
Abstract. This review is devoted to one of the most relevant
areas of modern condensed matter physics, the anomalous
Josephson effect (AJE), which consists of the appearance of a
phase shift in a hybrid structure, leading to a finite supercon-
ducting current at zero phase difference. AJE reflects the joint
manifestation of superconductivity, spin-orbit interaction, and
magnetism, and the study of such structures allows progress in
understanding their mutual influence, while also opening up
promising applications in superconducting spintronics. This
review describes the physics of the u0 junction, the control of
the magnetic properties of the barrier by means of a super-
conducting current, and, in turn, the effect of the magnetic
moment of the barrier on the Josephson current. A discussion
of new effective methods of magnetic moment reversal in the
u0 junction, in particular, by a superconducting current pulse, as
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well as studies of the quantum properties of Josephson nano-
structures with magnetic and topologically nontrivial barriers
for the creation of new superconducting spintronic devices, is
presented. The experimental realization of the u0 junction,
which has recently been demonstrated in a number of studies
by direct measurement of the current-phase relation, allows the
magnitude of the spin-orbit coupling to be measured and opens
up new possibilities for the phase control of Josephson devices.
This research helps in understanding fundamental spin-depen-
dent phenomena and developing applications for computer
technology. In particular, control of the magnetic state by
superconductivity opens up new possibilities for the develop-
ment of ultrafast cryogenic memory. This review presents the
results of studying the magnetic dynamics along the current±
voltage characteristic of the u0 junction and analysis of the spin
dynamics in this junction. The question of the possibility of
controlling the magnetic precession by the appearance of high-
er harmonics in the current±phase relation, as well as the DC
component of the current, which significantly increase near
ferromagnetic resonance, is considered. Interesting phenom-
ena in the u0 junction occur under the influence of external
electromagnetic radiation. Thus, the review presents an anal-
ysis of the main theoretical and experimental work devoted to
AJE, gives examples of the manifestation of AJE in various
systems, indicates the prospects for research in this area, and
discusses unsolved problems.

Keywords: superconducting spintronics, Josephson junction, anom-
alous Josephson effect, j0 junction

1. Introduction

Superconducting spintronics is one of the most intensively
developing areas of condensed matter physics. An important
place in this area occupy the study of Josephson junctions
(JJs) associated with magnetic systems [1, 2]. The ability to
control magnetic properties using the Josephson current as
well as the influence on the superconducting current by the
precession of the magnetic moment have attracted particular
attention [3±5]. Spin-orbit (SO) interaction plays a central
role in these phenomena. In Josephson superconductor/
ferromagnet/superconductor (SFS) structures, spin-orbit
interaction in a ferromagnet without inversion symmetry
provides a direct (linear) coupling mechanism between the
magnetic moment and superconducting current. In these
junctions with broken symmetry with respect to time
reversal, the current±phase relation (CPR) is defined as
I � Ic sin �jÿ j0� (Ic is the critical current), where the phase
shift j0 is proportional to the magnetic moment perpendi-
cular to the gradient of the asymmetric spin-orbit potential
[6]. Josephson junctions with such a CPR are called j0

junctions and demonstrate a number of unique properties
that are important for superconducting spintronics and
modern information technologies, in particular, control of
the internal magnetic moment using the Josephson current [6,
7]. In the j0 junction, the magnetization is related to the
intensity of the spin-orbit interaction; therefore, in the case of
magnetization oscillations, the opposite phenomenon should
be expected. Namely, the Josephson current can pump the
j0 phase shift, which is fed by magnetization precession and
spin-orbit interaction. This leads to the appearance of a
constant component of the superconducting current, which
plays an important role in the transformation of the current±
voltage characteristic (CVC) in the resonant region.

The Josephson j0 junction is ideal for studying quantum
tunneling of the magnetic moment [8]. It is expected that
magnetic tunneling will manifest itself in AC voltage across
the junction, and it can be controlled by an applied bias
current. The anomalous Josephson effect in various hybrid
heterostructures reflects the interplay of superconductivity,
spin-orbit interaction, and magnetism [9±24]. The study of
such heterostructures, which combine superconducting and
ferromagnetic properties, reveals the problem of the mutual
influence of superconductivity and ferromagnetism, makes it
possible to realize exotic superconducting states, such as the
Larkin±Ovchinnikov±Fulde±Ferrell state and triplet order-
ing, and opens up new prospects for using the spin degree of
freedom [15]. It is assumed that the anomalous Josephson
effect can be realized in junctions where the normal region is a
heterostructure formed by alternating ferromagnetic layers
with spin-orbit interaction. In the experiments proposed, one
can observe a significant dependence of the critical current on
the direction [10].

The theory of the anomalous Zeeman effect and the spin-
galvanic effect in j0 junctions was discussed in [25, 26]. The
mutual influence of Rashba and Zeeman interactions in a
one-dimensional quantum wire leads to an anomalous phase
shift in the CPR [11]. Resonance effects, which are important
for the transport properties of weakly interacting electrons in
symmetric contacts, are preserved in the presence of a strong
Rashba interaction only for special conditions at the normal
metal/superconductor interface [11]. In Ref. [12], the authors
consider a ballistic JJ, where the interlayer between the
superconducting electrodes is a two-dimensional electron
gas with Rashba's spin-orbit interaction. When included in
the circuit, the JJ superconductor/quantum dot/supercon-
ductor (S/QD/S) acts as a spin filter. It is shown that, in an
external magnetic field lying in the plane of the 2D junction,
an anomalous superconducting current occurs even at zero
phase difference between the superconducting electrodes. In
addition, the external field causes a large asymmetry of the
critical current depending on its direction, which leads to
rectification effects of the superconducting current.

Interesting features arise if the surface of the JJ is taken
into account. In particular, it was demonstrated in Ref. [17]
that the ground state of a superconductor/ferromagnet/
superconductor JJ corresponds to a phase difference of p=2
with a critical current density that has a random sign along the
junction's surface. Inhomogeneous Josephson structures in
the presence of an external magnetic field demonstrate an
unusual phase dependence of the current, which depends on
the flux [22]. In such JJs, a ground state arises with a phase
shift, the magnitude of which is determined by the external
magnetic flux. Tunable�j junctions and hybrid systems of j
and j0 junctions were studied in Refs [19±21].

In Josephson structures consisting of two semiconductor
nanowires with Rashba spin-orbit interaction and proximi-
tized superconductivity [24], the junction reflects the geomet-
rically induced anomalous Josephson effect [24].

An experimental observation of a j0 junction based on a
nanowire quantum dot controlled by an electrostatic gate
was reported by Szombati et al. [27]. Also, the presence of
an anomalous j0 phase shift was experimentally observed
directly through the measurement of the CPR in a super-
conductor/normal metal/superconductor hybrid JJ fabri-
cated on the basis of Bi2Se3 (which is a topological insulator
with strong spin-orbit coupling) in a magnetic field [28].
This experiment allows direct measurement of the spin-orbit
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coupling and opens up new possibilities for phase-dependent
Josephson devices based on materials with strong spin-orbit
coupling. An important step in the study of the anomalous
Josephson effect was made on the basis of the experiments
of Mayer et al. [29], which demonstrated a gate-controlled
anomalous phase shift in an Al=InAs-based JJ, as well as the
recently published work on the first experimental implemen-
tation of a phase battery in hybrid superconducting circuit
[30]. However, the magnetic dynamics in Josephson SFS
structures remains experimentally unstudied [31±33].

The DC-superconducting current arising in the SFS j0

junction leads to a strong orientational effect on the magnetic
moment [34]. Applying a constant voltage to the j0 junction
causes the current to oscillate and hence magnetic precession.
They can be controlled by the appearance of higher har-
monics in the CPR, as well as by the presence of a DC
component of the superconducting current, which increases
significantly near the ferromagnetic resonance [7]. The
authors emphasized that the magnetic dynamics of the SFS
j0 junction can be quite complex and strongly anharmonic.
However, it was shown in [35] that the precession of the
magnetic moment in some current intervals along the CVC
can be quite simple. It is expected that the external radiation
will lead to a number of new phenomena, in particular, to the
appearance of half-integer Shapiro steps (in addition to the
usual integer ones) and the generation of an additional
magnetic precession with the frequency of the external
radiation [7]. However, this important problem associated
with the mutual influence of the Josephson current and
magnetization at different values of the bias current along
the CVC has not yet been experimentally investigated.

AJE has been predicted in a wide class of Josephson
structures, in particular, in SFS structures based on ordinary
superconductors and ferromagnets with spin-orbit interac-
tion [6, 9, 12, 26, 36±40], in nontraditional superconductors
[41±45], and in topologically nontrivial superconductors [46].
In the presence of a magnetic flux penetrating the normal
intermediate layer, superconducting currents are generated
due to the proximity effect, which leads to a phase shift in the
CPR [22, 47].

Interesting systems in which AJE is also implemented [48]
are SFS junctions with an inhomogeneous magnetization
texture [15, 49±55]. In such systems, the current is a function
of themagnetization distribution I � I�j;M�. In the presence
of symmetry with respect to time reversal, as well as the
symmetry of magnetization inversion, I�j;M� � ÿI�ÿj;M�,
AJE is not observed. To create a j0 state, one can break
the symmetry I�j;M� � I�j;ÿM�. To implement AJE in
S=F=F=F=S ballistic structures, a noncoplanar magnetic
structure is required that breaks the inversion symmetry
[51±53]. The anomalous current obtained in these studies
demonstrates rapid oscillations depending on the thickness of
the ferromagnet, which is the result of the Fabry±Perot
interference of electron waves reflected at the S/F and F/F
interfaces.

In diffuse SFS structures used in experiments [56±61], a
scattering by impurities makes the directions of electron
propagation random and, therefore, suppression of the
rapidly oscillating anomalous current can be expected. Semi-
classical studies of diffuse JJs with various noncoplanar
structures, including helical structures [62], magnetic vortices
[63], and skyrmions [64], did not show the occurrence of AJE.
On the contrary, in studies devoted to diffuse systems with
half-metallic elements [15, 50] and junctions between mag-

netic superconductors with spin filters [54, 55], a finite
anomalous current is predicted.

One of the important results presented in this review is
the relatively short time for switching the direction of the
magnetic moment of a ferromagnet in the j0 junction
(magnetization reversal interval) obtained by applying a
current pulse to the junction. As follows from the results (see
Fig. 39a and Fig. 40, where the time is normalized to the
inverse ferromagnetic frequency), the remagnetization time is
oFt ' 100, which corresponds to the switching time of 10ÿ8 s
for typical ferromagnetic frequency oF ' 10 GHz. The
optimization of the parameters of the current pulse and the
j0 junction carried out in [65] (and demonstrated in Fig. 44)
leads to a magnetization reversal time of t ' 0:6� 10ÿ10 s,
which is 2 orders ofmagnitude less than the above estimate. In
order to determine the optimal operating temperature of the
proposed memory element, in Ref. [66], the effect of noise on
the average stationary magnetization was studied, taking into
account thermal fluctuations that affect both the Josephson
phase and the dynamics of the magnetic moment. In this
case, the estimate of the switching time, taking into account
thermal fluctuations, also amounted to a close value, namely,
t ' 10ÿ9 s was obtained.

This review presents the results of the above theoretical
and experimental studies, as well as a number of other
investigations devoted to the anomalous Josephson effect,
gives examples of its manifestation in various systems, and
indicates the prospects for their applications.

2. Anomalous Josephson effect. Main properties

In this section, we consider the realization of a direct coupling
between the magnetic moment and the superconducting
current in the j0 Josephson junction in the Buzdin model.
The control of the magnetic moment of a ferromagnet with
the help of a superconducting current is discussed, and a
description of some phenomena that manifest themselves in
the j0 junction is presented. Namely, we will consider the
manifestation of the properties of the Kapitza pendulum, the
renormalization of tunneling splitting by the interaction
between the magnetic moment and the superconducting
order parameter in the j0 junction, the possibility of
detecting quantum tunneling and quantum oscillations of
the magnetic moment based on the j0 junction by measuring
the voltage across the junction, and the control of the speed of
magnetic tunneling through the junction by superconducting
current.

2.1. Realization of a direct coupling between
the magnetic moment and superconducting current
in the u0 Josephson junction
In conventional superconductor/insulator/superconduc-
tor JJs, the current±phase dependence near the critical
temperature is sinusoidal, I�j� � Ic sinj; however, with
decreasing temperature, the contribution of higher har-
monics � In sin �nj� can be observed, but the current±phase
dependence remains antisymmetric, I�ÿj� � ÿI�j� [4].
When symmetry is broken with respect to time reversal, a
more general dependence I�j� � I0 sin �j� j0� arises, as
pointed out in Josephson's paper [67]. Such a general
dependence is also predicted in JJ with unconventional
superconductors [41, 43, 44].

Buzdin [6], using the phenomenological Ginzburg±
Landau (GL) equations, showed that a JJ with a magnetic
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normal metal as a weak coupling with a Rashba-type spin-
orbit interaction has a specific nonsinusoidal current±phase
dependence. The ground state of such a junction is character-
ized by a finite phase difference j0, which is proportional to
the magnitude of the spin-orbit interaction and the exchange
energy in the magnetic metal. As a result, a direct coupling is
realized between the magnetic moment and the Josephson
current, and the corresponding JJs are called j0 junctions.
The thickness of the metal layer in such a junction determines
the magnitude of the phase shift, which may be of interest for
superconducting spintronics. It should be noted that there is a
difference with the case of a JJ with a dominant second
harmonic, where there is also a phase shift through the
junction at a negative shift of the second harmonic, but
there is no coupling between the magnetic exchange field
and the superconducting phase. The anomalous properties of
the j0 junction are associated with the features of the
superconducting proximity effect in a magnetic metal with
broken inversion symmetry.

The special nature of the electronic spectrum in materials
with broken inversion symmetry arises due to Rashba-type
spin-orbit coupling [68, 69] a�r� p�n, where n is the unit
vector along the gradient of the asymmetric potential, and
the parameter a describes its value. This type of interaction,
taking into account the exchange field h acting on the electron
spin, leads to the following GL free energy density [70, 71]:

F � ajcj2 � gjDcj2 � b

2
jcj4 ÿ en

�
h� ÿc�Dc�� � c��Dc��� ;

�1�
where c is the superconducting order parameter, Di �
ÿiqi ÿ 2eAi, a and b are the GL coefficients, and g is the
gyromagnetic ratio. The special nature of superconductivity
in a material with broken inversion symmetry is described by
the last term in (1) with the coefficient e � a.

Neglecting the orbital effect in geometry, where the n
and h vectors are mutually perpendicular and perpendicu-
lar to the current direction (the x-axis, see Fig. 1), and also
neglecting the nonlinear terms, the GL equation is reduced
to the form [6]

acÿ g
q2c
qx 2
� 2ieh

qc
qx
� 0 ; �2�

whose solution has the form

c � A exp �q1x� � B exp �q2x� ; q1; 2 � i~e�
��������������
a

g
ÿ ~e 2

r
;

where ~e � eh=g. The expression for the superconducting
current in the limit of a long junction L

������������������
a=gÿ ~e 2

p
4 1 is

written as

j � 4egjDj2
��������������
a

g
ÿ ~e 2

r
exp

�
ÿ 2

��������������
a

g
ÿ ~e 2

r
L

�
sin �j� 2~eL� ; �3�

i.e., j0 � 2~eL.
A similar dependence can be obtained up to jDj2 at

temperatures close to the critical one Tc if we use the
expression for the superconducting current in terms of the
anomalous Green's functions fi j�v; r�:

j � ÿieN�0�pTc

X
o



vx
�
f12�v; x� f �12 �v; x�

� f21�v; x� f �21 �v; x�
��
; �4�

where N�0� is the density of states at the Fermi level.
Anomalous Green's functions fi j�v; r� are determined from
the Eilenberger equations [72]. Under the condition L > v=h,
the main contribution to (4) comes from directions with
jvxj9 v and the formula for the current takes the simple form

j�j� � j0
cos
ÿ
4jhjL=v� p=4

�����������������
4jhjL=vp sin

�
j� 4ahL

v 2

�
: �5�

Here,

j0 � eN�0� vD
2

Tc

�
p
2

�3=2

;

and, in the absence of spin-orbit interaction �a � 0�, this
expression coincides with the corresponding expression for
the 2D SFS junction obtained in [7]. Comparing (5) with the
formula for j�j� derived from the Ginzburg±Landau theory
(3), we can see that the phase shiftj0 � 4ahL=v 2 in both cases
is proportional to the spin-orbit interaction and the product
hL. On the other hand, the critical current in (5) oscillates with
L, changing its sign. This is typical for SFS junctions with a
strong exchange field h4Tc [3]. Such oscillations are absent
in the GL approximation (3), since it is valid for h9Tc;
otherwise, the gradient terms in (1) change signs and it
becomes necessary to take higher derivatives into account.
Such a modified GL functional indeed qualitatively describes
the oscillations of the superconducting order parameter
under the proximity effect in the S/F structure [3].

As shown in [6], in the 1D weak coupling model (single-
channel approximation), the current±phase dependence is
obtained similarly to (5):

j�j� � eN�0� pvD
2

2Tc
sin

�
j� 4ahL

v 2

�
cos

�
4jhjL
v

�
: �6�

Above are the results in the pure limit (ballistic mode). In
diffusion mode, a convenient approach is provided by the
Usadel equations [73] for Green's functions integrated over
the Fermi surface: Fi j�r� � h fi j�v; r�i. The superconducting
current in this case can also be represented as j �j� �
j0 sin �j� j0�. Consequently, j0 junction formation based
on materials with broken inversion symmetry is a fairly
common phenomenon that can be observed in both `clean'
and `dirty' limits.

S S

x

D exp �ÿij=2�D exp �ij=2�

y

ÿL �L

z

h

n

Figure 1. Geometry of a Josephson junction with a metal with broken

inversion symmetry as a weak link. Exchange field is directed along

the z-axis, and the gradient of the asymmetric potential is directed along

the y-axis. Total length of the weak link is 2L. (From [6].)
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2.2 Controlling the magnetic moment
of a ferromagnet using the superconducting current
In the j0 Josephson junction, the phase shift is proportional
to the magnetic moment perpendicular to the gradient of the
asymmetric spin-orbit potential [6], whichmakes it possible to
control the internal magnetic moment of the ferromagnetic
layer using the superconducting phase difference, that is, the
Josephson current. The spin dynamics of the SFS junction has
been intensively studied recently, demonstrating a number of
unique properties. We note the pioneering research [74], in
which the narrowing of the ferromagnetic resonance below
the superconducting transition temperature in Nb=Ni80Fe20
was observed. The dynamics of a single spin in the Josephson
junction was studied theoretically in papers [75±78], the
dynamically induced triplet proximity effect in the SFS was
demonstrated in [79, 80], and the properties of junctions with
several ferromagnetic layers with different magnetizations
were discussed in [31, 32].

Investigations of the SFS j0 junction in the low
frequency regime �hoJ 5Tc (where oJ � 2eV=�h is the Joseph-
son frequency) [7] using a quasi-static approach to the
superconducting subsystem, in contrast to the case analyzed
in [79, 80], led to the conclusion that the superconducting
current can produce a strong orientational effect on the
magnetic moment of the ferromagnetic layer. More interest-
ingly, an alternating Josephson current, when there is DC
voltage V at the j0 junction, causes magnetic precession,
which can be controlled by the appearance of higher
harmonics in the CPR, as well as DC components in the
superconducting current. In certain regimes, a complete
magnetization reversal can be observed, and in the case of a
strong coupling between the magnetic and superconducting
subsystems, complex nonlinear dynamic regimes arise [7].

To demonstrate the unusual properties of the j0 junction,
the authors in Ref. [7] consider the case of magnetic
anisotropy of an easy-axis ferromagnet (Fig. 2). Both the
easy axis and the gradient of the asymmetric spin-orbit
potential n are directed along the z-axis. It was assumed that
suitable materials for the intermediate layer F could be MnSi
or FeGe. In these systems, the absence of an inversion center
is associated with the crystal structure, but the origin of
symmetry with broken inversion can be due to external
factors, as in the case near the surface of a thin F film. We
note that study [7] did not take into account the magnetic
induction, which in the xy plane is negligibly small for a thin
layer F, while the demagnetization coefficient cancels internal
induction along the z-axis �N � 1�. The coupling between the
subsystems F and S, due to the orbital effect, was studied in
Ref. [81] and, as it turned out, is very weak and quadratic in
themagnetic momentMwhen the flowM through the layer F
is small compared to the flux quantum F0 � h=2e.

