
Abstract. We discuss the properties of topologically non-
trivial superconducting phases and the conditions for their
realization in condensed matter, the criteria for the appear-
ance of elementary Majorana-type excitations in solids, and
the corresponding principles and experimental methods for
identifying Majorana bound states (MBSs). Along with the
well-known Kitaev chain and superconducting nanowire
(SW) models with spin±orbit coupling in an external mag-
netic field, we discuss models of quasi-two-dimensional
materials in which MBSs are realized in the presence of
noncollinear spin ordering. For finite-length SWs, we
demonstrate a cascade of quantum transitions occurring

with a change in the magnetic field, accompanied by a
change in the fermion parity of the ground state. The corre-
sponding anomalous behavior of the magnetocaloric effect
can be used as a tool for identifying MBSs. We devote
considerable attention to the analysis of the transport
characteristics of devices that contain topologically non-
trivial materials. The results of studying the conductance
of an Aharonov±Bohm ring whose arms are connected by an
SW are discussed in detail. An important feature of this
device is the appearance of Fano resonances in the depend-
ence of conductance on the magnetic field when the SW is
in a topologically nontrivial phase. We establish a relation
between the characteristics of such resonances and the
spatial structure of the lowest-energy SW state. The condi-
tions for the occurrence of an MBS in the phase of the
coexistence of chiral d� id superconductivity and 120-
degree spin ordering are determined in the framework of
the tÿJÿV model on a triangular lattice. We take elec-
tron±electron interactions into account in discussing the
topological invariants of low-dimensional superconducting
materials with noncollinear spin ordering. The formation of
Majorana modes in regions with an odd value of a topologi-
cal Z invariant is demonstrated. The spatial structure of
these excitations in the Hubbard fermion ensemble is deter-
mined.
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1. Introduction

Topological superconductors are defined as materials with a
nontrivial topological index, or topological invariant (TI), of
the superconducting phase. This invariant, well known from
the theory of the quantum Hall effect [1±4], describes
nonlocal characteristics of the many-body wave function of
the electron ensemble.

Under consideration are both the materials in which
topological superconductivity is uniform in the bulk due
to internal interactions and external fields, and systems in
which this phase can be induced in a bounded region of a
solid-state structure by external fields and the mutual
effect of materials brought into contact (for example, by
the proximity effect).

In this review, we mainly focus on systems whose
spectrum of elementary excitations has a gap in the entire
Brillouin zone in the case of periodic boundary conditions
(such a spectrum is often called the bulk spectrum). We
emphasize that there is another class of materials with nodal
points, lines, or surfaces in the Brillouin zone with gapless
excitations, for which a TI has also been found (for more
details, see [4]). Nontrivial TI values indicate the formation of
surface or edge states in a system with open boundary condi-
tions. The excitation energies corresponding to the realization
of such states then lie in a range of values below the bulk gap,
down to zero.

The topological classification is useful due to two factors.
The first is the possibility of predicting edge states in a
material based on the results of relatively simple calcula-
tions. The second, and more important one, is that the TI
value does not change under perturbations and variations in
the parameters unless the gap in the excitation spectrum
vanishes and the symmetry of the Hamiltonian changes. As
a result, the surface states in the materials under considera-
tion are topologically stable, and topological transitions with
a change in the TI are realized only if the bulk spectrum
becomes gapless at the transition point.

It follows from the foregoing that an analogy exists
between topological superconductors and topological insula-
tors [5±8]. In both classes of materials, the gap is realized in
the bulk excitation spectrum, and conducting surface states
exist at the boundaries in the absence of an electric current in
the bulk. Moreover, disregarding electron±electron interac-
tions, all topological materials can be divided into 10 classes,
in accordance with different combinations of three sym-
metries: time reversal symmetry, electron±hole symmetry,
and chiral symmetry [9].

At the same time, there are differences among these classes
of topological materials, for example, due to the mechanism
of the appearance of a gap in the excitation spectrum, the
existence of screening superconducting currents in any super-
conductors, and the structure of edge excitations. In topolo-
gical superconductors, they are Majorana bound states
(MBSs) formed by a pair of Majorana modes (MMs). These
states are singled out by their specific properties, such as
spatial nonlocality, quantum entanglement, and non-abelian
exchange statistics. These features motivate interest in
topological superconductivity from the standpoint of the
prospects of creating qubits robust against to local perturba-
tions [10].

A necessary condition for the implementation of topolo-
gical insulators is the presence of a band structure with band
inversion and spin±orbit coupling. For some topological

superconductors with MMs, an important role is played by
the superconducting pairing of electrons with the same spin
projections, i.e., triplet pairing [11, 12]. Because there are a
limited number of candidates for triplet-pairing materials,
the search for conditions for the realization of MMs in
materials with a singlet Cooper pairing of fermions has
become important. It turns out that, under certain condi-
tions (see Sections 3 and 4), introducing an interaction that
induces a mixing of states with different spin projections
is capable of initiating the occurrence of MMs. In such
topological superconductors, a nontrivial topology can be
caused by both internal interactions and interactions that
appear as a result of growing heterostructures.

We note that the concept of topological superconducting
systems was largely formed in previous studies in the field of
superfluid quantum liquids, such as studies of the A and B
superfluid phases of 3He. Historically, the possibility of a
triplet p-pairing was first predicted there [4, 13]. Majorana
modes were also discovered at the boundary of superfluid
3He-B [14].

Topological superconductors can be divided into the
following groups.

(1) Chiral superconductors, in which the onset of the
superconducting phase is accompanied by the setting in of a
dx 2ÿy 2 � idxy-type order parameter symmetry [15, 16]. Such a
phase can form in dx 2ÿy 2 superconductors with broken time
reversal symmetry [17], in materials with triangular layers
[18], and in graphene [19±21].

(2) Superconductors with the p or chiral px � ipy sym-
metry type, which include Sr2RuO4 [22, 23] (a discussion of
the type of symmetry in this compound is ongoing [24, 25])
and uranium superconductors UGe2, UCoGe, and URhGe
[26, 27].

(3) Heterostructures based on topological insulators and
conventional (nontopological) superconductors [28, 29].

(4) Noncentrosymmetric superconductors in which tri-
plet pairings can be induced due to spatial inversion
symmetry breaking [30].

(5) Doped topological insulators in which superconduc-
tivity occurs, such as CuxBi2Se3 [31, 32]. This group also
includes iron-based superconductors, such as FeTexSe1ÿx
[33], in which topological surface states form in the normal
nonsuperconducting phase.

(6) Hybrid structures containing semiconducting mater-
ials with strong spin±orbit coupling and conventional super-
conductors [34±37], such as InAs or InSb nanowires in
contact with niobium±titanium nitride or aluminum [38, 39].

(7) Superconducting systems with inhomogeneous (non-
collinear or helicoidal) magnetic ordering, including chains of
magnetic nanoparticles or atoms on a superconducting sub-
strate [40] and magnetic superconductors [41].

In each of these groups except the first one, the formation
of MMs is possible. There are several studies describing the
main ideas and results on topological superconductivity and
MMs in condensed media in detail [42±45].

This review is devoted to a detailed description of the
conditions for the formation ofMMs and to an analysis of the
properties of these edge states in quasi-one-dimensional and
two-dimensional (2D) systems that can be explored in
modern experiments. We discuss methods for identifying
MMs based on the use of transport characteristics of devices
involving materials in the topological superconducting phase.
Much attention is devoted to the most interesting cases where
MMs are caused by spin±orbit coupling (item 6 above) and
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inhomogeneous magnetic ordering (item 7). In particular, we
show that an important manifestation of a topologically
nontrivial phase in various superconducting materials is
oscillations of the fermion parity (FP) of the ground state,
which can be observed experimentally. Current theoretical
and experimental problems in dealing with MMs in topolo-
gical superconductors are also discussed.

This review is organized as follows. In Section 2, we
consider the minimal model for describing MMs in topologi-
cal superconductors, the Kitaev chain model. In Section 3, we
describe the properties of MMs and observable effects in
semiconducting nanowires with induced superconductivity
and also consider quantum transport through various devices
with nanowires in the topological superconducting phase.
Section 4 is devoted to superconducting systems with
inhomogeneous magnetic ordering, which have a deep
connection to materials with spin±orbit coupling in a uni-
form field.

