the beam relative to the lens. A diverging beamwill be focused
to the size of its nearest narrowing. This focusing will be
precise, without distortions characteristic of a conventional
lens.

6. Conclusions

We theoretically explored the propagation of a plane wave
and Gaussian beam in a periodic structure with Pendry lens
parameters, and also considered a particular case when the
structure is modeled by a metal plate of sub-wavelength
thickness placed in air. The parameters of the components
of the mediaÐ the dielectric permittivity and magnetic
permeabilityÐare ÿ1 and 1, respectively, and the layers
have the same thickness of 2d. The final formulas allow
computing the wave intensity and phase at any point of the
structure. They explain the character of the image in a Pendry
lens.

2d

Figure 4. (Color online.) Gaussian beam propagation in a Pendry lens.
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At positions placed at the half-width of the lens transverse
size from the lens (metal layer of the structure) boundaries,
the direction, intensity, and phase of the wave coincide.
Hence, for waves with a resonance wave vector that leave
the plane of an object located at distance d from the lens
boundary, an image is created at the symmetric position
relative to the lens, which fully repeats the initial wave.

Relying on the original wave theory, the Helmholtz
equation for a Gaussian beam in a superlens was explored.
The result explains the absence of diffraction in the Pendry
lens for a Gaussian beam and allows computations of all
parameters for the beam in the lens, its phase, and the
distribution of amplitudes in its cross section.

A Gaussian beam in a Pendry lens changes (narrows,
widens) its cross section only within one layer; in the next
layer, it experiences the opposite change (widening, narrow-
ing). In such a structure, there is no macroscopic accumula-
tion of the along-beam phase and, as a consequence, dif-
fractive widening in this case is absent.

We give the algorithm to compute dispersion and also
distributions of electric andmagnetic fields of eigenmodes for
plane, cylindrical, and spherical multicomponent layered
media (10)±(12). Theoretical conclusions give an instrument
for exploring multilayer structures with various symmetries,
which may serve as a basis for plasmon devices.
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