For I < Ic, the total energy of the j0 junction is given by
[82]

Etot � ÿF0

2p
jI� Es�j;j0� � EM�j0� ; �7�

where the superconducting part is

Es�j;j0� � EJ

�
1ÿ cos �jÿ j0�

�
: �8�

In the ballistic limit, an estimate of the character-
istic Josephson energy EJ � F0Ic=2p leads to F0Ic=S �
Tck

2
F sin `=` with ` � 4hL=�hvF, where S, L, and h are the

section, length, and exchange field in layer F, respectively [3].

The phase shift is defined as

j0 � `
vSO
vF

My

M0
; �9�

where the parameter vSO=vF characterizes the relative
intensity of the spin-orbit interaction [6]. It is assumed, that
vSO=vF � 0:1.

The contribution of the magnetic energy is reduced to the
anisotropy energy

EM � ÿKV
2

�
Mz

M0

�2

; �10�

where K is the anisotropy constant and V is the volume of the
F-layer.

Naturally, one can expect that the most interesting
situation corresponds to the case when the magnetic aniso-
tropy energy does not greatly exceed the Josephson energy.
Measurements [83] on permalloy with very weak anisotropy
imply K � 4� 10ÿ5 K �Aÿ3. On the other hand, the typical
value ofL in an SFS junction isL � 10 and sin `=` � 1. Then,
the ratio of the Josephson energy to the magnetic energy will
be EJ=EM � 100 at Tc � 10 K. Naturally, in a more realistic
case of stronger anisotropy, this ratio will be smaller, but one
can expect a wide variety of regimes from EJ=EM 5 1 to
EJ=EM 4 1.

The shift of the superconducting phase difference j and
the precession of the magnetic momentMy �M0 sin y (where
y is the angle between the z-axis and the M direction) are
determined from the minimum energy condition qjEtot �
qj0

Etot � 0, which results in

sin y � I

Ic
G ; G � EJ

KV `
vSO
vF

: �11�

This means that the superconducting current forces the
rotation of the magnetic moment My in the plane yz.
Therefore, for small angles, the dependence y�I� is linear. In
principle, the G parameter can be greater than one. In this
case, if the condition I=Ic 5 1=G is satisfied, the magnetic
moment will be oriented along the y-axis. Therefore, the
application of DC superconducting current changes the
direction of magnetization, while applying an AC super-
conducting current to a j0 junction can generate magnetic
moment precession.

It was noted in [7] that, when the spin-orbit potential
gradient is directed along y (perpendicular to the easy axis z),

S S

F x

Mz

z, n

y

My�t�

Figure 2.Geometry of the consideredj0 junction. Ferromagnetic easy axis

is directed along the z-axis, which is also the direction of the spin-orbit

potential gradient. Magnetization of the My component is related to the

Josephson current through the phase shift j0 / n �M� HC�, where C is

the superconducting order parameter (HC is directed along the x-axis).

(From [7].)
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then j0 � `�vSO=vF� cos y. The total energy (7) has two
minima y � �0; p�, and the degeneracy between them is lifted
when a current is applied. However, an energy barrier exists
for a transition from one minimum to another. This barrier
can disappear if G > 1 and the current is large enough,
I > Ic=G. In this mode, the superconducting current will
cause the magnetization to switch between one stable
configuration, y � 0, and another, y � p. This corresponds
to switching between the �j0 and ÿj0 states. Reading the
state of the j0 junction can be easily done if it is part of some
SQUID-like circuit (j0 junction causes the diffraction pattern
to shift by j0) [7].

The JJ in the given voltagemode and, accordingly, the AC
Josephson effect provide an ideal tool for studying magnetic
dynamics in thej0 junction. In this case, the superconducting
phase changes with time as j�t� � oJt. With �hoJ 5Tc, you
can use a static value for JJ energy (7), considering j�t� to be
an external potential. In Josephson junctions with a thin
ferromagnetic layer, the superconducting phase difference
and the F-layer magnetization are two coupled dynamic
variables. The system of equations describing the dynamics
of these variables is formed from the Landau±Lifshitz±
Gilbert (LLG) [84] equation and the Josephson relations for
the phase difference and current. In particular, the dynamics
of the magnetization of the system is described by the LLG
equation with an effective field depending on the phase
difference:

dM

dt
� ÿgM�Heff � a

M0

�
M� dM

dt

�
;

�12�
Heff � K

M0

�
Gr sin

�
jÿ r

My

M0

�
ŷ�Mz

M0
ẑ

�
;

where g is the gyromagnetic ratio, a is the phenomenolo-
gical dissipation parameter, j is the phase difference
between superconductors along the junction, M0 � jMj,
G � EJ=�KV�, K is the anisotropy constant, V is the volume
of the F-layer, r � lvSO=vF is the spin-orbit interaction
parameter, vSO=vF characterizes the intensity of spin-orbit
interaction, vF is the Fermi velocity, l � 4hL=��hvF�, L is
the length of the F layer, and h denotes the exchange field
in the ferromagnetic layer. The complete system of
equations used in numerical calculations, in normalized
units, takes the form

_mx � oF

1� a 2

n
ÿmymz � Grmz sin �jÿ rmy�

ÿ a
�
mxm

2
z � Grmxmy sin �jÿ rmy�

�o
;

_my � oF

1� a 2

n
mxmz

ÿ a
�
mym

2
z ÿ Gr�m 2

z �m 2
x � sin �jÿ rmy�

�o
; �13�

_mz � oF

1� a 2

n
ÿ Grmx sin �jÿ rmy�

ÿ a
�
Grmymz sin �jÿ rmy� ÿmz�m 2

x �m 2
y �
�o
;

dV

dt
� 1

bc

�
Iÿ V� r

dmy

dt
ÿ sin �jÿ rmy�

�
;

dj
dt
� V ;

where bc � 2eIcCR
2=�h is the McCumber parameter, mi �

Mi=M0 for i � x; y; z , and oF � OF=oc with ferromagnetic
resonance frequency OF � gK=M0 and characteristic fre-

quency oc � 2eRIc=�h. Here, time is normalized to oÿ1c ,
external current I is normalized to Ic, and voltage V, to
Vc � IcR.

Usually, this system of equations is solved numerically by
the Runge±Kutta or Gauss±Legendre methods, as a result of
which mi�t�, V�t�, and j�t� are determined as functions of
time and external current I. After the averaging procedure
[85, 86], the CVC is calculated for fixed system parameters
[35]. Below are a number of results of modeling the properties
of the j0 junction based on system of equations (13).

2.3 Manifestation of ferromagnetic resonance
in the current±voltage characteristic of the u0 junction
Ferromagnetic resonance (FMR) is one of the main phenom-
ena that occurs in the SFS structure when the Josephson
frequency approaches that of the ferromagnet eigenmode. To
demonstrate the manifestation of FMR in the j0 junction
along the CVC, in Refs [35, 87] the maximum and minimum
values of the magnetization components were determined, in
particular,mmax

y andmmin
y , calculated at each value of the bias

current. FMR also appears in the dependence of the average
superconducting current as a function of bias current. The
manifestation of FMR is shown in Fig. 3, which shows the
CVC of the j0 Josephson junction, which demonstrates
specific behavior in the vicinity where the Josephson
frequency coincides with the ferromagnetic one, i.e., in the
region of FMR [87]. The dependence of the average value of
the superconducting current on the value of the bias current
also demonstrates a manifestation of FMR in the form of a
maximum at I � 0:6 (see Fig. 3b). FMR manifests itself
clearly in the dependence of the maximum value of the
oscillation amplitude my on voltage, which is shown in the
inset to Fig. 3b. The above dependences reflect the mutual
influence of the Josephson current and magnetization
precession in the ferromagnetic layer in the j0 junction.

Depending on the magnitude of the spin-orbit coupling,
the manifestation of FMR in the CVC can be quite
significant, as shown in Fig. 4, which shows parts of the
CVC of the j0 junction for G � 0:1, a � 0:1, oF � 0:5 for
different values of the spin-orbit interaction parameter.

Based on the presented results, it can be noted that a
change in the parameters of the Josephson junction and the
ferromagnetic layer in a system with damping can lead to a
fairly strong coupling between the superconducting current
and magnetization. The contribution of the superconducting
DC current manifests itself here as a deviation of the CVC
from a linear dependence in the resonant region. Note that
the observed feature in the CVC in the resonance region
actually reflects the appearance of a resonant branch, which is
emphasized by the appearance of the corresponding hyster-
esis at r � 0:7 and 1. With an increase in the spin-orbit
coupling parameter, the rate of increase in the amplitude of
the magnetic moment increases, and, accordingly, the length
of the resonant branch in the CVC increases. The mechanism
of the appearance of this branch is similar to the mechanism
in shunted Josephson junctions at parallel resonance [88, 89],
as well as the appearance of a resonant branch in the CVCof a
two-terminal SQUID [90].

The influence of the spin-orbit interaction on the resonant
character of the dependence of mmax

y on voltage, shown in
Fig. 5 for various values of the spin-orbit interaction
parameter, can serve as a theoretical justification for devel-
oping an experimental method to determine the intensity of
spin-orbit coupling in noncentrosymmetric materials.
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Note that, in the equation of the RCSJ (Resistively
Capacitance Shunted Junction) model (the fourth equation
in system (13)), which describes the dynamics of the j0

junction, the phase difference j is replaced by jÿ rj0 to
preserve the gauge invariance. Taking it into account leads to
an additional term r dmy=dt in the equation of the RCSJ
model, which was neglected in [7, 35]. Figure 5b shows the
results without this term. As can be seen, its contribution does
not change the qualitative picture of the described phenom-
enon for small values of the spin-orbit coupling parameter r.
Up to values of the order of r � 0:5, the dependences ofmmax

y

on V practically coincide in both cases. Figure 5c compares
the results for r � 0:3.

The dynamics of the system can be studied analytically in
the �hoJ 5Tc approximation, i.e., when the energy of the
Josephson junction and the magnitude of the superconduct-
ing current are determined by a fixed Josephson frequencyoJ

[7, 87], also neglecting the displacement current. In this case,
the Josephson phase j can be replaced by oJt, which means
the choice of one point on the CVC of the junction. At a fixed

voltage in the case without dissipation �a � 0� in the `weak
coupling' mode G5 1 (i.e., the Josephson energy EJ is small
compared to the magnetic energy EM), the last two equations
in (13) lead to a linear time dependence of the phase difference
j � Vt (Josephson junction with voltage). At the chosen
normalization V � oJ, so j � oJt. If the other components
satisfy the conditions mx;my 5 1, then equations (13) can be
linearized:

_mx � oF

�ÿmy � Gr sin �oJt�
�
;

_my � oFmx

�
�14�

and the corresponding solutions are

mx � GroJoF cos �oJt�
o2

F ÿ o2
J

; my � Gro2
F sin �oJt�

o2
F ÿ o2

J

: �15�

Thus, the magnetic moment precesses around the z-axis. The
precessing magnetic moment affects the j0 junction current:

I

Ic
� sin �oJtÿ rmy� � sin

�
oJtÿ r

Gro2
F sin �oJt�

o2
F ÿ o2

J

�
� sin �oJt� � Gr 2

2

o2
F

o2
J ÿ o2

F

sin �2oJt� ; �16�

where it is taken into account that Gr 2o2
F=�o2

F ÿ o2
J�5 1.

Thus, in addition to the oscillations of the first harmonic, the
current contains contributions from higher harmonics. The
amplitude of the harmonics increases near resonance and
changes sign when oJ � oF. Thus, monitoring the second
harmonic of the current oscillations will make it possible to
monitor the dynamics of the magnetic system.

An important role in the dynamics of the system under
consideration is played by dissipation, the inclusion of which
leads to a constant contribution to the Josephson current.
Near the resonance oJ � oF, the linearization conditions
leading to equations (15) are violated, and allowance for
dissipation becomes necessary. In this case [7], the lineariza-
tion of the LLG equation in system (13), taking into account
mz � 1 and neglecting the quadratic terms mx and my,
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leads to

_mx � oF

1� a 2

�ÿmy � Gr sin �oJt� ÿ amx

�
;

_my � oF

1� a 2

�
mx ÿ a

�
my ÿ Gr sin �oJt�

�	
:

8><>: �17�

The corresponding expression for my in the presence of
dissipation takes the form

my�t� � o� ÿ oÿ
r

sin �oJt� ÿ a� � aÿ
r

cos �oJt� ; �18�

where

o� � Gr 2

2oF

oJ � oF

O�
; a� � Gr 2

2oF

aoJ

O�
; �19�

O� � �oJ � oF�2 � �aoJ�2
o2

F

:

Thus, my exhibits resonance with dissipation when the
Josephson frequency is tuned to the ferromagnetic frequency
�oJ ! oF�. In addition, dissipation results in phase oscilla-
tions my�t� (term proportional to cos �oJt� in equation (18)).
As a result, the superconducting current

I�t� � Ic sin �oJt� ÿ Ic
o� ÿ oÿ

2
sin �2oJt�

� Ic
a� � aÿ

2
cos �2oJt� � I0�a� �20�

contains a time independent (DC) component:

I0�a� � aGr 2oJ

4oF

�
1

Oÿ
� 1

O�

�
: �21�

The presence of this DC contribution shows that the Gilbert
damping plays an important role in the dynamics of the
j0 junction. This contribution depends on the value of the
spin-orbit interaction r and the ratio of the Josephson energy
to the magnetic one G, and is absent at a � 0.

On the other hand, the presence of a given constant
Josephson current at a constant voltage V applied to the
junctionmeans the presence of a dissipative regime, which can
be easily detected experimentally. The appearance of a direct
current peak near resonance resembles the appearance of a
Shapiro step in the Josephson junctions in an external
electromagnetic field. Note that the presence of the second
harmonic in I�t� in Eqn (20) should also lead to half-integer
Shapiro steps on the CVC of j0 junctions [7, 91].

Figure 6 shows the dependence of the maximum ampli-
tude mmax

y on voltage, calculated on the basis of system of
equations (13) and the analytical dependence my�oJ� accord-
ing to formula (18), in addition to the dependence of the
superconducting current Is on voltage, calculated on the basis
of system of equations (13) and the analytical dependence
I0�oJ� according to formula (21). As can be seen, the
numerical and analytical results are in good agreement with
each other. We emphasize that numerical calculations do not
use any approximations, as opposed to analytical ones (where
the weak coupling mode is used and the case mx;my 5 1 is
considered). This manifests itself in characteristic features at
V � 0:25 and V � 0:16 in the numerically simulated depen-
dence mmax

y �V�, which reflects the occurrence of ferromag-
netic resonance harmonics at oJ � oF=2 and oJ � oF=3.

It is expected that the impact of external microwave
radiation with frequency oR on the j0 junction will lead to a
number of new interesting phenomena. It was noted in [7]
that, in addition to integer Shapiro steps at oJ � noR, half-
integer steps will appear in the CVC. Second, the microwave
magnetic field can also generate an additional magnetic
precession with a frequency of oR. Depending on the
parameters of the j0 junction and the microwave radiation
amplitude, the main precession mechanism can be associated
either with the Josephson current or with microwave radia-
tion. In the latter case, the spin-orbit coupling can signifi-
cantly affect the width of the Shapiro steps. Therefore, one
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can expect its sharp increase at frequencies near the ferro-
magnetic resonance. In the event that the influence of
radiation and Josephson current on the precession of the
magnetic moment are comparable, a rather complex regime
can be observed. In the case of a ferromagnet with weak in-
plane anisotropy, the detailed dynamics of the magnetic
precession can change dramatically. Note that a detailed
study of these phenomena has not yet been carried out.

Of interest is the `strong coupling' limit G4 1 (but r5 1),
which can also be considered analytically [7]. In this case,
my � 0, and the solution of the LLG equations leads to

mx�t� � sin

�
G
o

ÿ
1ÿ cos �oJt�

��
;

mz�t� � cos

�
G
o

ÿ
1ÿ cos �oJt�

��
;

8>>><>>>: �22�

which are magnetization reversal equations; a complete flip
occurs at G=o > p=2. Strictly speaking, these solutions are
not exact oscillatory functions in the sense that mz�t� rotates
counterclockwise around the center of the sphere, and then

rotates and returns to the position mz�t � 0� � 1 clockwise
like a pendulum in a spherical potential.

2.4 Dynamics of magnetization along the current±voltage
characteristic of the u0 junction
One of the interesting results of numerical simulations of the
ferromagnet magnetic moment dynamics along the CVC of
the j0 junction is the discovery of a rather simple precession
of the magnetic moment in some current intervals, leading to
specific trajectories in the myÿmx, mzÿmx, and mzÿmy

planes [35]. In this case, the spin-orbit interaction exerts a
strong influence on the appearance of such intervals. The
transformation of the dependence mmax

y �V� in the region of
ferromagnetic resonance with a change in the spin-orbit
interaction parameter is shown in Fig. 7.

With an increase in parameter r, along with the appear-
ance of chaotic dynamics of the magnetization, regular
regions appear in the dependence mmax

y �V�, denoted as Ri in
Fig. 7d. These regions are characterized by specific trajec-
tories, such as an apple (b), sickle (d), mushroom (e), fish (g),
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and moon (h) in the myÿmx, mzÿmx, and mzÿmy planes
shown in Fig. 8 at different values of the bias current.

The transformation of trajectories with a change in the
bias current is extremely interesting, and its experimental
detection would contribute to the discovery of a new direction
in the study of the properties of the j0 junction. As already
noted, external electromagnetic radiation leads to a number
of new effects; for example, it can fix the type of structure in
the current range corresponding to the Shapiro step, and a
change in the radiation amplitude can cause certain trans-
formations of the magnetic precession, in particular, the
transformation of a left mushroom into a right one [35].

2.5 Reorientation of the easy axis of a ferromagnet
in the u0 junction
A particle moving simultaneously in a constant field and in a
field oscillating at a high frequency exhibits unusual behavior
[92, 93]. In particular, in a pendulum with a vibrating
suspension point, an external sinusoidal force can invert the
stability position of the pendulum. Kapitza gave an analytical
explanation of the causes of stability by introducing fast and
slowmotion variables. By averaging the classical equations of
motion over fast oscillations, Kapitza found that the upper
position of the pendulum becomes stable at sufficiently large
perturbation amplitudes, while the lower one turns out to be
unstable. This pioneering study marked the beginning of the
field of vibrational mechanics, while the Kapitza method is
used to describe periodic processes in various physical
systems (see [94, 95] and references therein). In nonlinear
control theory, the Kapitza pendulum is used as an example
of a parametric oscillator that demonstrates the concept of
dynamic stabilization.

The properties of a mechanical pendulum with an
oscillating suspension point, in particular, the inversion of

the stability position of the pendulum, the stabilization of
new equilibrium positions [92], manifest themselves in the
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j0 Josephson junction, in which the reorientation of the easy
axis of the ferromagnet occurs by changing the critical current
of the Josephson junction and the spin-orbit interaction in the
ferromagnet [96]. An example of such behavior is presented in
Fig. 9, where it is shown that the magnetization component
mz in the j0 junction, which is an easy axis, with the
corresponding values of the parameters indicated in the
figure, vanishes, while my becomes equal to one. The
influence of parameter G, which determines the ratio of the
Josephson energy to the magnetic one in the j0 junction, is
shown in Fig. 9c. As the value of G increases, the mean value
of my, relative to which oscillations of a given magnetization
component occur, approaches unity.

Since the magnitude of the magnetization depends on the
magnitude of the spin-orbit interaction, the results obtained
may contribute to the development of new methods for
determining the magnitude of the spin-orbit interaction in
ferromagnetic metals.

2.6 Quantum tunneling of the magnetic moment in the
superconductor/ferromagnet/superconductor u0 junction
The use of the j0 Josephson junction can make it possible to
detect macroscopic quantum tunneling and quantum oscilla-
tions of the magnetic moment by measuring the alternating
voltage at the junction, and the rate of magnetic tunneling in
the j0 junction can be controlled by a superconducting
current [8]. Below, following [8, 97], we discuss the main
results leading to this conclusion.

At I � 0, the equilibrium state of the j0 junction
corresponds to two opposite orientations M (for example,
along the y-axis ) with an energy barrier between them equal
to U0 � �1=2�KkV. A decrease in the barrier value to zero
under the action of a current can lead to switching between
these states [6, 7]. Of interest is quantum switching M at a
finite barrier.