2. Majorana modes in Kitaev chains

2.1 General properties of Majorana modes
One of the best studied models predicting the existence of
MMs in solid systems is the Kitaev chain model. Its
popularity is due to its simplicity, which allows describing
many effects analytically or in the most transparent form. In
this model, an ensemble of spinless fermions on a chain is
considered, capable of one-dimensional (1D) motion by
hopping between nearest-neighbor sites. In addition, the
chain is assumed to be brought into contact with a massive
superconductor. Due to the proximity effect, intersite p-sym-
metry Cooper pairing is induced in it. This type of symmetry
corresponds to irreducible representation in which the super-
conducting order parameter transforms under rotations
perpendicular to the chain. Because the chain is in material
contact with a thermostat, the grand canonical ensemble is
used to describe the statistical properties of the system. The
chemical potential is therefore included as an additional
independent parameter.

The Hamiltonian of the Kitaev chain model has the form

HK �
XN
l�1
�Eÿ m�a yl al ÿ t

XNÿ1
l�1

ÿ
a
y
l al�1 � a

y
l�1al

�
�
XNÿ1
l�1

ÿ
Dalal�1 � D�a yl�1a

y
l

�
: �1�

The first two terms of the Hamiltonian describe the on-site
energy of fermions E, measured from the chemical potential m,
and the hops of fermions between nearest-neighbor sites. The
hopping rate is determined by the parameter t. The super-
conducting order parameter is written as D � jDj exp �iy�. In
Hamiltonian (1), following [12], we move to the Majorana
operators

glA � exp

�
iy
2

�
al � exp

�
ÿ iy

2

�
a
y
l ; �2�

glB � i

�
exp

�
ÿ iy

2

�
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�
iy
2

�
al

�
;

which satisfy the anticommutation relations

fglA; gl 0Bg � 0 ; fglA; gl 0Ag � fglB; gl 0Bg � 2dll 0 : �3�

In terms of the Majorana operators, Hamiltonian (1), up to
constant terms, is given by the expression

HK � i

2
�Eÿ m�

XN
l�1

glAglB

� i

2

XNÿ1
l�1

�ÿ
t� jDj�glBgl�1A ÿ ÿtÿ jDj�glAgl�1B� : �4�

Figure 1 illustrates the single-site and inter-site coupling
between Majorana operators. With the parameters chosen
such that Eÿ m � 0 and jtj � jDj, only one of the two terms in
the square brackets in the second summand remains nonzero
in expression (4): the first for t > 0 and the second for t < 0.

In this section, we restrict ourself to the case t > 0.
Hamiltonian (4) then takes the simple form

HK � it
XNÿ1
l�1

glBgl�1A : �5�

It is essential that this not involve operators g1A and gNB.
Introducing the Fermi operators

a0 � 1

2
�gNB � ig1A� ; �6�

am � 1

2
�gmB � igm�1A� ; m � 1; . . . ;Nÿ 1

allows diagonalizing the Hamiltonian of the chain:

HK � ÿt�Nÿ 1� � e0a
y
0a0 � 2t

XNÿ1
m�1

a ymam ; e0 � 0 : �7�

It hence follows that N excited states of a chain with one
quasiparticle are described by the Hilbert space vectors

j~0i � a�0 j0i ; jmi � a�m j0i ; m � 1; 2; . . . ;Nÿ 1 ; �8�

where the vector j0i corresponds to the many-body ground
state of the chain (a0j0i � 0j0i, amj0i � 0j0i). The operators
a�m create quasiparticles with an energy of 2t. The energy of
such quasiparticles is independent of their number because of
the localization of excitations on a pair of neighboring sites of
the chain.

The state j~0i deserves special attention: its energy
coincides with the ground state energy �E~0 � E0� because
e0 � 0. The energy value e0 � 0 splits off from the energy
spectrum of other quasiparticles because of the special struc-
ture of the j~0i state. To demonstrate this, we introduce the
structural characteristics F��l� of the j~0i state, defined as site-

Â

b

Figure 1. (Color online.) Schematic representation of terms in Hamilton-

ian (4) at (a) t � jDj � 0, m 6� 0 (trivial case) and (b) m � 0, t � jDj
(nontrivial case). Large dots correspond to sites l, and small ones, to

operators gAl and gBl. Pairs of operators entering (4) with nonvanishing

coefficients are connected by horizontal lines.
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dependent superpositions of the probability amplitudes of
electron and hole creation in the course of the transition of the
system from the ground state to the considered excited state:

F��l� � h~0j�a�l � al�j0i : �9�

Recalling that gNB � a�0 � a0 and g1A � i�a�0 ÿ a0�, we find
that the introduced structural characteristics have a delta-like
dependence on the site number:

F��l� � idl1 ; Fÿ�l� � ÿidlN : �10�

This dependence suggests that, when the state j~0i is formed,
the structure of the many-body function of the ground state
j0i changes only at the first and last sites of the chain.We note
that this localized transformation is generated by the
Majorana operators g1A and gNB.

It is therefore common to say that the considered excited
state can be associated with MMs whose wave functions are
localized at the edges of the chain. Because these modes are
realized simultaneously, we speak of the occurrence of an
MBS for the state described by the vector j~0i. We now discuss
this in more detail.

To represent Fermi excitations in terms of MMs and
MBSs, we introduce self-adjoint operators b 0m � �b 0m�� and
b 00m � �b 00m�� and write their decompositions in terms of the
Majorana operators glA and glB:

b 0m � a�m � am �
XN
l�1

wlmglA ; b 00m � i�a�m ÿ am� �
XN
l�1

zlmglB :

�11�
It is easy to see how the decomposition coefficientswlm and zlm
are related to the uÿv coefficient of the Bogoliubov
transformation:

am �
XN
l�1
�ulmal � vlma�l � ; �12�

wlm � julmj � jvlmj ; zlm � julmj ÿ jvlmj :

The Hamiltonian can be expressed in terms of the b 0m and b 00m
operators as

HK � 1

2

XN
m�1

em � i

2

XN
m�1

emb 0mb
00
m : �13�

Because the coefficients ulm and vlm describe the spatial
behavior of the electron- and hole-like wave functions of
Fermi quasiparticles, we can assume, by analogy, that the
coefficientswlm and zlm characterize the spatial distribution of
thewave functions of themodes associated with the respective
operators b 0m and b 00m. These coefficients are determined from
the system of equations

ÿ mzlm ÿ
ÿ
t� jDj�zlÿ1;m ÿ ÿtÿ jDj�zl�1;m � emwlm ; �14�

mwlm �
ÿ
tÿ jDj�wlÿ1;m �

ÿ
t� jDj�wl�1;m � emzlm :

Let us analyze the important case where the Fermi excitation
generated by the operator a0 � b 00 � ib 000 has spatially non-
overlapping distributions of wl 0 and zl 0 localized near the
respective left and right edges of the chain. In other words, we
suppose that there is a set of sites flLg �flRg� near the left
(right) edge of the chain such that flL : wlL; 0 6� 0; zlL; 0 � 0g
and flR : zlR ; 0 6� 0, wlR; 0 � 0g. Hence, in particular, it follows
that wl 0zl 0 � 0 for each l site. In this case, the Fermi operator

a0 � b 00 � ib 000 is said to describe an MBS made of a pair of
MMs described by the operators b 00 and b 000 whose wave
functions do not overlap. It can be deduced from system
(14) that such a solution can be realized only for a mode with
zero excitation energy, e0 � 0. In particular, for the para-
meters m � 0 and t � D, we see by comparing (7) and (11) that
wl 0 � dl;1 and zl 0 � dl;N for the zero mode. This is a
mathematical manifestation of the fact that MMs are
localized strictly at the edge sites of the chain. In view of the
bounded nature of localization, we say such a point is
``special'' in the parameter space of the Kitaev chain. For it,
MMs with a strictly zero excitation energy are realized for an
open chain of an arbitrary length. Under insignificant
variations in the parameters relative to the special point, the
edge modes are still realized in the system. Their excitation
energy, being nonzero in general, decreases exponentially as
the chain length increases, e0 � exp �ÿN�. With an increase in
the number of sites N, the overlap of the wl 0 and zl 0
distributions diminishes exponentially, disappearing in the
limit as N!1 and leading to the formation of a pair of
MMs and one MBS. The criterion for the realization of such
excitations is discussed in Section 2.2.

