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Abstract. We review the most significant results obtained in
the framework of the microscopic approach to a systematic
study of magnetic dynamics in two-dimensional ferromagnetic
and antiferromagnetic materials with a strong Rashba spin-
orbit coupling. For model systems, we discuss the microscopic
derivation of the Gilbert damping tensor, spin-orbit and spin-
transfer torques, and symmetric and antisymmetric exchange
interactions. It is shown that in both antiferromagnetic and
ferromagnetic systems, the presence of a sufficiently strong
spin-orbit coupling leads to an anisotropy of spin torques and
Gilbert damping. We focus on an analysis of spin-orbit torques
in a two-dimensional Rashba antiferromagnet. We also address
the possibility of switching the antiferromagnetic order para-
meter via short current pulses in the plane of the sample.

Keywords: ferromagnet, antiferromagnet, spin-orbit coupling,
Dzyaloshinskii-Moriya interaction, spin-transfer torque, spin-
orbit torque, Gilbert damping

1. Introduction

Significant technological advances seen in recent decades in
information processing and storage systems have largely been
to a systematic study of collinear magnetic materials. The
pioneering work of Griinberg [1] and Fert [2] on giant
magnetoresistance, carried out in the 1980s and awarded the
Nobel Prize in 2007 [3, 4], laid the foundations for the
research area currently known as spintronics. Subsequent
studies of the dynamics of ferromagnetic systems led to the
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discovery of magnetization switching effected by an external
spin-polarized current in a sample, a possibility first noted by
Slonczewski [5] and Berger [6]. Physically, this process can be
explained by the appearance of a spin-transfer torque (STT)
in a magnetic system due to the spin current, which mainly
originates in the spin Hall effect, as is discussed in detail, for
example, in [7].

In turn, the experimental detection of the spin Hall effect
associated with the buildup of spin polarization at the sample
boundaries by optical and electrical methods is an actively
developing area of research [8]. If the ferromagnetic material
is a dielectric, energy and information are transferred by the
magnon current [9, 10]. At the same time, in ferromagnetic
systems without inversion symmetry it is possible to stabilize
the nontrivial particle-like textures in form of skyrmion [11-
13].

From the standpoint of technological applications, the
main interest for spintronics has been attracted to the study of
ferromagnets [14—17], largely due to the possibility to control
their magnetic properties via external electric current or
optical pulses [18-21], while antiferromagnetic materials,
which are much more common in nature, remained terra
incognita because the antiferromagnetic order parameter
could not be affected by any external perturbations [22, 23].

Research that spanned over many years revealed a num-
ber of essential shortcomings in the practical use of ferro-
magnetic materials. A relatively high magnitude of switching
currents and hence significant heat generation and energy
losses, together with the slowness of the switching itself, make
the device operation unstable. The use of tunnel currents
perpendicular to the plane (CPP) of the structure [24, 25]
allowed increasing the switching rate, but required an even
higher switching voltage, inevitably resulting in a much
higher heating of the structure. Magnetic switching in ferro-
magnetic materials via tunneling in-plane currents (CIP) (in
the plane of the structure) [26, 27], in turn, significantly
reduces the switching current while making the proposed
devices too slow. These shortcomings are exacerbated by a
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lack of ferromagnetic materials that can be easily integrated
into the existing technological processes in the semiconductor
industry.

Currently, the research focus has shifted toward the study
of materials with extremely low magnetization, such as
antiferromagnets, in which the magnetic field is compensated
on atomic scales (see, e.g., review [28]). The fundamental
possibility of using antiferromagnetic materials in spintronics
was first demonstrated for a system made of an antiferro-
magnetic metal and a ferromagnet separated by a dielectric
layer [29, 30]. Such a heterostructure has an anisotropic
magnetoresistance, which is explained by a relatively strong
spin-orbit coupling. Subsequently, the use of CuMnAs was
proposed [31], in which antiferromagnetic domains can be
switched using ultrashort laser pulses [28], opening up the way
to designing antiferromagnetic magnetoresistive memory,
whose prototypes have already been demonstrated [32, 33].
These experiments are widely regarded as a breakthrough
into a new field of terahertz spintronics, where the micro-
scopic switching mechanism is introduced by so-called spin-
orbit torques (SOTs), which are by definition linear in the
components of the electric field vector [34].

Undeniable advantages of antiferromagnets include
their insensitivity to external magnetic fields, the absence
of demagnetization fields, and much shorter spin switch-
ing times. It should be noted that the antiferromagnetic
resonance frequency is several orders of magnitude higher
than a similar parameter of ferromagnetic systems, that
provides the possibility to switch from the gigahertz range
to the terahertz range in antiferromagnetic spintronics
devices.

Fully electrical switching of magnetic domains turns out
to be most efficient in systems with sufficiently strong spin-
orbit coupling, which provides an effective mechanism that
couples the electronic and magnetic degrees of freedom [35,
36]. In quasi-two-dimensional bilayers of conducting and
magnetic materials, the spin-orbit torque induced by an
external electric current can be used to move domain walls
or switch the magnetic orientation [37]. In the absence of
spin-orbit coupling, spin torques arise only in systems with
a nonuniform magnetization profile, so-called spin-transfer
torques [15, 38], which, according to the conventional
classification, are linear in the components of the electric
field vector and in the first spatial derivatives of the
magnetization vector. It is interesting to note that, due to
the presence of a strong spin-orbit coupling, spin torques can
also appear in structures containing a magnetic topological
insulator. However, the influence of a magnetic material
brought into contact with a three-dimensional topological
insulator on the properties of surface states of the topological
insulator requires a more detailed study, as does the problem
of the influence of bulk effects of the topological insulator on
the spin torques (see review [34]).

Despite the scientific community’s considerable interest
in the problems of spin dynamics in ferromagnetic and anti-
ferromagnetic materials in the presence of a strong spin-orbit
coupling, their theoretical description remains largely phe-
nomenological. This approach is typically limited to the
Landau-Lifshitz-Gilbert equations with arbitrarily chosen
terms [39, 40] to describe the effect of spin-orbit and spin-
transfer torques on the magnetization or the Néel vector.

For a typical heterostructure consisting of ferromagnet
and metal layers with strong spin-orbit coupling, the number
of different spin-orbit and spin-transfer torques is deter-

mined by the symmetry of the system [41]. In the phenomen-
ological description, all these terms enter the equation with
unknown coefficients; moreover, in two-dimensional sys-
tems, they are typically unknown functions of the magnetiza-
tion vector components. This strongly limits the applicability
of the phenomenological approach for complex-symmetry
systems, such as layered systems with strong spin-orbit
coupling, which are of primary importance in technological
applications. The much faster dynamics of the Néel vector
than that of the magnetization vector in a ferromagnet also
makes the nonadiabatic contributions to the spin torques
fundamentally important, and hence the number of unknown
parameters in the phenomenological theory is at least
doubled.

We note that the use of layered antiferromagnetic semi-
conductors leads to additional difficulties in describing the
system because of the nontrivial and generally anisotropic
band structure. These and many other problems with the
phenomenological approach can be resolved within the
microscopic theory.

In this review, we consider the major theoretical results
obtained in the framework of a microscopic analysis of
two-dimensional collinear magnetic systems with strong
spin-orbit coupling, with the s—d exchange character of the
interaction between a localized magnetic moment and
conduction electrons taken into account [37, 42-55].

In Section 2, we address the microscopic approach for the
description of magnetic systems in general terms. Within the
local mean-field approximation in the continuum limit, we
write a generalized Kubo—Streda formula for the spin torque
tensor, connecting the local nonequilibrium spin polarization
of conduction electrons with the electric field and the gradient
and time derivative of the magnetic order parameter.

In Sections 3 and 4, the microscopic techniques that we
discuss are used to analyze model two-dimensional ferro-
magnets and antiferromagnets with a strong Rashba spin-
orbit coupling in the constant-field and Gaussian-disorder
approximation; we address the contribution of conduction
electrons to the Gilbert damping and its anisotropy and
estimate the strength of symmetric and antisymmetric
(Dzyaloshinskii—-Moriya) exchange interactions. The results
presented in Section 3 for the Rashba model of a two-
dimensional ferromagnet clearly demonstrate a significant
anisotropy of spin torques for systems with a strong spin-
orbit coupling. In Section 4, we review the results for a model
antiferromagnet with a strong Rashba spin-orbit coupling
in the metallic and semimetallic regimes and also show that,
just as in two-dimensional ferromagnets, strong spin-orbit
coupling leads to a significant anisotropy of spin torques and
Gilbert damping.

2. Microscopic approach.
Calculating the response function

To describe two-dimensional magnetic systems within a
microscopic approach, we consider the s—d model of a two-
dimensional magnet with one (ferromagnetic system) or two
(antiferromagnetic system) sublattices and with the local
exchange interaction between localized magnetic moments
S; and itinerant electrons, whose contribution to the Hamil-
tonian is

Hsd = —Jsd Z(Sl G)(m’ C;Cl'(;/ s (1)
i
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where ¢;; and c; are the annihilation and creation operators
of an electron with spin projection ¢ at the ith lattice site, the
components of the vector ¢ = (oy,0,,0.) are the Pauli
matrices acting on the spin index of conduction electrons,
and Jyq is the s—d exchange coupling constant. From term (1),
the evolution of a localized magnetic moment is described by
the equation

% = % S,’ X S;, (2)
where s; = (c,-icmrc,«,,& and the angular brackets denote
averaging over the ground state of the Hamiltonian of
itinerant electrons. In the continuum limit, the local mag-
netic moments and the spin densities of conduction electrons
are assumed to change insignificantly on atomic scales, which
allows representing them as s(r) = A™' 3_;s;, where A is the
area of a unit cell.

For simplicity of subsequent discussion, we restrict
ourself to considering a single-domain magnetic material,
meaning that, in the case of a ferromagnet, we assume all
spins to be oriented the same direction and their absolute
values to be equal, S; = S; in the case of an antiferromagnet
with two sublattices A and B, we assume that the spins at
neighboring sites are opposite, S* = —S® =S. Under the
assumption that |S|= S > 1, the quantity Ay = |J«|S
determines the energy scale of the s—d interaction. The
dynamics of localized magnetic moments is typically much
slower than that of conduction electrons, which allows
describing the magnetic subsystem in terms of a classical
vector field m(r) = S/S.

In the mean-field approximation, the nonequilibrium spin
polarization of conduction electrons s(r,7) arises as a
response to a change in both the classical field m(r, 7) (here
and hereafter, m(r, ) represents the magnetization of a
ferromagnet or each sublattice of an antiferromagnet) and
the external electric field E(7) and is in general strongly
nonlocal in space and time. But, under the assumption that
the magnetization of a ferromagnet (or of each sublattice of
an antiferromagnet) and the electric field strength are
sufficiently smooth functions and change insignificantly on
scales determined by the scattering time and mean free path of
conduction electrons, we can use the gradient expansion,
which takes the nonlocal nature of the response function into
account approximately. In that case, the nonequilibrium spin
polarization can be represented in the form

Sy = gaﬁﬁ,mﬂ + ICOtBEﬂ + Ra/)’yéE/}Vymé + ... (3)

The first term here determines the contribution of conduction
electrons to the Gilbert damping, and the second and third
terms refer to spin-orbit and spin-transfer torques, in full
agreement with the established classification discussed above.

Calculation of the response function. As we have noted, the
collective dynamics of a magnetic material is described by
Eqn (2), which corresponds to the microscopic Landau—
Lifshitz—Gilbert equation

Om
E = yhegr xm+ T (4)

where y is the gyromagnetic ratio and hegy = —8F /dm is the
effective magnetic field created by localized electrons, which
is to be found from the expression for the micromagnetic

energy JF[m|, usually written using the Heisenberg model.
With expansion (3), the term T = ks X m with k = 4y4.A/fion
the right-hand side collects the so-called spin torques.

To write the g5, K.p, and R,p,s tensors in Eqn (3)
explicitly, we assume that H, is the Hamiltonian of conduc-
tion electrons and consider the response of the spin density
s(r,t) to (1) slow deviation of the magnetization vector
from the equilibrium position dm(r,?) ~ (f — #))0,m and to
the external electric field E(7) for (2) a uniform m and (3) a
nonuniform magnetization profile dm(r,?) =~ (r —ro)V,m.
Cases 1 and 3 correspond to the presence of a perturbation
dU(r,t) = —Asg00m(r, t) in the Hamiltonian, as follows from
the expression for the s—d exchange interaction, and in case 2
this contribution is dU(r, t) = —jA/c, where j is the current
density vector, A(r) is the vector potential of the external
electromagnetic field, and c is the speed of light in a vacuum.