The equations of motion for j andM in this case have the
form

C

�
F0

2p

�2

�j� 1

R

�
F0

2p

�2

_j � ÿ qU
qj

; �23�

dM

dt
� gM�Heff � a

M0

�
M� dM

dt

�
; �24�

where C and R are the capacitance and resistance of the
junction, respectively, and

Heff � ÿ 1

V

qU
qM

�25�

is the effective field acting on the magnetic moment. To
implement quantum tunneling, the junction must be suffi-
ciently small; therefore, the capacitance can be neglected.

Quantum tunneling M is implemented as an instanton
solution of equations (23) and (24), which at I � 0 for M �
M0�sin y cosf; sin y sinf; cos y� has the form [97±99]

sinf � sinh �o0t���������������������������������
l� cosh2 �o0t�

q ; cos y �
���
l
p

cosf������������������������
1� l sin2 f

q ; �26�

where o0 � �ok�ok � o?��1=2, l � ok=o?, ok;? � 2gKk;?=
�M0V�. The instanton switches magnetizationM � ÿM0ŷ at
t � ÿ1 toM �M0ŷ at t � �1.

The interaction of the magnetic moment with the super-
conducting order parameter renormalizes the level splitting
upon tunneling,

Deff �
���������������������������������
D0�D0 ÿ 2EJj 2

0 �
q

; �27�

where D0 is the splitting at I � 0, and the decoherence rate
provided by the finite junction resistance R is given by

G � j 2
0

�hR

�
F0

2p

�2 Deff

�h
: �28�

At 2EJj 2
0 < D0 in the stateM with orientation along the

y-axis, oscillations My and j occur:

My �M0 exp �ÿGt� cos
�
Deff

�h
t

�
;

�29�

j � j0 exp �ÿGt� cos
�
Deff

�h
t

�
:

Allowance for damping leads to a decrease in the intensity
of quantum voltage oscillations at the j0 junction with the
corresponding quality factor

Q �
�
2p
F0

�2�
�hR

j 2
0

�
: �30�

For j0 � 0:1, the estimates give Q � 0:1R�O�, which is a
fairly high value for a dielectric ferromagnetic layer.

Oscillations j lead to voltage oscillations at the junction:

V � �h

2e

dj
dt
� ÿj0

Deff

2e
exp �ÿGt� sin

�
Deff

�h
t

�
: �31�

At j0 � 0:1 and Deff � 0:1 K, the initial �t � 0� amplitude of
the alternating voltage will be of the order of 1 mV, and the
frequency of Deff=�2p�h� will be of the order of 1 GHz.

With a strong enough interaction,

2EJj 2
0 > D0 ; �32�

tunneling is frozen: Deff � 0.
Thus, the following main conclusions can be drawn [8].

First, the interaction between the magnetic moment and the
superconducting order parameter in the j0 junction renor-
malizes the tunneling splitting in a way that can be accurately
calculated and measured. The second point is that the
j0 Josephson junction makes it possible to detect quantum
tunneling and quantum oscillations of the magnetic moment
by measuring the voltage across the junction. The third point
is that thej0 junction allows us to control the rate ofmagnetic
tunneling of the superconducting current through the junc-
tion. Note that the exact form of the spin-orbit interaction
(Rashba, Dresselhaus, or others) is important for the specific
dependence j0�M�; the rest is determined by the symmetry of
the magnetic anisotropy (crystal field).

The foregoing suggests an alternative approach to detect-
ing coherent quantum spin oscillations compared to probing
Rabi oscillations using the electron spin resonance method
[80]. Such experiments are rather difficult, as they are carried
out with small samples at low temperatures in order to freeze
the superparamagnetic behavior. However, magnetic tunnel-
ing in a nanoparticle was studied on the basis of JJ at
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millikelvin temperatures [100]. In the j0 junction, the coupl-
ing of the magnetic moment to the Josephson dynamics is
strong enough that it provides an interesting new tool for
studying magnetic tunneling.

3. Manifestations of the anomalous Josephson
effect in various structures

3.1 u0 junction in the presence of moving domain walls
Another type of anomalous phase shift occurs in a super-
conductor/ferromagnet/superconductor JJ (Fig. 10) in the
presence of moving domain walls [101]. Such systems, in the
presence of magnetization dynamics, become dissipative in
nature and, in principle, cannot support a superconducting
current of any magnitude due to the voltage generated by the
magnetization precession. The situation is analogous to
type II superconductors, in which the mixed state is resistive,
since, at an arbitrarily small value of the electric current,
vortex motion occurs, which generates an electric field,
leading to resistance and ohmic losses. The precession of
magnetization in the SFS structure, created by supercurrent,
necessarily generates an electric field and ohmic losses, similar
to the motion of Abrikosov vortices (flux-flow regime). The
difference is that, in the case of a magnetic system, the
dynamics of the magnetic order parameter is responsible for
the emerging electric field and ohmic losses in the super-
conducting state due to Gilbert dissipation.

In [101], the SFS junction was considered, in which the
coupled dynamics of the magnetizationM and the Josephson
phase difference j are determined by the system of equations

j � jc sin
ÿ
jÿ j0fMg

�� _jÿ _j0fMg
2eRS

; �33�

qM
qt
� ÿgM�Heff � a

M
M� qM

qt
� T : �34�

Equation (33) represents a generalized RSJ (Resistively
Shunted Junction) model with a nonequilibrium current±
phase relation with an anomalous phase shift j0fMg
determined by the spin-orbit interaction and magnetic
texture. The LLG equation (34) contains the spin torque
T � �g=M��JsHH�M� �2g=M��M� Bj�Js; j due to the current,
where the first term is due to the spin current Js and the
second term is due to the spin-orbit interaction determined by
the spin vector Bj � �Bxj;Byj;Bzj� corresponding to the jth
spatial component of the spin-orbit interaction tensor Bi j.

The anomalous phase shift j0fMg is expressed as

j0fMg � ÿ2
� d=2

ÿd=2
Zx�x; t� dx ; �35�

where Z � Zm � Z SO.
The term Z SO

j � �MiBi j�=M is due to the spin-orbit
interaction, with Bi j describing a linear spin-orbit coupling
of the general form ĤSO� siBi j pj=m. It is assumed that
ĤSO� �BR=m��sx py ÿ sy px�. Zm is nonzero only for a
noncoplanar magnetic structure, and, in the case under
consideration, Zm � 0.

Equation (33) is quite general and is applicable to a wide
class of Josephson systems that exhibit an anomalous phase
shift. In the case of a N�eel domain wall andRashba spin-orbit
interaction, Z SO

x � pbMy=�2dwM�, and the anomalous phase
shift is determined by the expression

j0�t� � ÿ
2pbx0�t�

dw
: �36�

The results obtained are valid for jd=2� x0j4 dw, i.e., when
the domain wall is separated from the interface between the
superconductor and the ferromagnet.

Figure 11 shows the CVC at rest and stationary moving
domain wall. In fact,V�t�was determined by the derivative of
_j0 � v�t�.

3.2 Anomalous effect in a Josephson junction
with an antiferromagnetic layer
The anomalous Josephson effect can arise in S/AF/S
structures with an antiferromagnet in the presence of Rashba
spin-orbit interaction [102]. A diagram of such a system is
shown in Fig. 12.
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Figure 10. (Color online.) (a) Superconducting electrodes forming a

Josephson junction are placed on top of a ferromagnetic strip. Position

of the domain wall on the strip can be controlled by normal current jn.

(b) Simplified model of the Josephson junction region. N�eel-type domain

wall is present in the intermediate layer. Josephson superconducting
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In [102], junctions were considered both with an uncom-
pensated magnetic moment (in the figure, the AA junction, in
which there are A-type atoms at both interfaces with the
superconductor) and with a fully compensated moment, the
AB junction. It was shown that the presence of an uncompen-
sated magnetic moment at the S/AF boundary leads to an
anomalous phase shift, which strongly depends on the
magnitude of the spin-orbit coupling. One of the most
interesting results is the strong dependence of the anomalous
phase shift on the orientation of the N�eel vector with respect
to the S/AF interface. The uncompensated magnetic moment
at the interface does not require the expenditure of anti-
ferromagnetic exchange energy, in contrast to the uncompen-
sated moment in the bulk of the antiferromagnet. In this
regard, by analogy with ferromagnetic systems [101], the
presence of an anomalous phase shift in Josephson systems
makes it possible to detect electrically and to control the
dynamics of the N�eel vector by a superconducting current.

The dependence of the anomalous phase shift on the
magnitude of the local magnetizationm, presented in Fig. 13,
shows that, asm increases, the system transitions from state 0
to state p, and the transition occurs through a wide region of
intermediate states j0. It can also be seen that j0 is a strongly
nonlinear function of m, which contrasts sharply with the
available theoretical and experimental results on the anom-
alous phase shift in Josephson junctions with low-dimen-
sional ferromagnetic layers or in an in-plane magnetic field
in the presence of Rashba spin-orbit interaction [6, 26, 28,
29]. This is also a direct consequence of the fact that, for
antiferromagnets, the manifestation of the magnetoelectric
effect is determined not by the magnitude of the sublattice
magnetization m but by the uncompensated magnetic
moment, which is rather small and can lead to large values
of the anomalous phase only when the system is close to the
0ÿp transition. Here, we also see the ambiguous behavior of
the anomalous phase shift with stable and metastable
branches.

The anomalous phase shift exhibits a strong dependence
on the angle a between the magnetization of the A-site m and

the boundary. Figure 14 shows the phase shiftj0 as a function
of themz-component of the magnetization at siteA. The N�eel
vector rotates in the plane x; z. When the N�eel vector
component along the boundary vanishes, j0 � 0. The nature
of the dependence of the anomalous phase shift on the
orientation of the N�eel vector is dictated by the Lifshitz-type
term: the symmetry of the tensor w a

i is determined by the
symmetry underlying the spin-orbit coupling. In the consid-
ered case of Rashba spin-orbit interaction, the only nonzero
elements of w a

i are w z
x � ÿw x

z . As a result, the anomalous
phase shift, which is the phase difference along the x-axis, can
only be associated with mz, i.e., the anomalous phase shift is
proportional to mz, at least for small mz, when the linear
approximation is performed. In principle, this dependence of
the anomalous phase shift on the orientation of the N�eel
vector opens up a new direction for studying the prospects for
controlling the N�eel vector using a superconducting current.

3.3 u0 junction in multichannel transport systems
Systems with multiple conducting channels provide a unique
opportunity to design devices with tunable transport proper-
ties on the quantum length scale. One of the promising
implementations of such devices is based on localized
electronic states arising, for example, on the surface of a
topological insulator [103] or at the edges of graphene
nanoribbons [104] and various types of nanowires [105±107].
The physics of charge transfer through these states seems to
be extremely rich due to the strong spin-orbit coupling, the
large anisotropic g factor, and a number of other properties.
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Figure 12. (Color online.) S/AF/S junction, orientation (110). Unit cell of

an antiferromagnet containing two neighboring atoms belonging to

different sublattices is shown by a black rectangle. Basis vectors ex; z are

shown along with unit vectors a and b along the crystal axes. (From [102].)
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The physics of edge states associated with bulk superconduct-
ing banks [104, 105] makes it possible to create a new type of
Josephson devices with controlled current-phase dependences
[3, 6]. Here, favorable conditions arise for observing Major-
ana fermions [108].

In [109], the appearance of a one-dimensional j0 junction
was shown in the framework of the Bogoliubov±de Gennes
formalism for the case of a nonquadratic electronic spectrum
(it is sufficient to take into account nonquadratic corrections
to the spectrum near the bottom of the band). The authors
studied magnetotransport phenomena in a Josephson system
containing several conducting channels simulating edge states
localized, for example, on the surface of a single nanowire,
taking into account strong spin-orbit and Zeeman interac-
tions. This model, illustrated in Fig. 15, allows us to describe
both the orbital and spin mechanisms of the influence of the
magnetic field, as well as the nontrivial ground state of the
Josephson junction with a nonzero superconducting phase
difference. The Zeeman interaction creates spatial oscillations
of the wave function of the Cooper pair on the scale
�hvF=gmBH (similar to those observed in superconductor/
ferromagnet structures [3]), which lead to magnetic oscilla-
tions of the critical current with a characteristic period
�hvF=gmBL, where L is the channel length. The orbital effect
causes a standard phase enhancement of � 2pHS=F0 (F0 �
p�hc=jej is the flux quantum) in the electron wave function,
similar to that arising in the Aharonov±Bohm effect. Here, S
is the area bounded by a pair of interfering trajectories
projected onto a plane perpendicular to the magnetic field.
In this case, the interfering quantum-mechanical amplitudes
cause magnetic oscillations in the total transfer amplitude
with a period of 2F0=S. Andreev reflection at the boundaries
of superconductors can double the effective charge in the
oscillation period [110]. The authors of [109] showed that, in
the general case, the resulting critical current oscillates with
competing periods of 2F0=S and F0=S. This physical picture
is modified in the presence of the spin-orbit coupling, which is
responsible for the dependence of the Fermi velocity on the
spin projection and momentum direction. Such a specific
dependence creates a spontaneous Josephson phase differ-
ence [6, 11, 12] and can cause a significant renormalization of
the indicated oscillation periods.

The current±phase dependence was determined on the
basis of the following equation [111]:

I�j� � ÿ2e
X

e2 �0;1�

qe
qj

tanh

�
e
2T

�
; �37�

where, to calculate the energy of quasiparticle excitations e,
the Bogoliubov±de Gennes equation

Ĥ D̂
D̂y ÿĤ y

� �
u
v

� �
� e u

v

� �
�38�

was solved with the Hamiltonian of an insulated wire, which
in the absence of a magnetic field had the form

Ĥ � �x�p̂� ÿ m� ap̂ŝz
�
 Î� V̂�x� : �39�

Here, p̂ � ÿiqx is the x projection of the momentum, x�p� is
the energy of an electron in an insulated wire, and m is the
chemical potential. The term ap̂ŝz describes the Rashba spin-
orbit interaction arising due to inversion symmetry breaking
in the y direction [68], the operator Î is the 2� 2 identity
matrix in the channel subspace, and the potential V̂�x�
describes the scattering at the superconductor-nanowire
interface. The magnetic field is taken into account by the
Zeeman term gmBHŝz in (39) and by replacing p̂ with
p̂� jejAx=c with gauge Ax�y� � ÿHy.

For a short junction �eL=v�F 5 1�, only the intragap
Andreev states contribute to the Josephson current, which
leads to four positive intragap energy levels:

e � Dn

���� cos � j
2
ÿ �ÿ1�n pf

2
� gn mBHL

v�F

����� ; �40�

where n numbers the channels. As a result, the current-phase
dependence (37) at T4Dn takes the form

I �
X
n�1; 2

In sin
�
j� bnH� �ÿ1�npf

�
cos �gnH� : �41�

Here, In � jejD2
n=4T is the critical current of the nth channel at

H � 0, the magnetic flux f creates squid-like oscillations Ic,
the term cos �gnH�, which depends on the constants gn �
gn mBL�1=v�F � 1=vÿF �, describes the oscillatory dependence Ic
due to the Zeeman interaction, similar to the dependence in
the SFS structure [3]. The term bnH� gn mBLH�1=v�F ÿ 1=vÿF �
describes the formation of the j0 junction due to the spin-
orbit interaction [6].

3.4 Anomalous Josephson effect
in a diffuse ferromagnetic junction
In [48], the possibility of realizing AJE in diffuse supercon-
ductor/ferromagnet/superconductor junctions was studied. It
was shown that the conditions for observing this effect are a
noncoplanar distribution of the magnetization and violation
of the invariance of the superconducting current upon
inversion of the magnetization. This symmetry is inherent in
the widely used semiclassical approximation, and taking it
into account leads to the absence of an anomalous super-
conducting current. In diffuse systems, it can be eliminated if
the spin-dependent boundary conditions for the semiclassical
equations at the superconductor/ferromagnet interface are
taken into account. Using this procedure, the authors
determined the ideal experimental conditions for increasing
the anomalous Josephson current.

The anomalous current obtained in [48] demonstrates fast
oscillations, depending on the thickness of the ferromagnet.
These oscillations are the result of Fabry±Perot interference
of electron waves reflected at S/F and F/F interfaces.

In diffuse SFS structures used in experiments [56±59, 61,
112], scattering by impurities makes the directions of electron
propagation random; therefore, suppression of a rapidly
oscillating anomalous current can be expected. Semiclassical
studies of diffuse Josephson junctions with various non-
coplanar structures, including helical [62], magnetic vortices
[63], and skyrmions [64], have not shown AJE. On the
contrary, in studies devoted to diffuse systems with half-
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Figure 15. (Color online.) Model of a Josephson junction with a two-

channel nanowire in an external magnetic field. (From [109].)
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metallic elements [15, 50] and junctions between magnetic
superconductors with spin filters [54, 55], a finite anomalous
current is predicted.

It was shown in [48] that AJE can appear in any diffuse
SFS system with a noncoplanar magnetization texture under
fairly general conditions. Figure 16 shows typical non-
coplanar three-layer SFS systems leading to AJE. The reason
why anomalous currents were not detected in previous studies
on diffuse SFS systems is related to the additional symmetry
of the magnetization inversion I�j;M� � I�j;ÿM�, which
was taken into account in the semiclassical approximation
[72, 73] with respect to the original Hamiltonian [48].

3.5 u0 junction based on superconducting structures
with quantum dots
The Josephson effect provides a fundamental feature of
phase-coherent transport through mesoscopic samples with
time reversal symmetry [4].

In Ref. [113], the authors calculated the equilibrium
Josephson current through a multilevel quantum dot with
Rashba or Dresselhaus spin-orbit coupling. The critical
current can change radically with a change in the spin-orbit
coupling parameter, which, in an external magnetic field,
leads to oscillatory dependences on the Datta±Dass-type
coupling parameter.

A new impetus to the study of mesoscopic and nanoscale
Josephson junctions was given by the experimental demon-
stration of a gate-tunable Josephson current through junc-

tions with several electronic levels (quantum dots) in various
systems, in particular, in InAs-nanowires [114±116], carbon
nanotubes [117], and 2D electron gas in semiconductors [118,
119].

Mesoscopic systems based on ordinary s-wave super-
conductors form a new class of systems with spontaneously
broken symmetry with respect to time reversal and, therefore,
exhibit anomalous supercurrents. In [11], a long ballistic one-
dimensional Rashba quantum wire was studied, where Ia 6� 0
was determined by the Zeeman effect and the difference
between the velocities of electrons moving to the right and
to the left. The obtained value a and the value Ia / a 4 turned
out to be very small, practically unrealizable for the experi-
ment. The anomalous Josephson effect was investigated
by numerical simulation for a multichannel spin-polarized
quantum point contact [12]. In Ref. [36], the authors
calculated the Josephson current through a typical phase-
coherent mesoscopic system (arbitrary multilevel quantum
dot). Figure 17 shows the transfer of a Cooper pair through a
two-level quantum dot and indicates the contributions to the
matrix element during the forward and reverse tunneling
processes. It was found that the necessary conditions for
Ia 6� 0 are the presence of a spin-orbit coupling and a suitably
oriented Zeeman field. In addition, the quantum dot must be
a chiral conductor.

3.6 Anomalous Josephson effect
in semiconductor nanowires
The presence of a strong spin-orbit interaction in narrow-gap
InSb and InAs semiconductors [120±122], which makes it
possible to electrically control the spin, makes them natural
materials for the realization of the anomalous Josephson
effect [123].

For conduction electrons in direct-gap semiconductors,
the spin-orbit interaction is expressed as

HSO � l
�h
r
�
p� HHV�r�� ; �42�
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where V�r� is the external potential and r indicates the
electron spin s � r=2. For an external electric field E, the
replacement V�r� � eEz in expression (42) leads to the
Rashba interaction:

HSO � a
�h
�pysx ÿ pxsy� : �43�

Here, the coupling constant a � eEl is tunable by an electric
field or gate voltage.

The diagram of the Josephson junction and a brief
description of the model used in [9] are shown in Fig. 18,
and the results in the case of one impurity, in Fig. 19.

In [9], the anomalous Josephson effect was studied
numerically using the tight coupling model for a nanowire in
the case of a short junction in the presence of a magnetic field.
The energy levels En of the Andreev bound states were
calculated numerically as functions of the phase difference j
between the superconductors; the DC Josephson current was
estimated from the Andreev levels. I�ÿj� � ÿI�j� ratio
violation has been demonstrated. It was also shown that the
anomalous Josephson current and the direction dependence
of the critical current are qualitatively the same as in the
single scatterer model, and that the spin-dependent mixing
channel plays an important role in the presence of spin-
orbit interaction.