The localization of the MM wave functions at opposite
ends of the chain automatically leads to the MBS energy
tending to zero. As a result, the energies of the many-body
states of the system that belong to Hilbert-space sectors with
different FPs tend to degenerate. Here and hereafter, we
assume the eigenvalues P of the FP operator P of a many-
body state to be positive (negative), P � 1 (ÿ1), if this state is
described by a superposition of partial contributions with an
even (odd) number of fermions. From the standpoint of
quantum calculations, it is important that the condition
wl 0zl 0 � 0 guarantees the stability of the wave function of a
qubit constructed on such states,

jCi � c0j0i � c1j1i ; Pj0i � j0i ; Pj1i � ÿj1i ;

under local external perturbations described by the one-
particle operator f �PN

l�1 fl a
�
l al. The condition that local

perturbations not change the relative phase of the qubit states
can then be represented as

d f � h0j f j0i ÿ h1j f j1i �
XN
l�1

fl wl 0zl 0 � 0 :

It can be seen that the spatial separation condition for MMs
automatically leads to the realization of robustness against
to decoherence in the system. This is an important factor in
considering nanowires withMMs as promising objects for the
elemental base of quantum computing. We note that, in the
case fl � const, the relative phase stability condition d f � 0
coincides with the electroneutrality condition for MBSs.

It is often claimed that MMs are described by self-adjoint
operators b 0 and b 00 with Majorana anticommutation rela-
tions, while the Fermi operator a0 � b 0 � ib 00 describes an
MBS. For an MBS, e0 � 0 and �H; a0� � 0, and hence each
operator b 0 and b 00, which is determined by system (14)
independently, commutes with the Hamiltonian. Moreover,
due to the single-particle nature of the MMs, their operators
anticommute with the FP operator P.

The foregoing defines the properties of the Majorana
operators b 0 and b 00,

b 2 � 1 ; �b;H � � 0 ; fb;Pg � 0 ; fb 0; b 00g � 0 ; �15�
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which are often postulated as basic ones in describingMMs in
Fermi systems with electron±electron interaction, when the
structure of elementary excitations becomes more complex
[46±49] (also see Section 2.5).

For systems described by Hamiltonians that are quad-
ratic in Fermi operators, the problem of finding MBSs
reduces to finding the zero eigenvalue of the Bogoliubov±
de Gennes matrix, which is related to the Hamiltonian of
the system as

H � C� ĤBG C ; C � �a1; a2; . . . ; a ~N; a
�
1 ; a

�
2 ; . . . ; a�~N �

T ;

ĤBG � Â B̂

ÿB̂ � ÿÂ�
� �

; Â � Â� ; B̂ � ÿB̂T :
�16�

We adopt the convention that letters under a circumflex
denote the matrices of operators defined in the space of
single-particle states and matrices of the Green's functions.
In (16), the Â and B̂matrices have the size ~N � Nn0, whereN
is the number of sites in the chain and n0 is the number of
internal degrees of freedom associated with one site.

Fermions in the Kitaev model are spinless, and therefore
~N � N. The nonzero matrix elements of Â and B̂ are

Ân; n � Eÿ m ; Ân; n�1 � ÿt ; B̂n; n�1 � ÿD : �17�

The Bogoliubov±de Gennes matrix ĤBG has the property

fĤBG; Ĉg � 0 ; Ĉ � L̂K ; L̂ � 0̂ Î

Î 0̂

� �
; �18�

where Î is the unit ~N� ~N matrix and K is the operator of a
complex conjugation. A direct corollary of property (18) is
that, if a vector cm � �u; v�Tm is the eigenvector of the matrix
ĤBG with an eigenvalue em, then the conjugate vector
�cm � Ĉcm � �v �; u ��Tm is also an eigenvector of ĤBG, but
corresponds to the eigenvalueÿem. The components of thecm

vectors coincide with the uÿv Bogoliubov coefficients (12),

�cm�n � unm ; n � 1; . . . ; ~N ; �19�
�cm�n � vnm ; n � ~N� 1; . . . ; 2 ~N ;

which describe the electron- and hole-like properties of Fermi
excitations. Positive eigenvalues of ĤBG determine the
energies em of Fermi excitations. In accordance with the
foregoing, property (18) determines the electron±hole sym-
metry of Hamiltonian (16).

The Kitaev chain model (1) has an effective time reversal
symmetry and belongs to the BDI class of the well-known
symmetry classification. This class of symmetries allows
several pairs of MMs to be realized in the system: those
described by the operator aj � b 0j � ib 00j of quasiparticle
excitations for which the operators b 0j and b 00j correspond to
MMs with nonoverlapping wave functions. It was shown in
[50±52] that, in order to realize several MM pairs, hops and
superconducting pairing beyond the nearest-neighbor sites
must be taken into account in the Kitaev chain. At the same
time, it was found that the generalization of the system to the
case where the hopping amplitudes and anomalous pairings
decrease in accordance with a power law can result in
violating the topological classification, weakening the bulk±
boundary correspondence (Section 2.2) and inducing new
quasiparticles, called Dirac fermions [53±55].

2.2 Conditions for the realization of Majorana modes
in one-dimensional systems. Topological indices
Analyzing the conditions for the formation of MMs in an
open chain based on the solution to the eigenvalue problem of
Bogoliubov±de Gennes matrix (16) is mathematically diffi-
cult due to its large size. A useful criterion was proposed in
[12], according to which the bulk±boundary correspondence
is established between the conditions ensuring the realization
of MMs in open chains and the characteristics of chains in
the closed geometry, for which not only numerical but also
analytic calculations are much simpler.

The idea of the proposed criterion, revealing its physical
meaning, is as follows. We consider an open chain of length
N � N1 �N2, large enough for a pair of MMs located at
opposite ends to be realized in it. We then impose periodic
boundary conditions on this chain and calculate the FP
index of its ground state, conventionally written as P �
P�H�N1 �N2��. Next, we divide this chain into two closed
chains of lengths N1 and N2 and calculate the FP index of
the ground state of the new system, which factors through
the indices of the FPs of individual chains: P �
P�H�N1��P�H�N2��. Now, if MMs were realized in the initial
chain, then the FP of the ground state would change; in the
absence of MMs in the original system, it would remain the
same. Mathematically, this criterion is formulated by intro-
ducing the Majorana numberm taking the valuesm � �1:

P
ÿ
H�N1 �N2�

� �mP
ÿ
H�N1��P

ÿ
H�N2�

�
: �20�

If m � ÿ1, then MMs are realized in long wires. It follows
from the above definition that, for a nanowire with an even
number of sites, the Majorana number and the FP index
coincide.We note that it was assumed in deriving (20) that the
lengthsN1 andN2 of the open chains obtained by splitting the
original one are large enough for MMs with nonoverlapping
wave functions to be realized in them. However, as shown
below, the values of N1 and N2 do not appear in specific
calculations ofm.

In fact, the Majorana number m is a ZZ2 TI of 1D
superconducting systems with broken time reversal invar-
iance (quadratic Hamiltonians of the symmetry class D). In
the presence of such a symmetry described by an antiunitary
operator (class BDI, the case of model (1)), the first Chern
number c acts as a TI, taking integer values and being ZZ-
invariant. The index m allows predicting the existence of
MMs in an open system of the symmetry class D based on its
analysis in the closed geometry. Similarly, the c index allows
determining the existence and the number ofMBSs in systems
of the symmetry class BDI. Moreover,m � �ÿ1�c in the last
case [56±58].

To calculate Majorana number (20) and demonstrate the
last relation, it is quite useful to move from the coordinate
representation to the energy one in Bogoliubov±de Gennes
Hamiltonian (16). This can be done by a unitary transforma-
tion given by a matrix Û in the space of single-particle states:

a

a�

� �
! a

a�

� �
� Û

a

a�

� �
; ÛĤÛ� � ê 0̂

0̂ ÿê

� �
: �21�

Here, ê is a diagonal ~N� ~N matrix whose positive elements
give the energies of Fermi excitations e0; . . . ; e ~Nÿ1. The
column vectors of the unitary transformation matrix Û that
correspond to the energies em are given by wm in (19). A
similar transition has to be performed in the representation of
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the Majorana operators

gnA � exp

�
ÿ iy

2

�
a�n � exp

�
iy
2

�
an ;

gnB � i

�
exp

�
ÿ iy

2

�
a�n ÿ exp

�
iy
2

�
an

�
;

b 0m � a�m � am ; b 00m � i�a�m ÿ am� ;

defined in the respective site and energy representations,

gA
gB

� �
! b 0

b 00

� �
� Ŵ

gA
gB

� �
;

Ŵ � R̂��y � 0� Û R̂�y� ; �22�

R̂�y� � 1���
2
p

Î exp

�
ÿ iy

2

�
iÎ exp

�
ÿ iy

2

�
Î exp

�
iy
2

�
ÿiÎ exp

�
iy
2

�
0BB@

1CCA ;

where Î is still the unit ~N� ~Nmatrix, the matrix Ŵ is real and
orthogonal, and Ŵÿ1 � ŴT. The FP index P of the ground
state of the many-body system can then be evaluated as [12]