As a relaxation mechanism, we consider scattering on
scalar Gaussian disorder, which is defined by the correlator
(V(r1)V(ry)) = Voo(r; —r2). In the case of a ferromagnetic
material, we choose ¥y = h%/(m.t), and in the case of an
antiferromagnetic material, Vy = 2moy (hv)z, where m, and t©
are the electron mass and scattering time, and v and a4 are the
characteristic velocity and the relative strength of disorder.

The spin polarization of conduction electrons at a point r
and time 7 can be calculated using its explicit definition in
terms of Green’s functions,

s, (r, 1) = —% Tr [6*8G < (rt,¥1)] , (5)

where G< = (Q’K —gR 4 (]A)/Z can be expressed in terms of
the Keldysh G K the retarded GR, and the advanced Ggh
Green’s functions of conduction electrons. If the system is
located in the field of some potential 3U(r, ¢), then, using the
explicit form of the Dyson equation, in the first order of the
perturbation theory, we can obtain

dG(r 111, 120) = [dzrﬁf

JCk

dt G(rit1,rt)dU(rt)G(rt, 1a17) ,
(6)
where integration along the Keldysh contour Cxk is assumed,
G(rit),r2t2) = G(r; —ry, 1) — 1) is the one-particle Green’s
function of conduction electrons, and
. GR GK
G= !
( 0 G4

> . GR(e)= (e — Hy+i0)", (7)

where ¢ is the energy. Using (6), we can obtain the correction
5G (xt, rf) — J dsz A7 [GR (rt, 75U )G (¥, 1)
+ G=(rt,¥1)SU(¥1 )G (¥, rt)] . (8)

It is worth noting that, for equilibrium systems, using the
fluctuation—dissipation theorem and Wigner transformation,
we have

iet

G:(s) = [Gﬁ(a) — G;{({,)]f({,) = Jim dr Glf(t) exp (;) .

©)
Here, we introduce the Fermi-Dirac distribution f(g) =
1/{1 +exp[(¢ — n)/T]}, where p is the chemical potential

and T'is the temperature expressed in energy units (i.e., we set
the Boltzmann constant kg = 1).



218 A A Pervishko, D I Yudin

Physics— Uspekhi 65 (3)

We consider the case where the system is placed in a
monochromatic electromagnetic field E(r) = Eexp (—iw?).
The potential then becomes dU(f) = iUjexp (—iwt)/w,
where Uy =jE, j= —eVpH), and e is the electron charge.
Calculating the correction by formula (8) leads to

: : 2 o] .
3G (rt,rt) = — E;lwt) J (jnl))2 J_ %: Gy (ex)

X UpGy(e-) + Gy (e4) UG (e-)] (10)

where ;. = ¢ & fiw/2. Taking the constant-field limit w — 0,
we can represent formula (9) as

2 00
(zi_l))zj de [gg(l) + 5g(2)} .
T

o 2T
The obtained expression corresponds to the so-called Kubo—
Streda formula, where the term

Sg(l) :f(g) |:GRU

6g<(rz,rt):J. (11)

R R
9GR 9G]

—_— R —
D6rungr -5 t6™ - R - m). (12
called the Streda contribution [56], is due to the integration
over all values of ¢, and the term
(e 1 1
8 =i ag_(L) {GRUOGA =) GRUGR — 5 GAUOGA}
&

(13)

defines integration over the Fermi surface, which at 7= 0
reduces to replacing ¢ with the Fermi energy ¢r. In Eqns (12)
and (13), we introduce the notation GRIA = Gl}{‘A(s) for
brevity.

It is noteworthy that each term in (12) is a product of
retarded or advanced Green’s functions. The poles of the
integrand lie on the same side of the imaginary plane, making
the Streda contribution small in the limit of weak disorder [37,
57]. However, having no classical analogue, this contribution
is quite important when the system spectrum has a gap and
the Fermi energy is located exactly in the gap, as we discuss
below. In analytic calculations, we assume that the Fermi
energy is located sufficiently far from the gap; in other words,
we work in the metallic regime and neglect Streda correction
(12). Similar reasoning can be applied to the last two terms
in (13), and therefore the spin-orbit torques in the system are
mainly determined by the tensor [37]

(14)

e [ d%p .
Kop=— T R, vc A )
" 4nJ (2n)? rloag e

It was assumed in deriving expression (14) that the magnetiza-
tion can be considered almost uniform on scales determined
by the mean free path of an electron. Similar calculations at
T = 0 in a constant electric field E, in accordance with the
Kubo formula, yield the spin-transfer torques [54]

. eAAng d*p

_ A
Ropio =1508 (2n)?

Tr [gATJCng/}’Cg asgv, — h.c.] ,
(15)

where the velocity operator v, as in (14), acquires the
superscript vc corresponding to the value of the operator
with the vertex correction due to summation over the
impurity ladder. In turn, gR/A = (GR/A) is the disorder-

averaged Green’s functions of the conduction electrons, and
T = ¢ x m. Finally, the Gilbert damping is expressed as [54]

Tr [gAngRaﬁ] . (16)

Al J d*p
8up =

 2nh’S (2n)*

3. Two-dimensional Rashba ferromagnet

In this section, we review the results for a two-dimensional
ferromagnet with a strong Rashba spin-orbit coupling
obtained with the approach presented in Section 2.

3.1 Dzyaloshinskii—-Moriya interaction

From the microscopic standpoint, the appearance of the
Dzyaloshinskii—Moriya interaction in crystals without inver-
sion, a possibility first noted in [58], is due to the presence of
spin-orbit coupling [59]. To determine its strength in systems
with magnetic order, it suffices to consider the s—d model
described in Section 2 with the Hamiltonian of conduction
electrons given by

H=2¢&, + or(,[p x 0.+ A4m(r, t)c, (17)
where ¢, and {,,, which are analytic functions of the absolute
value of the momentum p = (p.,p,), determine the kinetic
energy and the Rashba spin-orbit coupling, characterized by
the parameter ag. As in the foregoing, the last term on the
right-hand side of (17) corresponds to the effective s—d
exchange interaction strength A4, and the vector of Pauli
matrices ¢ acts on spin indices. Assuming that the ferromag-
netic material is at a temperature much lower than its Curie
temperature, we can describe the localized magnetic moments
in terms of a continuous vector field of unit length,
|m(r, 7)| = 1.

In the continuum limit, the contribution of the Dzya-
loshinskii-Moriya antisymmetric exchange interaction to
the micromagnetic free energy density is given by wpy =
D(AE,{_’) — A(f)) where the parameter D is the coupling
strength and A,(. ; = m;Vim; — m;Vim; are the Lifshitz invar-
iants. [t is easy to see that the coupling wpy is linear in the first
spatial derivatives of the magnetization vector m. In turn, the
symmetric exchange interaction we, = A(|V,m|* + \VJ,m|2),
whose strength is determined by the parameter A4, is due to
terms that are quadratic in the first spatial derivatives of m.
We note that the relation between D and A4 plays a key role in
the formation of chiral magnetic structures, such as a
magnetic skyrmion or a magnetic soliton, determining their
stability and size [43, 44].

To find the contribution from the Dzyaloshinskii—-Moriya
interaction, we use the expansion of the grand thermo-
dynamic potential Q and keep the terms that are linear in
the first spatial derivatives of the magnetization vector; this
allows us not to assume a priori the symmetry of the final
result. The density of the thermodynamic potential Q at a
point r is given by

0- _szi Tr [G7(r, 1) — GR ()] ge), (18)

where

g(e) =In{l +exp[(u—e¢)/T]} and GR* = (e — H=i0)™'

are the retarded and advanced Green’s functions for the
system with Hamiltonian (17), respectively. Using the



March 2022

Microscopic approach to the description of spin torques in two-dimensional Rashba ferromagnets and antiferromagnets 219

—  T/A4=0

— — = T/4yq=0.15
— — T/dyq =025
....... T/Aﬁd — 0‘35

MeOR Asd
8nh

D/

—05 D = (4meor /h)A

1/ 4sq

-1 0

Figure 1. Dzyaloshinskii-Moriya interaction in a two-dimensional Rashba
ferromagnet obtained by solving Eqn (21) numerically at various tempera-
tures. Antisymmetric exchange interaction constant D is nonzero only in
the semimetallic regime at 7 = 0, while, as the temperature increases, the
Dzyaloshinskii-Moriya interaction also manifests itself in the metallic
phase [46].

Dyson equation, in the first order of the perturbation theory,
we find the function

Qm] =Y " QiMV,my.
off

(19)

Expression (19) is obtained upon inclusion of small deviations
of the magnetization vector m(r) ~ m(ry) + (r — ro)V,m(ro)
from equilibrium in the last term in (17). For simplicity in
what follows, we assume that m = m(r,) hereafter.

The tensor Q;%M in (19) can be found explicitly from

o Re[e0ae] (j:cl))z

x Tr [GRopGRv,GR — GRv,GRapGR],

TA
DM sd
oM ===

(20)

where GR is the retarded Green’s function for Hamiltonian
(17) with a uniform background magnetization m, and we
introduce the velocity v = V,H [46]. With this relation, the
Dzyaloshinskii-Moriya coupling strength can be expressed as

_oaprdy O Joof—*/ﬁ
T8l 044 \ )y  Adw

cpa:,;pzdp> , 1)

where fi = (&, £ 4sq), f(e) is the Fermi-Dirac distribution,
and 5,; =0¢,/0p. In particular, for the Bychkov—Rashba
model with a quadratic law &, = p?/(2m.) and {, =1 at
T = 0, we obtain

_ MeorAsd < :u2

D= - 22
nh Agd (22)

) at ] < 4.

and D = 0 otherwise. We note that, in the Bychkov—Rashba
model, the symmetric and antisymmetric exchange interac-
tion constants are related as 4 = D /(4m.or) [46].

In Fig. 1, we show the results of numerical integration of
(21) for the antisymmetric exchange interaction constant in
the two-dimensional Rashba magnet as a function of
temperature. In the limit of zero temperature 7 =0, as we
can see, the Dzyaloshinskii-Moriya coupling constant D is
nonzero only in the semimetallic regime |p/4sq| < 1, which
coincides with the results of analytic calculations in the
Bychkov—Rashba model.

3.2 Spin-orbit torques

We return to the model of conduction electrons with
Hamiltonian (17), choose the z-axis perpendicular to the
plane of the structure under consideration, and assume that
the ferromagnetic material is located in the plane z = 0. For a
current directed in the magnetic structure plane, we can use
expression (14) to calculate the spin-orbit torques in the
system.

Before proceeding with a discussion of the results, we note
that the symmetry analysis of model (17) with the Rashba
spin-orbit coupling allows concluding that the spin-orbit
torques are characterized in the general case by four coeffi-
cients, which, within the phenomenological approach, are
unknown functions of the magnetization vector components
[41]. Indeed, the spin-orbit torques can be represented as
TSOT = TOT 4+ TOT, where

THSOT =am X (Z X E)+ cm x (m x z)(mE) (23)
defines the dissipative (damping-like) contribution to the
spin-orbit torques, in other words, changes sign under time
reversal, and

TT = bm x (m x ( x E)) + d(m x 2)(mE) (24)

corresponds to a field-like contribution that is even under
time reversal. Here, E = (E,, E,) is the electric field strength
vector oriented parallel to the plane of the sample. Interest-
ingly, the functional dependence of the coefficients a(0), (0),
¢(0), and d(0) is determined only by the polar angle formed by
the magnetization vector and the z-axis. We note that in the
metallic regime ¢g > 71/, where 7 is the characteristic electron
scattering time, these coefficients take almost constant values,
regardless of the disorder model used in the calculations.

We assume the most general orientation of the magnetiza-
tion vector and choose a coordinate system such that the
x-axis coincides with the projection of the magnetization
vector onto the plane of the ferromagnetic material: m =
(my,0,m;). We then treat the addition due to Ami,o,
perturbatively. The expansion in a perturbative series in this
case is equivalent to the expansion in powers of m,4y/4s,
where As = (m242, + 2epmea})'/? [37]. For sufficiently well-
separated subbands, As > 7i/7, the coefficients » and d are less
than ¢ and ¢ in Eqns (23) and (24). Explicitly, we have

eTuR

a=Kme [1 +u? = (1 + 3,uzz)} , (25)
ear N
b= Kme4—:: ;d [T+ pi(1—2u2)], (26)
S
s etor Ay 2 2 2
¢ = —Kmeps L 2 [B+u2+2ui(2-3u2)], (27)
eor hds 2 4 2 2
= R 1 — ~ 21 =
d = rkme—— yE { s =3 — ug (1= 3u)
24 2
+2R -2 28)
S

with the vector p= Agm/4s. It is easy to see from the
expressions for the coefficients that, for Ay < Ag, the
dependence on the polar angle becomes weak and the
parameters a, b, ¢, and d take approximately constant
values. In turn, a and ¢ explicitly depend on the scattering
time 7, which, as noted above, determines the dissipative

character of THSOT.
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Although the above results are universal, i.e., are
independent of the nature of disorder, a limitation of this
approach is the fact that the correlator /Cop was calculated in
the approximation of disjoint diagrams. But, as demonstrated
in [60, 61], the microscopic analysis of such correlators should
also include oblique scattering on rare impurity configura-
tions with the distance between some two impurities being
comparable to the de Broglie wavelength of an electron.
However, we emphasize that the calculation in the frame-
work of the self-consistent Born approximation, as imple-
mented above, is fully consistent in the leading order in
ep > N/t

We note that the results obtained for spin-orbit torques
are exact in the metallic limit &g > Agq, when we can neglect
Streda’s topological contribution (12) in view of the vanish-
ingly small Berry curvature.

We also emphasize the following. In the absence of spin-
orbit coupling (zr = 0), the nonequilibrium spin polarization
of conduction electrons ds in Eqn (5) becomes proportional to
the number of electrons in the direction of the magnetization
vector m of the sample, which can be interpreted as the
occurrence of a diffusion pole in calculations of the corre-
sponding diagrams, and which requires vertex corrections to
be carefully taken into account. It turns out that all orders in
m, can be formally taken into account by writing the velocity
operator with the summation over the impurity ladder in (14)
and with the corresponding Green’s functions replaced with
those accounting for disorder, which results in the following
expression for the spin-orbit torque tensor:

0 =
emea.
K="2R(_¢ 0].
2n 0 0
It is easy to see that the tensor K is independent of the
exchange interaction strength and of the orientation of the
magnetization vector, and has nonzero components even in

the absence of the s—d exchange interaction in the system [62—
64].

(29)

3.3 Spin-transfer torques
We next discuss the mechanism of generation of spin-transfer
torques, where the magnetization m of the structure causes
the spins of electrons drifting under the influence of an
external electric field E in the substrate or in the magnetic
material itself to polarize and then affect the dynamics of
the magnetization vector. As a model system, we choose a
two-dimensional ferromagnet with the Rashba spin-orbit
coupling described by Hamiltonian (17) in the presence of
scalar Gaussian disorder. Below, we review the most
significant theoretical results obtained, as in the case of spin-
orbit torques, under the assumption of a metallic regime.
For an arbitrary orientation of the magnetization vector
in a two-dimensional Rashba ferromagnet, the spin-transfer
torques

TSTT = ¢)0,m — & (m x dymy) — &, (m x dym, ) (30)
and the Gilbert damping
TP = &p0m — fu(m X a,mH) =& (mx9dmy) (31)

are defined by the coefficients &; = &;(m), where 0y = (v4V),
va = ehtE/m is the classical electron drift velocity in an
electric field, and m = mj +m, with m = Zcos 0. We note

that, for the convenience, the term £,0,m was included in the
definition of Gilbert damping (31), but, because of the parity
of this term under time reversal, its effect reduces to spin
renormalization in the Landau-Lifshitz—Gilbert equation,
i.e., it does not lead to actual damping. We mention
specifically that we have chosen Gaussian disorder as a
physical mechanism responsible for momentum relaxation.
This is because, just like the spin-transfer torques, both the
conductivity tensor and the Gilbert damping contain essen-
tially dissipative components.

The rotational and orientational anisotropies appearing
in the expression for the spin torques are a consequence of the
fact that the Rashba-type spin-orbit coupling highlights a
direction perpendicular to the two-dimensional plane of the
structure. The orientational anisotropy of &;(m) is determined
by all elements of the space symmetry group of the system.
For Cu,, i.e., in model (17), the coefficients ¢&;(m.) are
determined only by the polar angle of the magnetization
vector. It is easy to see that the expression for spin torques
contains both the adiabatic contribution « (EV)m and the
nonadiabatic contribution o« m x (EV)m. In the absence of
spin-orbit coupling in the system, the physical interpretation
of the adiabatic contribution becomes transparent and
intuitively clear: because the spins of the conduction
electrons adiabatically follow the direction of the local
magnetization, the corresponding change in their angular
momentum is transferred to the magnetic texture.

Another remarkable property of the introduced expres-
sions in form (30) and (31) is that they yield a simple and exact
relation between the nonadiabatic spin-transfer torque and
the Gilbert damping, which is important for the current-
induced motion of magnetic textures, including domain
walls and skyrmions. Indeed, in a moving reference frame,
both components of the nonadiabatic torque, determined by
the coefficients £ and ¢, are canceled by the corresponding
terms in the expression for Gilbert damping. Therefore, if the
influence of other torques on the motion of the magnetic
texture is insignificant, then its final velocity in the moving
reference frame must disappear in the absence of a magnetic
field. This means that in the laboratory reference frame the
texture moves with the universal electron drift velocity vy.
Therefore, it seems more convenient to study the dynamics of
a magnetic texture in a moving reference frame, where
nonadiabatic torque contribution associated with the spin
transfer is absent.

The coefficients &, &, and £ |, which determine the spin-
transfer torques and Gilbert damping in accordance with (30)
and (31), can be found by numerically integrating Eqn (15) for
Ropys- In particular, in Fig. 2 we show the values of the
coefficients for three directions of m, including the magnetiza-
tion perpendicular to the structure plane (6 = 0) and lying in
the plane (0 = nn/2), as well as the general case (we choose
0 =2n/5 for illustration); these coefficients are in full
agreement with the asymptotic values [54] calculated for
weak spin-orbit and weak s—d exchange interactions.

If the Rashba spin-orbit coupling is absent in the system
(xr = 0), then both the contribution to the Gilbert damping
due to conduction electrons and the nonadiabatic spin-
transfer torque are absent, and

Asg Am
= 5 = = 0 . 32
o Si’S =<0 (32)
The parameter &y = —8Se/S determines the effective spin

renormalization in the Landau-Lifshitz—Gilbert equation,
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Figure 2. (Color online.) Coefficients &y, £, and £, determining spin-transfer torques and Gilbert damping in a two-dimensional Rashba ferromagnet for
the magnetization vector (a) lying in the plane of the structure, 0 = n/2, (c) perpendicular to it, 6 = 0, and (b) having an arbitrarily chosen orientation
0 = 2m/5. Results of numerical integration of expression (15) are shown with a solid black curve. Two asymptotic cases [54] are distinguished
corresponding to the limit of weak spin-orbit coupling (red dashed curve) and weak s—d exchange interaction (blue dots). For the magnetization vector
perpendicular to the plane of the ferromagnet, exact analytic solution (34)—(36) can be found (green dots).

which physically means that a fraction of conduction
electrons is associated with a localized moment. Indeed, in
the absence of spin-orbit coupling, conduction electrons are
polarized in the direction of the magnetization vector or in the
opposite direction, and hence the total electron spin per unit
cell can be exactly expressed as

Asg Am
= —¢,S.
2mh? o

If the magnetization vector of a ferromagnetic material is
perpendicular to the structure plane, m = m_, then

88 =88, — 88, = — (33)

0= _%S {1 A fz(fzfi’/?; )2/4 ’ (4
sd sd 50
6= 38 | 1ds A5 [1 4227 (243 + 43,) /7] ’ (35)
ST h o Ay +22Q4% + AL’
£ — |38 A2 [1+ (2tdg/h)] 7 (36)
S| 20 A+ 24 + A3 /0
where 45, = \/28]:1’}’13061%. We note that, for a fixed direction

m = m_, we can make no conclusion about &, because this
quantity determines the factor in front of m x 0m, and canin
principle take an arbitrary value; nevertheless, an analytic
expression for & can be found in the limit 6 — 0.

Concluding this section, we note that the formulas
obtained here and below for the spin-orbit and spin-transfer
torques can be equivalently represented in terms of the
external electric current using the explicit expression E =
6§, where ¢ is the conductivity tensor of the material.

4. Two-dimensional Rashba antiferromagnet

A fully electrical switching of the Néel vector orientation in an
antiferromagnetic material due to spin-orbit torques was
predicted in [65] and detected in noncentrosymmetric
CuMnAs [66-69] and Mn;Au [70-72] crystals. Although
many antiferromagnets are electrical insulators [73], which
limits the range of their possible use, for example, for spin
injection [74], materials such as CuMnAs and Mn,Au have
semimetallic and metallic properties, which determines the
high conductivity of these structures and the presence of a
strong spin-orbit coupling. Another important characteristic
of these materials is that they allow the excitation of collective
modes in the terahertz range [72].

The spin-orbit torque in antiferromagnets that is most
interesting from the standpoint of practical applications has
been studied theoretically using the Kubo—Streda formula in
the case of a two-dimensional Rashba electron gas and in
tight-binding models using MnAu as an example [65, 75].
This laid the foundation for further studies of spin-orbit
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torques in heterostructures made of antiferromagnets [76, 77].
We note that a symmetry analysis based on point magnetic
groups of antiferromagnets has also been developed to
predict the shape of spin-transfer torques [75, 78].

In Sections 4.1-4.4, we review results that allow deter-
mining the spin-transfer torques [51] and Gilbert damping
[52] within the microscopic theory presented in Section 2.
We especially note that, in contrast to calculations for a
two-dimensional Rashba ferromagnet studied in detail in
Section 3, the calculations of spin-transfer torques for a
model antiferromagnet presented here are done via numer-
ical simulations and are not limited to the metallic regime.
Below, we consider the nonequilibrium spin polarization of
conduction electrons for the effective s—d model of a two-
dimensional Rashba antiferromagnet on a hexagonal lattice
with a strong Rashba spin-orbit coupling and local scalar
disorder. We show that, just as in two-dimensional ferromag-
netic materials, the presence of spin-orbit coupling leads to a
significant anisotropy of the spin torques [51] and Gilbert
damping [52]. We also discuss exact analytic results obtained
for spin torques in the case of antiferromagnetic metals,
where calculations can be performed analytically [52].

4.1 Hamiltonian of the Rashba antiferromagnet

To illustrate the developed technique, we consider the s—d
model of a two-dimensional antiferromagnet on a hexagonal
lattice (Fig. 3), assuming that the conduction electrons are
described by the Kane—Mele strong coupling model [79, 80].
The choice of the microscopic model is partly motivated by
recent studies of CuMnAs [81]; we assume that the Fermi
energy level of the conduction electrons remains near the
Dirac points, and hence the Fermi surfaces are located near
two valleys, K and K’. The Hamiltonian of the conduction
electrons is therefore given by

H=Hy+ Hg + Hyg, (37)

where Hj is the Hamiltonian describing the hopping of
conduction electrons between nearest neighbors,

— T
Hy=—w) > chci,
e

with the hopping integral w, and ¢;, and cl-i:, are electron
annihilation and creation operators with the spin projection ¢
on the ith site. The Rashba spin-orbit coupling

iz . .
Hy = ;Z D26 X i)y cior

(i,j) oo’

(38)

(39)

is introduced by the parameter A, a is the two-dimensional
crystal lattice constant, the unit vector z is perpendicular to
the plane of the structure, and the components of the vector
6 = (0y,0,,0:) are the corresponding Pauli matrices. For any
sublattice sites A, the vectors d;; connecting the nearest lattice
sites can be defined as

=ofl) 3() o3

The exchange interaction between localized magnetic
moments S; and conduction electron spins is described by

Hsd = _Jsd Z § si GGG’C,'];CI'U’ 3

i ago'!

(40)

Figure 3. (Color online.) Two-dimensional Rashba antiferromagnet model
on a hexagonal lattice with oppositely directed magnetization vectors on
two sublattices, A and B, shown in blue and red, respectively. Vectors dj
and d;; connect neighboring lattice sites such that the beginning of vector
d;; is at the ith site and the end, at the jth.

where the exchange interaction strength Jgq is chosen to be the
same for both sublattices. Importantly, expression (40) relates
the model of conduction electrons formulated in the tight-
binding approximation to the classical Heisenberg Hamilton-
ian of localized magnetic moments S;, whose ground state
corresponds to antiferromagnetic ordering. In what follows,
we assume that |S;/ =S > 1, and the characteristic s—d
exchange energy is given by 4y = JyqS (as for a ferromagnet).

In subsequent calculations, we consider a single-domain
antiferromagnetic material with a unit Néel vector n=
(Sa — Sg)/(2S). It is easy to see that the model in (37)—(40)
guarantees the symmetry with respect to the sublattices
(A < B), ensured by the equality of spin-orbit and s—d
exchange interactions on both sublattices. The advantages
of the high symmetry of the model include the total isotropy
of the Fermi surface with respect to the azimuthal (in-plane)
direction of the Néel vector n. However, the band structure of
the symmetric model strongly depends on the polar angle 6 of
the Néel vector, n, = cos 0, as shown in Fig. 4.

The Hamiltonian Hegr of low-energy conduction electrons
can be obtained by linearizing (37) in the vicinity of the valleys

4t 0
K=" ., K'=-K. 41
3V3a < 1 ) #1)
Recalling that v = 3wa/(2h) and Sp = —Sg, we have
)
Her = v(pZ) + - [6 x ], — A(n6) 2.4, + V(r), (42)

2

where X, A, and o are vectors composed of the Pauli matrices
acting, respectively, on the sublattice, valley, and spin indices.

Itis worth noting that the term V(r), which corresponds to
the Gaussian disorder, implying that (V(r)) = 0, and is fully
characterized by the two-point correlator (V(r)V(r')) =
2n(hv)*aqd(r — '), where angular brackets denote averaging
over disorder and the dimensionless parameter oqg < 1 defines
the strength of disorder, leads to relaxation of the momentum
of conduction electrons (see the discussion in Section 2). The
exchange interaction and spin-orbit scattering (or scattering
by noncollinear configurations with m = 0) provide a link
between localized magnetic moments and kinetic moments of
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Figure 4. (Color online.) Band structure corresponding to Hamiltonian (37) for different orientations of the Néel vector: (a) perpendicular to the plane of
the antiferromagnet, 0 = 0, (b) arbitrary, 0 = n/4, and (c) in the structure plane, 0 = /2. Red curves correspond to the K valley, blue curves, to the K’
valley. Horizontal lines mark possible positions of the Fermi level ¢r that are characteristic of a dielectric (¢ = 0), a semimetal (¢ = 0.05w), or a metal

(er = 0.3w).

electrons. Both these mechanisms form a channel for scatter-
ing the angular momentum of localized spins into the lattice.
Thus, the considered model provides us with a microscopic
basis for studying dissipative quantities such as Gilbert
damping, spin-orbit torques, and conductivity, which we
discuss in what follows.

4.2 Spin-orbit torques

We note that effective model (42) is characterized by the point
symmetry group C.,. The second term in the model
Hamiltonian Hy can be interpreted as the Zeeman contribu-
tion Z x j, where j is the electric current in the system, which
we always assume to be oriented along the x-axis for
simplicity. This field induces a nonequilibrium spin polariza-
tion of conduction electrons, in full analogy with how this
occurs in ferromagnetic materials. With the point symmetry
group

3t =AmHzxj+ A (n2)m x (ny x (2 x j))

+ By (n?)ny x (z xj) + B (nzz)nH X (Z X j)

+ C(n2)my x (nL x (2 %)), (43)
where 8s* = (8s? & 8sB)/2 are constructed from nonequili-
brium spin polarizations of the two sublattices, we also split
the Néel vector into the in-plane and perpendicular compo-
nents: n = nj + n_. This representation of the spin polariza-
tion is dictated by two transformations: the Néel vector
inversion n — —n and the reflection in the structure plane
n; — —n . Because the model is isotropic with respect to in-
plane rotations, only these symmetries determine the non-
equilibrium spin polarization. The first two terms in (43) are
even under both Néel vector inversion and reflection in the
plane of the structure, and the last term is even under
inversion but odd under reflection. These terms correspond
to field-like torques, i.e., are invariant under time reversal.
The third and fourth terms in formula (43) are odd and even,
respectively, under inversion, but not odd under reflection,
and hence represent antidamping-like spin-orbit torques that
change sign under time reversal. In turn, the coefficients in
front of the corresponding vector expressions are invariant
with respect to Co, group, but can vary depending on n2. In
view of the symmetry of the model with respect to the
sublattices, AyHeg[—n]Ay = Hern] and 8s~ =0, which

results in the vanishing of the antidamping contributions,
B, = B = 0. It is also worth noting that expression (43) is
equivalent to (23), (24), with the only difference that we have
switched from the components of the electric field strength
vector E to the electric current density vector j using Ohm’s
law in differential form, expressed in terms of the conductivity
tensor.

We consider possible scenarios for estimating the magni-
tude of the nonequilibrium spin polarization of conduction
electrons depending on the Fermi level position in the system
shown schematically in Fig. 5. In the metallic regime, when
there are two Fermi surfaces in each valley, the coefficients A4,
A’, and C as functions of the Néel vector direction are shown
in Fig. 6. As can be seen, the contribution of higher harmonics
to the nonequilibrium spin polarization, being proportional
to the expansion coefficients 4’ and C, is negligible, which
leads to

5st o Az X j (44)

with a dimensionless coefficient 4, whose value remains
almost constant regardless of the impurity concentration
(Fig. 7). Expression (44), as can be easily seen, corresponds
to the inverse spin—galvanic Edelstein effect [62], which, as
discussed in Section 3, also manifests itself in ferromag-
netic materials with the Rashba spin-orbit coupling [82].
The spin-orbit torques for an antiferromagnetic metal can
therefore be expressed as T3°T = Ann x (z x j) and T3°T =
Anm x ( x j), where 5 =JAA1/(evhw?) and the total
magnetization ism = (Sa + Sg)/(2S).

In the semimetallic regime (¢p = 0.05w, see Fig. 7), one of
the valleys has only one Fermi surface. Interestingly, the
conductivity in this regime is determined by the dependence of
the antiferromagnetic order vector on the polar angle: for
n2 < 1/2, the system is poorly conducting, but the coefficient
A is essentially O-independent and the antidamping spin
torques are absent, By = B, = 0. A characteristic feature
of the semimetallic regime is the significant contribution to
the nonequilibrium spin polarization made by terms with
dimensionless coefficients 4’ and C in expression (43), which
are the field-like spin torques of higher harmonics.

The numerical results presented in Fig. 7 convincingly
demonstrate that the values of the coefficients 4 and A’ are
practically insensitive to disorder, while in the nonconducting
regime n2 < 1/2, the dependence C(n?) is quite conspicuous.
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Figure 5. (Color online.) Geometry of a device with two electrodes and a
bias Vyias between them, which allowed obtaining nonequilibrium spin
polarization of conduction electrons [51] within the formalism of scatter-
ing matrices [85]. To avoid edge effects, the scattering of conduction
electrons is studied in the central region of the setup marked with a gray
square.
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Figure 6. (Color online.) Normalized coefficients 4, 4’, and C depending
on the direction of the Néel vector for the metallic regime at (a) ep = 449
and (b) ep = 1645q; Ag = Asq AL/ (evhiegS).

From the physical standpoint, this dependence on the
impurity concentration is determined by the conduction
mechanism. It is worth noting that a semimetallic antiferro-
magnet is not purely speculative: in particular, it has been
found in Mn,Ru,Ga [83, 84].

Before proceeding to the microscopic analysis of Gilbert
damping, we briefly discuss the case where the s—d exchange
interaction between localized magnetic moments and con-
duction electron spins is present in only one sublattice,

Hy = _JZZSiAGJJ’C:‘(U—CiU’ .

i€A ago’

(45)

Such an interaction breaks the symmetry of the system with
respect to the sublattices, which can in turn give rise to the
nonequilibrium spin polarization ds ~ and hence antidamping
spin-orbit torques, which are absent in the symmetric case
considered above. We note that the model with an asym-
metric exchange interaction is more suitable for describing a
ferrimagnet, such as GdFeCo, where conduction electrons
mainly interact only with d-localized orbitals [86]. In full
analogy with the calculations presented above, the spin-orbit

Figure 7. (Color online.) Coefficients determining the expansion of the
nonequilibrium spin polarization of conduction electrons ds* in metallic
(er/w = 0.3) and semimetallic (¢r/w = 0.05) modes depending on impur-
ity concentration iy, corresponding to the amount of impurity, each
treated as a local random scalar potential divided by the number of lattice
sites.

torque in this system, which acts only on the A-sublattice
magnetization ny, is defined as

TA = n[A(nj)nA x (2 % §) + Bu(n2)na x (ng x (2 x )
(zxj))
(ny x (2 x )] .

where the coefficients 4, By, Bj, and C are nontrivial
functions of n? shown in Fig. 8. In this case, as is easy to
understand, the Néel vector coincides with ny.

In contrast to the symmetric model, note the appearance
of antidamping torques with the coefficients B, and B. We
note that their contribution strongly depends on the level of
disorder, in contrast to the contributions of the field-like
torques, which are mainly determined by the first term in
expression (46). We can see from Fig. 8 that, as disorder in the
system increases, the antidamping torques disappear in the
metallic regime and increase in the semimetallic regime.

To summarize, we note that the experimentally deter-
mined contributions from both field-like and antidamping
torques in GdFeCo ferrimagnet films with perpendicular
magnetocrystalline anisotropy, where the possibility of mag-
netization switching under the action of spin-orbit torques is
of particular interest [§7-89], qualitatively coincide with the
results obtained within the microscopic approach presented
in this section.

+B”(n_,2)nA X (Il/l X

+C(n2)na x (] x (46)

4.3 Antiferromagnetic switching

As we have noted, the field-like and antidamping torques
affect the antiferromagnetic order vector, which proved the
path to study the possibility of the Néel vector switching in the
system. For a single-domain antiferromagnet, the magnetic
dynamics is determined by the system of Landau-Lifshitz—
Gilbert equations for the magnetization vectors of both
sublattices, np and ng:

onp  JiS Jsqg A Ona
—_—= ng X np + np X 8sp +omp X ——
6nB _ JeXS Jsd.A

6[13
ng X 8sg + ong X — ,

na X ng + o

dr  2h

where Je is the antiferromagnetic exchange energy. In Fig. 9,
we show the numerical results for the system of equations for
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the components of the Néel vector under the effect of short
current pulses alternating between the directions —Xx and y. As
can be seen, in the sublattice-symmetric model, the spin-orbit
torques due to the nonequilibrium spin polarization és* are
not enough to change the orientation of the Néel vector,
whereas in the asymmetric model we observe the effect of
antiferromagnetic switching determined mainly by field-like
torques with the coefficients 4 and C [51].

4.4 Gilbert damping

Unlike conductivity and spin-orbit torques, which are
practically isotropic for the antiferromagnet model with a
strong spin-orbit coupling in the metallic regime, Gilbert
damping is essentially anisotropic in the Landau-Lifshitz—
Gilbert equations

2JexS . .
n=— ;X nxm+Hxn+olnxm +oimxn,

! (48)

m=Hxm+o nxn +o,mxm,

where

2ept A (A \'[. A
| =2 2 (2 2242+ ...
I =, nS<hv>{ sﬁ( )+ ]’

ocL:gF—Ti @ 2 i z—l—... .
" h wS\ hv eF

The anisotropy of the Gilbert damping in a Rashba antiferro-
magnet arises due to the splitting of the electron subbands
under the influence of the spin-orbit coupling. An interesting
consequence of this anisotropy is the presence of an
undamped nonequilibrium dynamical mode corresponding
to the ultrafast precession of the Néel vector in the antiferro-
magnet plane. A detailed discussion and calculation details
are presented in [52].

(49)

5. Conclusion

Studying magnetic dynamics in low-dimensional collinear
magnetic systems is a complex problem, whose solution

curves, to n, (7). Solution was obtained using the expressions for s, g with
o=0.1.

within the phenomenological analysis turns out to be
generally insufficient. In this review, we have discussed a
microscopic approach to the derivation of spin-orbit and
spin-transfer torques, Gilbert damping, and symmetric and
asymmetric exchange interaction constants using the models
of two-dimensional ferromagnets and antiferromagnets with
a strong Rashba spin-orbit coupling within the s—d exchange
model.

In particular, for a two-dimensional Rashba ferromagnet,
we calculated the Dzyaloshinskii-Moriya interaction con-
stant as a function of temperature in the Rashba—Bychkov
model; expressions for spin-orbit and spin-transfer torques
were obtained. We have shown that the presence of a strong
spin-orbit coupling leads to an orientational anisotropy of the
Gilbert damping and spin-transfer torques; we also discussed
spin renormalization problems.

For the Rashba model of a two-dimensional antiferro-
magnet on a hexagonal lattice, we discussed the spin-transfer
torques in the metallic and semimetallic regimes both in the
presence of the sublattice symmetry corresponding to equal
exchange interaction constants for the sublattices as well as in
its absence. In the symmetric model, the nonequilibrium spin
polarization of conduction electrons is determined by a field-
like term, while the antidamping-like contribution is com-
pletely absent, but appears when the symmetry with respect to
the sublattices is broken. It is especially interesting that the
antidamping torques in the asymmetric model are highly
anisotropic and exhibit a pronounced dependence on the
impurity concentration in both the metallic and semimetallic
regimes. The presented results offer a new perspective on the
processes occurring in magnetic systems and are important
for the analysis of a wide range of experimental studies on
switching the magnetic order parameter.
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