3.7 Change in the magnetic flux in a superconducting loop
containing a w Josephson junction
It is well known that the magnetic flux F through a super-
conducting loop placed in an external magnetic field is
quantized, i.e., is equal to an integer number of flux quanta
F � nF0. The possibility of transitions between states with
different vortex structures (different n) makes it possible to
implement multiply connected superconducting systems,

such as flux qubits [124, 125], ultrasensitive magnetic field
detectors [126], and Josephson generators of a sequence of
sharp uniformly distributed voltage pulses [127]. Flow
quantization also naturally implies the use of a superconduct-
ing loop as a topologically protected memory cell in fast
single-quantum logic devices (RSFQ) [128].

However, as the loop size R decreases at a fixed value of
the magnetic flux, the field value increases as Rÿ2, which
becomes a serious obstacle to the miniaturization of flux
devices. Switching without the use of an external magnetic
field can be implemented in a superconducting loop contain-
ing a Josephson junction with built-in magnetic order and/or
broken inversion symmetry [1, 3, 4, 129]. Unlike conventional
Josephson systems, such junctions maintain a nonzero phase
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Figure 18. (a) Schematic representation of the model. Pair potential is

induced in the nanowire due to the proximity effect. D�x� � D0 exp �ijL�
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electron be is reflected as hole ah due to Andreev reflection, while hole bh is
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difference in the ground state. The j0 junctions included in
the superconducting circuit play the role of a phase battery
in the creation of a spontaneous electric current, which
corresponds to the magnetic flux F � �j0=2p�F0 through
the circuit [58, 130, 131]. It can be expected that control of the
phase of the ground state of the j0 junction, for example, by
voltage or radiation, should effectively rearrange the mag-
netic flux and switch the system between states with a
different number of vortices without applying an external
magnetic field.

However, in most existing j0 junctions, the phase change
is limited �dj0 < 2p� and the corresponding flow F < F0

cannot change the number of vortices n through the super-
conducting circuit. Indeed, Josephson junctions with a ferro-
magnetic layer between superconducting banks support only
p-states with j0 � p [56, 57, 132], which allow the design of
environmentally decoupled qubits [58], but are not suitable
for changing the loop vorticity. A variable F-layer thickness
(see, for example, [133] and references therein), as well as the
presence of an Abrikosov vortex or a pair of current injectors
in one of the superconductors [134, 135], can lead to a second-
order phase transition with a spontaneous phase j0 varying
from zero to p (so dj0 < p). The situation looks more
promising for SFS compounds with broken inversion
symmetry, where the spin-orbit interaction creates an arbi-
trary spontaneous phase j0 / n sin y (y is the angle between
the exchange field in the ferromagnet and the direction of the
broken inversion symmetry), while the constant n charac-
terizes the intensity of the spin-orbit interaction and exchange
field [6, 12, 27, 36, 50]. However, the n parameter is usually
small, which limits the j0 variation.

It was shown in [136] that a c Josephson junction with a
half-metallic weak link integrated into a superconducting
circuit (Fig. 20) makes it possible to pump a magnetic flux
penetrating the loop.

In such a compound, the phase of the ground state c is
determined by the mutual orientation of the magnetic
moments in two ferromagnets (Fig. 21) surrounding the
half-metal. The precession of the magnetic moment in one
of the ferromagnets, controlled, for example, by microwave
radiation, leads to the accumulation of phase c and

subsequent switching between states with different numbers
of vortices. The proposed flux pumping mechanism does not
require the application of voltage or an external magnetic
field, which makes it possible to design electrically decoupled
memory cells for superconducting spintronics.

Appropriate selection of the driving frequency Omakes it
possible to realize controlled switching between different
stable states jn, an example of which between states n � 0
and n � 1 is shown in Fig. 22.

3.8 Thermal analogue of the anomalous Josephson effect
In Ref. [137], a thermal analogue of the anomalous Josephson
effect in an SFS structure with a noncoplanar magnetic
texture is predicted. It is shown that the thermal current
through the junction has a phase-sensitive interference
component proportional to cos �yÿ y0�, where y is the
Josephson phase difference and y0 is the texture-dependent
phase shift.

In a three-layer magnetic structure with a tunnel barrier
with a spin filter, the value of y0 is determined by the spin
chirality of the magnetic configuration and can be considered
a direct manifestation of energy transfer involving spin-triplet
Cooper pairs. In the case of an ideal spin filter, it is shown that
the phase shift is resistant to spin relaxation caused by spin-
orbit scattering. Possible applications of the relation between
heat flux and magnetic precession are discussed.

As mentioned above, in recent years, much attention has
been paid to phase-coherent caloritronics in hybrid super-
conducting structures [138]. The mechanism of phase-
sensitive heat transfer is based on the thermal analog of the
Josephson effect [139±141], which occurs in a system consist-
ing of two superconductors S1 and S2 separated by a weak
link and at temperatures T1 and T2, respectively. A nonzero
temperature shift (for definiteness, it is assumed thatT1 > T2)
generates a constant heat flux from S1 and S2, which is
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Figure 20. (Color online.) Sketch of a superconducting loop containing a

c Josephson junction that allows switching between states with different

numbers of vortices by periodically exciting Josephson phase c of the

ground state of the junction. (From [136].)
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expressed in terms of thermal CPR:

_Qtot�T1;T2; y� � _Qqp ÿ _Qint cos y ; �44�

where y is the phase difference between the superconducting
electrodes. Here, the first term on the right-hand side is the
usual quasi-particle thermal current, and the second one
describes the contribution of energy transfer involving
Cooper pairs. In accordance with the Onsager symmetry,
the thermal current is invariant under time reversal, since the
phase-coherent term in equation (44) does not change with
phase inversion: _Qtot�y� � _Qtot�ÿy�.

The mutual influence of heat transfer and the Josephson
effect have been experimentally studied starting from obser-
vations of thermoelectric effects in superconductor/normal
metal/superconductor junctions [142]. Recently, the presence
of coherent thermal currents (44) was confirmed in experi-
ments using Josephson thermal interferometry in tunnel
junctions [138, 143]. Subsequently, a number of applications
have been proposed, including thermal interferometers [138,
143, 144], transistors [145], phase-sensitive ferromagnetic
Josephson valves [146], and topological Andreev coupled
state probes [147].

The _Qint direction in equation (44) can be controlled
experimentally, providing the implementation of the 0ÿp
thermal Josephson junction [148].

Paper [137] reported on the possibility of obtaining a
generalized thermal CPR in the form

_Qtot�T1;T2; y� � _Qqp ÿ _Qint cos �yÿ y0� ; �45�

where, in contrast to equation (44), there is an arbitrary phase
shift y0.

This effect takes place in systems with broken time
reversal symmetry and chiral symmetry, such as SFS
junctions with noncoplanar magnetic texture or spin-orbit
interaction. It can be considered a thermal analogue of the
anomalous Josephson effect characterized by the generalized
CPR:

I�j� � Ic sin �jÿ j0� : �46�

Here, Ic is the critical current, and j0 is an arbitrary phase
shift, which in the general case differs from the phase shift in
the generalized thermal CPR: y0 6� j0.

Paper [137] demonstrates a thermal CPR with a phase
shift (45) using the example of a Josephson spin valve [149],
which contains three noncoplanar magnetic vectors (Fig. 23).
It consists of two ferromagnetic layers with exchange fields
h1; 2 interacting with superconducting electrodes separated by
a spin filter barrier with magnetic polarization directed along
m. Figure 24 shows the phase shifts in the CPRwith j0 and y0
for two barrier spin filter efficiencies P. Recently, the spin
filter effect was demonstrated in SF structures based on
ferromagnetic insulators of europium chalcogenides [150,
151] and GdN tunnel barriers [152]. The role of external
contacts F1; 2 is to induce effective exchange fields in super-
conducting electrodes. In the case of metallic ferromagnets,
this can be achieved on the basis of the inverse proximity
effect [153, 154]. Alternatively, F1; 2 can be ferromagnetic
insulators and induce an effective exchange field in S1; 2 as a
result of spin-mixing scattering of conduction electrons [129].

4. Anomalous Josephson effect
in structures with a topological insulator

At present, a number of Josephson structures are known in
which AJE is realized due to the properties of topological
materials. In this section, we consider the possibility of
controlling the anomalous Josephson current by means of
the Majorana mode. We describe the junction formed by the
contact of two superconductors through the helical edge
states of a quantum spin-Hall insulator. The relationship
between electric charge and spin polarization is discussed for
equilibrium and nonequilibrium electric transport through a
two-dimensional Josephson junction containing disordered
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surface channels of a three-dimensional topological insulator
(3D TI). The splitting of the easy axis of a ferromagnet in the
j0 Josephson junction on a 3D TI surface is also demon-
strated.

4.1 Control of anomalous Josephson current
by means of the Majorana mode
A distinctive feature of a topological insulator is edge or
surface states. In the two-dimensional case, helical modes
appear at the edge of the sample, i.e., a pair of one-
dimensional modes coupled by time reversal symmetry and
propagating in opposite directions for opposite pseudospins.
A 2D chiral Dirac fermion on the surface of a strong TI (an
odd number of chiral Dirac fermions on the surface) is
protected by the topology and the presence of a volume
bandgap. Such systems are interesting objects for the search
for 2D phonon or exciton superconductivity (see references
in [155]). Fu and Kane [156] predicted the appearance of
chiral Majorana fermions as bound Andreev states at the
interface of an insulator (FI) and an ordinary superconductor
(S) having dispersion along the interface.

The charge transfer phenomena in normal metal/ferro-
magnetic insulator/superconductor structures and S/FI/S
with a chiral Majorana mode on a 3D surface of TI were
studied by Tanaka et al. [155]. Emergence of the chiral
Majorana mode can be controlled with high sensitivity by
the direction of themagnetizationm in FI. The phase shift can
be continuously tuned with the component m perpendicular
to the interface. Control of the Andreev reflection and the
Josephson current by means of the Majorana mode opens
unique opportunities for superconducting spintronics.

Figure 25 shows a contour diagram of the energy level of
the chiralMajoranamode EJ (CMM) as a function of y andj
for mx � 0, 0:4mz, and ÿ0:4mz and the resulting Josephson
current in junctions, showing the change in CPR with the
direction of magnetization in a ferromagnetic insulator.

The calculation of the Josephson current, taking into
account the chiral Majorana mode and magnetization in FI,
carried out in [155], leads to the expression

eIRN �
sin �jÿ 2d�

� p=2

ÿp=2
dy

pD2 tanh �EJ=2kBT �sN cos y
2EJ� p=2

ÿp=2
dy sN cos y

;

�47�

where RN is the resistance in the normal state, d � mxd=vF is
the phase shift, T is the temperature, and sN is the junction
transparency in the normal state.

The Josephson current is practically independent of my,
because its contribution to I is compensated by Majorana
modes with opposite chiralities. On the other hand, mx

significantly affects the value I as an effective vector
potential, which directly enters the Josephson phase j. The
absence of a small factor e=c, which reduces the connection
with the magnetic field, greatly facilitates the restructuring of
the CPR. It is remarkable that, in this model, the anomalous
CPR arises by changing the magnetization vector only,
without using unconventional pairing mechanisms.

4.2 u0 junctions in superconductor structures
with quantum spin-Hall insulators
One of the variants of the j0 Josephson junction based on the
topology of the barrier is the junction formed by the contact

of two superconductors through the spiral edge states of a
quantum spin-Hall insulator (QSHI) [25]. The influence of an
external magnetic field on the CPR of such a junction leads to
the fact that, as a result of the Zeeman effect, along the axis of
spin quantization of the edges of the helix AJE arises. The
phase shift j0 is associated with so-called helical super-
conductivity, which is the result of the mutual influence of
the Zeeman effect and spin-orbit coupling.

Helical superconductivity due to edge states leads to
current

I�h� � e

p

�
hÿY�hÿ D0�

����������������
h 2 ÿ D2

0

q �
; �48�

where Y is the Heaviside function and h is the applied
magnetic field. The current I�j � 0� flows in a short JJ,
L5 x with x � vF=D0, at zero phase difference. Thus,
proximitized superconductivity brings the system into an
excited state, which leads to the anomalous Josephson
effect. The anomalous current increases in proportion to the
applied magnetic field h at h < D0, and then decreases as
I ' eD2

0=�2ph� at h4D0. Note the fact that D0 is an induced
gap, which also implies the validity of the condition h > D0 as
long as the gap D0 is sufficiently small compared to the
intrinsic gap of the superconductors forming the junction.

Figure 26 shows the phase dependence of the current for
various values of the applied magnetic field h, as well as the
anomalous Josephson current at j � 0 as a function of h.

The spatial separation of the two spirals is important. AJE
occurs only if the connections at the edges are of unequal
length, as shown schematically in Fig. 27a, where the
Josephson current is carried by edge states. The anisotropy
of the gyromagnetic tensor shouldmake it possible to observe
the effect with amagnetic field in the plane. The effect is stable
with respect to a small shift between the applied field and the
spin quantization axis. The dependence of the anomalous
Josephson current on the magnetic field h at j0 � 0 for
various temperatures is shown in Fig. 27b. We note an
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additional phase shift between the two edges due to the orbital
effect of the field [157±159].

Thus, the basis of the anomalous Josephson effect in
S/QSHI/S systems is the helical nature of edge states QSHI
exposed to a magnetic field. The resulting anomalous super-
conducting current flowing at zero phase difference between
the two superconducting terminals is rebuilt by the magnetic
field. The fields in the superconductor and in the contact
region, which contribute to the superconducting current, feel
the helical nature of the edge states in the corresponding parts
of the system. Analyzing the contributions of both edges, the
required direction of the magnetic field, and the stability of
the effect with respect to the final chemical potential and the
misorientation of themagnetic field and the spin quantization
axis, Dolcini et al. [25] proposed methods for experimental
observation of the effect using hybrid structures based on
available implementations. The CPR was determined as a
function of the external magnetic field and the contact length.
It is expected that AJE will be pronounced in junctions based
on nanowires with strong spin-orbit interaction [160, 161] in
the topological regime.

4.3 u0 junction controlled by quasiparticle injection
The connection between the electric charge and spin polariza-
tion during equilibrium and nonequilibrium electric transport
through a two-dimensional Josephson junction containing
disordered surface channels of a three-dimensional topologi-
cal insulator can serve as the basis for the appearance of AJE
[40]. In this case, the Edelstein effect is more pronounced in
equilibrium than in a conventional material with spin-orbit
coupling.

Using the semiclassical technique of Keldysh, Bobkova et
al. [40] demonstrated the formation of a j0 junction resulting
from the modulation of quasiparticle injection into the
junction, the scheme of which is shown in Fig. 28. The
ground state of the system corresponds to zero superconduct-
ing current, realized at a nonzero phase difference j �

j0 � ÿ4dIh=a. The anomalous phase shift is proportional to
the voltage differenceV between the superconductors and the
normal injection electrode, which determines the injection
rate of quasiparticles, making it possible to switch thej0-state
of the JJ on and off experimentally by controlling the
injection of the quasiparticle flow.

I J
=
�eD

0
�

0 0.5 1.0 2.01.5

0.4

0.2

0

ÿ0.2

ÿ0.4

L=x � 0.1 (short junction)

j=p

Â

h=D0=0.9
h=D0=1.5

h=D0=0
h=D0=0.5

I J
�j
�

0
�=
�eD

0
�

0.1

0.2

0.3

0 1 2 3
h=D0

b

0.4

0.2

I J
=
�eE

L
�

0 0.5 1.0 2.01.5

0

ÿ0.2

ÿ0.4

L=x � 10 (long junction)

j=p

c

0
0.5

1.5
0.9

I J
�j
�

0
�=
�eE

L
�

0 1 2 3
h=D0

d 0.4

0.2

0

ÿ0.2

ÿ0:4

Figure 26.Anomalous Josephson effect in short (L � 0:1x, Figs a and b) and long (L � 10x, Figs c and d) S/QSHI/S junctions. Figures a and c show the

phase dependence of the current at temperature T=D0 � 10ÿ3 for various values of applied magnetic field h. Figures b and d show the anomalous

Josephson current at j0 � 0 as a function of h. (From [25].)

L2

L1

QSHI S

Â

S

B

0

0.1

0.2

0.3

0.4

ÿ0.2
ÿ0.1

ÿ0.3
ÿ0.4
ÿ0.5

0

I J
�j
�

0
�=
�eE

L
�

0.5 1.0 1.5 2.0

T=D0 � 0.001

T=D0 � 0.05

T=D0 � 0.1

h=D0

b

Figure 27. (a) Proposed setup for detectingj0 in a hybrid S/QSHI/S system:

magnetic field B is applied in the junction plane. Edge states on both sides

of the sample contribute to the Josephson current. Scheme of the

anomalous Josephson effect is preserved if the junctions are not of the

same length,L1 6� L2. (b) Anomalous Josephson current in thej0 junction

as a function of h � mBgeffjBj=2 for L2 � 10x and L1 � L2=3 at various

temperatures. (From [25].)

336 Yu M Shukrinov Physics ±Uspekhi 65 (4)



4.4 Splitting of the easy axis of a ferromagnet
in a superconductor/ferromagnet/superconductor
u0 Josephson junction on the surface
of a three-dimensional topological insulator
The strong dependence of the Josephson energy on the
orientation of the magnetization in Josephson junctions
with ferromagnetic interlayers and spin-orbit coupling
opens up new possibilities for controlling the magnetization
of a ferromagnet by a superconducting current (Josephson
phase). Such a dependence arises in Josephson SFS junctions
on the surface of a three-dimensional topological insulator
containing Dirac quasiparticles.

Dirac quasiparticles exhibit complete spin-momentum
locking: the electron spin always forms a right angle with its
own momentum, which leads to a pronounced dependence of
the CPR on the magnetization direction [16, 155, 163]. At
present, great progress has been made in the experimental
implementation of hybrid structures F/TI. In particular,
alloying with transition metal elements, such as Cr or V, has
been used to introduce a ferromagnetic order into TI.
Another way to introduce a ferromagnetic order into TI,
which has been successfully implemented experimentally, is
based on the coupling of a nonmagnetic TI with a magnetic
insulator with a high Tc to create a strong exchange
interaction in surface states through the proximity effect.
Such a structure was studied by Nashaat et al. [162], and it
was shown that the phase shift of the anomalous ground state
of the j0 junction on the surface of a 3D TI is proportional to
the magnetization component in the plane perpendicular to
the direction of the superconducting current [16, 163]. An
anomalous phase shift causes precession of the magnetiza-
tion, similarly to the case of a systemwith spin-orbit coupling.
However, for the system under consideration, the absolute
value of the critical current highly depends on the orientation
of the magnetization, namely, on the magnetization compo-
nent in the plane along the current direction. This dependence
in the regime with a given voltage can lead to splitting of the
easy axis of the ferromagnet and stabilization of the fourfold
degenerate ferromagnetic state, which contrasts sharply with
the usual twofold degenerate ferromagnetic state of the easy
axis.

Figure 29 shows a diagram of the described system, in
which two ordinary s-wave superconductors and a ferro-
magnet deposited on a 3D TI surface form a JJ. The
calculation procedure consists of calculating the CPR based
on the formalism of semiclassical Green's functions. For the
case with a given voltage, the electric current through the
junction comprises two parts: the Josephson current js and
the normal jn. The Josephson current is associated with the
presence of nonzero anomalous Green's functions in the
interlayer and manifests itself in equilibrium. In the low

applied voltage mode eV=�kBTc�5 1, the deviation of the
distribution function from equilibrium is small and can be
ignored in the calculation of the Josephson current. The result
is the following final expression for the Josephson current:

js � jc sin �jÿ j0� ; �49�

jc � evFNFT
X
en>0

� p=2

ÿp=2
df cosf

D2

e 2n

� exp

�
ÿ 2end
vF cosf

�
cos

�
2hxd tanf

vF

�
; �50�

j0 �
2hyd

vF
; �51�

where en � pT�2n� 1�. At high temperatures, T � Tc 4D,
the lowestMatsubara frequencymakes themain contribution
to the current, and expression (50) is simplified:

jc � jb

� p=2

ÿp=2
df cosf exp

�
ÿ 2pTd
vF cosf

�
cos

�
2hxd tanf

vF

�
;

�52�
where jb � evFNFD2=�p2T �. A similar expression was
obtained for Dirac materials by Linder et al. [164]. The
normal current is due to the deviation of the distribution
function from equilibrium. However, for the system under
consideration, assuming that the ferromagnet is metallic,
practically the entire normal current flows through the
ferromagnet, since in real experimental setups the TI
resistance must be much larger than the resistance of the
ferromagnet. As for the Josephson current, it is greatly
suppressed inside the ferromagnetic layer, since the exchange
field there is usually much larger than the induced exchange
field heff in the TI surface layer. Therefore, the current flows
through the TI surface states.