P � sign
ÿ
det Ŵ

� � sign
ÿ
det Û

�
: �23�

We note that formula (23) is applicable for calculating the FP
index of chains with arbitrary boundary conditions. The
definition of m in (20) involves periodic boundary condi-
tions, and, to calculate it, it is therefore useful to move to the
quasimomentum representation:

ak � 1����
N
p

XN
l�1

al exp �ÿikl� ; k � 2ps
N

; s � 0; . . . ;Nÿ 1 ;

�24�

H �
X
k

H�k� ; H�k� � 1

2
�a�k ; aÿk� ĤBG�k�

ak

a�ÿk

 !
; �25�

ĤBG�k� �
Âk B̂k

ÿB̂ �ÿk ÿÂ�ÿk

 !
;

Âk � Â�k ;

B̂k � ÿB̂T
ÿk :

We note a number of general properties of single-particle
Hamiltonians, with their manifestations in specific models to
be discussed later. The Bogoliubov±deGennesmatrix ĤBG�k�
in the quasimomentum representation has the property

L̂ĤBG�k� L̂� ÿĤ �BG�ÿk� ; �26�

where the matrix L̂ is formally the same as in (18). The
matrices Ûk that diagonalize ĤBG�k� can therefore be
represented as

Û�k ĤBG�k�Ûk � êk 0̂

0̂ ÿêÿk

 !
; Ûk �

ûk v̂ �ÿk
v̂k û �ÿk

 !
: �27�

It follows from (27) that Ûk � L̂Û �ÿk L̂, and therefore
det Ûk � �det Ûÿk��. Hence, the expression

det Û �
Y

ÿp<k4 p

det Ûk ; �28�

entering (23) (for an even number of sites in the chain), can be
split into two parts. The first one is the product of the factors
det Ûk for which k 6� ÿk, and the second is determined by the

product of the factors for the quasimomentum values, such
that k � ÿk �: K (symmetric points of the Brillouin zone).

For chains with an even number of sites, there is a pair of
symmetric points K � 0; p. Therefore, taking the equality
det Ûk � �det Ûÿk�� into account, we see that the productQ

k 6�ÿk det Ûk is real and positive. Hence, the Majorana
number can be represented as

m � sign
det Û0

det Ûp
� det Û0

det Ûp
: �29�

This form allows relating theMajorana number of a quantum
wire to the Zak±Berry phase [59, 60] for band states, which
has a topological origin. For this, we consider the known
relation

d

dk
ln
ÿ
detUk

� � ÿi Tr Ôk ;
�30�

Ôk � Ûÿ1k

dÛk

dk
) det Û0

det Ûp
� exp

�
ÿi
� p

0

Tr Ôk dk

�
:

Using the definition of the matrixUk in (27) and the property
Uÿ1k � U�k , after several simple transformations, we can
represent Tr Ôk as

Tr Ôk �
X
m

i

��
f �m�k�;

dfm�k�
dk

�
� �k! ÿk�

�
; �31�

where fm�k� is the eigenvector of Uk corresponding to the
energy em�k�5 0, from the quasiparticle branch of the
excitation spectrum. The sum over m in (31) involves all
functions fm�k� that cannot be transformed into one another
by the electron±hole symmetry operation.

Comparing relations (29)±(31), we obtain the sought
expression for the Majorana number:

m � exp

�
i

� p

ÿp
dk
X
m

�
f �m�k�;

dfm�k�
dk

��
�: exp �ipc� :

�32�
The points k � ÿp and k � p are identified, and therefore the
exponent involves the integral of a differential 1-form, the
well-known Berry connection, along a closed curve. The
topological nature of the Majorana number is thus estab-
lished. In what follows, the set of parameters corresponding
to the conditions for a negative value ofm to be realized (and
therefore the conditions forMMs to be realized in openwires)
is referred to as the topologically nontrivial parameter
domain (TNPD). Moreover, we say that the system is in a
topologically nontrivial phase.

To conclude this section, we also present another formula
for the Majorana number, which is more convenient in
specific calculations in some cases [12]:

m � sign
h
Pf
ÿ
X̂�k � 0��Pf ÿX̂�k � p��i : �33�

Here, Pf X̂�K� denotes the Pfaffian of the skew-symmetric
matrix X̂�k�, the matrix of the Bogoliubov±de Gennes
Hamiltonian written in terms of the Majorana operators
ak � gkA � igkB and a�k � gÿk;A ÿ igÿk;B:

X̂�k� � 1

2

Âk� � B̂kÿ Âk� ÿ B̂k�

Âk� � B̂k� Âkÿ ÿ B̂kÿ

 !
;

�34�
Âk� � Âk � Â�ÿk ; B̂k� � B̂k � B̂ �ÿk :
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Using the properties of Âk and B̂k, it can be easily verified that
the matrix X̂�k� is real and antisymmetric at the k � K � 0; p
points of the Brillouin zone.

2.3 Topological quantum transitions
and the ground state structure
We use formulas (29)±(33) to evaluate the Majorana number
in the Kitaev model. For this, we use expression (32) and find
the Zak±Berry phase in the closed geometry. The Bogoliu-
bov±de Gennes matrix ĤBG�k� in quasimomentum represen-
tation (25) has the form

ĤBG�k� �
xk Dk exp �iy 0�

Dk exp �ÿiy 0� ÿxk

 !
;

�35�
y 0 � y� p

2
; xk � ÿmÿ 2t cos k ; Dk � 2jDj sin k :

We proceed to the new representation in terms of the matrix
R̂:

R̂ � 1���
2
p

exp

�
ÿ iy 0

2

�
i exp

�
iy 0

2

�
exp

�
ÿ iy 0

2

�
ÿi exp

�
iy 0

2

�
0BBB@

1CCCA ;

ĤBG�k� ! ~̂HBG�k� � R̂ ĤBG�k� R̂�

� 0 xk � iDk

xk ÿ iDk 0

 !
: �36�

In this representation, the electron and hole components of
the Bloch amplitudes f��k� corresponding to the positive
branch of the spectrum of Bogoliubov quasiparticles with the
energy ek � �x 2

k � D 2
k �1=2 are given by

f��k� �
1���
2
p

ek

xk � iDk

ek

� �
� 1���

2
p exp �ibk�

1

� �
: �37�

In (37), we introduce the angle bk between the effective vector
h � �hx; hy� and the unit vector of the 2D Cartesian
coordinate system:

bk � arctan
hy

hx
; hx � xk

2t
� ÿ m

2t
ÿ cos k ;

�38�
hy � Dk

2t
� jDj

t
sin k :

The change in the Zak±Berry phase DFZB under adiabatic
evolution of the system (such that the quasimomentum varies
along a closed contour in the first Brillouin zone) is
determined by the variation in that angle:

DFZB � i

� p

ÿp
dk

�
f ���k�;

df��k�
dk

�
� 1

2

�
dbk

� 1

2jhj2
� p

ÿp
dk

�
hy

dhx
dk
ÿ hx

dhy
dk

�
� n

2
: �39�

For completeness, we here introduce the winding number n.
Inspecting expressions (38) and (39) readily shows what the
conditions are for the phase changeDFZB to be nonzero under
adiabatic evolution (these are the conditions for the realiza-
tion of a topologically nontrivial phase). The components of

the vector h satisfy the equation for an ellipse,�
hx � m

2t

�2

�
�

t

jDj hy
�2

� 1 ; �40�

with a unit semi-axis along the x-axis. The center of the ellipse
is displaced by ÿm=�2t� along the x-axis (Fig. 2). We see that
DFZB � p if the origin is in the domain bounded by the ellipse,
and DFZB � 0 otherwise. The first case is realized under the
condition jmj < 2t. Substituting the result of this calculation
into (32), we obtain a condition for the realization of a
topologically nontrivial phase in the Kitaev chain model:

m � exp �ip� � ÿ1 ; jmj < 2t ;

exp �i0� � 1 ; jmj > 2t :

�
�41�

Both equalities are satisfied in the case jDj 6� 0. For jDj � 0,
the ellipse degenerates into a straight line, and the winding
number becomes undefined.We note that n defines the degree
of the mapping RR2nf0g ! S1 of the 2D plane fhx�k�; hy�k�g
with punctured origin (the bulk spectrum being gapless for
hx � hy � 0) onto a 1D sphere. The homotopy classes of such
a map are characterized by the integers ZZ that can be related
to the values of n=�2p� � c. In this case, the Majorana
number is determined by the parity of n=�2p� and is therefore
ZZ2-invariant.

Thus, in theKitaev chain, a topologically nontrivial phase
is realized for the parameter values ÿ2t < m < 2t, jDj 6� 0. In
this parameter domain, MMs exist in a very long open chain.
From the expression for the bulk spectrum,

ek �
�������������������������������������������������������������
�ÿ2t cos kÿ m�2 � 4jDj2 sin2 k

q
; �42�

it is clear that, at the points fjmj � 2t ; k � 0; pg, bulk
spectrum closes. Therefore, the transition from a topologi-
cally nontrivial to a trivial phase and the reverse transition are
quantum transitions with a change in the ZZ2 topological index
m. As noted, the FP index of the ground state of the system
changes under such a transition.

To consider the structure of the ground state and its
change under topological quantum transitions, we write the
Hamiltonian of the system in the quasimomentum represen-
tation by isolating the terms corresponding to the symmetric
quasimomentum values k � 0; p:

HK � �ÿ2tÿ m�a�0 a0 � �2tÿ m�a�p ap

�
X
ÿp<k<p

�
xka

�
k ak �

�
Dk

2
exp �iy 0�a�k a�ÿk � h:c:

��
: �43�

x

y

Â

Trivial phase
x

y

b
Topological

phase

x

y

c

Critical
phase

Figure 2. Schematic representation of the Zak±Berry phase variation in

different cases: (a) n � 0 corresponds to the trivial phase of the Kitaev

chain, (b) n � 1 corresponds to the topological phase, and (c) n is

undefined and corresponds to a topological quantum phase transition

point.
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The terms corresponding to Brillouin zone points that are
symmetric under the electron±hole symmetry operation are
isolated, because they initially have a diagonal form. To
diagonalize the other terms, we introduce the unitary
operator

U � exp

" X
ÿp<k<p

bk
2

ÿ
exp �ÿi~y�a�ÿka�k ÿ exp �i~y�akaÿk

�#

�
Y

ÿp<k<p

�
1� sin

bk
2

ÿ
exp �ÿi~y�a�ÿka�k ÿ exp �i~y�akaÿk

�
�
�
cos

bk
2
ÿ 1

�
�1ÿ nk ÿ nÿk � nknÿk�

�
; �44�

where ~y � y� �p=2��2ÿ signDk�. The Hamiltonian H can
then be brought to the form

HK ! UHKU
� � �ÿ2tÿ m�a�0 a0 � �2tÿ m�a�p ap
�
X

0<k<p

eka�k ak � E0 ; �45�

where

ak � UakU
� � cos

bk
2

ak � exp �ÿi~y� sin bk
2

a�ÿk ; �46�

cos
bk
2
�

������������������������
1

2

�
1� xk

ek

�s
; sin

bk
2
�

������������������������
1

2

�
1ÿ xk

ek

�s
:

In the subspace of states with a quasimomentum 0 < k < p,
the ground state jC0i of Hamiltonian (43) can be obtained by
acting with the operator U on the quasiparticle vacuum j0i:

jC0i �
Y

ÿp<k<p

�
cos

bk
2
� exp �ÿi~y� sin bk

2
a�ÿka

�
k

�
j0i : �47�

To find the structure of the ground state of the system in the
Hilbert space containing single-particle states with quasimo-
menta k � 0; p, we have to consider the isolated terms in (43)
corresponding to such values of k. If m < ÿ2t, then the modes
with quasimomenta k � 0; p are unfilled. In the range of the
chemical potential values ÿ2t < m < 2t, the mode with the
quasimomentum k � 0 is filled. For m > 2t, both energy
states with the selected values of the quasimomentum are
filled with fermions.

As a result of the analysis, we find that the structure of the
ground state jCGSi of a closed Kitaev chain with an even
number of sites can be one of three qualitatively different
types, each of which is realized in its own parameter domain:

I: jmj < 2t : DFZB � p ; m � ÿ1 ; jCGSi � a�0 jC0i :
II: m > 2t : DFZB � 0 ; m � 1 ; jCGSi � a�p a�0 jC0i :
III: m < ÿ2t : DFZB � 0 ; m � 1 ; jCGSi � jC0i :

�48�
Domain I, where a negative FP index of the ground state is
realized, coincides with the TNPD, for which MMs are
realized in a long nanowire.

2.4 Finite-size effects
We discuss how the properties of MMs depend on the length
of the chain. It was noted in [12, 61] that, in the context of
studying MBSs, open-boundary chains with a very large but
finite number of sites are fundamentally different from
infinite or semi-infinite chains due to the need to consider at

least two MMs simultaneously. In finite open chains, the
MMs localized at opposite edges of the system tend to
hybridize, which in most cases leads to the disappearance of
gapless excitations. TheMajorana polarizationp introduced
in [93, 94] can serve as a quantitative characteristic of the
degree of overlap of the MM wave functions:

p �
2
���P

l

0 u �l 0vl 0
���P

l

0�u 2
l 0 � v 2

l 0�
�

���P
l

0�w 2
l 0 ÿ z 2l 0�

���P
l

0�w 2
l 0 � z 2l 0�

; �49�

with wl 0 and zl 0 defined in (12). Here, the summation ranges
the site numbers l from only the left (or only the right) half of
the chain, which is indicated by the prime on the summation
symbol. If p ' 1, then the MM wave functions do not
overlap, leading to the formation of quasiparticles with an
exponentially low excitation energy. In the case p < 1, the
MM wave functions overlap significantly. In the case of long
chains, p! 1 in all of the TNPD. As N decreases, the range
of parameters for which p ' 1 decreases but lies within the
TNPD.Moreover, e0 � 1ÿp. Quasiparticle excitations with
p ' 1 correspond to the generally accepted concept of MBSs
described in Section 2.1.

In [61±67], the characteristics of the boundary states of
the model of an open and finite Kitaev chain were analyzed
analytically, which recently resulted in obtaining a complete
analytic solution of the eigenvector and eigenvalue problem
for the Bogoliubov±de Gennes Hamiltonian (16), (17) of such
a system. It was shown that taking the open geometry into
account leads to an oscillatory dependence of the minimum
energy of one-particle excitations on the parameters of the
system and the length of the chain. This effect manifests itself
in the TNPD of the systems and is associated with the
hybridization of the MM wave functions. Analytic methods
were also used in [61±67] to obtain the conditions for the
destructive interference of MMs, stating that the Fermi
excitation energy must strictly vanish in the case of a finite
chain. It was shown that the vanishing of the excitation
energy is accompanied by a quantum phase transition with a
change in the FP of the ground state. This effect can manifest
itself in the measured characteristics, which we discuss in
Section 2.5. It was demonstrated that FP oscillations are
stable with respect to disorder and can manifest themselves in
the dynamical features of MBSs. Subsequently, it was shown
that hybridization of MMs can be realized not only through
their direct overlap but also as a result of virtual processes
of quasiparticle tunneling into a massive superconductor
brought into contact with the wire [68].

We now discuss in more detail single-particle excitations
whose energy strictly vanishes due to the hybridization of
MMs. By analogy with MBSs, we call the edge modes with
strictly zero excitation energy Majorana hybridization states
(in a generalized sense to be explained below). They are
realized in a parameter null set, and degenerate into MBSs
in the case of long chains. But in the case of short chains, the
conditions for their realization may differ. It is convenient to
approach the problem of finding Majorana hybridization
states in Kitaev's chain model by considering system of
equations (14) with e0 � 0:

ÿ mzl 0 ÿ �t� jDj�zlÿ1; 0 ÿ �tÿ jDj�zl�1; 0 � 0 ;

mwl 0 � �tÿ jDj�wlÿ1; 0 � �t� jDj�wl�1; 0 � 0 ; �50�
z00 � wN�1; 0 � zN�1; 0 � 0 :
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System (50) decouples into two independent subsystems for
the coefficients wl 0 and zl 0. The symmetry of the equations is
such that wl 0 � CzNÿl�1; 0. Solving this system, we find that
zero-energy excitations exist on the lines (Fig. 3)

m � 2

������������������
t 2 ÿ jDj2

q
cosfm ; fm �

pm
N� 1

; m � 1; . . . ;N :

�51�
Nontrivial solutions exist in the entire parameter domain
jDj=t > 0, m � 0 for an odd N. The expression for the Fermi
operator a0 corresponding to a zeromode on linem then takes
the form

a0;m � 1

Sm

XN
l�1

�
r lÿ1 sin �fml� �glA � igN�1ÿl;B

�
; �52�

where r � ��������������������������������������tÿ jDj�=�t� jDj�p
and Sm is a normalization

factor.
The parameter space of the Kitaev model therefore

contains N lines at the points of which Fermi-type zero-
energy excitations can exist. All such lines converge at the
singular point m � 0, t � jDj. In Fig. 4, we show the
dependence of the minimum excitation energy for the
parameters corresponding to the dashed line in Fig. 3. We
can see that, at the intersection of the indicated lines of
parameters at 20 points, e0 is strictly equal to zero, while
between such points, e0 is exponentially small, e0 � rÿN, but
finite.

When moving along the special lines in parameter space
(51), the tendency of solutions to localize at the edges of the
chain persists (Fig. 5a) because expression (52) is dominated
by the exponential term r lÿ1. But the smaller the ratio jDj=t
becomes, the lower the degree of localization of the solution
(Fig. 5b). For jDj=t5 1, the solution delocalizes. This is most
clearly seen on the extreme curvem � 1, where the sum of the
moduli of the coefficients w 2

0l � z 20l has a maximum in the
middle of the chain (Fig. 5c). We note that delocalized states
with zero excitation energy also emerge due to the edge
effects, because the excitation spectrum has a gap in a closed
chain with jDj > 0.

Generally speaking, we used here the criterion for the
realization of edge states in 1D systems proposed in [69]. A
state described by a quasiparticle operator am is an edge state
if, for the corresponding uÿv Bogoliubov coefficients (12)

ulm � Am exp �ÿlml � � Bm exp �lml � ; �53�
vlm � Cm exp �ÿwml � �Dm exp �wml �

(whereAm,Bm,Cm, andDm are constant coefficients), the real
parts of the exponents are nonzero: Re lm;Re wm 6� 0.
Otherwise, this state is nonedge (bulk). This criterion can be
naturally generalized by taking the spin projection and the
multiband nature of the system into account. It is applicable
to 1D systems of any size; for semi-infinite chains, it coincides
with the classical criterion for edge states (defined uniquely
and rigorously): liml!1 julmj2 � 0, liml!1 jvlmj2 � 0. In
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Figure 3. Lines determining values of the chemical potential and super-

conducting gap at which an MM exists for a Kitaev chain with N � 20
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Figure 4.Dependence of the minimal energy of elementary excitation e0 in
a Kitaev chain on the chemical potential m at N � 20 and jDj=t � 0:5
(dashed line in Fig. 3).
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addition, for 1D systems, the presented criterion for the
realization of edge states unambiguously correlates with the
need to find the energy of the state in the gap of the bulk
spectrum.

For the Kitaev model, the boundaries in the parameter
space that separate the conditions for the realization of edge
and nonedge states are shown in Fig. 6. The finite size of the
system leads, in addition to the previously noted realization of
MMs only on special lines, to two effects. First, the
boundaries of the realization of edge states, which in an
infinitely long chain are given by m � �2jtj, become depen-
dent on the superconducting gap jDj. Second, at small values
of jDj, regions appear inside the domain where the edge state
does not arise. These regions are located between the lines of
Majorana hybridization modes. These regions in the para-
meter space exist because, as a result of a sufficiently strong
overlap of edge excitations that tend to localize at opposite
ends of the chain, the excitation energy is located in the bulk
zone, and the nature of this excitation changes to the nonedge
one. We can also see from Fig. 5 that the domains where
traditional p ' 1 MBSs are realized and the domains of
Majorana hybridized states can differ (the cases jDj5 1).
Moreover, Majorana hybridized states can be realized in the
casep5 1. Therefore, in particular, Majorana hybridization
states are not of interest for quantum computing. But their
identification can be indicative of the conditions for the
realization of a TNPD, which is discussed in Section 2.5.

2.5 Series of quantum transitions and caloric anomalies
In addition to analyzing the fundamental features ofMBSs in
the Kitaev chain model, the options for detecting such states
in practice have been actively studied. For example, in [70±72,
74, 75], various experimental possibilities of identifying
topological phases and topological quantum transitions in
the framework of Kitaev's chain model were considered. Two
types of criteria were discussed. The first was based on the use
of characteristics of the spectrum and eigenstates of a many-
body system: the degeneration of the many-body ground-
state energy (for Hilbert space sectors with different FPs), the
degeneration of the spectrum of the reduced many-body
density matrix, and the asymptotic behavior of the one-
particle density matrix at long distances were investigated
[71±73]. Criteria of the second type were related to experi-
mentally observed characteristics: the appearance of a peak in
the differential conductance at zero bias [70], the anomalous

behavior of compressibility and susceptibility [71, 72],
magneto- and electrocaloric anomalies [74], and the appear-
ance of Fano resonances in systems with nontrivial contact
geometry [75]. The transport properties of quantum wires
withMMs are discussed in detail in Sections 3.3 and 3.4 in the
framework of a model that takes spin degrees of freedom into
account.

Here, we briefly discuss the characteristic properties of the
caloric effects in the TNPD of the Kitaev chain model,
because the appearance of such effects is directly related to
the realization of zero modes on special lines in the parameter
space, which were discussed in Section 2.4.

The appearance of a zeromode on special parametric lines
indicates the degeneracy of the many-body ground state. It is
essential here that passing through such parametric points
result in two states with different FPs replacing each other in
their role of the ground state and that quantum transitions be
realized in the system. Hence, the parametric lines of the
realization ofMajorana hybridization states in the system are
parametric lines of quantum critical points. For an open
Kitaev chain, the result of calculating the FP index and the
Majorana polarization using formulas (23) and (49) allows
constructing the phase diagram shown in Fig. 6. As can be
seen from (51), as the number of sitesN increases, the number
of FP-changing lines increases, and in the limit as N!1
they form a quasicontinuum (a measure zero set) in the
TNPD.

We thus see that the TNPD in the Kitaev chain model
allows cascades of quantum transitions when the external
parameters change. Such cascades can be detected using
observable properties. In particular, the electron density

dnl � h1ja�l alj1i ÿ h0ja�l alj0i � jul 0j2 ÿ jvl 0j2 � wl 0zl 0 �54�

is redistributed in the transition of a superconducting
nanowire from the ground state j0i to the state j1i � a�0 j0i
with a filled MM. A similar argument can be adduced
regarding the spin density when considering 1D systems
with spin degrees of freedom. However, we believe that the
TNPD can be detected most efficiently by measuring the
caloric effects, because these are known to develop singula-
rities when the system passes through quantum critical points.

Caloric effects (electric and magnetic) manifest them-
selves in a change in the temperature of the system with an
adiabatic change in external parameters (in the case of a
Kitaev chain model, this parameter is the electrochemical
potential, and for wires with spin degrees of freedom, this can,
for example, be the external magnetic field) and are defined as�

qT
qh

�
S;m
� ÿT

�
qhMi=qT
C�T �

�
m; h
;

�55��
qT
qm

�
S; h

� ÿT
�
qhNi=qT
C�T �

�
m; h
;

where hNi, hMi, and C�T � are the electron concentration,
specific magnetization, and specific heat capacity, and S, m,
and h are the entropy, chemical potential, and magnetic field
strength.

It was shown in [74] that for systems described by
quadratic forms in Fermi operators, caloric effects must
diverge at the quantum critical point and have practically
zero magnitude far from it. This behavior is shown in Fig. 7.
The dashed line shows the behavior of the FP index P of the
ground state of a nanowire. Solid lines show the dependences
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Figure 6. (Color online.) Map of Majorana polarization p of a Kitaev

chain with N � 20 sites. Thin solid curves are lines of zero modes and

changes in the FP P. Thick dashed lines bound the domain of the

realization of edge states in the generalized sense proposed in [69].
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of the electrocaloric effect, exhibiting anomalous behavior at
the points where P changes sign. Identifying these features
can be a criterion for detecting the TNPD, in addition to the
criteria already proposed in the literature (see, e.g., [75±78]).

2.6 Coulomb interaction effects
We briefly discuss the effect of the two-particle Coulomb
interaction on the phase diagram of the Kitaev chain model.
The Hamiltonian of this minimal model accounts for the
intersite interaction of fermions (there is no single-site
interaction, because the fermions are spinless) with ampli-
tude V and is given by

HK �
X
l

h
�Eÿ m�a yl al ÿ t

ÿ
a
y
l al�1 � a

y
l�1al

�
� Dalal�1 � D�a yl�1a

y
l � Vnlnl�1

i
; �56�

where nl � a�l al. It is now firmly established that the
Coulomb interaction effect can lead to a violation of the
topological classification or destruction of topological phases
[79]. Moreover, the TIs introduced in studying a noninteract-
ing fermionic system often become inapplicable to systems
with interactions. But for 1D Fermi systems, a rigorous
topological classification was given in [80±82], and proper-
ties were determined there that allow identifying topologically
nontrivial phases. One such property is the multiple degen-
eration of the entanglement spectrum. In [70, 73], this
approach was used together with the renormalization group
method for the density matrix to construct the phase diagram
of the Kitaev chain with the interaction shown in Fig. 8.

The criterion for the realization of a topologically non-
trivial phase (`topological phase' in Fig. 8) was the degenera-
tion of the energy of many-body states for Hilbert space
sectors with different FPs. The trivial phase shown in Fig. 8 is
characterized by a nondegenerate ground state. Also, as a
result of Coulomb repulsion, two different phases appear:
commensurate and incommensurate charge density waves
(CDWs) (see Fig. 8), whose topology is trivial. We see that
electron correlations significantly change the range of para-
meters for the realization of topologically nontrivial phases,
and a change in the strength of Coulomb interactions can lead
to a sequence of topological phase transitions.

As noted in Section 2.1, taking hopping and super-
conducting pairing into account for next-to-nearest neigh-
bors can lead to the realization of a topologically nontrivial
phase with two or more pairs ofMMs. The effect of Coulomb
interactions on the structure of the phase diagram for such
systems has not yet been studied. It should be expected,
however, that these effects persist at a qualitative level for
not too strong interactions.

In addition to studying the phase diagram, the effect of
fermionic interactions on the structure of the ground state
and spectral properties of the Kitaev chain were considered in
[46±48, 83, 84]. In particular, analytic expressions for the
energy and wave function of the ground state were obtained
in selected regions of parameters: on a special line [83] and at a
singular point [84], as was discussed in detail in Section 2.1. In
the first case, the uniqueness of the ground state (up to a
double degeneracy associated with the existence ofMMs) and
its adiabatic connection with the ground state of a noninter-
acting Kitaev chain in a topologically nontrivial phase were
demonstrated. In this way, the ground-state wave function
of the interacting system was constructed in a nontrivial
phase.

In [84], for the singular point m � 0, t � D, analytic
expressions were obtained for many-body eigenfunctions
and eigenvalues of the Hamiltonian, and a topological
quantum transition was shown to occur when the coupling
parameter changes. In addition, in [46±48, 83], the concept of
MMs was generalized by taking many-body excitations into
account. Many-body Majorana operators were then defined
similarly to one-body operators, so as to be self-adjoint,
commute with the Hamiltonian, and connect Hilbert space
sectors with different FPs. It has been shown that in the
regime of strong electron correlations, the contribution of
many-bodyMajorana operators to the structure of a general-
ized MM can be significant [48].

We note that, in addition to the Kitaev chain model with
four-fermion terms, other models of interacting 1D systems
have been discussed that allow the existence of topological
phases. Such models were studied in detail both analytically
and numerically in [85, 86].

We also note paper [87], where the Kitaev chain model
with strong intersite interaction was claimed to allow an
effective realization in an array of Josephson junctions with
varying electrical capacitances. This may open up additional
possibilities for testing theoretical predictions regarding the
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effect of fermionic interactions on topological phases. In
particular, in a recent experimental study [88], the Kitaev
chain Hamiltonian was simulated by taking the nearest and
next-to-nearest neighbors into account (under the condition
t � D in both cases) using a qubit based on a superconducting
ring. As themagnetic field was varied, the quasimomentum of
the Hamiltonian under study effectively changed and the
winding number n (see (39)) of the Hamiltonian was meas-
ured. This treatment revealed the regimes of topologically
trivial and nontrivial phases, in full agreement with theor-
etical predictions.

2.7 Effects of disorder and boundary conditions
A contentious issue as regards the realization of MBSs is the
role of defects and inhomogeneities. By defects and inhomo-
geneities, we mean random [72, 89] and regular [66, 90, 91]
inhomogeneities, as well as different types of boundary
conditions revealing finite-size effects [61±65]. For a Kitaev
chain, it has been shown that a relatively weak disorder does
not destroy the MM, keeping its excitation energy exponen-
tially low. At that, the excitation energy of single-particle
states which are notMajorana-like can decrease [72, 89]. This
effect is of the first order of smallness in the magnitude of
random disorder.

At the same time, it has been shown that the presence
of disorder can significantly complicate the treatment of
topological phases described in Sections 2.2±2.5. This effect
is especially significant when the disorder is accompanied by
the fermion interaction in the system [72, 77]. The physical
grounds for this complication are rooted in the realization of
low-energy localized states that are similar to MBSs.

The most significant problem in identifying the MBSs
in inhomogeneous 1D systems is the emergence of stable
Andreev states, which have similarities in experimental
manifestations with the MBSs. The occurrence of such
excitations and the associated problems in experimental
identification are discussed in more detail in Sections 3.3 and
3.4 when considering a superconducting nanowire with a
strong spin±orbit Rashba coupling.

An important subject of study is the quantum dot±
superconducting nanowire heterostructure, which is real-
ized in experiments on ballistic transport with InAs or
InSb semiconducting nanowires. The case of supercon-
ducting nanowire modeled by a Kitaev chain was treated
analytically in recent study [66]. We also note that the
properties of the Kitaev chain with disorder and with
applied periodic and quasiperiodic potentials were dis-
cussed in [51]. The authors of [51] established a relation
between the localization length of edge states in the system
without a superconducting order parameter and the size of
the superconducting gap required for the system to pass into
a topologically nontrivial state.

The effect of boundary conditions on the formation of
MMs was also studied in [65, 90±92], where a parameter
was introduced that allows smoothly changing the type of
boundary conditions in the system. In [65], one of the hopping
and superconducting pairing amplitudes in theKitaevmodel (t
and D in formula (1)) was normalized to a complex number b
whose modulus ranged from 0 to 1. The value b � 0 (b � 1)
corresponds to open (periodic) boundary conditions, and the
variation in phase also allowed considering antiperiodic
boundary conditions. It was shown that a nonzero value of
b can be chosen such that MMs are realized. These effects
are stable under the weak intersite Coulomb interaction of

fermions. In [90, 91], infinite and closed Kitaev chains with
a single impurity were considered. In the limit when the
impurity produces an infinite-height potential barrier at a
site, the model reduces to an open Kitaev chain.

In the studies mentioned above, the existence ofMajorana
states localized near an impurity was demonstrated, and the
wave functions of these zero modes were found in an analytic
form. It has been shown that excitations of this type can be
realized in a topologically trivial phase of a homogeneous
system and are stable under weak disorder. However, the
numerical analysis carried out in [92] showed that the MMs
localized near the impurity do not significantly change the
transport features of the system. We also note that the
concept of Majorana polarization was introduced in the
study of finite-size 1D and quasi-1D topological super-
conductors [93, 94]. Majorana polarization allows identify-
ing MBSs in open systems of the indicated type.

We also note that the Kitaev model can be reduced to an
anisotropic Ising chain model by the Jordan±Wigner trans-
formation [12, 50, 95]. The topological phases with a definite
number of nonlocal Majorana states are then mapped into
different magnetically ordered phases, with the trivial phase
of the fermionic model corresponding to the phase of the spin
system without short-range correlations. This isomorphism
is often used in the study of model spin systems to obtain
information on the properties of topological superconduc-
tors.

In [50], in particular, the Ising chain in a transverse
magnetic field with three-spin interactions was investigated,
which reduces to the Kitaev model with long-range hopping
and superconducting pairing. The phase diagram for that
systemwas constructed and the possibility of inducing several
MMs was shown. This is consistent with the above results. It
has been shown that, in the phase with an even number of
MMs, there are lines in the parameter space such that, in
crossing them, the oscillatory decay of the MM wave func-
tions changes to a monotonic decay. A similar analysis of the
extended 1D Ising model was carried out in [95], where the
topological phase diagram of an isomorphic model and the
structure of the spin wave function in various domains of the
phase diagram were studied.

3. Majorana modes with spin degrees of freedom

The simplicity of the Kitaev chain Hamiltonian allows
transparent demonstrations of the fundamental features of
elementary Majorana-type excitations in condensed media.
One of the characteristic features of the Kitaev model is the
absence of a spin variable. This is not a significant limitation
when considering systems with p-type superconducting
pairing. But from a practical standpoint, the more common
condensed media are those with s and d symmetry types or
with a chiral d� id symmetry type of the order parameter.
For such systems, several scenarios for the realization of
MMs and methods for their experimental identification have
been proposed.

In Sections 3.1±3.4 and 4, we present the results of studies
of the conditions for the realization of MMs in models that
take spin variables into account. Various techniques are
considered for detecting these states, based on the study of
the transport properties of systems including superconduct-
ing nanowires with spin±orbit coupling. The main idea of
thesemethods is to detect the unique properties ofMBSs: zero
energy and spatial nonlocality.
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3.1 Superconducting nanowire model
A physical example of a topological superconductor with the
s symmetry type of order parameter is a semiconducting InSb
or InAs nanowire, in which a strong spin±orbit coupling is
realized. An aluminum layer 3±5 nm in thickness is epitaxially
deposited on the wire. At low temperatures, the aluminum
shell passes into the superconducting state, and a super-
conducting pairing potential is induced in the nanowire due
to the proximity effect. Such a structure is referred to as a
superconductingwire (SW). Important changes in the proper-
ties of SWs occur in a magnetic field [35, 36]. In the tight-
binding approximation, the SW Hamiltonian can be written
in the form

HW �
X
l;s

�
xsa

�
lsals ÿ

t

2

ÿ
a�lsal�1s � a�l�1sals

��
�
X
l

�
Dal"al# ÿ a

2

ÿ
a�l" al�1# ÿ a�l# al�1"

�� h:c:

�
�
X
l

�Unl"nl# � Vnl nl�1� ; �57�

where the terms in the first sum correspond to the 1D system
of fermions with the hopping integral t=2, the on-site fermion
energy depending on the spin projection measured from
the level of the chemical potential m, xs � E0 ÿ m� Zsh,
h � �1=2�gmBH, g is the Lande factor, mB is Bohr's magne-
ton,H is an external magnetic field, als�a�ls � is the operator of
annihilation (creation) of a fermion at the lth site with the spin
projection s �", #, Z" � 1, and Z# � ÿ1. The terms in the
second sum are associated with the superconducting pairing
potential D and the Rashba spin±orbit coupling with the
parameter a.

For generality, terms corresponding to the on-site (U) and
intersite (V) Coulomb interaction of fermions have been
added to the Hamiltonian. Next, nl � nl" � nl# is the opera-
tor of the number of electrons on a site, with nls � a�lsals. We
emphasize that the realization of MMs requires a large value
of the g-factor (jgj ' 50). In magnetic fields up to H � 1 T,
superconductivity is then not destroyed and the SW can be in
a topologically nontrivial phase.

We analyze the conditions under which the SW model
with U � V � 0, Eqn (57), can be reduced to the Kitaev
model [35, 36]. For this, we write Hamiltonian (57) in the
momentum representation,

HW �
X
ks

xksa
�
ksaks �

X
k

ÿ
iaka�k#ak" � Dak"aÿk# � h:c:

�
;

�58�
where xks � eks ÿ m, eks � E0 � Zshÿ t cos k, and ak � a sink.

We introduce new operators

dk � cosfk ak# ÿ i sign ak sinfk ak" ;

pk � sinfk ak# � i sign ak cosfk ak" ; �59�

cosfk �
�������������
1� rk

2

r
; sinfk �

�������������
1ÿ rk

2

r
; rk � h����������������

h 2 � a 2
k

q ;

and expressHW in terms of them:

HW �
X
k

�ÿ
eÿ�k� ÿ m

�
d �k dk �

1

2

ÿ
Dkd

�
k d �ÿk � D�kdÿkdk

��

�
X
k

�ÿ
e��k� ÿ m

�
p�k pk ÿ

1

2

ÿ
Dk p

�
k p
�
ÿk � D�k pÿk pk

��
�
X
k

ÿ
Akdÿk pk � A�k p

�
k d

�
ÿk
�
: �60�

We here use the notation

e��k� � e�k� � �h 2 � a 2
k �1=2 ; Dk � iDak

�h 2 � a 2
k �1=2

;

Ak � i sign akD rk :

We see that, in terms of the new variables, the SW
Hamiltonian describes two Fermi subsystems, and the
parameter Ak determines the coupling between them.

If h > t and t4 jaj, then the jDj band splitting is such that
the bottom of the upper band is above the ceiling of the lower
band. In this case, for m < tÿ h, the properties of the SW are
determined by the lower band. Therefore, in the leading
approximation in the parameter jDj=t5 1, the considered
nanowire is described by the Kitaev chain Hamiltonian

HW �
X
k

�ÿ
eÿ�k� ÿ m

�
d �k dk �

1

2

ÿ
Dkd

�
k d �ÿk � D�kdÿkdk

��
:

�61�

It is easy to verify that in the range ÿtÿ h < m < tÿ h, the
ground state of the system has a negative FP and the SW is in
a topologically nontrivial phase. In this case, MBSs are
realized in the SW in an open geometry.

Qualitatively, the same behavior is also to be observed in a
relatively weak magnetic field h < t, when the energies of the
lower states of the p-subband and of the upper states of the
d-subband overlap. In this case, for m < hÿ t, with the
electron concentration n < 1 and the upper band practically
unfilled, the SW is still effectively described by the lower
band.

If the electron concentration is greater than unity and
m > tÿ h, then the lower band is completely filled (up to
corrections due to contributions proportional to jDkj2 and
jAkj2). Then, the effective Hamiltonian of the SW is the
Kitaev chain Hamiltonian for the upper band,

HW �
X
k

�ÿ
e��k� ÿ m

�
p�k pk ÿ

1

2

ÿ
Dk p

�
k p�ÿk � D�k pÿk pk

��
;

�62�

describing an electron ensemble with the electron concentra-
tion np � nÿ 1.

Thus, the properties of SWs in sufficiently strong
magnetic fields can be described by the Kitaev model in a
wide range of parameters. At the same time, we emphasize
that, for h < t and hÿ t < m < tÿ h, taking the two-band
structure into account is essential. In what follows, the
transport properties of an SW are discussed in the frame-
work of both the original model (57) and the Kitaev model.

3.2 Topological phases and Majorana modes
in a superconducting nanowire
An SW has the electron±hole symmetry and is characterized
by broken rotation invariance in spin space. According to the
classification of topological insulators and superconductors
[9], this corresponds to the symmetry class BDI, characterized
by the ZZ invariant, whose parity is expressed in terms of the

14 V V Val'kov, M S Shustin, S V Aksenov, A O Zlotnikov, A D Fedoseev, V AMitskan, M Yu Kagan Physics ±Uspekhi 65 (1)



FP of the ground state of a closed SWwith an even number of
sites and periodic boundary conditions.

When solving for the FP, it suffices to consider the
operator structure of the Hamiltonian at symmetric points
of the Brillouin zone [96, 97]. Such points (denoted by K in
what follows) satisfy the conditionÿK� G � K, where G is a
vector of the reciprocal lattice. As usual, points of the
Brillouin zone are assumed coincident if they differ by the
vector G. For the SW, there are two symmetric points, K � 0
and K � p.

To substantiate the foregoing, we segregate the terms in
(58) that are related to the symmetric points:

h �
X
K

h�K� �
X
k6�0; p

h�k� ; �63�

where

h�K� �
X
s

xKsnKs � �DaK"aK# � h:c:� ; K � 0; p ;
�64�

h�k� �
X
s

xksn̂ks � �iaka�k#ak" � Dak"aÿk# � h:c:� :

The term corresponding to the spin±orbit coupling is absent
in h�K� because aK vanishes at the symmetric points.

It follows from the structure of quadratic forms (64) that,
for different magnetic fields, the ground state function can be
represented in the form (with E0 � 0 here and hereafter)

jC0i �

jC I
0i � L0LpjFi ; h < Hÿ; h < H� ;

jC II
0 i � L0a

�
p#jFi ; Hÿ < h < H� ;

jC III
0 i � a�0#LpjFi ; H� < h < Hÿ ;

jC IV
0 i � a�0#a

�
p#jFi ; h > Hÿ ; h > H� ;

8>>>><>>>>: �65�

where the characteristic magnetic field magnitudes are

Hÿ �
������������������������������
�mÿ t�2 � jDj2

q
; H� �

������������������������������
�m� t�2 � jDj2

q
; �66�

and LK is given in the operator form well known from the
Bardeen±Cooper±Schrieffer theory:

LK � uK ÿ vKa�K#a�K" ; uK �
���������������
1� xK

2

r
; �67�

vK � jDjD

���������������
1ÿ xK

2

r
; xK � xK�������������������

x 2
K � jDj2

q :

The vector jFi in (65) can be represented as

jFi � U�j0i ; U� �
Y

0<k<p

U�k ; �68�
U�k � Ak � