
Abstract. Spectral analysis, based on the Fourier method, is a
general tool in physics. Wavelets appeared as a natural general-
ization of classical spectral analysis to the case of complex
nonstationary and spatially inhomogeneous systems, for which
a comparison with an infinite sinusoid, which forms the basis of
the Fourier method, has to be replaced by a comparison with a
finite wave packet, which is known as a wavelet. In this review,
the authors, based largely on their own experience of application
wavelet analysis in astro- and geophysics, solar-terrestrial rela-
tions, as well as climatology, medical physics, and laboratory
hydrodynamic experiments, demonstrate the possibilities and
discuss the practical aspects of the application of the wavelet
apparatus to the interpretation of signals and images of various
physical natures.

Keywords: wavelets, spectral analysis, data processing for
signals and images, solar and stellar activity, galactic mag-
netic fields, geophysics, medical physics

1. Introduction

The decomposition of a signal based on harmonic functions is
rightly considered a natural means for the study of periodic
components of various signals. The idea of this analysis is
mathematically formalized, in particular, in the form of the
Fourier transform

f̂ �o� �
� �1
ÿ1

f �t� exp �iot� dt : �1�

The complex function f̂ �o� represents the spectral composi-
tion of an analyzed signal f �t� showing the amplitude and the
phase of the contribution that an oscillation with circular
frequency omakes to it. Integral (1) must be convergent, i.e.,
the function f �t� is assumed, in a sense, to decrease at infinity.
However, this seemingly natural requirement does not always
correspond to the physical content of the problem. For
example, let f �t� be a signal transmitted by some radio
station (more specifically, the value at a given point of one
of the components of the electric vector of the generated
electromagnetic field). Such signal is localized in time: it was
obviously absent before the development of radio commu-
nication, and the radio station transmitting it will certainly
cease to exist with time or will change the operating
frequency. However, this general consideration hardly helps
to calculate integral (1). In fact, we are interested not so much
in the nominal frequency of the radio station signal that is
usually known as in the changes in the spectral composition of
this signal over time that actually carry the information
transmitted by the radio station. Expression (1) does not by
itself have the means to detect these modulations.
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Strictly speaking, the Fourier analysis is applicable to
time-limited signals. Then, if a signal does not contain
nonintegrable singularities, there is integral (1), called the
continuous Fourier transform. It is also used for periodic
signals, such that f �t� T � � f �t�, for which expansion in a
Fourier series that is a discrete form of the Fourier transform
is possible. Finally, the analysis can be applied to statistically
stationary signals, the autocorrelation function of which
decays and, according to the Wiener±Khinchin theorem 1

(see, for example, [1]), allows the power spectral density
(PSD) of the signal to be calculated.

Obviously, a possible approach to the problem of
analyzing signals, the spectral composition of which changes
with time, is to calculate the Fourier transform locally, i.e., in
the vicinity of a given moment of time t 0 while disregarding a
signal at a considerable time distance from the moment of
interest. This is exactly what different variants of the Wind-
owed Fourier transform do (it is also known as the Gabor
transform [2], where t 0 is an additional independent variable).
For a radio signal, this algorithm is easy to implement, since
the signal carrier frequency that ensures transmission is much
higher than the frequencies carrying the transmitted mean-
ingful information; true, in this case, it is worth considering
whether the way in which a part of the signal is cut out creates
any artifacts. However, physical systems under natural
conditions as a rule do not display a pronounced division of
characteristic time scales. Nonlinearity leads to both fast
modulation (amplitude or phase) of the fundamental natural
frequency (if any) and a noticeable change in the shape of
oscillations. For example, the pulse of a healthy person at rest
is relatively stable and rather smoothly modulated by breath-
ing. The picture changes markedly as soon as one begins to
physically exert oneself. Another example is the magnetic
activity of the Sun undergoing famous 11-year cycles reliably
reconstructed from data collected for centuries of numerous
observations. However, it is important to know not only the
average parameters of a cycle but also their dynamics (which
becomes clear during 2±3 consecutive oscillations) if a
relevant physical theory is to be developed.

A fundamental step is to abandon the standard with an
infinite number of periods and introduce a newwave standard
with a limited number of cycles (hereinafter referred to as a
wavelet) which is a quasiperiodic function in the strict sense.
This can be done, for example, by multiplying the harmonic
function by the Gaussian envelope exp �2pitÿ t 2=s 2�, where
the parameter s is responsible for the effective number of
cycles. Using translation and dilatation/compression trans-
formations, we obtain the basis of functions for the decom-
position of f �t�. Thus, wavelets allow detecting cyclic
oscillations with a floating period, amplitude, and localiza-
tion (in fact, this is a localized spectral analysis). The choice of
the wavelet function is determined by the requirements for
spatial and temporal resolutions �sensitivity to changes in the
spectral properties of f �t�� and, in the case of constructing a
discrete basis, the requirement for orthogonality of the
resulting basis. In the above example that constitutes the
basis of the widely used Morlet wavelet, an analysis with a
large s value corresponds to a higher frequency resolution but
loses in the accuracy of localization of the epoch to which the
result is attributed on the time axis. By decreasing s, we
sacrifice the spectral resolution of the decomposition but

know more precisely to what time instant the obtained
spectrum belongs. This circumstance is quite similar to the
uncertainty principle in quantum mechanics.

In various fields of science, an analysis of spatial fields
with a complex multi-scale structure or signals with time-
varying changes in spectral composition is needed (in many
cases, the two problems are related). This requirement
stimulated attempts to construct special functional expan-
sions using one basis or another, each function of which is
characterized both by a certain spatial (temporal) scale and by
the place of its localization in physical space (in time). The
idea of using short-wave packets to analyze seismic signals
when both the burst time and the scale of the signal need to be
distinguished was actively developed by Jean Morlet, whose
meeting with Alexander Grossmann led to the birth of
wavelets. The term itself was introduced in [3], where the
main definitions were formulated and the fundamental
theorems proved. The work aroused great interest. The
mathematical aspects of wavelet analysis have been exten-
sively developed since the late 1980s; by the early 1990s,
wavelet analysis had become a popular area of mathematical
physics, where it finds wide application for dealing with the
problems of time signal analysis, image pattern recognition
and synthesis, encrypting and decrypting information, etc.
The first informative applications of wavelet analysis in
physics date back to the mid-1980s. There is extensive
literature on wavelet analysis. Its mathematical aspects are
exposed in the fundamental study byYvesMeyer [4], awarded
the 2017 Abel Prize for his contribution to the theory of
wavelets, and in a number of books by disciples of Alexander
Grossmann, including Ingrid Daubechies [5], Matthias
Holschneider [6], Bruno Torresani [7], and Stephane Mallat
[8]. Despite the voluminous literature on the mathematical
aspects of wavelet analysis and its diverse applications, a
review of modern wavelet-based methods and results
obtained with their help may be useful for observers,
experimenters, and signal processors.

Over the past 20 years, a suite of techniques has been
developed that is important and necessary for addressing
various physical problems. The purpose of the present review
is to generalize the experience with the application of wavelet
analysis in various fields of physics, familiarize researchers
with practical aspects of this application, and propose
original wavelet algorithms. In this context, it is important
to mention specialized reviews for physicists (in the broad
sense of the word, for the `users' of analytical mathematical
methods), including the very first one [9]. Reference [10]
proved very useful for Russian readers. Physics±Uspekhi has
returned repeatedly to this topic in a number of articles [11±
13]. A great deal of time has elapsed since the publication of
some of them, while others are devoted to rather special
problems. The authors of the present publication happened,
by the will of fate, to be involved in wavelet research from the
first years after its initiation (within the framework of work
on turbulence modeling [14], which falls beyond the scope of
this review), then gradually expanded the area of the
successful application of wavelets, delving deeper into
already `trodden' problems. For example, Ref. [15] was one
of the first studies on astronomy in which the wavelet
transform was used to search for quasi-periodicities. It is
symbolic that the same problem was substantially reinter-
preted in the most recent publication [16]. Despite a wide
choice of reviews and special articles, we find it appropriate to
offer the reader our understanding of the wavelet language as

1 As with many classical results, the names of other outstanding scientists,

e.g., Einstein and Kolmogorov, are associated with this theorem.
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a universal tool for the analysis and interpretation of physical
signals in multiscale systems.

2. Basic concepts of wavelet analysis

The wavelet analysis arsenal contains a large set of tools that
are selected depending on the task of the study and
characteristics of the signal. Not claiming to be a general
and complete presentation, this section will focus on basic
definitions and properties of wavelet analysis, making it an
intuitive approach to the interpretation of complex signals.

The starting point of any wavelet research is, as a matter
of fact, expansion of the function under study in a suitable
wavelet basis, which combines two important properties:
pronounced localization in physical and Fourier spaces and
similarity. Locality on both sides of the Fourier transform
presupposes regularity, i.e., the absence of discontinuities
(inevitably contributing to high frequencies) and the equality
of the average value (zero frequency) to zero. The latter
property is also called the admissibility condition, which
explains the appearance of the correction in the real part of
a Morlet wavelet:

c�t� � exp

�
ÿ t 2

s 2

�ÿ
exp �2pit� ÿ exp �ÿs 2p 2�� : �2�

The family of wavelet functions is generated from the
analyzing wavelet c�t� (also termed `mother' wavelet func-
tion) by two similarity transformations: dilating (compres-
sing) and translating supplemented by rotation in a multi-
dimensional case.

The continuous wavelet transform introduces, by analogy
with the Fourier transform (1), the wavelet image

w �t; t 0� �Wt; t 0 f f g � jtjk
�1
ÿ1

f �t�c �
�
tÿ t 0

t

�
dt ; �3�

defined in the space of two independent variables, time t 0 and
scale t. The preference is given to the latter parameter t
having the meaning of a period rather than frequency (as in
the Fourier transform), so that both parameters have the
same units of measurement. Parameter k determines normal-
ization, the choice of which is postponed until the end of this
section.The wavelet coefficient w�t; t 0� should be interpreted
as a characteristic of the amplitude (and the phase if c is a
complex quantity) of oscillations of the analyzed function
with a characteristic period t in the vicinity of time instant t 0.
In this case, it is necessary to take into account that the
accuracy of localization in the time-frequency space is finite
and predetermined by the choice of wavelet. The resolution
c�t� of frequencyDo and timeDt is defined as the variance of a
random variable if normalized functions jc�t�j 2 and jĉ�o�j 2
are regarded as probability density functions. The effective
area of the time-frequency window for any c is limited by the
Heisenberg uncertainty principle DoDt 5 1=2 [17]. Thus, the
choice of a wavelet can be considered an optimization
problem.

The normalization index k is used to relatively enhance
(weaken) high (low) frequencies and to adapt the analysis to
specific problems when one is interested in some special
measure to compare the intensities of differently scaled
structures. When analyzing multidimensional signals in (3),
a multidimensional integral has to be taken, but (even more
importantly) an additional parameter responsible for wavelet

anisotropy should be considered, and an additional variable
needs to be introduced (as a rule, a positional angle; see
Section 4).

An increase in the dimension of the parameter space
indicates a redundancy of the received information, the
presentation of which requires optimization. The wavelet
spectrogram of a one-dimensional signal is the distribution
of the modulus of function w (less often, its square is drawn)
on the plane (t; t 0).When a complex wavelet is used, the phase
of the functionw also carries useful information. As a rule, the
distribution of the phase on the plane (t; t 0) is not considered,
but the phase in itself can be of primary interest, e.g., in the
search for correlated components in a pair of signals (see
Section 2.3).

Leaving aside a review of the wavelet functions used, the
popular real wavelet known as the `Mexican hat', c�t� �
�1ÿ t 2� exp �ÿt 2=2�, should be mentioned. Due to its good
localization in the physical space, this wavelet is used to
highlight individual bursts in the signal. Note also that the
Daubechies functions [5], finding wide application, e.g., in
commercial software packages, are intended first and fore-
most for the discrete wavelet transform that is little used in
signal structure analysis; therefore, they are not considered in
this review.

A signal (or any of its components) can be reconstructed
from w�t; t 0� by the inverse wavelet transform:

f �t� � 1

Cc

�1
ÿ1

dt
�1
ÿ1

dt 0 c
�
tÿ t 0

t

�
w�t; t 0�
jtj3�k : �4�

The quantityCc plays the role of normalization of thewavelet
basis and is calculated as

Cc �
�1
ÿ1

jĉ�o�j2
joj do : �5�

The inverse wavelet transform is possible only if Cc has a
finite value which implies the admissibility condition for a
wavelet ĉ�0� � 0. For some frequently used wavelets, Cc is
found analytically, e.g., Cc � p for the `Mexican hat'
and Cc � ln 2 for the Shannon wavelet c�t� �
�sin 2ptÿ sinpt�=�pt�; for the Morlet wavelet, Cc can be
found only approximately, since integral (4) of the function
exp �iotÿ st 2� diverges (see Eqn (2)).

The necessity of integration (4) over the region of negative
t values arises in the analysis of complex-valued signals f �t�
(see the example in Section 5.2). For real f �t�, one can restrict
oneself to positive t. As far as the variable t 0 is concerned, it is
necessary to, formally speaking, integrate over the entire
range, whereas integration for real signals is carried out
over the region for which observational data are available
(bearing in mind boundary distortions that appear as the
analyzing wavelet goes outside the region).The inverse trans-
form taken over a certain subdomain of the plane (t; t 0) can
be regarded as a filtering procedure with a wide choice of
bandwidth.

In practice, it is important to be sure that the admissibility
condition is satisfied not only for an analytically given c but
also for its numerical representation. In the analysis of
minimal scales, only a few points can fall on the wavelet
localization region, and the numerical average for such a
limited sample can differ greatly from zero. Problems can
arise with the real part of the wavelet (2) when using s91 (the
fulfilment of the admissibility condition for the imaginary
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part is ensured by its odd symmetry). To improve the
convergence of integral (5), it can be useful to require the
vanishing of the mean value not only of the wavelet itself but
also of its several derivatives. The admissibility condition
means that the function being analyzed is restored during the
reverse transformation with an accuracy up to the mean
value. Whenever it is required to restore the average value of
the signal, it needs to be calculated separately and then added
to what formula (4) gives.

Without going into the mathematical calculations behind
the main properties of the wavelet transform, here is an
important consequence of Parseval's energy conservation
theorem:�1

ÿ1

�� f �t��� 2 dt � 1

Cc

�1
0

�1
ÿ1

��w �t; t 0��� 2 dt dt 0

t 3�2k
: �6�

To recall, the power spectral density in a Fourier analysis is
the quantity E �o� � j f̂ �o�j 2 and the quantity

M�t� �
�1
ÿ1

��w�t; t 0��� 2 dt 0 ; �7�

characterizing the intensity of all pulsations of a given scale, is
introduced. Assuming k � ÿ1=2 in the definition of the
wavelet transform (3) allows formula (6) to be rewritten as

E �
�1
0

E �o� do � 1

Cc

�1
0

M�t� dt
t 2

: �8�

In this case, M�t� describes the distribution of the
pulsation energy over scales and is called the integral wavelet
spectrum. It follows from the above that normalization
k � ÿ1=2 should be used if the results of the wavelet analysis
are supposed to be compared with the Fourier representation
of the signal. Indeed, if a Fourier spectrum obeys the power
law E �o� � oa, then (with this normalization) the integral
wavelet spectrum follows the same power law M�t� �
tÿa � oa (this ensues from formula (8), taking into account
thato � 1=t and do � ÿ dt=t 2). Note, also, that the integral
wavelet spectrum is always a smoothed version of the Fourier
spectrum, with the degree of smoothing determined by the
spectral resolution of the wavelet being used.

All subsequent stages of wavelet analysis are based on the
subsequent post-processing ofw�t; t 0� and the presentation of
the information contained in it as dictated by the objectives of
the study. In this regard, the integral wavelet spectrum M �t�
is a useful starting point for research but nothing more than a
maximum reduction of the information contained in w�t; t 0�.

2.1 Examples of wavelet spectrograms
of modulated oscillations
The practical use of the wavelet transform implies, compul-
sorily, the study of spectrograms. For relatively regular
signals, this is of undoubted interest. Any good book or
scientific presentation on wavelets includes a demonstration
of test signals. The selection of tests usually emphasizes
peculiarities of the problem and reflects the logic of sub-
sequent argumentation. The simplest but very instructive
tests have been repeatedly described in the scientific and
methodological literature (see, for instance, [6, 8, 18]). We
propose to consider a series of three examples:

f1�t� � sin

�
2pt
20

��
1� t

500
sin

�
2pt
125

��
;

f2�t� � sin

�
2pt
20

�
� sin

�
12p exp

�
t

400

��
; �9�

f3�t� � sin

�
2pt
20
�
�
1� 3t

500

�
sin

�
2pt
200

��
;

the spectrograms for them illustrate manifestations of
nonstationary amplitude or frequency modulations. It can
be noted that these functions include a common harmonic
with a period of 20 onto which various distortions are
superimposed: f1�t� is the amplitude modulation of the
harmonic function linearly growing in time with a period of
125; f2�t� is the additive component with an exponentially
decreasing period selected so that the periods of the two
components coincide in the middle of the interval; f3�t� is the
frequency modulation according to the harmonic law with a
period of 200 and a linearly increasing amplitude. Each
modulation leads to a deformation of the uniform band
corresponding to the wavelet image of a purely harmonic
function.

Graphs of the analyzed functions and their wavelet
spectrograms are presented in Fig. 1. All three signals are
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Figure 1. (Color online.) Test signals f1 (a), f2 (b), and f3 (c) (top row), wavelet spectrograms jw1j (a), jw2j (b), jw3j (c) at s � 1 (middle row) and at s � 2

(bottom row).
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processed bywavelet (2) with two values of the parameter s. A
rise in s increases the spectral resolution, i.e., produces
narrower bands on the spectrograms (bottom row in Fig. 1).
In the case of relatively good localization in the physical space
�at s � 1�, the wavelet image w1 exhibits a well apparent
tendency toward an increase in the amplitude of the carrier
oscillations. The spots on the wavelet image w2 correspond to
the beats resulting from superposition of oscillations with
similar periods. This effect builds up closer to the middle of
the interval. If the resolution in the physical space is reduced
in favor of the scale resolution (s � 2), the periodic
components become better isolated, and oscillations can be
seen at the periods corresponding to the half-sum and the
half-difference of the fundamental and modulating frequen-
cies. However, an increase in s can compromise the
informative value of the wavelet image. It is better to track
frequency modulations f3 at small s. When there is poor
localization in the physical space, relatively fast modulations
in the long-wavelength region are blurred.

The selection of test signals is such that integral wavelet
spectra, like the Fourier spectra, can not reflect their features.
Nevertheless, they are presented in Fig. 2 in order to illustrate
sensitivity to the main stationary component. For f1 and f2,
the contribution predominates on a scale of 20, while, for
f3, it is markedly smeared in the interval conditioned by the
modulation amplitude.

2.2 Wavelet differentiation
The problem of the numerical differentiation of an approxi-
mately known function is a classic example of an ill-posed
problem that leads to instability of the solution [19]. To
ensure stability, the exact solution is replaced by an approx-
imate one which is controlled by a certain regularization
parameter and tends to be accurate in the absence of
measurement errors. In practice, regularization usually
reduces to either smoothing the original data in physical
space or suppressing high frequencies in the spectrum of the
measured data. In this case, the optimal width of the
smoothing window or the corresponding filter bandwidth is
associated with the expected noise level.

The fundamental difference between the Fourier differ-
entiation algorithm and direct differentiation in the physical
space boils down to the following: calculation of the Fourier
transform requires the use of information about the signal at
all points of the numerical axis, while differentiation is, by
definition, a local operation.

The problem of regularization of the procedure for
noisy data differentiation is naturally formulated in the
language of wavelet representation of signals, which allows
combining advantages of the operation in physical space
and Fourier space [20].

Let the function f �t� have the first derivative g�t� � qf=qt
and be defined on the set of points tn up to some random
errors x ( ~fn � f �tn� � xn). The wavelet transformation of the
function g�t� and differentiation by parts readily lead to

Wt; t 0 fgg � tk
�1
ÿ1

c �
�
tÿ t 0

t

�
g�t� dt

� ÿtkÿ1
�1
ÿ1

c 0 �
�
tÿ t 0

t

�
f �t� dt : �10�

In other words, the wavelet image of the derivative of f �t� can
be obtained without direct calculation of the derivative of the
initial data. The derivative g�t� itself is obtained by recon-
struction from its wavelet image, making use of the inverse
wavelet transform (4). In fact, the procedure for numerical
differentiation of fn is substituted by numerical integration
and analytical differentiation of a given family of wavelet
functions. Note that c 0�t� should also meet all the require-
ments for wavelets.

2.3 Scale-by-scale cross-correlation of signals
An analysis of the behavior of complex systems consists not
only in following the course of evolution of the spectral
composition of a certain signal but also in studying the
degree of correlation between two signals separately on each
time scale. The potential of Fourier analysis in this situation is
very limited. The Fourier cross-spectrum,

Ei j�o� � f̂i�o� f̂ �j �o� ;
can be introduced, which, by itself, by virtue of the equality
jEi jj 2 � EiiEjj, does not carry additional information. A
partial solution to the problem was proposed by introducing
coherence [21]

g�o� � Ei j�o�
�Eii�o�Ejj�o��1=2

; �11�

where ��� denotes a smoothing operation. The quantity g�o�
varies over the range from 0 to 1, with 1 corresponding to the
linear relationship between the oscillation intensities at a
given frequency in both signals. It should be noted that the
choice of the filter width ���must be justified separately.

The language of wavelets makes it possible to naturally
formulate characteristics of the correlation between signals
localized in the space of scales and time. The energy
distribution on the cross-spectrogram Cw�t; t 0� �
w1�t; t 0�w �2 �t; t 0� (see, for instance, Fig. 3) highlights the
scales and time ranges in which oscillations appear simulta-
neously in two signals. In this case, the inherent principles of
maintaining the optimal resolution in the scale-time space
make the interpretation of the results of analysis more
confident. The idea of wavelet cross-correlation analysis was
first proposed in connection with the comparison of varia-
bility of various solar characteristics [22]. The wavelet cross-
correlation function of two signals was defined as

C12�t� �
�
Cw�t; t 0� dt 0ÿ�

w 2
1 �t; t 0� dt 0

�
w 2
2 �t; t 0� dt 0

�1=2 ; �12�
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Figure 2. (Color online.) Integral wavelet spectra of test functions fi:M1 Ð

blue curves,M2 Ð red,M3 Ðblack. s � 1Ðsolid curves, s � 2Ðdashed

curves.Mi�t� spectra are vertically shifted for better perception.
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where w1 and w2 are the wavelet images of the signals under
consideration. The absolute value of jC�t 0�j characterizes the
degree of consistency of the occurrence of oscillations with
scale t 0 in two signals, while the phase df12 � arg �C12�t��
shows the average phase shift between them. Pairwise wavelet
correlation functions for the previously considered test
signals (9) are shown in Fig. 4. It can be seen that they reach
a maximum at t � 20. In this case, the cross-correlation
coefficients for test signals are equal to 0.56 between f1 and
f2, ÿ0:04 between f1 and f3, and 0:02 between f2 and f3.

By analogy with characteristic (11), one can consider
wavelet coherence [23]

G�t; t 0� � wi j�t; t 0�
�wii�t; t 0� wjj�t; t 0��1=2

; �13�

where the smoothing operation, for example, with a moving
average, is carried out in the plane �t; t 0�. Then, the function
C�t� is a special case of G�t; t 0� where ��� is averaging over t 0.
Based on G�t; t 0�, it is possible to construct a wavelet
coherence spectrogram displaying the cross-correlation coef-
ficient and the magnitude of the phase shift localized in the
scale-time space. G�t; t 0� is used most effectively to analyze
chaotic signals with a wide range of scales [24, 25].

It is worth mentioning the generalization of the wavelet
correlation method proposed in [26, 27] for the case of several
time series. The correlation is introduced as a matrix product
of wavelet transforms of the corresponding series. Then, the
peak in the correlation function appears only at the frequency
present in each of the processed series.

2.4 Wavelet analysis of signals with gaps
Let us consider the algorithm proposed for solving a
fundamental problem that arises in the processing of
observational and (less often) measurement data, i.e., the
problem of inevitable gaps (holes) in the series due to a variety
of reasons. For example, many stars observed in a given
observatory are only above the horizon part of the year but

remain invisible for the rest of the time. This happens for the
same reason that the Sun is not visible at high latitudes during
the polar night. Although it is possible, in principle, to
combine data from observatories located at different lati-
tudes, it is a very difficult task; therefore, data on stellar
activity are usually available only for a certain part of the year
(during the so-called observational seasons; see the example
in Fig. 16). These problems gain importance in the analysis of
cycles of stellar activity, because the total duration of
observations (at best, several ten years) is insufficient to
cover more than a few cycles. An analysis of the spectral
composition of such signals faces serious problems which can
be mitigated using the wavelet algorithm proposed in the
context of research on cyclicity of stellar activity [28]. The
mathematical substantiation of the algorithm is proposed in
Ref. [29].

Let us turn now to the signal f �t� registered with gaps, i.e.,
when one knows, instead of f �t�, the function

~f �t� � f �t�G�t� ; �14�

where G�t� is the `gap function' equal to one if the signal is
recorded and to zero at all other points (inside the gaps and
outside the signal). As a result, the calculation of the wavelet
coefficients yields, instead of the sought w�a; b� values,
coefficients

~w�t; t 0� �Wt; t 0 f ~f g � tk
�1
ÿ1

c �
�
tÿ t 0

t

�
~f �t� dt : �15�

The idea behind the algorithm called gapped wavelets is to
transfer the problem of gaps from an unknown function f �t�
to the well-known functionc. Let us rewrite formula (15) as a
convolution of the original function f �t� with a `gapped'
wavelet:�1

ÿ1
c �
�
tÿ t 0

t

�
~f �t� dt �

�1
ÿ1

~c �
�
tÿ t 0

t

�
f �t� dt ;

where ~c��tÿ t 0�=t� � c��tÿ t 0�=t�G�t�.
Falling on gaps, the function ~c ceases to satisfy the

requirements for wavelets, in particular
�

~c�t� dt 6� 0. It
is proposed to replace the `corrupted' wavelet ~c by the
`corrected' cg, which must at least satisfy the condition
hcgi � 0 and tend toward the original wavelet c as gaps
disappear. In the language of Fourier representations, the
following interpretation of the proposed idea can be given. A
peculiar feature of wavelets is that their Fourier image is
localized in a limited frequency band. Violation of the
condition hci � 0 leads to the appearance of frequencies as
low as jĉ�o�j2 in theo! 0 spectrum, while discontinuities at
the edges of holes produce high-frequency noise. It is
necessary to specify an algorithm that suppresses both low-
and high-frequency noise caused by gaps and edges (con-
sidered to be semi-infinite gaps).

To implement this idea, the wavelet c is represented in the
form

c�t� � h�t�F�t� ; �16�

where F�t� is the positive definite scale function (the
`envelope' usually used as the Gaussian function
F�t� � exp �ÿt 2=2�� and h�t� is the `filling' function (the
parabola for the `Mexican hat', the complex harmonic
function for the Morlet wavelet).
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Figure 3. (Color online.) Cross-spectrogram of f2 and f3 signals.
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The desired wavelet cg is sought in the form

cg�t� �
ÿ
h�t� ÿH

�
F�t�G�t� : �17�

The quantityH is determined for each scale t and position of
the center of wavelet t 0, based on the condition hcgi � 0; it
equals

H �t; t 0 � �
� 1
ÿ1 h

ÿ
tÿ t 0=t

�
F
ÿ
tÿ t 0=t

�
G�t� dt� 1

ÿ1 F
ÿ
tÿ t 0=t

�
G�t� dt : �18�

The character of the change in the wavelet at the edge and
in a single gap is shown in Fig. 5. The `Mexican hat' shown by
the dotted curve is taken as the analyzing wavelet c�t�. Cases
of maximum deviation of the mean value from zero are
presented: in the first case (Fig. 5a), the edge completely cuts
off one wing; in the second one (Fig. 5b), the gap exactly
covers the entire centralmaximum (in the figure, these regions
are shown in gray). It can be seen that, even in these
situations, the structure of the function undergoes no critical
changes. New functions cg�t� (solid line) have discontinuities
that coincide with the boundaries of the gaps and do not
introduce additional noise during integration. Figure 6
exemplifies the calculation of the wavelet spectrum of a

model signal with gaps. Figure 6a shows the analyzed signal,
and Fig. 6b, its wavelet spectra calculated using the standard
wavelet algorithm (thin line) and with the help of gapped
wavelets (bold line). The spectrum of the original signal must
contain two peaks, the positions of which are indicated by
arrows. It can be seen that the standard technique reveals a
false peak, associated with gap systematicity, and significant
low-frequency noise. In the corrected spectrum, not only is
the false maximum markedly suppressed, but also the
positions of the main maxima correspond much more
accurately to the original frequencies in the signal.

It should be noted that the algorithm requires large
computational resources, since it includes the calculation of
two additional convolutions in (18), but these costs are
justified in the analysis of signals with numerous gaps or
short signals for which the influence of edge effects can be
critical. The possibility of accelerating calculations based on
fast wavelet transform algorithms was considered in [30].

3. Wavelets for the search
and study of quasiperiodicities

3.1 Cycles of solar activity
One of the most challenging physical problems to be solved
with the use of wavelets is the identification and the analysis
of quasiperiodicities in various time series obtained in the
course of laboratory, nature, or astronomical observations.
Perhaps the most discussed issue of this kind concerns the
results of long-term observations of solar cyclic activity,
among which the data on the sunspot numbers occupy an
important place (see, for example, [31, 32]). Indeed, astron-
omy in the context of exploration of the Solar System is one of
those areas of knowledge in which the modern system of
physical and mathematical sciences was formed. Sunspots
have attracted people's attention since antiquity, but their
instrumental studies go back to 1611 whenGalileo first used a
telescope for astronomical observations. It is hardly possible
to find a time series of instrumental investigations or
measurements longer in real astronomical time.

It is well known (see, for example, Ref. [33] for an
overview) that the evolution of solar activity includes
quasiperiodic components. Indeed, the sunspot numbers
increases and reaches a maximum roughly every 11 years;
thereafter, it decreases and falls to a minimum. This is the
famous 11-year cycle of solar activity that attracts public
attention and leads scholars representing various disciplines
to discuss how this phenomenon affects different aspects of
human life, down to the intensity of drug use or wheat prices.
One cycle of activity may differ slightly from the previous and
subsequent ones both in duration and in intensity. At the turn
of the 17th and 18th centuries, the sunspot numbers was
significantly smaller than in other observation periods known
to researchers. This gave rise to the concept of a global
minimum in solar activity that was called the Maunder
minimum after the English astronomer who had been the
first to explore this phenomenon. In addition to sunspots,
there are other tracers of solar activity, some of which are
associated with the dynamics of radioactive isotopes in
various objects. Isotope tracers make it possible to more or
less successfully follow the dynamics of solar activity over
much longer time intervals, up to 10,000 years [34]. These data
indicate that global minima, similar to the Maunder mini-
mum, have occurred more than once in the past, with their

a b

Figure 5. Examples of corrections of an analyzing wavelet in processing a

signal fragment with gaps (a Ðat the edge, b Ðat a single gap). Gaps are

shown in gray, dashed curve denotes the original wavelet, solid curve is the

correction result.
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sequence showing no obvious pattern. All the above features
of solar activity make it a very convenient and interesting
material for wavelet analysis. This is probably why one of the
first studies devoted to the use of wavelets to search for and
study quasiperiodicities in astronomical data was focused on
the analysis of sunspot observations [15].

A time series analysis spanning hundreds of years
encounters a number of specific problems typical of many
areas of physics that, as a rule, have to do with what is
happening right now and can be, in principle, reproduced
many times. If the length of a given time series significantly
exceeds both the typical time of active action of an individual
observer and the typical time needed to significantly improve
an observational technique, then difficulties arise in compil-
ing a time series that aims to have at least some level of
homogeneity. Certainly, the first telescopes were much less
sophisticated than modern ones, and the sunspot observation
technique required some time to be developed. Nevertheless,
the known examples show that there were conscientious and
diligent people among the very first observers whose studies
were of pleasantly surprising quality. At the same time,
modern research practice funded largely by grants does not
encourage long-term projects that stipulate decades of
homogeneous routine observations. All this makes the
problem of relevant compilation of time series of a specific
solar activity tracer somewhat similar to the one of describing
historical events based on data from various sources. Hence,
one has to talk about one reconstruction of time series or
another [35]. Such problems are not directly related towavelet
analysis, although it can also help in stitching data obtained
by two observers that partially overlap in time. These aspects
of the problem are not discussed in the present review (see [36]
and [37] for details); instead, some data on the average
monthly number of sunspot groups recorded from 1611 to
1996 are presented [38]. More recently, a thorough revision of
these data was undertaken in Ref. [39], which provided a basis
for calibrating results of different observers [40, 41]. We
collected these data together and obtained a series remark-
able in that it includes the Maunder minimum as well as the
most recent time period (after 1996). In these years immedi-
ately preceding the present time, the behavior of the Sun was
very unusual. Although solar activity was apparently not as
weak as it had been during the Maunder minimum, it
resembled a less pronounced episode of decreased activity
known as the Dalton minimum that occurred during the
Napoleonic wars.

Presenting results of a wavelet analysis of a generalized
data set, we follow the authors of Ref. [15] that was one of the
first studies on the use of wavelets in astronomy and
astrophysics. However, we recalculated these results for a
modern dataset. Moreover, the early methods made it
possible to use only time series with the data evenly spaced
apart from each other in time, while the database contained
small gaps that had to be interpolated. Today, it is not
necessary to do due to the use of the gapped wavelet
technique.

Figure 7 shows the analyzed time series, and Fig. 8 is a
wavelet spectrogram of the number of sunspot groups
according to the daily resolution data for the periods from
1610 to 1739 (Ref. [38]) and from 1739 to 2010 (Ref. [41]) and
according to the monthly resolution data obtained since
2010 [42]. This is the longest series of the number of sunspot
groups to date. A bright stripe corresponding to the nominal
11-year cycle is well apparent. Directly during the Maunder

minimum, the bright line is interrupted, which means that the
analyzed time series (at least within the framework of spectral
analysis) does not indicate the presence of the Schwabe cycle
at this time. Of course, the possibility remains that in this
epoch a cycle existed but for some reason did not manifest
itself in the form of observable sunspots; for example,
magnetic tubes did not float at all or the spots were so small
that they escaped the attention of observers.

A wavelet spectrogram can be used to quantitatively track
changes in the parameters of the solar cycle. Figure 9 shows
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Figure 7. (Color online.) Analyzed solar activity data with monthly

averaging: number of sunspot groups according to well-known study [38]

(designated GSN H&S) and the respective data with deep processing,
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Figure 9. (Color online.) Characteristic period t� (a) and amplitude w � (b)
of the 11-year cycle.
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the evolution of the characteristic period t � and the amplitude
w � of the main cycle of activity which are determined by the
maximum intensity at the current time instant, w ��t 0� �
jw�t �; t 0�j � maxt jw�t; t 0�j. Clearly, if the epoch near the
Maunder minimum is disregarded, the length of the Schwabe
cycle varies from cycle to cycle, but in general these variations
are small. It seems natural to associate them with statistical
fluctuations of the parameters that determine the operation of
the mechanism underlying self-excitation of the magnetic
field (solar dynamo) [43, 44].

Let us now turn to variations in the number of sunspot
groups and other similar tracers with a characteristic time of
less than 11 years [16]. Figure 10 shows in these time scales
an extended range of a continuous spectrum typical of many
problems arising in the study of turbulent and convective
flows. As is known, the investigation of such phenomena
initiated by Richardson constitutes the central idea of
Kolmogorov's turbulence theory. On the other hand, the
idea of so-called quasi-biennial cycles is widespread in solar
physics [45]. Practically any period in the interval between
1 and 4 years was regarded as a possible duration of these
cycles, and the terminology itself suggests that this phenom-
enon is not quite similar to the 11-year Schwabe cycle.
Variations of activity were also detected during observa-
tions of stars (see Section 3.2), but the observable time series
of stellar magnetic activity are much shorter than analogous
time series for the Sun. This makes the problem of separating
phenomena similar to the Schwabe cycle and quasi-biennial
oscillations much more difficult to approach. It is known
that a statistical analysis of individual rare events can reveal
the reaction of global chaotic systems, such as terrestrial and
space climate, to weak external influences [46].

This problem is even more challenging in the search for
physical mechanisms maintaining solar and stellar cycles. It is
now generally accepted that the physical cause behind the
Schwabe cycle is the self-excitation of amagnetic field wave as
a result of the combined action of differential rotation and
mirror-asymmetric convective turbulence even if details of
this solar dynamo remain to be elucidated (see, for example,
[47]). In any case, a subject of the discussion is the appearance
of a eigen oscillation in the linearized equations describing
this phenomenon. A noticeable complication of this model
gives reason to consider self-excitation of a magnetic field in
two layers of the convective shell, say, near the surface and at
the bottom of the convective zone of the Sun. It is also

possible to reach excitation of eigen oscillations in these
shells with significantly different periods, although it is likely
to raise the unpleasant question of how the traces of such
oscillations occurring far inside the Sun penetrate to its
surface and why regions in the parametric space where such
a phenomenon occurs turn out to be dangerously narrow. The
prospect of explaining the whole set of periods in a similar
manner seems utterly unattractive, and understanding quasi-
biennial oscillations as elements of a continuous convective
spectrum appears to be a natural solution to this problem.

Let us see, following the authors ofRef. [16], howmethods
of wavelet analysis help to clarify this problem. Integral
(global) wavelet spectra of variations among four activity
tracers for the time interval from 1875 to 2019 (or part of it in
the absence of relevant data for the entire period) are
presented in Fig. 10. Each spectrum has two well apparent
maxima, one corresponding to the Schwabe cycle, the other
close to the solar rotation time. A natural interpretation of the
second maximum attributes it to the fact that the lifetime of
some sunspots exceeds the solar rotation time due to which
they are seen several times and are therefore recorded in the
database more than once. An integral wavelet spectrum
exhibits a continuous power-law range between the two
maxima that are typical for turbulent systems. One can be
convinced of the stochastic nature of oscillations with a
roughly 2-year cycle by considering the dependence
w�t � 2; t 0� (Fig. 11). Evidently, quasi-biennial oscillations
differ significantly between tracers and varymarkedly in time.

Assuming some additional distinguished periodicity in
solar activity spectra even if it changes with time, one has to
accept the requirement that the corresponding fluctuations
must be expressed during at least several solar cycles. Cutting
out various temporal sections of the wavelet plane, it is
possible to obtain a wavelet spectrum on the scale of a
concrete solar cycle. Figure 12 shows oscillation spectra of
twelve separate solar cycles (from the 13th to the 24th). To
facilitate perception, the spectra are normalized to t 2=3. Also,
individual cycles are artificially shifted vertically relative to
each other.

It can be seen that only two peaks survive in all cycles,
while the spectral composition of each one changes from cycle
to cycle in the absence of stable features. Local maxima in
individual cycles appear in a range of scales from t�0:2 to
t�4 years. Figure 12b shows the height of the local maxima
found in the spectrum of an individual cycle relative to the
nearest local minima. Two high maxima can be recognized
at t�2 (in the cycle N�16) and t�2:7 (in the cycle
N � 23) years. There are many other slightly less significant
maxima that occur evenly in the mid-term. Figure 12c
presents integral compensated spectra and the respective
confidence intervals obtained from the statistics of realiza-
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Figure 10. (Color online.) Global wavelet spectra for different tracers in
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tions in separate cycles. It can be seen that fluctuations of
various durations (less than 11 years) occur in concrete cycles,
whereas stable fluctuations of more or less constant duration
are absent.

Thus, the wavelet analysis revealed pronounced fluctua-
tions with time scales from several months to 11 years in each
individual cycle and showed that their random contributions
give a smooth common spectrum. At large t, deviations from

the t 2=3 law become more pronounced, which can be
attributed to poor statistics within individual cycles. This
may be amanifestation of strong intermittency of the dynamo
process as indicated by direct calculations of variations in the
scaling characteristics [48].

Finally, it is worth noting the results of simulations of the
structure of activity spectra in the framework of a simple solar
dynamo model [49] that includes the formation of sunspots.
In this context, there is no need to insist that this particular
model most adequately describes the solar cycle. It is more
important that building the model does not involve embed-
ding physical mechanisms barring those that lead to the
Schwabe cycle.

Figure 13 shows results of a wavelet analysis of the
simulated database in comparison with real data. It can be
seen that the variation in the parameters of the model which
lies within the permissible limits makes it possible to rather
accurately reproduce the real wavelet spectrum of a given
tracer. On the whole, the analysis performed allows the
conclusion that the available data give reason to understand
quasi-biennial oscillations as elements of a continuous
spectrum, the physical nature of which differs from that of
the Schwabe cycle.

A comparative analysis of wavelet-based processing
measurement data and mathematical modeling opens up
wide opportunities for constructing a consistent picture of a
physical phenomenon. Recently, special attention has been
paid to experimental and theoretical studies of the sources of
magnetohydrodynamic (MHD) oscillations and waves in the
atmosphere of sunspots (see review [50]). It is possible to
single out the analysis of the dynamics of propagating wave
fronts in the active zone for the spatial resolution of which
the method of pixel-by-pixel wavelet filtering was devel-
oped [51±53].

The idea of wavelet cross-correlation analysis arose from
comparing the variability of various solar parameters [22].
The fact is one more characteristic of the Sun (apparent solar
diameter) was constantly measured in the era of the famous
Maunder minimum, the adjective `visible' being a key word;
changes in this parameter do not necessarily mean changes in
the physical size of the Sun but can be a mere optical effect.
Variations of the apparent solar diameter were continuously
recorded by astronomers of the French school from 1683 to
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1718, and separate series of measurements had been carried
out by various astronomers even earlier. Systematic observa-
tions of this characteristic were resumed only in 1974 [54]. All
available measurement results are collected in Fig. 14a. There
is a striking difference between modern data and those
obtained 400 years ago. A simple explanation of this fact is
that the quality of measurements in the distant past was much
lower than in the present day, which accounts for the high
level of signal pulsations (the systematic difference in the
signal level is explained by the fact that the apparent diameter
of the Sun is a subjective value depending on the method of
measurement). However, wavelet analysis shows that it is
hardly possible to ascribe the said difference to measurement
errors, and these archival data contain useful information.

Figure 14b shows the correlation function (12) calculated
for variations in the sunspot group numbers and the Sun's
diameter over overlapping observation intervals. It can be
seen that, at times on the order of 2 years, there is a narrow
positive peak, and, at time scales of the order of 10 years or
more, signals become strictly anti-correlated (the more spots,
the smaller the diameter).

Of greatest interest is the frequency of the main (11-year)
solar cycle. Filtered curves of 11-year variations in the
diameter and sunspot group numbers for the time interval of
1666±1718 are presented in Fig. 15. It is noteworthy that
observations of changes in the solar diameter began during
the Maunder minimum and continued during the outcome
from it. The results of wavelet filtering of observational data
presented in Fig. 15 show that the 11-year variations in solar

diameter had the greatest amplitude just during the deep
minimum of solar activity. By the end of the minimum,
variations in the sunspot numbers began to increase, while
variations in the diameter decreased. This finding gives a hint
to explain the striking difference between the modern data
and those obtained in the 18th century. The mean sunspot
group numbers increased by about an order of magnitude in
comparison with 1718, when measurements of solar diameter
were stopped. In light of these observations, this should lead
to a significant reduction in the intensity of variations in the
diameter documented by modern researchers.

The result obtained opens up the possibility to conclude
that the Maunder minimum is not magnetic but hydrody-
namic in nature. Of course, one has to be cautious when
making conclusions based on delicate archival observations,
but it is clear that calculations of the correlation using
wavelets give more confidence.

3.2 Cycles in stellar data
The cyclic activity of the Sun is not a unique phenomenon; it is
equally inherent in other stars having physical characteristics
more or less similar to those of the Sun. Indeed, astronomers
have observed and investigated the cyclic activity of various
stars by different techniques for about half a century (see, for
example, [55]). To recall, one of the main methods used in
these studies, so-called inverse Doppler imaging, was devel-
oped in our country [56]. It makes possible mapping the
temperature distribution over the surface of a variety of stars.
Stellar activity research not only is interesting in and of itself
but also contributes to a better understanding of solar
activity. For example, it was recently found out that power-
ful flares that occur on some stars having characteristics
similar to those of the Sun would bring danger to our modern
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technological civilization if they happened closer to Earth (see
[57] for details). Fortunately, there is still no immediate threat
to Earth and there is some difference between the properties
of stars with powerful flares and those of the Sun. In general,
however, such studies are not only of cognitive interest.

Figure 16 presents, by way of example, data on the
chromospheric activity of two solar-type stars exhibiting
pronounced cyclicity. They fairly well illustrate problems
related to stellar observations, such as relatively short series
that comprise only a few oscillations of the main cycle,
existence of numerous gaps (seasonal observations) and a
high level of noise of unknown origin (the nature of the star's
radiation, properties of the interstellar medium, or observa-
tion conditions).

Due to the limited size of this review, it is not intended to
compare cyclicity in the activity of different stars, and the
interested reader is referred to the literature ([28, 58, 59]).
What follows will illustrate the usefulness of wavelet analysis
not only for studying global and local spectral properties but
also for elucidating more subtle characteristics of periodic or
quasi-periodic signals.

Let us consider the method proposed in the context of
these problems and called by the authors Double Wavelet
Analysis (DWA) [58, 60]. The idea of the method is to
introduce a parameter that characterizes the deviation of the
shape of the stellar cycle from that of the harmonic one. The
Morlet wavelet in the form (2) is used as the analyzing
wavelet; its adjustable parameter s determines the spectral
(spatial) resolution. If the analyzed signal is a periodic
sequence of relatively short bursts, then, at a large value of
parameter s (high spectral resolution), the fundamental
frequency is readily apparent together with multiple harmo-

nics; the higher the burst duty cycles, the greater the number
of such harmonics. At small s (e.g., s � 0:3), the wavelet (2)
has the form of a single burst and resolves each oscillation, the
trace from which on the wavelet plane stretches toward high
frequencies (small scales), the maximum energy going far
away from the fundamental frequency in proportion to the
burst narrowness. The latter circumstance prompted the
introduction of a measure of signal deviation from the
harmonic determined as the distance between the maximum
and the fundamental frequency.

The algorithm is as follows. Initially, the wavelet
transformation of the analyzed periodic (quasiperiodic)
function f �t� is carried out, and a Morlet wavelet with a
good spectral resolution (s > 1) is used to find the scale
(characteristic period) of the main oscillation Tc with good
accuracy from the maximum in the wavelet spectrumM0�t�.

Next, the first step of the double analysis is performed,
during which the wavelet coefficients are recalculated with a
small s that ensures good temporal resolution,

w1�t; t 0� �Wt; t 0 f f g : �19�

The second step (repeated wavelet transformation) is
intended to reveal at what time scale the fundamental
frequency appears best. To this end, a wavelet analysis of
the field w1�t 0� is carried out for each t value and calculations
are made only for one fixed scale Tc:

w2�t; t� �WTc; t

�
w1�t; t 0 �

	
� aÿ1=2

� ��w1�t; t 0 �
��c� t 0 ÿ t

Tc

�
dt 0 : �20�

At this stage, a good spectral resolution is again required,
i.e., s > 1. Finally, the DWA-spectrum is calculated:

M2�t� �
�1
ÿ1

��w2�t; t�
�� 2 dt : �21�

The narrower individual bursts in the signal, the farther the
spectral peak M2 moves away from the position of the main
peak in the initial wavelet spectrumM0. The quantity

A � Tc

t �
�22�

is introduced as the anharmonicity parameter, with Tc being
the scale of the main cycle calculated at the first step and t �,
the time scale (period) with which the maximum energy in the
M2 spectrum is associated. For the harmonic signal A � 1,
the larger the parameter A, the more the time series resembles
a pulsating signal.

For the data presented in Fig. 16, wavelet spectraM0 (thin
lines) and M2 (bold lines) are shown in Fig. 17 (with an
arbitrary vertical shift). In both cases, the M0 spectra clearly
show a maximum corresponding to the main stellar cycle
(2900 and 1900 days, respectively). The middle part of the
spectrum displays a burst near 365 days revealed by seasonal
observations. The high-frequency part of the spectrum of the
starHD81809 exhibits a smallmaximumon a scale of 40 days;
it is the period of the star's revolution (fluctuations in the
radiation intensity are due to the uneven distribution of active
regions over the surface of the star).

Two specific features of the M2 spectra should be
emphasized. First is a pronounced shift of the main max-
imum observed in both stars. The anharmonicity parameter

0.21

0.20

0.19

0.18

0.17

0.16

0.15

0.14

0.165

0.160

0.155

0.150

0.145

0.140

0.135

0.130

0.125

0.120

0 2000 4000 6000 8000 10,000 12,000 14,000
Time, 24-hr period

Time, 24-hr period
0 2000 4000 6000 8000 10000 12000 14000

a

b

Figure 16. Examples of observational data on the chromospheric activity

of two stars: HD81809 (a) and HD161239 (b).
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for them has the values A � 1:5 and A � 1:3 (A values for
various stars lie in a range from 1.0 to 5 [59]). Second, a
repeated wavelet transformation gives rise to the dominance
of two peaks in the spectra: the expectedmain one and the one
corresponding to the star's rotation period.

Thus, the method of double wavelet analysis allows
identifying a weak high-frequency periodic signal (rotation)
in the presence of a pronounced low-frequency component.
This method of measuring the rotation period of a star can be
compared to tuning a radio receiver in order to obtain
optimal sound quality: by rotating the radio receiver's tuning
knob (in analogy with searching frequencies in the M2

spectrum), one is looking for a frequency at which the
loudness of the useful low-frequency signal (cyclicity of
stellar activity) is maximum. Finding the maximum is
equivalent to determining the frequency of the transmitting
radio station (the period of rotation of the star).

In certain cases, this method made it possible to
distinguish the rotation period even in the absence of its
trace in the spectrum of the initial signal [58]. For the star
HD161239, the double wavelet analysis gave a rotation
period of 7 days, whereas other sources estimate the period
of rotation of this star at 10 or 23 days in the absence of a
pronounced peak associated with the rotation period in the
M0 spectrum.

Note that Refs [61, 62] proposed an identical algorithm
with a similar name, `the double wavelet approach', but
intended to be used under different approaches according to
different goals and sequences of actions. In this method
applied to analyze systems with two significantly different
dominant frequencies, a high frequency is first allocated, and

a doubled transformation is used to study the processes
causing high-frequency modulation.

It is important that observations of stellar activity allow
only integral radiation to be registered. The aforementioned
mapping is carried out by comparing the integral signals
obtained at many wavelengths and at different times. There-
fore, isolation of the rotation frequency of the star in the
spectrum of integral radiation means that regions with
increased or decreased radiation intensity appear on the
surface of the star, and the lifetimes of these regions
(structures) should exceed the star's revolution time. In
addition, stars, like almost all nonsolid rotating space
objects, are characterized by differential rotation (the
angular velocity of rotation is not uniform over both the
latitude and the radius). This means that active regions are
responsible for variations in total radiation with different
frequencies (variations in angular velocity can reach 20%).
The authors of [63] proposed a method for estimating the
degree of rotation differential from the results of wavelet
analysis of a star's integral radiation. The fact is that, if a
signal contains two close frequencies and the spectral
resolution of the wavelet is insufficient to separate them,
then beats appear on the wavelet plane (see Fig. 1). The
essence of the method in [63] is that optimization of the
spectral resolution of the wavelet by choosing the parameter s
in formula (2) leads to a noticeable beat effect, and the beat
frequency is used to estimate frequency spread, i.e., scattering
of angular velocities of rotation of individual regions located
at different latitudes.

The last example of wavelet processing stellar data
considered in this review concerns the recent results of an
analysis of emission from the star V833 Tau [64]. This star is
interesting for two reasons: the unprecedented duration of
observations of the star (about 120 years) and the compli-
cated time dependence of radiation allowing a variety of
interpretations. It is easy to see (Fig. 18) that, depending on
the length of the period chosen to observe the overwhelming
majority of stars (usually several decades), V833 Tau exhibits
a qualitatively different behavior. This example allows a
general remark that the observation of 10 characteristic
times of evolution of a single star can be more valuable than
the observation of one characteristic time of 10 different
stars. In the literature, the quasiperiodicity of V833 Tau is
described as compound; namely, oscillations with periods of
78.25, 18.8, 6.4, and 2.5 years are distinguished [65]. The wide
range of permitted scales makes it possible to raise the
question of the extent to which oscillations with these
periods are isolated and dominate over the others. Alterna-
tively, oscillations of V833 Tau can form a continuous
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turbulent spectrum by analogy with the way the quasi-
biennial oscillations of solar activity are interpreted in
Section 3.1.

The wavelet spectrogram of V833 Tau in Fig. 19 demon-
strates a wide variety ofmultiscale oscillations. To begin with,
there is no bright band present on the spectrogram of the Sun
(see Fig. 8). With some caution, one can distinguish several
structures, between the scales of 10 and 40 years, where the
action of the stellar dynamo can be expected. In the area
marked with green lines, one can notice some connectivity of
the structure (peaks) in time. An integrated wavelet spectrum
based on the V833 Tau data is shown in Fig. 20. On the one
hand, there is no pronounced local maximum that could be
qualitatively compared with the maximum in the solar
spectrum (see Fig. 9). In the vicinity of t � 30, there is a
jump which is the contribution of vibrations within the band
identified in the spectrogram. A Monte Carlo simulation can
be performed using the standard error shown by the bar for
each data point in Fig. 18 to estimate the upper bound of the
confidence interval (Fig. 20 shows the level for a probability
of 0.9). It is seen that themaximumat t � 30 is not sufficiently
significant. On the other hand, the integral wavelet spectrum
of V833 Tau can be described by a power law with t 3=2. The
short-term part of the spectrum (t910) is likely to be affected
by noise, but the remaining part is relatively statistically
stable. Fluctuations in the activity of V833 Tau in the range
3 < t < 100 can be compared with the behavior of fluctua-
tions in solar activity observed on a scale of 0:1 < t < 10.
Then, it seems natural to assume that if V833 TAU has a
solar-type dynamo cycle, its period is 10 times longer than
that of the solar dynamo. However, the available data are
insufficient to isolate it.

Interestingly, V833 Tau is a rather young and very active
star with a rotation period of less than 2 days, which suggests
a high degree of saturation of the dynamo process. Such a
stellar dynamo regime is characterized by a quasi-stationary
magnetic field with chaotic variations. A discussion of all
theoretical premises can be found in [64]. Here, it will be
shown only how, with the help of the inverse wavelet
transform, the dynamo cycle of V833 Tau can be distin-
guished in the search for oscillations comparable to 11 years
of the solar cycle. The standard approach available for any
filtering method is to leave the signal contained in some
dedicated range of scales. Within the framework of the
wavelet analysis, the time scale of the signal is revealed,
whichmakes it possible to track transitionprocesses.Figure21
shows two possible reconstructions, one of which is per-
formed using wavelet coefficients in a fixed range of scales
10 < t < 40 (blue dashed line) and the other, in the adaptive
band shown in Fig. 19. The most significant difference is
apparent in the interval between 1920 and 1930where the blue
dashed curve has a phase failure, while the characteristic scale
of the oscillations shown by the red curve is noticeably
reduced and does not lose its oscillatory character. Such
behavior once again emphasizes the difference between the
observed variations in V833 Tau and solar activity (see the
wavelet analysis of the Schwabe cycle phase in [66]).

3.3 Wavelet analysis of climatic and geophysical data
The earth sciences are perhaps the most popular area of
application of wavelet analysis, which is especially widely
used in the fields of climatology, terrestrial magnetism, and
solar-terrestrial relations. The number of studies using
wavelets for this purpose amounts to thousands, and even
a cursory review of them would be difficult to perform and
hardly interesting without highlighting a specific physical
problem. Therefore, this section is confined to illustrating
the potential of the method. From the standpoint of wavelet
analysis, most studies can be categorized into two groups.
The first deals with the analysis of variability of certain
characteristics and the identification of cyclicity in a variety
of forms. Studies in the second group are concerned with
the analysis of spatial and/or temporal correlation of signals
of different natures for the purpose of identifying their
relationships and the physical mechanisms underlying them.

The first group includes numerous studies on the analysis
of observational data, from the simplest quasi-periodic
processes (seasonal variations) to more complex ones (El
Ni~no and others), from the search for traces of weak periodic
influences (those of satellites, planets, etc.) to aperiodic
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processes such as earthquakes and tsunamis or variations in
the polarity of the geomagnetic field, separation (filtration) of
periodic changes, and long-term trends.

The second group includes articles on the analysis of
solar-terrestrial relationships (the search for correlations
between geophysical signals of various natures and solar
activity), correlations (often not obvious) among the vari-
abilities of the most varied climatic and geophysical char-
acteristics in different parts of the planet, and identification of
the anthropogenic impact on the environment.

As far as the first group of studies is concerned, the
restoration of data on Earth's climate change is not only of
scientific but also of obvious practical interest. What is
meant are relatively small (of the order of degrees)
temperature changes over sufficiently long (at least tens of
years) periods of time. At the same time, mean values of
Earth's surface temperature are available from instanta-
neous data recorded by weather stations which vary
significantly from place to place, from day to day, and
from night to day. Differentiating between global and local,
and slow (climate) and relatively fast (weather) variations
requires adequate data filtering.

Let us demonstrate the possibility of using the inverse
wavelet transform by an example of identifying a long-term
temperature trend in temperature data for Central England
(the Stratford-upon-Avon region) available since the middle
of the 17th century [67]. This is the longest time series of
regional data unaffected, as far as possible, by nearby large
cities. There are several more time series of approximately the
same length containing temperature measurements in indivi-
dual settlements. A comparison of these data with regional
temperature data from Central England by the methods of
wavelet analysis is of undoubted interest but lies beyond the
scope of this review.

To analyze the longest time series, direct wavelet trans-
formation was carried out and the integral wavelet spectrum
considered as a basis for differentiating between short-period
(weather in the broad sense of the word) and long-period
(climate) temperature variations. The inverse wavelet trans-
formation was performed in the second part. Naturally, it is
desirable that the border between weather and climate be
expressed as clearly as possible and run along a deep
minimum in the integral wavelet spectrum. In reality,
however, this minimum (for which a period of about 50 years
is taken) is not as deep as one would like. Therefore, the
division between climatic changes and weather fluctuations
turns out to be somewhat arbitrary, and Fig. 22 shows results
of recovery with three upper filtration boundaries:
t < 200 years (1), t < 120 years (2), and t < 40 years (3).

Figure 22 shows that the average annual temperature in
Central England has indeed been growing since the middle of
the 19th century and reached its maximum values today, but
at the turn of the 17th and 18th centuries a noticeable decrease
in average annual temperatures occurred. This period is
sometimes called the Little Ice Age. In general, these results
fit into the concept of global warming, but it can hardly be
said that they themselves confirm all the details of this
concept. As is often the case, even perfect methods for the
analysis of data concerning a single tracer do not help to find
out everything that interests a researcher.

Considerable experience in using wavelets has been
accumulated during studies of variations in Earth's magnetic
field. An analysis of quasiperiodicities of the geomagnetic
field on scales of hundreds and thousands of years based on

the results of investigations of sedimentary rocks from
various regions on Earth led the authors of [68] to the
conclusion that there are no identified scales in the range of
300±4000 years. Note that the conclusion about the absence
of allocated frequencies is often no less important than the
conclusion about their presence.

Perhaps the longest among time series of observational
data in which researchers are trying to find traces of
quasiperiodicities is the geomagnetic polarity scale (GPS),
which carries information only about the sign of the magnetic
field (more precisely, it indicates Earth's hemisphere where
the north magnetic pole is located). Today, the standard scale
contains hundreds of magnetic field reversals that occurred
over the past 250million years, and prospects for its extension
to earlier epochs are being discussed. The very possibility of
an adequate assessment of spectral characteristics of a signal
only from the results of recording changes of its sign is far
from obvious. A wavelet analysis of various model signals of
random processes and analogs of the polarity scale con-
structed from them carried out in conjunction with an
analysis of the GPS allowed the authors to assert that, for
the low-frequency part of the spectrum (low frequencies in
this case include oscillations with a period of more than
1 million years), the exponent g in the spectrum E�o� � og

is close to unity [69]. Later attempts to find distinguished
quasiperiodicities in the polarity scale were undertaken in
Ref. [70], which documented the presence of traces of a period
of roughly 50 mln years; these traces were compared with the
data of geodynamo models [71].

As for wavelet cross-coherence (13), it makes possible
singling out nontrivial correlations among observed phenom-
ena. For example, a joint analysis of the North Atlantic
Oscillation index and solar activity revealed the quasiperio-
dic reversal of the coherence sign with a period of about
50 years [72].

An example of the analysis of long-term solar-climatic
correlations is provided by a study of temperature and carbon
dioxide variations reconstructed from 11,000-year-old Ant-
arctic ice and their comparison with the data on solar activity
reconstructed for the same period [73]. A number of
coincident peaks were found in the oscillation spectra of all
three series, but only oscillations on scales close to 1000 years
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showed a stable correlation of temperature and solar activity
variations with a stable phase shift. At the same time, the
correlation between variations in the carbon dioxide level and
temperature turned out to be low and unstable.

An interesting example of spatial correlation analysis is
the work on processing archeomagnetic data (estimation of
the amplitude of the geomagnetic field during the firing of
ceramic items collected by archaeologists in a given region)
obtained from three geographic areas: Bulgaria, Georgia, and
Central Asia [74]. The data in each group was a nonuniform
random sample over the time interval from 2000 BC till now.
The spectrum of each sample had a set of peaks, with the peak
corresponding to the oscillation period of 1750 years being
most pronounced in all three series; the phase shifts at this
frequency in all three signals made it possible to identify a
wave of perturbations of the geomagnetic field propagating
from east to west with a speed of about 0.2 deg/year. In the
context of the analysis of spatial correlations of observational
data for Earth'smagnetic field, it is pertinent tomentionwork
on the analysis of the cross-correlation of data from
geomagnetic observatories located at different points on
Earth [75].

The vertical component of the geomagnetic field
observed in real time by ground-based observatories of the
International Network of Magnetic Observatories was used
to analyze magnetic fields induced by the motion of
tsunamis and the geomagnetic field [76]. The main focus
was on small-scale geomagnetic variations caused by the
tsunami on February 27, 2010 according to the Easter
Island Observatory (IPM) and the Papeete Observatory
(PPT). Wavelet analysis and maximum variance analysis
(MVA) were used to detect tsunami-related perturbations in
geomagnetic data. It was shown that such a combination of
the two methods can be used to calibrate tsunami models
and apply them in real time to analyze tsunami forecasting
scenarios.

4. Wavelet analysis of astrophysical images

Historically, modern physics formed as an experimental
science, i.e., a science dealing with relatively simple, some-
what artificial, situations: the ball that Galileo threw from the
tower fell not at all like a thin sheet of paper from awindow of
a house. However, in the course of the development of a
specific area of physics, the task of comparing such slightly
idealized concepts with a muchmore chaotic world around us
arises sooner or later. For example, one has to fit the ideas of
laboratory hydrodynamics into the context of atmospheric or
marine physics. To demonstrate the possibilities of and
difficulties in using wavelets, we choose problems associated
with the study of spiral galaxies using radio astronomy
methods. These tasks appear to be especially difficult to
address, because people do not have sense organs that can
allow them to directly perceive information obtained in radio
astronomy. An image produced with an optical telescope can
be perceived as an objective reality, at least at the very
beginning. On the contrary, a map of, say, polarized radio
emission of some spiral galaxy is presented as a set of poorly
ordered spots, and significant efforts are needed to make it
suitable for scientific analysis by intelligently combining radio
data with each other and with the optical image. The relevant
terminology itself used in the context of this discussion gives
evidence of the presence of spiral structures (so-called spiral
arms) in images of spiral galaxies obtained in various tracers.

The spiral arms obtained from tracers that visualize the
distribution of interstellar gas or stars, as a rule, do not
coincide with the arms obtained from tracers that visualize
the distribution of magnetic fields. Of course, there are
simple examples of situations in which the localization of a
particular spiral arm is beyond doubt, but in certain cases
one sees, say, two spiral arms upon a quick look at the image
but becomes aware of the presence of four and even six of
them in the course of further work. The identification of
spiral arms and the relationships among them allows under-
standing what physical processes lead to their formation. To
get there, one must learn how to measure the pitch-angle of
these arms, which is practically impossible without algor-
ithmically described methods for identifying and quantita-
tively digitizing these objects.

One more aspect of the problem is of importance. A
spiral structure forms not only in relation to the distribu-
tion of gas and stars in galaxies but also in association with
the magnetic field distribution. Such magnetic fields are
observed and measured from the Faraday effect of rotation
of the synchrotron radio emission polarization plane as it
passes through a magnetized plasma. A classic description
of this effect finding application (in a slightly different
form) in the sugar industry is given in the book by
V L Ginzburg [77]. Usually, there is a medium that
simultaneously emits and rotates a wave, and the para-
meters of the problem are such that it is reasonable to carry
out observations in the radio range (the classical wave-
length range used in connection with this problem is from
3 to 20 cm). As a result, not only is the plane of
polarization rotated, but also the degree of polarization
decreases (usually it is not about 70% but roughly 10%).
In simple situations, polarization angles c of radio
emission with different wavelengths l obey the rule

c�l� � c0 �RMl 2 ; �23�

where the Faraday rotation measure (RM) is proportional to
the strength of the magnetic field, and angle c0 contains
information on field direction (see [78] for details). Naturally,
we are speaking about observations of radio emission with
different wavelengths, i.e., multifrequency radiation.

The first attempt at wavelet-based identification of
spiral arms was undertaken in [79]. Images of the galaxy
NGC6946 were projected onto the galactic plane and were
thereafter broken into concentric rings. Each ring was
subjected to one-dimensional wavelet analysis by the
azimuth angle, and the positions of local maxima were
plotted on a map with circles, the size of which corre-
sponded to the scale of the wavelet. The result for the
image of this galaxy in polarized radio emission and in the
optical range is shown in Fig. 23. Solid lines in this figure
show the results of parameterization of the corresponding
structure with a logarithmic spiral. The above images
clearly show that the magnetic arms are markedly dis-
placed relative to the gas arms observed in the optical
range.

This approach is quite a laborious procedure applicable
when the number of objects under study is relatively small
and they can be considered individually. In mass observa-
tions, in which the amount of observational information is
such that it does not allow viewing and thinking over each
image individually, it is natural to use two-dimensional
wavelets.
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4.1 Isotropic analysis
Thewavelet image of a two-dimensional function is defined as

w �t; x 0� � 1

tk

� �1
ÿ1

� �1
ÿ1

f �x�c �
�
xÿ x 0

t

�
dx ; �24�

where the variable t specifies the spatial scale, x � �x; y�, and
f �x� is the analyzed two-dimensional function. The choice of
analyzing wavelet becomes even wider: along with simple
axisymmetric functions for the analysis of structures, one can
use rather complex functions that describe not only wave
packets of different types but also special-type structures
(e.g., spiral ones) responsible for the appearance of addi-
tional conversion parameters. A two-dimensional version
of the `Mexican hat' c�r� � �2ÿr 2� exp �ÿr 2=2�,
r�

����������������
x 2 � y 2

p
, as well as more complex axisymmetric func-

tions that improve the spectral resolution of the wavelet, is
widely used as the simplest isotropic wavelet (see, for
example, [80]).

The inversion formula for isotropic transformation (24) is
a natural generalization of formula (4) and has the form
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where

Cc � 1

4p 2
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ÿ1

��ĉ�k��� 2
jkj 2 dk ; �26�

and k � �kx; ky� is the two-dimensional wave vector.
Before turning to the analysis of the spiral structure, let us

discuss the possibilities of statistical analysis of galactic
images, including an analysis of spectral density of spatial
fluctuations of recorded fields and the correlation of these
fluctuations in different fields.

In the wavelet representation, the distribution of the
pulsation energy over scales is characterized by the integral
wavelet spectrum, defined as the average energy of all wavelet
coefficients of a given scale t over the entire plane:

M�t� �
� �1
ÿ1

� �1
ÿ1

��w �t; x 0��� 2 dx 0 : �27�

Wavelet spectrum (27) can be easily related to the Fourier
spectrum. In the isotropic case, this relationship has the form

M�t� � t 4ÿ2k

2p

�1
0

E �k���ĉ�tk��� 2 dk ; �28�

where E �k� is the spectral density of pulsations,

E �k� �
�
jkj�k

�� f̂ �k��� 2 dk : �29�

Relation (28) shows that the wavelet spectrum is always a
smoothed version of the Fourier spectrum.

When discussing the properties of multiscale fields,
spectra are often used together with structure functions

Sq�l � �

ÿ

f �x� ÿ f �xÿ l��q�jlj�l ; �30�

where angle brackets h. . .i imply averaging over space. In this
case, spectral density corresponds to the second-order
structure function S2. Note that if the second-order structure
function follows the power law

S2�l � � l l ; �31�

the power spectral density

E �k� � kÿ�l�1� ; �32�

and the exponent of the wavelet spectrum depends on the
parameter k in definition (24). At k � 2, the same power law is
valid for theM�t� spectrum as for the structure function:

M�t� � tl ; �33�
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78 P G Frick, D D Sokoloff, R A Stepanov Physics ±Uspekhi 65 (1)



in the case of k � 3=2,M�t� � t l�1, which is convenient if the
wavelet spectrum is compared with the Fourier spectrum
E�k�. To recall, the scale parameter t has the same
meaning (and dimension) as the distance l in the structure
function (30).

An important remark is in order as regards the use of
wavelets for the identification of power laws in spectra. Any
wavelet has its own spectral image, the tails of which
themselves can follow a power dependence. Therefore, the
decay rate of these tails determines the limiting decay rate of
the spectrum that can be detected by a given wavelet.

Even more caution is needed when using structure
functions. The calculation of S2 in accordance with formula
(30) can be interpreted as the calculation of wavelet spectrum
(27) using a specific (anisotropic) wavelet formed as a
difference between two delta functions spaced by a unit
distance,

c�x; e� � d�x� ÿ d�xÿ e� ; �34�

where e is the unit vector. This is a very `bad' wavelet because,
having an excellent localization in the physical space, it
inevitably has a very poor spectral resolution. This means
that structure functions provide very poor scale resolution
and can only be used when there is confidence in the smooth
behavior of spectral density. In other words, if there is a field,
the spectrum of which is a collection of several peaks, the
structural functions can transform these peaks into a
smoothly decreasing dependence.

The conclusions drawn are illustrated by Fig. 24 showing
spectral characteristics of the polarized radio emissionmap of
the same galaxy NGC6946 (the structure function, two
wavelet spectra, and the Fourier spectrum). It can be seen
that the smooth shape of the graph of the structure
function (upper curve) really loses all information about
the dominant scales (in this case, they are scales on the
order of 0:5 0±1 0 corresponding to the armwidth). An optimal
result seems to be the wavelet spectrum obtained using the PH
function (second curve from the bottom) that is free of
numerous details inherent in the Fourier spectrum but
perfectly well identifies the maximum in the energy spectrum.

Figure 24 is borrowed from Ref. [80] in which images of
the galaxy NGC6946 obtained in nine different ranges of
radio and optical emission were analyzed. Of great interest is
the relationship between different types of radio emission; to
analyze them in this work, the wavelet cross-correlation
function was calculated for each pair of images:

rw�t� �
�
w1�t; x�w �2 �t; x� dxÿ
M1�t�M2�t�

�1=2 : �35�

The quantity rw being a statistical characteristic, the uncer-
tainty of its estimate Drw�t� is due to the number of
independent points n used in its calculation (it depends on
the scale and is taken equal to n � �L=t�2) and to the
correlation level itself [81]:

Dr �
�������������
1ÿ r 2

nÿ 2

r
: �36�

Figure 24b illustrates the wavelet correlation for the pairs
of distributions of hydrogen, polarized radio emission, and
thermal radiation. It demonstrates how different these three
dependences are. The lower curve presents significant

negative values on scales comparable to the width of galactic
arms, showing that polarized radio emission (an indicator of
the presence of magnetic fields) is stronger outside gas arms.
The figure also indicates errors in determining the rw value.
The errors increase on large scales due to a reduction in the
number of independent points used in the calculation of the
correlation coefficient.

Such a large-scale cross-correlation analysis was applied
to processing radio images of the M31 and M33 galaxies [82]
as well as the M83 galaxy [83].

4.2 Anisotropic analysis
It seems attractive to analyze the structure of spiral galaxies
using anisotropicwavelets, i.e., families of functions that have
a third characteristic (orientation) in addition to scale and
position. The simplest real anisotropic wavelet can be
constructed using the aforementioned `Mexican hat' and
keeping the power-law dependence only in one coordinate
when moving to the plane. This yields the function
c�x; y���1ÿy 2� exp �ÿ�x 2 � y 2�=2� called the `Texas hat' in
[84] to emphasize its difference from the axisymmetric
`Mexican hat'.

When an anisotropic analyzing function is used for this
purpose, the wavelet transform of the two-dimensional field
f �x�, x � �x; y� has the form

w �t;j; x 0� � 1

tk

� �1
ÿ1

� �1
ÿ1

f �x�cj

�
xÿ x 0

t

�
dx ; �37�
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Figure 24. Spectral characteristics of image of the galaxy NGC6946:
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and the Fourier spectrum (top to bottom in Fig. a); wavelet cross-

correlation between three pairs of images (b): hydrogen-polarized radio

emission (black dots), hydrogen-thermal radiation (asterisks), hydrogen-
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where the wavelet orientation is given by angle j, while other
notations remain unaltered.

For a given position x 0 and a given scale t, the maximum
value of w �t;j; x 0� over all angles j,

wm�t; x 0� � max
04j4 p

w �t;j; x 0� ; �38�

can serve to distinguish the predominant direction defined by
the angle jm, such that wm�t; x 0� � w �t;jm; x

0�.
The distribution of the pulsation energy of the analyzed

quantity over the scales t and orientation directions j is
determined by the anisotropic wavelet spectrum

M�t;j� �
� �1
ÿ1

� �1
ÿ1

��w �t;j; x 0��� 2 dx 0 : �39�

Anisotropic wavelets were first used to quantitatively
identify arms of the spiral galaxy M51 [84]. Figure 25 shows
an example of the identification of spiral arms on the radio
emission map of this galaxy; in Fig. 26, arms (more

precisely, their `ridges') extracted from different maps are
represented by colored lines on the galactic plane. These
constructions allowed the authors to reveal a systematic
shift (up to several kiloparsecs) of gas arms and arms visible
in radio emission. The presentation of these data in
logarithmic coordinates (Fig. 26b, c) made it possible to
trace changes in the pitch-angle along the spiral and directly
see deviations from the logarithmic spiral. It was shown that
two main magnetic arms (identified from polarized radio
emission) behave differently: the first quite accurately
follows the gas arm (identified from the intensity of CO
radiation), with the magnetic field directed along the arm,
while the second is markedly shifted relative to the gas arm,
and the direction of the magnetic field in it does not coincide
with the arm direction [84].

Another relatively nearby galaxy with a pronounced
spiral structure, the M83 galaxy, was studied in [83]. This
galaxy is a so-called barred galaxy. The bar in the core and the
two main arms connected to it are schematically shown in
Fig. 27 against the background of emission of cold interstellar
gas. The structure of M83 is more complicated than that of
M51 as confirmed by the large-scale analysis of radiation
maps. The same figure shows results of wavelet filtering using
the `Texas hat' wavelet for two scales, t � 0:35 0 and t � 0:7 0,
with the plotted directions of orientation of the dominant
structure (angle jm). Clearly, not only the general pattern of
the spiral structure but also the orientation of its elements
differs on the presented scales.
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One important conclusion ensuing from the analysis
performed deserves particular attention. It concerns the
absence of regularities in the mutual arrangement (and
interaction) of magnetic and gas structures uniform for the
entire galaxy. One magnetic arm is displaced relative to the
gas arm, just as in the galaxy NGC6946, while the other
magnetic arm covers the gas arm, as in the M51 galaxy. This
inference is illustrated by Fig. 28 showing directions of
magnetic field lines and orientations of anisotropic struc-
tures on the arm scale against the background of the gas arm
contour (dashed line is the isoline of 20% of the maximum
radiation intensity). The left arm (outer part of arm II in
Fig. 27) is characterized by a stable correlation of the two
directions absent in the other arm and the bar.

Based on the anisotropic wavelet transform, it is possible
to introduce the isotropic and anisotropic components
through the amplitude of the azimuthal modes n � 0 and
n � 2 �the n � 1 mode is equal to zero due symmetry
w �t;j; x� � w ��t;j� p; x��:

m i�t; x� � �2p�ÿ1
� �p
ÿp

��w �t;j; x��� 2 dj ; �40�

m a�t; x� � �2p�ÿ1
� �p
ÿp

��w �t;j; x��� 2 exp �2ij� dj ; �41�

and the corresponding spectra

M i�t� �
� �1
ÿ1

� �1
ÿ1

m i�t; x 0� dx 0 ; �42�

M a�t� �
� �1
ÿ1

� �1
ÿ1

��m a�t; x 0��� dx 0 : �43�

Furthermore, it is natural to introduce the degree of
anisotropy as

dw
loc�t� �

M a�t�
M i�t� : �44�

The degree of global anisotropy can be calculated through
averaging over the complex wavelet coefficients m a�t; x�
instead of their amplitudes, so that different phases compen-

sate each other:

dw
glob�t� �

��� � �1ÿ1 � �1
ÿ1 m a�t; x� dx

���
M i�t� : �45�

Figure 29 presents a demo in which the test distribution
of anisotropic structures of the same size but with different
aspect ratios and different orientations is considered. A
comparison of the local and global degrees of anisotropy
makes it possible to estimate the sensitivity of the method.
Global anisotropy is provided by structures with an aspect
ratio of 3:1 and appears only at scales from 30 to 60 pixels.
On smaller scales, local anisotropy dominates due to
structures with the 9:1 aspect ratio. The distribution of the
degree of anisotropy by scales and angles (Fig. 29c) shows
the values of the position angles over which the anisotropic
structures are distributed. A wide range of test configura-
tions was considered in [85], where the method was used to
analyze the filamentous small-scale structure of molecular
clouds in the constellation Aquila and in the polar region
(Polaris Flare). In particular, it was shown that, in the
Aquila cloud, where active star formation takes place,
anisotropic structures of a selected scale having a common
orientation dominate. In a calm cloud like the Polaris Flare,
anisotropy is predominantly local in nature and is present to
the same extent on all scales.

5. Wavelets in experimental physics

Wavelet transforms of one-dimensional signals obtained in
various physical experiments give information expanded in
the time-frequency space. For example, in MHD flows
excited by complex alternating fields, wavelets made it
possible to effectively filter out turbulent fluctuations from
fluctuations of external electromagnetic fields [86]. Wavelet
cross-correlations have been successfully applied to analyze
the behavior of large-scale circulation based on data from
laboratory and numerical experiments on turbulent convec-
tion in closed volumes [87, 88]. In a number of studies,
wavelets have been used to study unsteady turbulent flows
[89±91].

In this section, three examples of wavelet-based proces-
sing of physical measurement data are considered. One
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concerns an analysis of spectral characteristics of an unsteady
flow, the second is related to the processing of signals from
multichannel polarization radio telescopes in which wavelets
help to solve a nontrivial inverse problem using a priori
information about the symmetry of the objects of observa-
tion, and the third illustrates the use of wavelets to process
and analyze signals of a biophysical nature.

5.1 Evolution of spectral characteristics
of a pulsed turbulent flow
Let us consider, by way of example of the analysis of
unsteady signals, some results of a study on pulsed
turbulent flow in a closed channel [92]. This work was done
in the context of investigations into the consequences of the
generation of magnetic fields by flows of a conducting liquid

(see review [47]). These effects become noticeable only at
very high Reynolds numbers. More precisely, the governing
parameter is the magnetic Reynolds number Rm associated
with the usual (hydrodynamic) Reynolds number Re
through the magnetic Prandtl number: Rm � RePm.
Effects of the generation of magnetic field fluctuations by a
turbulent flow manifest themselves at Rm � 1, but the
problem is the magnetic Prandtl number (the ratio of
kinematic viscosity to the diffusion coefficient of the
magnetic field) is very small for liquid metals (Pm � 10ÿ5),
whereas it is necessary to achieve the required magnetic
Reynolds numbers with Re � 105 to generate a liquid metal
flow. Therefore, the idea was expressed to create a short
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pulsed flow with the required parameters in a toroidal
channel filled with liquid sodium [93±95]. In the described
experiments, a channel with a radius of 0.18 m and a cross-
sectional radius of 0.08 m was used that was first spun up to
a speed of 50 revolutions per second and then braked for
0.3 s.

A potential velocity sensor installed in the channel wall
made it possible to register both toroidal (along the channel)
and poloidal (along the wall but across the channel) velocity
components. The picture of evolution of the average values of
the two velocity components and the rms values of velocity
pulsations is illustrated in Fig. 30 (note that the graphs are
given in the double logarithmic coordinates). It can be seen
that by the end of braking the toroidal and poloidal velocities
reached 40 m sÿ1 and 7 m sÿ1, respectively, but velocity
pulsations dominated in the poloidal component. The
evolution of the flow was rapid, with half of the kinetic
energy dissipating within the first second after the end of
braking. At t > 1, velocity pulsations decreased according to
the law� tÿ1 characteristic of turbulent decay. It is necessary
to find out how quickly the inertial interval is formed
(whether turbulence has time to develop).

Any stationarity is out of the question in such a case, and
wavelets come to the rescue. A spectrogram of the poloidal
velocity component obtained using a Morlet wavelet is
presented in Fig. 31. It can be seen that, after the
termination of braking, a burst of high-frequency pulsa-
tions occurs with a peak at frequencies of � 2ÿ4 kHz. The
spot noticeably weakens by the end of the first second, and
the frequency at which pulsation energy density reaches a
peak decreases.

Vertical sections of the wavelet spectrogram give instan-
taneous (or averaged over a reasonable time interval) spectra
of velocity pulsations. Figure 32 shows the temporal
(frequency) spectra of velocity pulsations, constructed by
averaging over four successive time intervals, confirming
both the decay of the pulsation energy and the shift of the
peak towards low frequencies. The same figure presents the
spatial energy spectra of velocity pulsations for the same time
intervals. They are obtained by recalculating time frequencies
into wavenumbers according to Taylor's hypothesis, taking
account of the varying average flow velocity. In the spatial
spectra, the energy maximum remains at the same scale
determined by the channel diameter. The spatial spectra can
be used to get an idea about the stages of formation of the
inertial interval.
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5.2 RM-synthesis of polarized radio emission
of the interstellar medium
The development of observational techniques often leads to
such problems with data processing that simply did not occur
to specialists of preceding generations and presently require
complex and new approaches to data processing. Here is an
example of such methods used to explore magnetic fields in
galaxies and other celestial bodies on a galactic scale. To
recall, the magnetic fields of galaxies are studied by making
use of the Faraday effect, the quantitative measure of which is
the Rotation measure (RM), which requires observations at
many wavelengths to be calculated. Until the end of the last
century, the word `many' in this context meant two, three,
four or at most six, the usual set of wavelengths being 3, 6, 18,
20 cm, or sometimes another 13 cm. With the advent of
broadband radio receivers, it became possible to make
observations with a quasi-continuous set of frequencies; at
present, observations in many cases are carried out at longer
wavelengths, say, in the meter or even decameter range. In the
latter case, the plane of polarization can undergo many turns
during the propagation of synchrotron radiation through the
magnetized medium, while the angle in expression (23) is
naturally determined only up to the addition of integer p. The
amount of data that can, in principle, be obtained in this way
is so large that it turns out to be unrealistic to first carry out
observations, e.g., of a nearby outer galaxy at all possible
frequencies, then break up the image of the galaxy into small
sectors and compare the distribution of polarization angles
over sectors and frequencies to plot the magnetic field
distribution in this galaxy. Researchers did something like
this at the end of the 20th century (see, for example, [96]).
Even with observations at three or four wavelengths, the path
from data collection to plotting the magnetic field distribu-
tion took several years.

It remains to be seen how modern radio astronomy will
solve the problem. One of the current approaches is called
RM-synthesis. It implies postponing until later the clarifica-
tion of magnetic field geometry in order to first obtain at least
the magnitude of magnetic fields (Faraday rotations, to be
precise) of various layers of the magnetized medium through
which radiation propagates from the place of emission to the
observation point. In many cases, there are several such
layers, and the results of RM-synthesis seem to be sufficient
to solve the problems really faced by researchers.

The main idea of RM-synthesis [97] has been known for a
long time. The classical work [98] held that the degree of
polarization of synchrotron radiation P�l� can be considered
a Fourier transform in magnitude l 2 of function F (called
Faraday dispersion, which can be used to calculate RM),

P �l 2� �
�1
ÿ1

F �f� exp �2ifl 2� df : �46�

Here, the quantity f is the Faraday depth defined as

f �z� � ÿ0:81
� 0

z

Bjjne dz 0 ; �47�

where Bjj is the component of the magnetic field along the
beam, ne is the density of thermal electrons, and the integral is
taken from the source to the observer (z � 0).

If observations were made in a wide range of wavelengths
l, it would be necessary to take the inverse Fourier transform
in the variable l2 from the degree of polarization and receive
the desired answer. The only problem is that l2 is an
essentially positive quantity and must change from ÿ1 to

�1 in the inverse Fourier transform. Moreover, it is
practically impossible to cover the entire range of the
required integration in the region of positive l2. Additional
information is needed to resolve the issue. Therefore, for an
isolated object, the problem of negative l2 can be solved by
taking account of its symmetry. However, even if there are
two objects in the path of radiation, the problem cannot be
solved by Fourier analysis methods. Wavelet analysis, which
allows the Fourier transform to be performed locally, also
contributes to the solution to these problems, making it
possible to apply the properties of symmetry for each
isolated object in the space of Faraday depths [99±101].

To demonstrate the efficiency of the RM-synthesis idea, a
test signal with two localized sources needs to be considered,
one characterized by the smooth magnetic field distribution
modeled by Gaussians and the other showing a box-like
distribution with sharp boundaries (Fig. 33). In both cases,
the distribution of Faraday dispersion is symmetric with
respect to the middle of the source. This distribution
corresponds to the quadrupole symmetry of the galactic
magnetic field. Let us calculate complex polarization corre-
sponding to a given Faraday dispersion. Of course, it is
defined only for positive l2 but can be formally extended to
the region of negative l2 using the properties of quadrupole
symmetry of the Faraday dispersion. Now, it is possible to
calculate wavelet coefficients of complex polarization (their
distribution on the wavelet plane is shown in Fig. 34a) and to
restore the original signal using the inverse wavelet transform
(Fig. 34b). It can be seen that the reconstructed signal is
indeed similar to the original one.

Naturally, when analyzing the data obtained with a real
radio telescope that receives signals only within a limited
wavelength range only part of the information about the
original Faraday dispersion is restored. A wavelet analysis
helps us to understand what part of the information can be
obtained in this way. Let us consider, as an example, the
potential of a radio telescope operating at long waves
(0:6 < l < 0:78 m (Fig. 34b, c) and 0:6 < l < 2:5 m
(Fig. 34e, f )). These examples illustrate difficulties encoun-
tered in observations confined to long wavelengths and to a
certain extent simulate the efficiency of the LOw Frequency
ARray (LOFAR) telescope. It can be seen that information
about the first source is almost completely lost in both
wavebands. In the first of the ranges, it is possible to restore
the localization of the second source, and the expansion of the
range to the long-wave region makes it possible to fix the
position of the boundaries of the second source. It can be
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Figure 33. Test example of Faraday dispersion used for RM-synthesis:

thick solid line indicates the Faraday dispersion modulus; thin solid line,

the real part; dashed line, the imaginary part. (From [99].)
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verifiedwhether the inclusion of an area up to l � 0:03 m into
the measurement range makes it possible to reconstruct the
Faraday dispersion almost as completely as in Fig. 34a, b.
This wavelength range corresponds to characteristics of the
Square Kilometer Array (SKA) telescope under construction,
which demonstrates the advantages of this instrument for
observing the magnetic fields of spiral galaxies. It should be
emphasized that each telescope has specific limitations
making it more suited for one set of tasks and less so for
another.

The above example shows that observations of long waves
that are presently very popular due to the advent of the new-

generation LOFAR telescope first of all contain information
about regions with abrupt changes in the magnetic field. This
conclusion canbe confirmedby another test example (Fig. 35),
in which the magnetic field is localized within a certain
extended layer and has a pronounced small-scale turbulent
structure. We have analyzed the corresponding signal in the
wavelength ranges typical of operating radio telescopes and
those currently under construction (Fig. 36). Evidently,
observations with the SKA telescope will allow transmitting
all the main details of the signal, whereas observations in a
narrow range of long waves (with the Westerbork Synthesis
Radio Telescope (WSRT) with two narrow wavebands) give
information only on the general localization of a small-scale
signal, and the expansion of the range towards long waves
(characteristic of LOFAR) allows conveying small-scale
signal details. To date, a version of RM-synthesis based on
the use of wavelets has undergone comprehensive testing and
a comparison with other algorithms and has demonstrated
advantages inherent in wavelets [102].

Based on the discussed characteristics of wavelets, the
following steps can be taken to use observations of longwaves
to explore the magnetic fields of galaxies. It is known from
studies involving a small set of wavelengths that the magnetic
fields in spiral galaxies form rather narrow spiral arms that
can be shifted relative to the spiral arms in the distribution of
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Figure 34. (Color online.) RM-synthesis using wavelets for the signal from Fig. 33. Wavelet spectrograms (a, c, e) and results of reconstruction for the
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interstellar gas and stars [103]. In multichannel observations
within a relatively narrow wavelength range (0.17±0.23 m),
RM-synthesis making no use of wavelets reveals only two
diffuse spots at the place of two narrow magnetic arms
(Fig. 37) due, in particular, to the fact that, the more channels
there are, the shorter the observation time of each of them; as
a result, the signal-to-noise ratio deteriorates. Of course, one
can integrate the signal over the spectrum and restore the
ratio of the signal to noise characteristic of single-channel
observations, but that would be akin to emulating the
operation of a previous-generation telescope on a modern
one. Certainly, one could wait for the commissioning of the
SKA telescope expected to enable researchers to take
advantage of short-wavelength observations, but they seek
to have results as soon as possible. The wavelet analysis
allows estimating the contribution of small-scale magnetic
fields, to which the telescope is most sensitive.

Wavelet RM synthesis was generalized to a two-dimen-
sional case and applied to multichannel data on the galaxy
NGC 6946 obtained by observations using the LOFAR radio
telescope. It was possible to detect the trail of magnetic spiral
arms that are not visible by other methods [104]. A wavelet
analysis of artificial data confirmed that the discovered effect
is underlain by the depolarization mechanism [105].

5.3 Biosignals in medical physics
It seems important to emphasize the universal character of the
described methods for recording, treating, and analyzing
signals in the framework of this review. The practical choice
of a particular method of analysis is dictated not so much by
the nature of the signal as by its structure and by what one
expects to clarify as a result of the analysis.

An excellent example of a complex nonlinear system with
tangled temporal dynamics is the human body, the existence
of which is maintained by two pronounced quasiperiodic
processesÐ the work of the heart and respiration, against the
background and under the direct influence of which a whole
spectrum of cyclic processes associated with the vital activity
of the organism is formed. There are many examples of
successful application of wavelets for signal processing in
medicine. Suffice it to mention reviews on wavelet analysis of
cardiac signals [106] and neurodynamics [13], as well as some
work analyzing the dynamics of peripheral blood flow [107±
111]. Figure 38 exemplifies the fundamental role of wavelet
algorithms in the cross-correlation analysis of temperature
pulsations on the skin surface and of the signals from a laser
Doppler flowmeter used to evaluate the intensity of the
peripheral blood flow in subcutaneous layers. The structures
of the two signals in Figs 38a, b are altogether different;
however, the module of the wavelet cross-correlation func-
tion shown in Fig. 38c demonstrates a high degree of
correlation in the frequency range from 0.01 to 0.1 Hz [110].
It is this frequency range that is especially interesting from the
standpoint of elucidation of the microcirculation mechanism.
The presented graph is equally interesting in terms of the
calculation of function (12) using wavelet (2) with different
values of the parameter s. The same is true of the results of
test calculations for surrogate (random series with similar
spectral properties) data confirming the significance of the
estimates obtained.

It is worthwhile to mention results of an analysis of a
signal from a polyrheocardiograph, a device for recording
various characteristics of cardiac activity, as an example of
the application of wavelet analysis to the study of time-
dependent variability of a system dominated by two quasi-
periodic processes [112].

Impedance rheocardiography (ICG) is a simple, inexpen-
sive, noninvasive method for studying the central hemody-
namics to be used to determine one of its key indicatorsÐ the
stroke volumeÐand to assess cardiac output, total periph-
eral vascular resistance, time of blood expulsion from the left
ventricle, and other parameters. The method is essentially
based on the registration of changes in the electrical resistance
of biological tissues during the passage of high-frequency
alternating current.

An ICG signal has a set of characteristic points and waves
designated B, E, X, O in Fig. 39. These points are associated
with various physiological events in the cardiac cycle. Point B
is synchronized with the first heart sound that occurs when
the atrioventricular valves close at the very beginning of the
ventricular systole. Sometimes, determining the location of
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point B is problematic, since the shape of the ICG signal in
this area is not always clearly expressed. Point E is the
maximum on a differential rheogram. It represents the
highest impedance variation rate, which is, in turn, related
to the maximum burst rate measured by ultrasonic techni-
ques. Point X corresponds to the slamming of the semilunar
valves at the end of the ventricular systole (and the second
heart sound). For ICG, the first maximum (i.e., the E-wave) is
associated with the systolic phase of the cardiac cycle, and the
second maximum, with a lower amplitude (O-wave), relates

to the diastolic phase. The amplitude of the E-wave is
proportional to the stroke volume, and the amplitude of the
O-wave correlates to the change in the volume of the left
atrium during the diastolic phase. In some cases, the O-wave
amplitude turns out to be an important diagnostic parameter.
The stroke volume is believed to be proportional to the
ejection time and the maximum value of the first derivative
of the impedance dZ=dt for a given cycle. Left ventricular
ejection time (LVET) is defined as the time interval between
the opening of the aortic valve and its subsequent closure.

Note that wavelets are widely used in the analysis of
medical signals, but their use is practically always restricted to
filtering performed in terms of a discrete wavelet transform.
The prospects for wavelet analysis are much wider: in
Refs [112, 113], the apparatus of continuous wavelet trans-
form was used not only to filter the signal of a rheocardio-
graph but also to regularize the treatment of initial signals,
evaluating the degree of correlation between signals in a given
frequency band, and determining quantitative functional
characteristics of the heart, such as stroke volume. A
technique was proposed for the assessment of the functional
state of the cardiovascular system based on the analysis of
two-dimensional time-frequency distributions of wavelet
coefficients for converting differential rheogram curves. It is
possible to recognize characteristic features in systolic and
diastolic phases of the cardiac cycle in images (wavelet
portraits) of cardiocycles in various groups of patients.

Typical wavelet images of differential rheograms and
phonocardiograms of three consecutive cardiocycles are
shown in Fig. 40. It is highly apparent that each of the three
successive cycles has its own `portrait,' even when a patient is
at rest. The extended structures in Fig. 40b correspond to one
breathing cycle (inhalation and exhalation).

Traditionally, the stroke volume in ICG is defined as the
product of the maximum of the first derivative in the
rheogram and the expulsion time, with the corresponding
anthropometric coefficients and taking into account the total
bioimpedance. In standard methods, the E-wave amplitude is
determined after setting the rheogram to the isoline, i.e., after
the compensation of respiratory and motor artifacts. The
application of the wavelet-based approach allows separating
the pulse and respiratory waves and determining the
amplitude of the E-wave wavelet coefficients. LVET is
inferred from the scale of this wave. This approach ensures a
greater accuracy than that provided by the method for
determining expulsion time from the characteristic points of
a differential rheogram. In the context of this approach, the
ISTI parameter is defined as the time interval between the
R-peak on the ECG and the maximum of the wavelet
representation of the E-wave.

To verify the method, the authors of [112] examined
12 healthy men aged 20 to 25 who made up the control
group and 14 patients with a diagnosis of essential hyperten-
sion. Polyrheocardiography was used, by which an ECG and
phonocardiogram were obtained simultaneously with ICG.
During the registration of polyrheocardiograms, an isometric
load test was carried out (raising the legs from a horizontal
position and holding them at an angle of 30±45 degrees). The
healthy patients experienced a linear increase in E- and
O-wave amplitudes during the stress test. Following termina-
tion of the load (lowering the legs to a horizontal position),
the amplitudes of the E- and O-waves took on their initial
values. The linear increase in the stroke volume during the
exercise corresponded to a normal physiological response.
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For patients with hypertension, weak changes in the ampli-
tudes of E- and O-waves and a shortening of the ISTI interval
during the test were observed, which suggested a serious
derangement of compensatory mechanisms. Figure 41
shows the relationship between the lengths of ISTI and RR
intervals in healthy and sick patients, indicating that the
wavelet method allows these groups to be unambiguously
separated.

6. Conclusion

We tried to show in the present review how, in the few decades
of its history, wavelet analysis has moved from a mathema-
tical novelty to a familiar toolbox of physicists. The volume of
physical literature concerning wavelets is such that its
representative citation would reduce this article to a biblio-
graphic list. Therefore, we started with simple and obvious
matters and gradually moved on to complex ones. Of course,
this strategy is subjective and based primarily on the
experience of our group. However, it is clear, even within
the framework of such a choice, that applications of wavelets
are associated not so much with the traditional areas of
laboratory physics as with areas like astronomy, geophysics,
and medical physics. Wavelets are also used in laboratory

experiments, but here, too, we are talking mostly about new
and not quite standard studies, such as nonstationary
hydrodynamic and magnetohydrodynamic experiments.

A comparison of the development of wavelet analysis and
the Fourier method reveals a similarity. Many branches of
modern physics, such as spectral analysis, are simply
impossible to imagine outside the context of ideas behind
the Fourier method. These areas of physical science, in turn,
greatly contributed to the elaboration of basic principles
underlying the Fourier method. We believe that a similar
development path awaits wavelet analysis. The wavelet
representation of the spectral properties of a signal is an
extensively developing analytical apparatus for the treatment
of post-processing observational, experimental, and mathe-
matical simulation data. Some of its tools were comprehen-
sively tested and have become routine applications in research
practice. The new variants of wavelet analysis being con-
stantly proposed not infrequently duplicate one another, and
their use necessitates a more attentive attitude to the results
and details of interpretation. This, in fact, is the subject
matter of the present review.

It follows from the above that, in many areas of physics
and related sciences, ideas about cyclic processes constantly
arise. The most superficial acquaintance with the experi-
mental and observational material on which such ideas are
based suggests that researchers are actually dealing with
something different from periodic processes in the literal
sense. The set of such situations is rapidly expanding beyond
the bounds of traditional physical disciplines.

The gradual development of new boundary regions of
physics seems to be a natural tendency within the framework
of which wavelet analysis can and should, we think, play a key
role. In this sense, it seems remarkable that this review was
written within the framework of the RFBR-Expansion
program.

This paper was supported by the Russian Foundation for
Basic Research (RFBR project 19-11-50217). The authors are
grateful to IlyaUsoskin and Leif Svalgaard for advice on data
selection when updating results of some papers reviewed in
this review.
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