The dynamics of the magnetization of a ferromagnet is
described in terms of the LLG equation. The electric current
flowing through the TI surface states induces a spin-orbital
torque [165±168] due to the presence of a strong coupling
between the quasi-particle spin and the momentum. In
principle, if ferromagnetism and spin-orbit coupling coexist
spatially, then this torque is determined by the total electric
current flowing through the system. However, in the case
under consideration, only the superconducting current flows
through the TI surface states, where spin-momentum syn-
chronization takes place. Therefore, only this superconduct-
ing current creates a torque acting on the magnetization. A
normal current flows through a homogeneous ferromagnet in
which there is no spin-orbit coupling.

The torque caused by the superconducting current can
be taken into account as an additional contribution to the
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effective field, which has the form

Heff; x

HF
� G

� � p=2

ÿp=2
exp

�
ÿ

~d

cosf

�
sinf sin �rmx tanf � df

�
� �1ÿ cos �OJtÿ rmy �

�
; �53�

Heff; y

HF
� G

� � p=2

ÿp=2
exp

�
ÿ

~d

cosf

�
cosf cos �rmx tanf � df

�
� sin �OJtÿ rmy � �my ; �54�

Heff; z � 0 ; �55�

where m �M=Ms, ~d � 2pTd=vF is the length of the JJ,
G � j0 jbSr=2pKVF is proportional to the ratio of the
Josephson and magnetic energy, r � 2dheff=vF, OJ � 2eV is
the Josephson frequency, andHF � OF=g � K=Ms.

Figure 30 shows the evolution of the magnetization m
obtained from the numerical solution of the LLG equation. It
can be seen that, under different initial conditions, the system
goes into four different stable states: two with a positive
component my and �mx (shown in panels a and c) and two
with �mx and a negative component my (panels b and d).

The system can switch to these states spontaneously under
the influence of noise acting on states with �mz. The results
are presented in Fig. 31 showing all four possible end states.

A similar approach to studying the dynamics of magneti-
zation in voltage-shifted junctions has already been applied to
systems with spin-orbit coupling in the intermediate layer [7,
96]. The qualitative difference between the system based onTI
surface states and these investigations is that, in the case
under consideration, the critical current demonstrates a
strong dependence on the x component of the magnetiza-
tion. Previously, it was considered independent of the
direction of magnetization. This dependency results in a
nonzero value of Heff; x � mx for small values of mx, which
means that the easy axis y can become unstable in a junction

in a state with voltage or bias current, while this axis is always
stable if the critical current does not depend on the direction
of magnetization. Moreover, for the system, there is no
difference between the �mx-components of the magnetiza-
tion. This leads to the remarkable fact that, in a controlled
system, the easy axis does not reorient itself, retaining two
stable directions of magnetization, as was already obtained
earlier, but splits, demonstrating four stable directions of
magnetization.

5. Anomalous Josephson effect
in the Josephson junction/nanomagnet system

The j0 junction can also occur in the Josephson junction/
nanomagnet (JJ/NM) system shown in Fig. 32 due to the
purely electromagnetic interaction between a tunneling
junction current and the magnetic moment of a nanomagnet
located in close proximity to each other [100]. In this case, the
magnetic field of the nanomagnet changes the tunneling
current through the junction, while the magnetic field
generated in the JJ affects the magnetic moment of the
nanomagnet.

The peculiarity of the system manifests itself in the choice
of the structure geometry, the nature of the interaction, and
the final junction resistance in the normal state, which is taken
into account within the RSJ model [82]. The attractiveness of
a model with purely electromagnetic interaction lies in the
absence of unknown parameters, which should be essential
for its experimental study.

5.1 Properties of the Josephson junction/
nanomagnet system
Within the framework of this structure, it is assumed that a
number of characteristic phenomenawill be observed [100], in
particular, the appearance of Shapiro-like steps in the CVC of
the JJ, created by the NM precession, the reversal of the
magnetic moment when a time-varying voltage is applied to
the JJ, and Rabi oscillations of the quantum spin induced by
applied constant voltage. The intensity of the interaction
between the NM and the JJ is determined by the parameter
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Figure 30. (Color online.) Dynamics ofmagnetization under various initial

conditions indicated in the figure, showing transitions to stable states

under the influence of noise. Four parts of the figure show the transition to

the four possible stable states for large t. G � 1:57, r � 0:5, ~d � 0:3,
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E � EJ=EB, which describes the ratio of the Josephson energy
to the magnetic one, which is, in order of magnitude, the ratio
of the magnetic field generated by the tunneling current to the
effective field Beff acting on the magnetic moment due to the
magnetic anisotropy and the applied external field. Estimates
show that the possibility of observing the first Shapiro step at
�V0 � 1 (as well as the peak at V0 � 0:5 due to nonlinearity)
looks quite realistic [100]. In this case, the width of the first
step decreases linearly with decreasing E, the width of the
second harmonic �V0 � 2 is proportional to E 2, and so on.

A remarkable property of the system is that, despite the
weakness of the field generated by the tunneling current, for a
certain time dependence of the applied voltage, an effective
pumping of spin excitations into a nanomagnet and a reversal
of its magnetic moment can occur. The reversal is realized
under the condition E > a, while the realistic value of the
damping parameter is a � 0:01 [170]. Parameter E determines
the number of cycles in the precession of the magnetic
moment leading to a reversal, which is proportional to 1=E.
For E � 0:05, the required time to reversal is close to 103oÿ1g ,
which for og � 1011 sÿ1 is � 10 ns. Smaller E would require a
slower voltageV0 versus time, which is not a problem for such
an experiment [100]. However, a smaller E will require less
dissipation due to the E > a condition. In addition, the smaller
E is, the more sensitive the time evolution of the magnetic
moment to the time dependence of the voltage. A small
change in this dependence is sufficient to return to the
original state after the reversal. Below is an example of
studying the reversal of the magnetic moment in this system.

Rabi oscillations of the quantum spin in the JJ/NM
system, induced by an applied constant voltage, are deter-
mined not by parameter E but by the ratio of the Zeeman
interaction of the spin with the tunnel current field and tunnel
splittingD [100]. They strongly depend on the applied voltage.
The greatest effect occurs when V0 satisfies one of the
resonant conditions eV0 � �m=n�D, where m and n are
integers. With such a resonant behavior, the probability of
finding a spin in the `up' or `down' state is very different from
the nonresonant case, which indicates the fundamental
possibility of electromagnetic control of the JJ/NM qubit by
means of an applied voltage.

The JJ/NM model was considered in [100]. The phase
difference j � j0 � jA is determined by the applied voltage

V0�t� (dj0=dt � 2eV0�t�=�h) and the voltage VA � ��h=2e��
�djA=dt�, which is the electromotive force induced in the
junction by the time dependent magnetic field generated by
the rotatingmagnetic moment of the nanomagnet. The vector
potential is determined by the sum A � AB � AM of the
vector potential of the external field AB � 1=2�B� r� and
the vector potential AM��m0=4p��M� r�=r 3 created by the
magnetic field of the nanomagnet. The derivative dj=dt is
proportional to the total voltage drop across the junction:

dj
dt
� 2eV�t�

�h
�
� 2

1

dr E�r; t� : �56�

Here,E is the electric field, and integration is carried out from
one end of the weak link to the other.

Thus, in the JJ/NM system, the phase shift in the
expression for the superconducting current

I � Ic sin �j0 � jA� �57�

arises due to taking into account the magnetic field created by
the rotating magnetic moment of the nanomagnet.

The dynamics of the magnetic moment is determined by
the LLG equation:

qM
qt
� ggM� Beff ÿ a

M0
jggjM� �M� Beff� ; �58�

where gg is the gyromagnetic ratio for M, a is the Gilbert
damping, and

Beff � B0 ÿ qK
qM
� Ic sinj

q
qM

� 2

1

dr AM�r; t�

is the effective field acting on M. The last term in this
expression is equal to the magnetic field BJ, created by the
tunnel current I � Ic sinj at the location of the nanomagnet.

In normalized units, the LLG equation takes the form

dmx

dt
� OF

1�m 2a 2

�
hy�mz ÿ amxmy�

ÿ hz�amxmz �my� � ahx�m 2
y �m 2

z �
�
;

dmy

dt
� OF

1�m 2a 2

�ÿ hx�amxmy �mz�

� hz�mx ÿ amymz� � ahy�m 2
x �m 2

z �
�
; �59�

dmz

dt
� OF

1�m 2a 2 � OFaEk�m 2
x �m 2

y �

�
n
aE
�
sin �Vtÿ kmz� � V

��m 2
x �m 2

y �

ÿ hy�mx � amymz� � hx�my ÿ amxmz�
o
;

where mi �Mi=Ms are the normalized components of the
magnetic moment, Ms is the saturation magnetic moment,
OF � oF=oc is the normalized ferromagnetic resonance
frequency, oc = 2eRIc=�h, Ic is the critical current,

k � 2p
F0

m0Msl

a
���������������
l 2 � a 2
p ; a � jrMj ;

F0 is the magnetic flux quantum, m is the absolute value of
magnetic moment, and a is the Gilbert damping parameter.
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Figure 32. Illustration of the system under consideration with an

equivalent electrical circuit. Nanomagnet is located at distance a from

the weak coupling center of the Josephson junction. (From [169].)
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Here, time t is normalized to oÿ1c , voltage V is normalized to
�hoc=�2e�. The components of the effective magnetic field hi in
normalized values are determined by the expressions [100]

hx � 0 ;

hy � my ;
�60�

hz � E
�
sin �Vtÿ kmz� � V

�ÿ Ek
dmz

dt
;

where E � Gk, G � EJ=Kanv, v is the volume of the nano-
magnet, and Kan is the magnetic anisotropy constant. The
components of the effective magnetic field are normalized to
HF � oF=gg. Equations (59), (60), together with the equa-
tions of the RSJ model, form the basis for studying the
dynamics and current±voltage characteristics of the JJ/NM
system.

5.2 Ferromagnetic resonance
in the Josephson junction/nanomagnet system
Josephson oscillations in the junction excite the precession of
the magnetic moment of the nanomagnet, which leads to
FMR when the precession frequency becomes equal to the
natural frequency of the magnetic system OF. In [169], to
describe the resonance, system of equations (59) was solved
by the Gauss±Legendre method, as a result of which the time
dependences of the magnetic moment components were
determined, and the maximum amplitude of oscillations of
the magnetic moment components in the time domain was
calculated for each given voltage value.

Figure 33a shows the results of calculations of the
maximal amplitude of oscillations mmax

z as a function of
voltage V on the JJ at OF � 0:5 and two values of the
damping parameter a � 0:001 and 0.3. In the chosen normal-
ization, V � OJ; therefore, at a voltage corresponding to the
frequency of Josephson oscillations OJ � 0:5, an FMR peak
is observed. Formmax

x , the result is qualitatively the same. An
increase in damping leads to an increase in the width of the
resonance and its shift towards lower frequencies, which is
shown in Fig. 33a at a � 0:3. The positions of the peaks at low
damping are in good agreement with the frequency values
following from the analytical formulas obtained from the
linearization of the LLG equations [169]. In particular, if the
deviation of the magnetic moment from the equilibrium
direction due to interaction with the Josephson current is
small, i.e., G < 1 and k ~mz < 1, then the resonant frequency is
given by

Ores �

�������������������������������������
ÿa2 �

������������������
a 2
2 ÿ 4a1

q
2a1

vuut
OF ; �61�

where

a1 � �a 2 � akEOF � 1�2 ;
a2 � 2a 2 � k 2O 2

FE
2 � 2akOFEÿ 2 :

So, at G � 0:3, k � 0:01, and OF � 0:5, for a � 0:001,
the resonant frequency is Ores � 0:5, and, for a � 0:3,
Ores � 0:45, which is quite close to the values obtained
numerically (Fig. 33a).

The width of the resonance depends on the Gilbert
damping parameter a, the ratio of the Josephson energy to
the energy of the nanomagnet G, and coupling parameter k.

Figure 33b demonstrates the influence of parameter G on
the properties of ferromagnetic resonance. As G increases, a
decrease in the resonant frequency and asymmetry of the
resonant peak with respect toOJ � OF are observed. Analytic
expressions in this case give Ores � 0:492 at a � 0:1, G � 0:1,
k � 0:01, and OF � 0:5. However, at G � 3p, analytical
calculations lead to overestimated values, which means that
higher order termsmust be taken into account atG4 1. Thus,
the deviation mz in resonance at certain values of G, k, and a
can be quite strong and manifest itself under experimental
conditions [169].

5.3 Manifestation of Kapitza's pendulum features
in the Josephson junction/nanomagnet system
Another interesting result that manifests itself in the JJ/NM
system is the demonstration of the reorientation of the easy
axis of the nanomagnet with an increase in the ratio of the
Josephson energy to the magnetic one, i.e., a peculiar
manifestation of the properties of the Kapitza pendulum in
the Josephson junction/nanomagnet system [169]. Figure 34
shows the dynamics of the magnetic moment component
mz�t� for different values of parameter G. We emphasize that
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Figure 33. (a) Manifestation of FMR on dependence mmax
z �V�. Numbers

indicate the amount of Gilbert parameter a. (b) Effect of the ratio of the

Josephson energy to the nanomagnet energy G on the FMR width.

Numbers indicate the G value. (From [169].)
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at the initial moment of time the magnetic moment is directed
along the easy axis (the y-axis, see Fig. 32). We see that for
small values ofG the time dependence of themz�t� component
reaches a certain constant value. As G increases, this
dependence changes significantly, and at G � 3p, mz�t�
oscillating, tends to unity, i.e., my goes to zero. Thus, the
easy axis of the nanomagnet is reoriented. In intermediate
states, the magnetic moment of the nanomagnet is oriented
between the axes y and z, and the reorientation time decreases
with increasing G.

The dynamics of mz at various values of the Josephson
frequency OJ is shown in Fig. 35. For small OJ, the mz

component precesses near a certain fixed value, while for
large OJ, oscillating, it goes to unity [169].

It is known that the position of stable equilibrium of a
pendulum changes if its suspension point oscillates with a
high frequency [93]. The ratio of the Josephson energy to the
magnetic energy (G) corresponds to the amplitude of the
variable force in the problem of theKapitza pendulum, which
should contribute to the reorientation of the easy axis of the
ferromagnet. The nature of the increase in the average value
of mz depending on the ratio of the Josephson energy to the
magnetic one is shown in Fig. 36, which also demonstrates an
analogy with Kapitza's pendulum. A similar behavior is
observed with increasing coupling parameter k of the
Josephson and magnetic subsystems.

5.4 Shapiro-like steps in the current±voltage characteristic
of the Josephson junction/nanomagnet system
Until now, we have considered the effect of Josephson
oscillations on the dynamics of the magnetic moment of a
nanomagnet. Let us now briefly describe the reverse
effect, i.e., the influence of the dynamics of the magnetic
moment on the CVC of the Josephson junction [5]. The
calculation of the CVC is carried out for the junction in
the biased current case. In this case, within the framework
of the RCSJ model [82], the system of equations has the
following form:

dV

dt
� 1

bc

�
Iÿ sin �jÿ kmz� � Vÿ k

dmz

dt

�
; �62�

dj
dt
� V ; �63�

where j is the phase difference in the Josephson junction, and
bc is the McCumber parameter. In addition, to calculate the
CVC in system of equations (59), in the expression for the
effective field (60), it is necessary to replace Vt with j.

Figure 37 shows the results of calculating the CVC of a JJ
with and without a nanomagnet (CVC of the SIS junction)
together with the dependence of the maximum componentmz

on voltage [169]. The CVC of a JJ with a nanomagnet
demonstrates the feature indicated by the arrow, which is
absent in the case of a JJ without a nanomagnet. The voltage
position of this feature corresponds to the position of the mz

resonant peak. Thus, the nanomagnet precession manifests
itself in the CVC of the JJ, which can serve as a method for
controlling its dynamics. Note that justification for the
parameter values used and their correspondence to the
experimental conditions is given in [100, 171], which implies
the possibility of an experimental study of the observed
effects.

As unexplored properties of the JJ/NM system, the
appearance of chaotic states under periodic action on the
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Figure 34. Dynamics of component mz depending on the value of

parameter G at k � 0:05 and a � 0:1. (From [169].)
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system should be noted [172]. Chaos in the JJ under external
electromagnetic radiation, which is modeled by adding the
termA sin �ot� to the bias current (o is the frequency,A is the
radiation amplitude), was considered in detail in [173]. It is
assumed that, in the system under study, the precession of the
magnetic moment under superconducting oscillations in the
JJ can also lead to the appearance of chaotic states. Research
in this area has not yet been carried out, but undoubtedly it is
important for the practical applications of these systems.

6. Reversal of the magnetic moment
in the u0 junction

Superconducting electronics plays an important role in the
development of computers with ultralow power consumption
[66, 128, 174±176]. One of the key problems in achieving this

goal is the creation of a reliable and scalable cryogenic
memory architecture, for which Josephson SFS junctions
are promising structures. Indeed, the mutual influence of the
intrinsic exchange field and induced superconductivity in a
ferromagnet leads to a p junction [56, 57]. Vertical ferromag-
netic multilayer structures are used as Josephson magnetic
memory. The two logical states of these memory elements
usually correspond to states with different relative orienta-
tions of themagnetic layers, which in turn determines whether
the junction is in the 0- or p-state. Readout schemes are
generally based on the difference between resistive and
nonresistive states.

This review considers an alternative cryogenic memory
element based on the j0 junction [6], the ground state of
which corresponds to the final phase shift in its CPR. Such an
anomalous phase was recently discovered experimentally in
hybrid Josephson junctions, in particular, fabricated using
a topological insulator Bi2Se3 [28] and based on Al=InAs
heterostructures [29, 177]. Both materials have a strong spin-
orbit coupling, and in these experiments time reversal is
broken by an external magnetic field that acts as a Zeeman
field. The consideredmemory element is a Josephson junction
with a ferromagnetic interlayer, so the spin-orbit interaction
is violated by the exchange field. In these compounds, the
magnetization of a ferromagnet can be controlled by electric
current [7, 31, 33, 34, 178, 179]. In [66], it was proposed to use
such a junction as a memory element with information
encoded in the direction of the magnetization of the ferro-
magnetic layer.

6.1 Reversal of the magnetic moment by a current pulse
The possibility of magnetization reversal in the j0 Josephson
junction by a current pulse was demonstrated in [34]. It was
shown that the reversal of the magnetic moment is extremely
sensitive to the values of the system parameters. In view of the
sufficient complexity of the system under consideration, the
question of the possibility of predicting a complete reversal
for given parameters of the system and the current pulse
remained open until recently. Below, we discuss an analytical
criterion for reversal, which makes it possible to do this for
certain parameters of the j0 junction and the current pulse.

The scheme of the considered j0 junction is shown in
Fig. 38. The easy axis of the ferromagnetic layer is directed
along the z-axis, which also coincides with the direction of the
spin-orbit potential gradient. The magnetic moment compo-
nent my is related to the Josephson current directed along the
x-axis.

The dynamics of the magnetic moment of the system
under consideration is described by the LLG equation [34],
for which the effective field Heff depends on the Josephson
phase difference j:

dM

dt
� ÿgM�Heff � a

M0

�
M� dM

dt

�
;

�64�
Heff � K

M0

�
Gr sin

�
jÿ r

My

M0

�
ŷ�Mz

M0
ẑ

�
;

where g is the gyromagnetic ratio, a is the Gilbert dissipation,
M0 � jMj, G � EJ=�KV� is the ratio of Josephson energy to
magnetic anisotropy energy, K is the anisotropy constant,
V is the ferromagnetic layer volume, and r is the spin-orbit
interaction parameter.
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In dimensionless quantities, the system of equations is
written as

dmx

dt
� ÿ 1

1� �ma�2
n
�myHz ÿmzHy�

� a
�
mx�mxHx �myHy �mzHz� ÿHx

�o
;

dmy

dt
� ÿ 1

1� �ma�2
n
�mzHx ÿmxHz� �65�

� a
�
my�mxHx �myHy �mzHz� ÿHy

�o
;

dmz

dt
� ÿ 1

1� �ma�2
n
�mxHy ÿmyHx�

� a
�
mz�mxHx �myHy �mzHz� ÿHz

�o
;

where the magnetic moment components mi are normalized
to M0, i � x; y; z, and Hi are the effective field components
normalized to K=M0, which are determined by the expres-
sions

Hx�t� � 0 ;

Hy�t� � Gr sin
ÿ
j�t� ÿ rmy�t�

�
; �66�

Hz�t� � mz�t� :
In system of equations (65), the time is normalized to oÿ1F

(where oF � gK=M0 is the ferromagnetic resonance fre-
quency). The equation for the phase difference is written in
the framework of the resistive model [82], where, for
simplicity, a JJ with a small capacitance C (R 2C=LJ 5 1, LJ

is the inductance of the Josephson junction, R is its resistance
in the normal state), i.e., displacement current, is not taken
into account. In this case, the expression for the electric
current I through the Josephson junction, normalized to the
critical current Ic, is written as

I � w

�
dj
dt
ÿ r

dmy

dt

�
� sin �jÿ rmy� ; �67�

where w � VF=�IcR� � oF=oR, VF � �hoF=�2e�, and oR �
2eIcR=�h. It should be noted that the results in [7, 34] were
obtained under the assumption that the term r�dmy=dt� is
small. It is shown below that taking it into account does not
really lead to qualitative changes, but it is necessary to
maintain the gauge invariance of the equations used [178].

In (67), a rectangular current pulse with amplitudeAs and
duration Dt,

Ipulse�t� � As ; t 2
�
t0 ÿ 1

2
Dt; t0 � 1

2
Dt
�

0 otherwise

8<: ; �68�

and with initial conditions

mx�0� � 0 ; my�0� � 0 ; mz�0� � 1 ; j�0� � 0 ; �69�

was used.
The calculations were carried out using an implicit scheme

based on the two-step Gauss±Legendre method [180]. This
approach provided higher accuracy (fourth order O�h 4� �
10ÿ8) and stability than the Runge±Kutta method. System of
equations (65) was solved numerically together with Eqn (67)
using (68) with initial conditions (69). In all calculations,
w � 1 was assumed; the values of the remaining parameters
are indicated in the captions to the corresponding figures.

An example of transient dynamics for a reversal mz with
residual oscillations is shown in Fig. 39a, and the dynamics of
the components of the magnetic moment, phase difference,
and superconducting current are shown in Fig. 39b. As can be
seen, in the transition region, the phase difference changes
from 0 to 2p and, accordingly, the superconducting current
changes its direction twice. This is followed by an interval
with damping of the oscillations of the superconducting
current.

In Fig. 39b, the characteristic moments of time are
indicated by vertical dashed lines. Line 1 corresponds to the
phase difference p=2 and indicates the maximum super-
conducting current Is. Line 1 0, which corresponds to the
maximum of my and mz � 0, has a slight offset from line 1.
This fact demonstrates that, in general, the time dependence
features of mx and my do not coincide with the features on
Is�t�, i.e., there is a delay in the response of the magnetic
moment to changes in the superconducting current. Another
characteristic point corresponds to j � p. At this point in
time, line 2 crosses points Is � 0,my � 0 and the minimum of
mz. At the time when j � 3p=2, line 3 crosses the minimum
of Is. When the pulse is turned off, a superconducting current
flows through the resistance, exhibiting damped oscillations
and causing residual oscillations in the magnetic moment
components. Note also that the end time of the pulse (t � 28)
does not actually appear immediately in the dynamics of my

(and mx not shown here). They demonstrate a continuous
transition to damped oscillating behavior.

The data of Fig. 39b indicate a direct way to determine
the magnitude of the spin-orbit coupling in the junction by
means of the estimate r. For this, we note that j�t� �
j00 �

� t
0 V�t 0� dt 0 can be determined up to an initial time-

independent constant j00 as the voltage V�t� across the
junction changes. In addition, maxima and minima of Is
occur at times tmax and tmin (Fig. 39b), for which

sin

�
j00 �

� tmax�tmin�

0

V�t 0� dt 0 ÿ rmy�tmax�tmin��
�
� ��ÿ�1 :

Determining j00 from these equations, one can obtain

sin

�
1

2

� � tmin

tmax

V�t 0� dt 0 � r
ÿ
my�tmax� ÿmy�tmin�

��� � 1 ;

�70�
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Figure 38. Josephson SFS junction controlled by a rectangular current

pulse Ibias with amplitude Imax. The z-component of the magnetizationMz

is an observable. It is used to determine logical states 0 and 1. (From [66].)

April 2022 Anomalous Josephson effect 343



which makes it possible in principle to determine r from
magnetization my at the maximum and minimum super-
current and voltage V at the junction. We emphasize that,
for the experimental implementation of the proposedmethod,
it is necessary to distinguish between themagnetization values
at times of the order of 10ÿ10ÿ10ÿ9 s. At present, studying the
dynamics of magnetization with such time resolution is a
rather difficult task. To experimentally determine the spin-
orbit coupling constant r, it is more convenient to vary the
parameters of the current pulse I�t� and study the switching
threshold of the magnetic moment.

The dynamics of the system in the form of magnetization
trajectories in the my ÿmx and mz ÿmx planes during the
transition time interval for the same momentum and JJ
parameters at a � 0 is shown in Fig. 39. It can be seen that
the magnetic moment performs a spiral rotation, approach-
ing the state with mz � ÿ1 after turning off the electric

current pulse. The figures clearly show the features of the
dynamics near the points B, A0, and Q and the damped
oscillations of the magnetization components (Fig. 39b, d).
Point B in Fig. 39c corresponds to the transition from an
increase in the absolute value mx to its decrease and back at
point A0. The behavior of the magnetic system turns out to be
quite sensitive to the parameters of the electric current pulse
and the JJ. Paper [34] shows different magnetization reversal
protocols when changing the parameters As, G, and r.

It is interesting to compare the effect of a rectangular pulse
with a Gaussian one of the form

Ipulse � As
1

s
������
2p
p exp

�
ÿ �tÿ t0�2

2s 2

�
; �71�

where s denotes the full width at half maximum of the pulse,
and A is its maximum amplitude at t � t0. An example of the
reversal of the magnetic moment in this case is shown in
Fig. 40, which displays the dynamics ofmz at r � 0:1,G � 10,
As � 5, s � 2 at low dissipation a � 0:01.

In this case, the magnetization reversal occurs more
smoothly than in the case of a rectangular pulse.

6.2 Periodicity in the occurrence of magnetic moment
reversal intervals with a change in the parameters
of the Josephson junction and the current pulse
The study of the magnetization dynamics of the j0 junction
led to the discovery of a periodicity in the occurrence of
intervals of reversal of the magnetic moment with a change in
the parameters of the JJ and the current pulse. Figure 41
shows examples of the dynamics of the magnetic moment mz

for two values of the ratio of the Josephson energy to the
magnetic one: G � 9 (curve 1) and G � 8 (curve 2), as well as
the applied current pulse Ipulse (curve 3). In the first case
(G � 9), a reversal of the magnetic moment is observed, while
in the second (G � 8), it is absent, which reflects the
dependence of the implementation of the reversal on the
chosen values of the system parameters. The influence of the
model parameters and the current pulse on the reversal of the
magnetic moment in the j0 Josephson junction was discussed
in Refs [34, 179]. However, the study of the possibility of
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predicting the reversal and determining the intervals of
parameters at which the reversal of the magnetic moment
occurs have not been carried out until recently.

To determine the intervals of G in which the reversal
occurs, the time dependence of the magnetic moment was
calculated in [181] for values of G from 1 to 130 with step
DG � 1 for values of a from 0.01 to 0.5 with step
Da � 0:001. The value of the spin-orbit coupling para-
meter was assumed to be r � 0:1. For each pair of values
�a;G�, systems of equations (65), (67), and (68) were solved
by the Gauss±Legendre method with step h � 0:01 in the
interval t 2 �0;Tmax�, Tmax � 200. For t � Tmax, the
inequality jmz � 1j4 0:0001 was checked in order to fix the
realization of the reversal of themagnetic moment. In the case
of its implementation, the corresponding values of a and G
were selected and stored. These data, presented in Fig. 42,
indicate a periodic dependence in the implementation of the
reversal of the magnetic moment with increasing G. Let us
emphasize some features in the manifestation of this
dependence, in particular, the absence of a reversal at small
G and the shift of intervals along G with increasing a. In this
case, an increase in the width of these intervals along the
G-axis is observed.

Paper [181] also presents the results of calculating the
implementation of the reversal of the magnetic moment on
the plane �G; r�, where a periodicity appears in the occurrence
of reversal intervals with a change in G. An increase in the
spin-orbit coupling parameter r leads to a shift of the domain
with a reversal to the region of small G with a simultaneous
decrease in its width.

As mentioned above, the easy axis of a ferromagnet is
directed along the z-axis and has two stable states, mz � �1.
The current pulse causes the magnetic moment to oscillate.
The critical value for the reversal is its value at the end of
the pulse, which is determined by the parameters of the
j0 junction and the parameters of the pulse. Paper [181]
presents the time dependences of the magnetic moment
component mz for different values of the spin-orbit coupling
parameter r, the Gilbert damping parameter a, and the ratio
of the Josephson to the magnetic energy G for the first
and second bands. If the value of mz turns out to be close to

zero or negative, then the presence of Gilbert damping
ensures thatmz tends toÿ1. The periodicity in the occurrence
of reversal intervals can be explained by assuming a periodic
dependence of the mz component on the parameters of the
model used. Section 6.3 presents analytical studies of the
magnetic moment reversal in Josephson structures with an
anomalous phase shift.

6.3 Analytical criteria for magnetization reversal
in the u0 junction
As already noted, one of the main problems in superconduct-
ing electronics is the creation of a memory element [174, 175,
182] with low energy dissipation. Various versions of such
devices have been considered, including those based on
j0 Josephson junctions [66, 182±184].

The DC component of the superconducting current
applied to the SFS j0 junction can have a strong orienta-
tional effect on the ferromagnetic magnetic moment in the
layer [34]. Guarcello and Bergeret in [66] indicated the
possibility of using the SFS j0 junction as an element of
cryogenic memory based on the pulse switching proposed in
[34]. In such a scheme, a bit of information is associated with
the direction of the magnetic moment along or against the
direction of the easy axis of the ferromagnetic layer. The
recording is carried out as an inversion of the magnetic
moment by a current pulse, and the readout is carried out by
detecting the magnetic flux by a SQUID inductively coupled
to the j0 junction. The stability of the current-induced
magnetization reversal to thermal fluctuations was also
studied, and a method was proposed for breaking the
coupling between the Josephson phase and the magnetiza-
tion dynamics by tuning the intensity of theRashba spin-orbit
interaction by the gate voltage. We emphasize that, in all the
studies mentioned above, magnetization reversal was studied
only numerically.

As noted above, the physics of switching in thej0 junction
is determined by the LLG equation (65) and the model
equation of RSJ (67). An interesting feature of this system in
the case of strong dissipation is the decoupling of the
equations, i.e., equation (67) for F � jÿ j0 � jÿ rmy

turns out to be unrelated to the LLG equation (65). This
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makes it possible to find an analytical solution for F and
construct a theory ofmagnetization reversal for certain values
of the junction and current pulse parameters.

Thus, at the period of the current pulse action t0 4 t4
t0 � dt, the equation for F has the form

As � w _j0 � sin �jÿ j0� � w
dF
dt
� sinF ; �72�

with the initial condition F�t � t0� � 0. At As < 1, this gives

tan

�
F�t�
2

�
� As

tanh
��tÿ t0�=t0

�
tanh

��tÿ t0�=t0
�� ���������������

1ÿ A 2
s

p ; �73�

where tÿ10 �
���������������
1ÿ A 2

s

p
=�2w� defines the time scale of

approaching a constant value F. Formula (73) allows finding
sinF during the current pulse t0 4 t4 t0 � dt. In the second
time interval t5 t0 � dt, when the impulse is disabled
�Ip�t� � 0�,
sinF�t�

�
2 tan

�
F�t0 � dt�

2

�
exp

�
tÿ t0 ÿ dt

w

�
� tan2

�
F�t0 � dt�

2

�
exp

�
ÿ tÿ t0 ÿ dt

w

� :

�74�

This expression exhibits an exponential decay towards zero
with a t1 � w time scale. Here, tan �F�t0 � dt�=2� is deter-
mined by equation (73).

The theory is based on the following basic assumptions:
(1) for small w and for momenta with As 6� 1, the w dF=dt
term in equation (72) can be neglected, which implies the
relation Ip�t� � sinF; (2) the condition Gr4 1, which does
not imply G5 1 for w5 1 (see [7]), so that G can vary over a
wide range, from G5 1 to G � 1004 1; (3) the smallness of
theGilbert damping a5 1 [185±187]. Under these conditions,
the LLG equation during the period of the current pulse can
be written in the form

_mx � Grmz sinF � GrIp�t�mz ;

_my � mxmz ;

_mz � ÿGrmx sinF � ÿGrIp�t�mx :

8<: �75�

The tight coupling limit Gr4 1 (but r5 1) can be considered
analytically [7]. In this case, my�t� � 0, and for the applic-
ability of the method, wemust putGrIp�t�4 1. Then, in polar
coordinates r and f, we get mx � r sinf, mz � r cosf, and
_f � GrIp. Thus:

f�t� � Gr

� t

t0

dt1 Ip�t1� : �76�

As can be seen from (73), after the current pulse is turned off,
sinF quickly drops to 0 due to the condition w5 1. In this
time interval, the magnetization dynamics is determined only
by magnetic anisotropy and Gilbert damping, which causes
the magnetization to align along the easy axis [96].

As follows from (76), magnetization reversal occurs at

cos

�
Gr

� t0�dt

t0

dt1 Ip�t1�
�
< 0 ; �77�

where dt is the pulse duration.
The results of analytical calculations, together with the

results of the numerical solution of the complete system of
equations, are shown in Fig. 43 for rectangular pulse Ip�t� �

As�y�tÿ t0� ÿ y�tÿ t0 ÿ dt�� with As � 0:5 for dt1 � 1 and
dt2 � 3.

In the case of dt � 1, criterion (77) gives cos �GrAsdt1� �
0:28 > 0, so there is no reversal, while, for dt2 � 3, it turns out
to be cos �GrAsdt1� � ÿ0:76 < 0 and remagnetization is
observed. It can be seen that numerical solution (76)
represented by the blue squares coincides with the analytical
solution represented by the green solid curve. When the pulse
is disabled, damping prevents any deviation from the easy
mz � �1 axis. This is shown in the insets to Fig. 43. It should
be noted that the magnetization reversal is affected not by the
shape of the current pulse but only by the integral over the
pulse duration [65].

6.4 Periodicity of reversal intervals in the plane rÿG
According to (77), the magnetization reversal in plane rÿG
under the current pulse action Ip�t� � As�y�tÿ t0� ÿ
y�tÿ t0 ÿ dt�� leads to hyperbolic regions at

p
2
� 2pn4GnrAsdt4

3p
2
� 2pn �78�
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for n � 0;�1; . . . ; while the most efficient reversal occurs
when condition

cos �GrAsdt� � ÿ1 �79�
is satisfied, i.e., at GrAsdt � p� 2pn.

In the case of a rectangular current pulse in the weak
damping regime and smallw, Eqn (78) gives hyperbolic curves
for different n. From a physical point of view, they are curves
of constant amplitude for the force in the LLG equation (64).
In such a situation, the magnetic moment aligns in the
mz � ÿ1 direction immediately after the pulse is turned off,
and the appropriate time scale is determined only by the pulse
duration and not by the Gilbert damping. This helps to
optimize the pulse width to achieve a fast reversal. It can be
seen from (79) that the minimum time for the reversal is
realized at n � 0, i.e.,

dteff � p
GrAs

: �80�

The described situation is shown in Fig. 44 for G � 100,
r � 0:1, a � 0:005, w � 0:01, As � 0:5, and dteff � 0:628,
resulting in a remagnetization time of dtrev � 0:6� 10ÿ10 s
for typical oF � 10 GHz. This time is two orders of
magnitude shorter than that calculated in [34].

Figure 45 compares the numerical results with the
analytical ones obtained on the basis of equations (78) and
(79). The almost perfect agreement between numerical and
analytical calculations emphasizes the validity of the theory
for the selected system parameters. Comparing both results,
we can conclude that, in fact, term _j0 (72), which makes the
equations gauge-invariant, only slightly shifts the remagneti-
zation regions. But, on the other hand, the gauge-invariant
form of the equations makes it possible to consider Eqn (72)
analytically.

7. Experimental implementation of the anomalous
Josephson effect and prospects for its application

If the chiral and time reversal symmetry are violated
simultaneously during the tunneling of Cooper pairs through

a junction, the Josephson current is nonzero at zero phase
difference, which corresponds to a phase shift in the ground
state. Recently, various methods have been proposed for
implementing the violation of these symmetries, in particu-
lar, based on the use of noncentrosymmetric and multilayer
ferromagnets [6, 51], point contacts [12], topological insula-
tors [25, 155], diffuse systems [22, 39], nanowires [9, 188] and
quantum dots [36, 37, 113], and a parallel combination of 0
and p junctions [19, 189].

7.1 u0 Josephson junction based on a nanowire quantum dot
In quantum dots, the breaking of both symmetries can be
achieved by a combination of an external magnetic field and
spin-orbit interaction [36, 37, 113]. The finite Zeeman
splitting for spin `up' and spin `down' electrons breaks
symmetry under time reversal. On the other hand, chiral
symmetry breaking arises under the mutual influence of the
spin-orbit interaction and themagnetic field, when the orbital
inside the quantum dot changes during tunneling. Szombati
et al. [27] report the first experimental implementation of the
j0 junction based on a nanowire quantum dot, where it was
demonstrated that the phase shift j0 can be controlled using
an electrostatic gate. The tunneling of an electron through a
quantum dot with two orbitals that mix during the spin-orbit
interaction was considered. When the orbital does not
change, the contributions from both processes cancel each
other out. When the orbital changes during tunneling, due to
the mutual influence of the spin-orbit interaction and the
magnetic field, compensation does not occur. In this case, an
additional phase factor is acquired, which depends on the
tunneling direction and is different for the left and right
tunneling processes. As a consequence, the two processes
cannot cancel each other, and this results in chiral symmetry
breaking. The magnitude of the phase shift j0 depends on the
intensity of the spin-orbit interaction and the magnitude of
the magnetic field in the plane. The results of observing a
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continuous phase change in the j0 Josephson junction in a
magnetic field in the plane were presented. In contrast to the
case Bin-plane � 0, the phase shift of the voltage oscillations in
the flow is tuned using the gate voltage.

7.2 Anomalous phase shift in a Josephson junction
based on Bi2Se3 due to spin-orbit interaction
An anomalous phase shift j0 can be obtained in systems with
both a Zeeman field and the Rashba spin-orbit coupling term
HR � �a=�h��p� ez�r in the Hamiltonian [6, 39], where a is the
Rashba coefficient, ez is the direction of the Rashba electric
field, and r is the vector of Pauli matrices describing the spin.
Physically, these terms lead to spin-induced dephasing of the
superconducting wave function.

The anomalous phase shift is associated with the inverse
Edelstein effect observed in metals or semiconductors with a
strong spin-orbit coupling. While the Edelstein effect gen-
erates a spin polarization in response to an electric field [190],
the inverse Edelstein effect [191], also called the spin-galvanic
effect, generates a charge current by nonequilibrium spin
polarization. These two magnetoelectric effects also arise in
superconductors as a consequence of a Lifshitz-type term in
the free energy [26, 192]. Thus, in a superconductor with a
strong Rashba coupling, the Zeeman field induces an
additional term in the supercurrent. In Josephson junctions,
this term leads to an anomalous phase shift in the CPR [39].

An anomalous phase shift j0 can be detected experimen-
tally in a Josephson interferometer (JI) by measuring the
CPR. Anomalous phase shifts have recently been identified
in a JI created from a parallel combination of a normal 0 and
p junction [27], which breaks the parity symmetry.

Due to the large values of the g factor �g � 19:5� [193] and
the Rashba coefficient, Bi2Se3 is a promising candidate for
observing the anomalous Josephson effect due to the mutual
influence of the Zeeman field and the spin-orbit interaction.

As described in detail in [26, 39], the amplitude of the
anomalous phase depends on the amplitude of the Rashba

coefficient a, the transparency of interfaces, spin relaxation
terms such as the Dyakonov±Perel coefficient, and whether
the junction is in the ballistic or diffusionmode. It is predicted
that for small values of a the anomalous phase is proportional
to a3; for large values, it should be proportional to a.

In the ballistic regime [6] and for large a, the anomalous
phase shift is given as j0 � 4EZaL=��hvF�2 for a magnetic
field of magnitude B perpendicular to the Rashba electric
field, where EZ � �1=2�gmBB is the Zeeman energy, L is the
distance between the superconductors, and vF is the Fermi
velocity of the barrier material. For the spin-split Rashba
conduction band with a � 0:4 eV �A, vF � 3:2� 105 m sÿ1,
and junction length L � 150 nm, the magnetic field B �
100 mT generates an anomalous phase j0 ' 0:01p, while
for the Dirac states with vF � 4:5� 105 m sÿ1 the value
j0 ' 0:005p [28].

In the diffusion regime, the expected anomalous phase
shift was calculated in [39]. For weak a with highly
transparent interfaces and ignoring spin relaxation, the
anomalous phase shift is determined by the relation

j0 �
tm �2EZ�aL�3

3�h 6D
; �81�

where t � 0:13 ps is the elastic scattering time, D �
�1=3�v 2Ft � 40 cm2 sÿ1 is the diffusion constant, and
m � � 0:25me is the effective electron mass [194].

To test these theoretical predictions, a JJ and a Josephson
interferometer were prepared from Bi2Se3 in [28]. According
to measurements of the relative phase shift between two JIs
with different orientations of the JJs relative to the magnetic
field in the plane, an anomalous phase shift was determined
corresponding to formula (81). The results are presented in
Figs 46 and 47 and in the table.

In the absence of disorder, the anomalous phase shift
induced by Rashba spin-orbit coupling can only be generated
by an in-plane magnetic field By. The stress map shown in
Fig. 46b shows the oscillations of the critical current of the
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two devices as a function of the magnetic field B. The critical
current of both devices oscillates due to the perpendicular
component of the magnetic field Bz � B sin y. The oscillation
frequency can be changed by mechanically tilting the sample,
i.e., by changing the angle y between the plane containing the
superconducting loop and the magnetic field. Due to the
anomalous phase shift, the frequency of the anomalous device
is greater than the reference.

Figure 47 compares the JI frequencies as functions of the
angle y. Since the critical current of a large JI decreases with
increasing magnetic field, this leads to a decrease in the
background set for both devices, shown in the figure with
solid lines. As can be seen, the anomalous device is
characterized by a higher frequency of oscillations than the
control one. The two JIs are in-phase in a weakmagnetic field
and out of phase in a strong magnetic field, with the
anomalous phase shift reaching j0 ' p for B ' 100 mT. In
Figure 47c, the ratio of the oscillation frequencies is shown as
a function of the angle y. Without generating an anomalous
phase shift, this ratio should be constant and equal to the
surface ratio S=Sref ' 1. It was found that this ratio diverges

as 1=y for small y in accordance with the equation

o
oref
�y� � S

Sref
� Cj0

f0

2pSref tan y
: �82�

Curve fitting equation (82) determines the spin-orbit coupling
coefficient a.

The table shows the anomalous phase shifts obtained at
B ' 100 mT, as well as theoretical values. The first three
columns show the anomalous phase shifts extracted from the
last nodes of the critical current oscillations shown in Fig. 47
for three curves taken at different angles y. The last three
columns show the calculated anomalous phase shifts in the
ballistic mode for Rashba splitting conduction states, Dirac
states, and in the diffusion mode for Rashba splitting
conduction states. In theoretical calculations, the values
a � 0:4 eV �A were used for conduction states with Rashba
splitting and a � 3 eV �A for Dirac states.

7.3 Gate-controlled anomalous phase shift
in the Josephson junction based on Al/InAs
As noted, AJE has been demonstrated in JJs with InSb
nanowires in the quantum dot geometry [27] and more
recently in JJs using Bi2Se3 [28]. In a JJ with a quantum dot,
the phase shift can be changed by the gate voltage, but is
limited by the geometry and supports only a few modes;
therefore, small critical currents are realized in the JJ. Based
on the topological insulator Bi2Se3, it is possible to implement
a planar j0 junction, but in this case the phase shift cannot be
tuned by the gate voltage [29, 177]. Heterostructures formed
by InAs and epitaxial superconducting Al [195] are promising
not only for mesoscopic superconductivity [196] but also for
the realization of topological superconductivity and Major-
ana fermions [197]. This is due to the fact that the induced
superconducting gap Dind in InAs can be as large as in Al
[198], and InAs has a large g-factor and spin-orbit coupling.
As a consequence, a JJ fabricated on this platform can have a
high critical current and high transparency [177, 199]. In
addition, it is possible to control the magnitude of the spin-
orbit coupling by changing the InAs density through an
external gate [200].

The possibility of changing the magnitude of the anom-
alous phase shift in a JJ formed on the basis of InAs and Al is
due to the possibility of varying the intensity of the spin-orbit
coupling through an external gate [29]. The observation of a
finite phase shift j0 indicates a relationship among the phase
difference of superconductors, electric current, and spin in
these heterostructures. The phase shift for different in-plane
magnetic fields and gate voltages is shown in Fig. 48, and the
evolution of the phase shift is shown in Fig. 49.

The value of j0 is proportional to the Zeeman energy
and turns out to be much larger than the given theoretical
estimates. Most likely, this is due to the fact that such scaling
is valid for a long junction with several channels, which is not
directly related to the system under study.

The implementation of large values of the phase shift j0

and its tuning are very important for applications in super-
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Table. Anomalous phase shifts obtained at B ' 100 mT and comparison
with theory.

y � 0:1� y � 0:22� y � 0:46� Ballistic
regime

Dirac
state

Diffusion
regime

j0 0:88p 1:01p 0:85p 0:01p 0:005p 0:94p
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conducting spintronics, where large spin gradients can be
used to create a phase battery [1]. This opens up the possibility
of generating spin gradients in a controlled manner via
Josephson currents or phase shift. The possibility of achiev-
ing a large value j0 in heterostructures InAs=Al and the fact
that it strongly depends on the InAs density are directly
related to efforts to realize topological superconducting states
[201, 202].

7.4 Josephson phase batteries
A phase battery is a quantum device that provides a
continuous (constant) phase shift for the wave function of a
quantum circuit and is a key element for quantum technolo-
gies based on quantum coherence. In [30], the first experi-
mental implementation of a phase battery in a hybrid super-
conducting circuit is reported. It consists of an n-doped InAs
nanowire with unpaired spin surface states proximitized by
aluminum superconducting contacts. The ferromagnetic
polarization of unpaired spin states is effectively converted
into a constant phase shift j0 along the wire, which leads to
the anomalous Josephson effect [6, 39]. By applying an
external magnetic field in the plane, a continuous change in
j0 is achieved, which allows the battery to be charged and
discharged. The joint action of the spin-orbit coupling and the
exchange interaction breaks the phase rigidity of the system,
causing a strong coupling among the charge, spin, and phase.
This relationship opens up broad prospects for topological
quantum technologies [1].

Side hybrid JJs made from materials with strong spin-
orbit interaction [27] or topological insulators [28] are ideal
options for creating j0 junctions. The lateral arrangement
breaks the symmetry of the inversion and provides a natural
polar axis ẑ that is perpendicular to the current direction.
Moreover, the spin polarization of electrons s, induced either
by a Zeeman field or by the exchange interactionwith ordered
magnetic impurities, breaks the time reversal symmetry. As a

result, the structure acquires a toroidal symmetry described
by the anapole moment t � �ẑ� s�, retaining the magneto-

C
u
rr
en
t,
mA

8

4

0

ÿ4

ÿ8
ÿp 0

Phase shift
p 2p 3p

8

4

0

ÿ4

C
u
rr
en
t,
mA

8

4

0

ÿ4

4

2

0

ÿ2
ÿ4

C
u
rr
en
t,
mA

4

2

0

ÿ2
ÿ4

ÿ2p ÿp 0
Phase shift

p 2p 3p

4

2

0

ÿ2
ÿ4

2

1

0

ÿ1

ÿ2

2

1

0

ÿ1

ÿ2

0 10 20 30 40
By � 50 mT

Resistance, O

0 10 20 30
By � 200 mT

Resistance, O

0 10 20 30
By � 350 mT

Resistance, O

V 2
g � 0 V 2

g � 0 V 2
g � 0

V 2
g � ÿ3.0 V V 2

g � ÿ3.0 V V 2
g � ÿ3.0 V

V 2
g � ÿ4.0 V V 2

g � ÿ4.0 V V 2
g � ÿ4.0 V

Phase shift
0 p 2p 3p 4p

2

1

0

ÿ1

ÿ2

Figure 48. (Color online.) Device resistance as a function of phase shift applied to the SQUID and current at three different in-plane fields By and three

different gate voltages V 2
g . In all cases, V 1

g has a value of ÿ2 V. Dotted orange line indicates the position of the maximum oscillation at V 2
g � ÿ4 V.

Orange stars indicate position of the maximum at each value of the magnetic field. (From [29].)

ÿ3 ÿ2 ÿ1

0 100 200 300 400
Applied éeld By, mT

By � 100 mT

By � 250 mT

By � 400 mT

0 1

p=2

p=4

0

P
h
as
e
sh
if
t
(i
n
sh
if
t
u
n
it
s

at
V

2 g
�
ÿ4

V
)

Â

p=2

p=4

0

P
h
as
e
sh
if
t
(i
n
sh
if
t
u
n
it
s

at
V

2 g
�
ÿ4

V
)

Gate voltage V 2
g , V

b

3

2

1

4, 5

3

2

1

V 2
g � ÿ3.0 V

V 2
g � ÿ2.0 V

V 2
g � ÿ1.0 V

V 2
g � 0

V 2
g � 1.0 V

1

2

3

4

5

1

2

3

Figure 49. Evolution of the phase shift in the Josephson junction of a

SQUID as a function of gate voltageV 2
g (a) and the applied magnetic field

(b). Phase shiftDj0 is measured between the oscillation at the set valueV 2
g

and the oscillation at ÿ4 V used as a reference. In panel b, solid lines

correspond to linear fits to measured phase shifts. (From [29].)

350 Yu M Shukrinov Physics ±Uspekhi 65 (4)



electric effects in the presence of the spin-orbit interaction. In
this case, the anomalous shifts j0 are controlled by a Lifshitz-
type invariant in the free energy �FL�, which can be composed
from the product of the anapole moment and the superfluid
velocity [39]:

FL � f �a; h��nh � ẑ�vs ; �83�

where f �a; h� is the odd intensity function of the Rashba spin-
orbit interaction a, h is the exchange or Zeeman field, nh is the
unit vector pointing in the direction of the latter, and vs is the
superfluid velocity of Cooper pairs flowing in the JJ. The
scalar triple product defines vector symmetries j0, while the
magnitude of the shift depends on specific microscopic details
of the sample, as well as macroscopic quantities such as
temperature.

As shown in Fig. 50, the phase battery consists of a JJ
made on the basis of an InAs nanowire enclosed between two
Al superconducting poles. The supercurrent and, hence, vs
flow along the nanowire (x-direction) orthogonally to the
Rashba spin-orbit interaction vector indicating the plane of
the substrate (z-direction). In the same nanowire, surface
oxides or defects generate unpaired spins that behave like
magnetic impurities (indicated by yellow arrows in Fig. 50)
that can be polarized along the y-direction to provide an
exchange interaction h in this direction. This leads to the final
triple product in equation (83) and, hence, to an anomalous
phase shiftj0. Due to the ferromagnetic order of the unpaired
spins, the phase shift persists even in the absence of an applied
magnetic field. The phase battery converts the ferromagnetic

order into a quantum phase shift. It was shown in [30] that the
shiftj0 can also be controlled by the Zeeman interaction with
an external magnetic field B. By scanning the shifts j0 in all
directions of the plane magnetic field, the authors showed the
geometric origin of the anomalous phase described by
Eqn (83).

7.5 Cryogenic memory element
based on the anomalous Josephson effect
An important problem for the memory element is effects due
to inevitable thermal fluctuations. In [66], an exhaustive
analysis of the noise in the j0 junction dynamics was
presented, taking into account the influence of stochastic
thermal fluctuations. The current-induced magnetic bistabil-
ity makes it possible to determine two well-distinguishable
logical states and to investigate the stability of such amemory
against noise effects. A sensing scheme based on a current
controlled SQUID (Fig. 51) has been proposed in which no
additional magnetic flux is required to set the optimum
operating point. In addition, the intriguing possibility of
effective screening of the memory state by voltage gating in
a device formed by a ferromagnetic layer with a linear
momentum term of the Dresselhaus spin-orbit coupling was
discussed.

In Ref. [66], a nonvolatile memory element based on a
lateral ferromagnetic Josephson junction with spin-orbit
coupling and out-of-plane magnetization is proposed. The
interaction between the magnetic moment and the exchange
field of a ferromagnet leads to a magnetoelectric effect, which
couples the electric current through the junction and
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magnetization, which makes it possible to switch the
direction of the magnetic moment in the ferromagnet by
a current pulse. The two memory states are encoded in the
direction of out-of-plane magnetization. In order to
determine the optimal operating temperature for a
memory element, the influence of noise on the average
stationary magnetization was studied, taking into account
thermal fluctuations that affect both the Josephson phase
and the dynamics of the magnetic moment. The switching
process is studied depending on the parameters of the
ferromagnet, such as the Gilbert damping and the spin-
orbit coupling intensity, and a non-destructive readout
scheme based on the DC SQUID is proposed. In addition,
in [66], a method was analyzed for protecting the memory
state from external disturbances by voltage gating in
systems with Rashba and Dresselhaus type linear spin-
orbit coupling in the momentum.

8. Conclusions

This review attempts to highlight the main studies of the
anomalous Josephson effect, which is one of the most topical
areas of superconducting spintronics. The above results
testify to the variety of physical phenomena that arise in
j0 junctions of various types, due to the relationship between
the Josephson phase and the magnetization of the ferro-
magnet. In the review, much attention is directed to a
description of the Buzdin model, within the framework of
which was demonstrated the implementation of a direct
relationship between the quantities characterizing super-
conductivity and magnetism, as well as the possibility of
controlling magnetic properties by means of a superconduct-
ing current and, in turn, the influence of the magnetic
characteristics of the barrier in the j0 junction on its
superconducting properties. Investigations of ferromagnetic
resonance and variations in the magnetic dynamics along the
CVC of thej0 junction have led to a number of unique results
that have not been touched upon by experimenters to date.
The possibility of reorienting the easy axis of a ferromagnet
by a Josephson current, which is analogous to the Kapitza
pendulum in mechanical systems, will undoubtedly be
developed in superconducting spintronics. The manifesta-
tion of the anomalous Josephson effect in various structures
presents a wide field for both theoretical and experimental
studies.

Important are the results of detailed studies of the DC
component of the superconducting current, which arises in
the junction due to the precession of the magnetic moment, as
well as the influence of external electromagnetic radiation on
the properties of the j0 junction. The ability to realize large
phase shifts j0 and to tune them is also important for various
applications in spintronics, where large spin gradients can be
used to create a phase battery [1]. This opens up the possibility
of generating spin gradients in a controlled manner via
Josephson currents or a phase shift. Achieving a large value
of j0 and its rearrangement can find key applications in
various quantum schemes and are directly related to efforts to
realize topological superconducting states [201, 202].

The experimental realization of the j0 junction makes it
possible to measure the magnitude of the spin-orbit coupling
and opens up new possibilities for the phase control of
Josephson devices. These studies help in understanding
fundamental spin-dependent phenomena, as well as develop-
ing applications for computer technology. In particular,
control of the magnetic state due to superconductivity
stimulates the development of ultrafast cryogenic memory.
The development of effective methods to reverse the magnetic
moment in the j0 junction, in particular, by a superconduct-
ing current pulse, as well as the study of the quantum
properties of Josephson nanostructures with magnetic and
topologically nontrivial barriers for the creation of new
superconducting spintronic devices, are the most important
tasks of modern science.

Research on the anomalous Josephson effect is being
intensively developed. Thus, a number of new interesting
results have recently been obtained. The spin-orbit coupling
in two-dimensional systems is usually a Rashba or Dressel-
haus spin-orbit coupling linear in the wave vector. However,
the class of materials that support the dominant cubic
structure of the spin-orbit interaction along the wave vector
is currently expanding. In [203], Josephson junctions were
considered in a Zeeman field with superconductors separated
by a normal region with spin-orbit interaction. A strongly
anharmonic current±phase relation and a complex spin
structure were found. Experimental tuning of the spin-orbit
interaction will make it possible to tune both the anomalous
phase shift and the supercurrent that flows at zero phase
difference in the junction. The spin-orbit interaction in
Josephson junctions results in spin-triplet f-correlations of
superconductivity, which are important for superconducting
spintronics and support Majorana bound states. Collective
excitations of the magnetic moment and the Josephson phase
in c junctions are demonstrated in Ref. [204]. This leads to a
shift in the ferromagnetic resonance frequency, anomalies
in CVCs, and the appearance of additional magnetic aniso-
tropy in F-layers. In contrast to the previously studied SFS
junctions, the coupling between the magnetic and plasma
modes also arises in the long-wavelength limit. It is shown
that such a coupling provides controlled magnetization
reversal in the F-layer, controlled by a direct current pulse,
which makes it possible to efficiently control the magnetic
moment in superconducting spintronic devices. In Ref. [205],
the magnetization reversal effect was studied as a function of
the internal parameters of a ferromagnet, such as Gilbert
damping and spin-orbit coupling intensity. The optimal
values of the parameters for fast switching and the conditions
that make the systemmore resistant to noise have been found.
A review of the current state and prospects of superconduct-
ing spintronics is presented in [206].
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It should be noted that this review does not cover all
studies devoted to the anomalous Josephson effect, not all
theoretical and experimental results are described in sufficient
detail, and a number of applications of thej0 junction, which
are worthy of discussion but are not included due to the
limitation of the scope of the review, have not been described.

Acknowledgments
The author is grateful to A Buzdin, A Melnikov, V Krasnov,
I Bobkova, A Bobkov, S Mironov, M Silaev, I Rahmonov,
A Mazanik, K Kulikov, M Nashaat, and A E Bota for their
helpful discussions of certain issues in this review. This study
was supported by the Russian Foundation for Basic Research
within the framework of scientific project no. 19-12-50211,
Expansion. A number of results of numerical calculations
given in Sections 2, 4, 5, and 6 were obtained within the
framework of project 18-71-10095 of the Russian Science
Foundation.

References

1. Linder J, Robinson J W A Nat. Phys. 11 307 (2015)

2. Mai S et al. Phys. Rev. B 84 144519 (2011)

3. Buzdin A I Rev. Mod. Phys. 77 935 (2005)

4. Golubov AA,KupriyanovMYu, Il'ichev ERev.Mod. Phys. 76 411

(2004)

5. Ghosh R, Maiti M, Shukrinov Yu M, Sengupta K Phys. Rev. B 96

174517 (2017)

6. Buzdin A Phys. Rev. Lett. 101 107005 (2008)

7. Konschelle F, Buzdin A Phys. Rev. Lett. 102 017001 (2009)

8. Chudnovsky E M Phys. Rev. B 93 144422 (2016)

9. Yokoyama T, Eto M, Nazarov Yu V Phys. Rev. B 89 195407 (2014)

10. Minutillo M et al. Phys. Rev. B 98 144510 (2018)

11. Krive I V et al. Phys. Rev. B 71 214516 (2005)

12. Reynoso A A et al. Phys. Rev. Lett. 101 107001 (2008)
13. Alidoust M, Hamzehpour H Phys. Rev. B 96 165422 (2017)

14. Alidoust M,Willatzen M, Jauho A-P Phys. Rev. B 98 085414 (2018)

15. Braude V, Nazarov Yu V Phys. Rev. Lett. 98 077003 (2007)

16. Zyuzin A, Alidoust M, Loss D Phys. Rev. B 93 214502 (2016)

17. Zyuzin A, Spivak B Phys. Rev. B 61 5902 (2000)

18. Alidoust M Phys. Rev. B 98 245418 (2018)

19. Goldobin E et al. Phys. Rev. Lett. 107 227001 (2011)
20. Goldobin E, Koelle D, Kleiner R Phys. Rev. B 91 214511 (2015)

21. Menditto R et al. Phys. Rev. B 98 024509 (2018)

22. Alidoust M, Linder J Phys. Rev. B 87 060503 (2013)

23. ShapiroD S,Mirlin AD, ShnirmanAPhys. Rev. B 98 245405 (2018)

24. SpaÊ nsl�att C Phys. Rev. B 98 054508 (2018)

25. Dolcini F, Houzet M, Meyer J S Phys. Rev. B 92 035428 (2015)

26. Konschelle F, Tokatly I V, Bergeret F S Phys. Rev. B 92 125443

(2015)

27. Szombati D B et al. Nat. Phys. 12 568 (2016)

28. Assouline A et al. Nat. Commun. 10 126 (2019)

29. Mayer W et al. Nat. Commun. 11 212 (2020)

30. Strambini E et al. Nat. Nanotechnol. 15 656 (2020)

31. Waintal X, Brouwer P W Phys. Rev. B 65 054407 (2002)

32. Braude V, Blanter Ya M Phys. Rev. Lett. 100 207001 (2008)

33. Linder J, Yokoyama T Phys. Rev. B 83 012501 (2011)

34. Shukrinov Yu M et al. Appl. Phys. Lett. 110 182407 (2017)
35. Shukrinov Yu M, Rahmonov I R, Sengupta K Phys. Rev. B 99

224513 (2019)

36. Zazunov A et al. Phys. Rev. Lett. 103 147004 (2009)
37. Brunetti A et al. Phys. Rev. B 88 144515 (2013)

38. Nesterov K N, Houzet M, Meyer J S Phys. Rev. B 93 174502 (2016)

39. Bergeret F S, Tokatly I V Europhys. Lett. 110 57005 (2015)

40. Bobkova I V et al. Phys. Rev. B 94 134506 (2016)

41. Geshkenbein V B, Larkin A I JETP Lett. 43 395 (1986); Pis'ma Zh.

Eksp. Teor. Fiz. 43 306 (1986)

42. Geshkenbein V B, Larkin A I, Barone A Phys. Rev. B 36 235 (1987)

43. Yip S Phys. Rev. B 52 3087 (1995)

44. Sigrist M Prog. Theor. Phys. 99 899 (1998)

45. Tanaka Y, Kashiwaya S Phys. Rev. B 56 892 (1997)

46. Schrade C, Hoffman S, Loss D Phys. Rev. B 95 195421 (2017)

47. Dolcini F, Giazotto F Phys. Rev. B 75 140511 (2007)

48. SilaevMA, Tokatly I V, Bergeret F SPhys. Rev. B 95 184508 (2017)

49. Grein R et al. Phys. Rev. Lett. 102 227005 (2009)
50. Mironov S, Buzdin A Phys. Rev. B 92 184506 (2015)

51. Liu J-F, Chan K S Phys. Rev. B 82 125305 (2010)

52. Margaris I, Paltoglou V, Flytzanis N J. Phys. Condens. Matter 22

445701 (2010)

53. Kulagina I, Linder J Phys. Rev. B 90 054504 (2014)

54. Moor A, Volkov A F, Efetov K B Phys. Rev. B 92 180506 (2015)

55. Moor A, Volkov A F, Efetov K B Phys. Rev. B 92 214510 (2015)

56. Ryazanov V V et al. Phys. Rev. Lett. 86 2427 (2001)
57. Oboznov V A et al. Phys. Rev. Lett. 96 197003 (2006)
58. Feofanov A K et al. Nat. Phys. 6 593 (2010)

59. Kontos T et al. Phys. Rev. Lett. 89 137007 (2002)
60. Birge N O, Madden A E, Naaman O Proc. SPIE 10732 107321M

(2018)

61. Robinson J W A, Witt J D S, Blamire M G Science 329 59 (2010)

62. Volkov A F, Anishchanka A, Efetov K B Phys. Rev. B 73 104412

(2006)

63. Kalenkov M S, Zaikin A D, Petrashov V T Phys. Rev. Lett. 107

087003 (2011)

64. Yokoyama T, Linder J Phys. Rev. B 92 060503 (2015)

65. Mazanik A A, Rahmonov I R, Botha A E, Shukrinov Yu M Phys.

Rev. Appl. 14 014003 (2020)

66. Guarcello C, Bergeret F S Phys. Rev. Appl. 13 034012 (2020)

67. Josephson B D Phys. Lett. 1 251 (1962)

68. Rashba E I Sov. Phys. Solid State 2 1109 (1960); Fiz. Tverd. Tela 2

1224 (1960)

69. Bychkov Yu A, Rashba E I JETP Lett. 39 78 (1984); Pis'ma Zh.

Eksp. Teor. Fiz. 39 66 (1984)

70. Samokhin K V Phys. Rev. B 70 104521 (2004)

71. Kaur R P, Agterberg D F, Sigrist M Phys. Rev. Lett. 94 137002

(2005)

72. Eilenberger G Z. Phys. A 214 195 (1968)

73. Usadel K D Phys. Rev. Lett. 25 507 (1970)

74. Bell C et al. Phys. Rev. Lett. 100 047002 (2008)
75. Zhu J-X, Balatsky A V Phys. Rev. B 67 174505 (2003)

76. Bulaevskii L et al. Phys. Rev. Lett. 92 177001 (2004)
77. Zhu J-X et al. Phys. Rev. Lett. 92 107001 (2004)
78. Nussinov Z et al. Phys. Rev. B 71 214520 (2005)

79. Takahashi S et al. Phys. Rev. Lett. 99 057003 (2007)
80. Houzet M Phys. Rev. Lett. 101 057009 (2008)

81. Hikino S et al. J. Phys. Soc. Jpn. 77 053707 (2008)
82. Likharev K K Dynamics of Josephson Junctions and Circuits (New

York: Gordon and Beach Sci. Publ., 1986)

83. Rusanov A Yu et al. Phys. Rev. Lett. 93 057002 (2004)
84. Lifshitz E M, Pitaevskii L P Statistical Physics Pt. 2 (Oxford:

Pergamon Press, 1980); Translated from Russian: Statisticheskaya

Fizika Pt. 2 (Moscow: Fizmatlit, 1994)

85. ShukrinovYuM,Mahfouzi F, PedersenNFPhys. Rev. B 75 104508

(2007)

86. Buckel W, Kleiner R Superconductivity: Fundamentals and Applica-

tions (Weinheim: Wiley-VCH, 2004)

87. Shukrinov YM,Rahmonov IRPhys. Part. Nucl. 51 816 (2020); Fiz.

Elem. Chastits Atom. Yadra 51 951 (2020)

88. Shukrinov Yu M, Rahmonov I R, Kulikov K V JETP Lett. 96 588

(2012); Pis'ma Zh. Eksp. Teor. Fiz. 96 657 (2012)

89. Shukrinov Yu M et al. Supercond. Sci. Technol. 30 024006 (2017)
90. Shukrinov Y M, Rahmonov I R, Davoud R JETP Lett. 103 395

(2016); Pis'ma Zh. Eksp. Teor. Fiz. 103 444 (2016)

91. Sellier H et al. Phys. Rev. Lett. 92 257005 (2004)
92. Kapitza P L Usp. Fiz. Nauk 44 7 (1951)

93. Landau L D, Lifshitz E M Mechanics (Oxford: Pergamon Press,

1987); Translated from Russian: Mekhanika (Moscow: Nauka,

1993)

94. Citro R et al. Ann. Physics 360 694 (2015)
95. Boukobza E et al. Phys. Rev. Lett. 104 240402 (2010)
96. Shukrinov Yu M et al. Europhys. Lett. 122 37001 (2018)
97. Chudnovsky E M, Tejada JMacroscopic Quantum Tunneling of the

Magnetic Moment (Cambridge Studies in Magnetism, Vol. 4)

(Cambridge: Cambridge Univ. Press, 1998)

98. Chudnovsky E M, Gunther L Phys. Rev. Lett. 60 661 (1988)

April 2022 Anomalous Josephson effect 353



99. Chudnovsky E M, Tejada J Lectures on Magnetism (Princeton, NJ:

Rinton Press, 2006)

100. Cai L, Chudnovsky E M Phys. Rev. B 82 104429 (2010)

101. Rabinovich D S et al. Phys. Rev. Lett. 123 207001 (2019)
102. Rabinovich D S, Bobkova I V, Bobkov A M Phys. Rev. Res.

1 033095 (2019)

103. Qi X-L, Zhang S-C Rev. Mod. Phys. 83 1057 (2011)

104. Castro Neto A H et al. Rev. Mod. Phys. 81 109 (2009)

105. Charlier J-C, Blase X, Roche S Rev. Mod. Phys. 79 677 (2007)

106. Mourik V et al. Science 336 1003 (2012)

107. Nikolaeva A et al. Phys. Rev. B 77 075332 (2008)

108. Alicea J Rep. Prog. Phys. 75 076501 (2012)
109. Mironov S V, Mel'nikov A S, Buzdin A I Phys. Rev. Lett. 114

227001 (2015)

110. Cayssol J, Kontos T,MontambauxGPhys. Rev. B 67 184508 (2003)

111. Beenakker C W J Phys. Rev. Lett. 67 3836 (1991)
112. Khaire T S et al. Phys. Rev. Lett. 104 137002 (2010)

113. Dell'Anna L et al. Phys. Rev. B 75 085305 (2007)

114. Doh Y-J et al. Science 309 272 (2005)
115. van Dam J A et al. Nature 442 667 (2006)

116. Sand-Jespersen T et al. Phys. Rev. Lett. 99 126603 (2007)
117. Eichler A et al. Phys. Rev. B 79 161407 (2009)

118. Takayanagi H, Akazaki T, Nitta J Phys. Rev. Lett. 75 3533 (1995)
119. Tirelli S et al. Phys. Rev. Lett. 101 077004 (2008)
120. Nitta J et al. Phys. Rev. Lett. 78 1335 (1997)
121. Grundler D Phys. Rev. Lett. 84 6074 (2000)

122. Sato Y et al. J. Appl. Phys. 89 8017 (2001)
123. �Zuti�c I, Fabian J, Das Sarma S Rev. Mod. Phys. 76 323 (2004)

124. Orlando T P et al. Phys. Rev. B 60 15398 (1999)

125. Makhlin Y, Sch�on G, Shnirman A Rev. Mod. Phys. 73 357 (2001)

126. Clarke J, in The New Superconducting Electronics (NATO ASI

Ser. E, Vol. 251, Eds H Weinstock, R W Ralston) (Dordrecht:

Kluwer Acad., 1993) p. 123

127. Solinas P et al. Sci. Rep. 5 12260 (2015)
128. Likharev K K, Semenov V K IEEE Trans. Appl. Supercond. 1 3

(1991)

129. Eschrig M et al. New J. Phys. 17 083037 (2015)

130. Ustinov A V, Kaplunenko V K J. Appl. Phys. 94 5405 (2003)

131. Bauer A et al. Phys. Rev. Lett. 92 217001 (2004)
132. BuzdinA I, Bulaevskii LN, Panyukov SV JETPLett. 35 178 (1982);

Pis'ma Zh. Eksp. Teor. Fiz. 35 147 (1982)

133. G�urlich C et al. Phys. Rev. B 81 094502 (2010)

134. Mironov S et al. Phys. Rev. B 96 214515 (2017)

135. Goldobin E et al. Phys. Rev. B 93 134514 (2016)

136. Mironov S, Meng H, Buzdin A Appl. Phys. Lett. 116 162601 (2020)

137. Silaev M A Phys. Rev. B 96 064519 (2017)

138. MartõÂ nez-P�erez M J, Solinas P, Giazotto F J. Low Temp. Phys. 175

813 (2014)

139. Maki K, Grifén A Phys. Rev. Lett. 15 921 (1965)

140. Guttman G D, Ben-Jacob E, Bergman D J Phys. Rev. B 57 2717

(1998)

141. Zhao E, L�ofwander T, Sauls J A Phys. Rev. B 69 134503 (2004)

142. Ryazanov V V, Schmidt V V Solid State Commun. 40 1055 (1981)

143. Giazotto F, MartõÂ nez-P�erez M J Nature 492 401 (2012)

144. Guarcello C, Giazotto F, Solinas P Phys. Rev. B 94 054522 (2016)

145. Fornieri A et al. Phys. Rev. B 93 134508 (2016)

146. Giazotto F, Bergeret F S Appl. Phys. Lett. 102 132603 (2013)

147. Sothmann B, Hankiewicz E M Phys. Rev. B 94 081407 (2016)

148. Fornieri A et al. Nat. Nanotechnol. 12 425 (2017)

149. Bergeret F S, Giazotto F Phys. Rev. B 89 054505 (2014)

150. Wolf M J et al. Phys. Rev. B 90 144509 (2014)

151. Kolenda S et al. Phys. Rev. B 95 224505 (2017)

152. Senapati K, Blamire M G, Barber Z H Nat. Mater. 10 849 (2011)

153. Tokuyasu T, Sauls J A, Rainer D Phys. Rev. B 38 8823 (1988)

154. Bergeret F S, Volkov A F, Efetov K B Rev. Mod. Phys. 77 1321

(2005)

155. Tanaka Y, Yokoyama T, Nagaosa N Phys. Rev. Lett. 103 107002

(2009)

156. Fu L, Kane C L Phys. Rev. Lett. 100 096407 (2008)

157. Hart S et al. Nat. Phys. 10 638 (2014)

158. Pribiag V S et al. Nat. Nanotechnol. 10 593 (2015)

159. Tkachov G et al. Phys. Rev. B 92 045408 (2015)

160. Lutchyn R M, Sau J D, Das Sarma S Phys. Rev. Lett. 105 077001

(2010)

161. Oreg Y, Refael G, von Oppen F Phys. Rev. Lett. 105 177002 (2010)

162. Nashaat M et al. Phys. Rev. B 100 054506 (2019)

163. Linder J et al. Phys. Rev. B 81 184525 (2010)

164. Hugdal H G, Linder J, Jacobsen S H Phys. Rev. B 95 235403 (2017)

165. Yokoyama T, Zang J, Nagaosa N Phys. Rev. B 81 241410 (2010)

166. Yokoyama T Phys. Rev. B 84 113407 (2011)

167. Mahfouzi F, Nagaosa N, Nikoli�c B K Phys. Rev. Lett. 109 166602

(2012)

168. Chen J, Abdul JalilMB, Tan SG J. Phys. Soc. Jpn. 83 064710 (2014)

169. Shukrinov Y M et al. JETP Lett. 110 160 (2019); Pis'ma Zh. Eksp.

Teor. Fiz. 110 149 (2019)

170. Coffey W T et al. Phys. Rev. Lett. 80 5655 (1998)
171. Cai L, Garanin D A, Chudnovsky E M Phys. Rev. B 87 024418

(2013)

172. Shukrinov Yu M et al. Chaos 24 033115 (2014)
173. Kautz R L, Monaco R J. Appl. Phys. 57 875 (1985)

174. Mukhanov O A IEEE Trans. Appl. Supercond. 21 760 (2011)

175. Herr Q P et al. J. Appl. Phys. 109 103903 (2011)
176. Nishijima S et al. Supercond. Sci. Technol. 26 113001 (2013)
177. Mayer W et al. Appl. Phys. Lett. 114 103104 (2019)
178. Bobkova I V, Bobkov A M, Silaev M A Phys. Rev. B 98 014521

(2018)

179. Shukrinov Yu M, Rahmonov I R, Botha A E IEEE Trans. Appl.

Supercond. 28 1800505 (2018)

180. Atanasova P et al., in Numerical Methods and Applications. 9th

Intern. Conf., NMA 2018, Borovets, Bulgaria, August 20±24, 2018,

Revised Selected Papers (Lecture Notes in Computer Science,

Vol. 11189, Eds G Nikolov, N Kolkovska, K Georgiev) (Cham:

Springer, 2019)

181. Atanasova P Kh et al. JETP Lett. 110 722 (2019); Pis'ma Zh. Eksp.

Teor. Fiz. 110 736 (2019)

182. Baek B et al. Nat. Commun. 5 3888 (2014)

183. Madden A E et al. Supercond. Sci. Technol. 32 015001 (2019)
184. Nguyen M-H et al. Sci. Rep. 10 248 (2020)
185. Weber R et al. J. Phys. D 52 325001 (2019)

186. Papusoi C et al. J. Phys. D 51 325002 (2018)

187. Schoen M A et al. Nat. Phys. 12 839 (2016)

188. Campagnano G et al. J. Phys. Condens. Matter 27 205301 (2015)

189. Sickinger H et al. Phys. Rev. Lett. 109 107002 (2012)
190. Edelstein V M Solid State Commun. 73 233 (1990)

191. Shen K, Vignale G, Raimondi R Phys. Rev. Lett. 112 096601 (2014)

192. Yip S K Phys. Rev. B 65 144508 (2002)

193. Wolos A et al. Phys. Rev. B 93 155114 (2016)

194. Hyde G R et al. Solid State Commun. 13 257 (1973)

195. Shabani J et al. Phys. Rev. B 93 155402 (2016)

196. B�ttcher C G L et al. Nat. Phys. 14 1138 (2018)

197. Suominen H J et al. Phys. Rev. B 95 035307 (2017)

198. Kjaergaard M et al. Nat. Commun. 7 12841 (2016)

199. Kjaergaard M et al. Phys. Rev. Appl. 7 034029 (2017)
200. Wickramasinghe K S et al. Appl. Phys. Lett. 113 262104 (2018)
201. Ren H et al. Nature 569 93 (2019)

202. Fornieri A et al. Nature 569 89 (2019)

203. Alidoust M, Shen C, �Zuti�c I Phys. Rev. B 103 L060503 (2021)

204. Mironov S V, Buzdin A I Phys. Rev. B 104 134502 (2021)

205. Guarcello C, Bergeret F SChaos Solitons Fractals 142 110384 (2021)
206. Mel'nikov A S et al. Phys. Usp. 65 (2022) https://doi.org/10.3367/

UFNe.2021.07.039020, accepted;Usp. Fiz. Nauk 192 (2022) https://
doi.org/10.3367/UFNr.2021.07.039020, accepted

354 Yu M Shukrinov Physics ±Uspekhi 65 (4)


	1. Introduction
	2. Anomalous Josephson effect. Main properties
	2.1 Realization of a direct coupling between the magnetic moment and superconducting current in the...
	2.2 Controlling the magnetic moment of a ferromagnet using the superconducting current
	2.3 Manifestation of ferromagnetic resonance in the current--voltage characteristic of the \phi_0...
	2.4 Dynamics of magnetization along the current--voltage characteristic of the \phi_0 junction
	2.5 Reorientation of the easy axis of a ferromagnet in the \phi_0 junction
	2.6 Quantum tunneling of the magnetic moment in the superconductor\ferromagnet\superconductor...

	3. Manifestations of the anomalous Josephson effect in various structures
	3.1 \phi_0 junction in the presence of moving domain walls
	3.2 Anomalous effect in a Josephson junction with an antiferromagnetic layer
	3.3 \phi_0 junction in multichannel transport systems
	3.4 Anomalous Josephson effect in a diffuse ferromagnetic junction
	3.5 \phi_0 junction based on superconducting structures with quantum dots
	3.6 Anomalous Josephson effect in semiconductor nanowires
	3.7 Change in the magnetic flux in a superconducting loop containing a \Phi Josephson junction
	3.8 Thermal analogue of the anomalous Josephson effect

	4. Anomalous Josephson effect in structures with a topological insulator
	4.1 Control of anomalous Josephson current by means of the Majorana mode
	4.2 \phi_0 junctions in superconductor structures with quantum spin-Hall insulators
	4.3 \phi_0 junction controlled by quasiparticle injection
	4.4 Splitting of the easy axis of a ferromagnet in a superconductor\ferromagnet\superconductor...

	5. Anomalous Josephson effect in the Josephson junction\nanomagnet system
	5.1 Properties of the Josephson junction\nanomagnet system
	5.2 Ferromagnetic resonance in the Josephson junction\nanomagnet system
	5.3 Manifestation of Kapitza's pendulum features in the Josephson junction\nanomagnet system
	5.4 Shapiro-like steps in the current--voltage characteristic of the Josephson junction\nanomagnet...

	6. Reversal of the magnetic moment in the \phi_0 junction
	6.1 Reversal of the magnetic moment by a current pulse
	6.2 Periodicity in the occurrence of magnetic moment reversal intervals with a change in the...
	6.3 Analytical criteria for magnetization reversal in the \phi_0 junction
	6.4 Periodicity of reversal intervals in the plane r-G

	7. Experimental implementation of the anomalous Josephson effect and prospects for its application
	7.1 \phi_0 Josephson junction based on a nanowire quantum dot
	7.2 Anomalous phase shift in a Josephson junction based on  Bi_2Se_3 due to spin-orbit interaction
	7.3 Gate-controlled anomalous phase shift in the Josephson junction based on  Al\InAs
	7.4 Josephson phase batteries
	7.5 Cryogenic memory element based on the anomalous Josephson effect

	8. Conclusions
	 References

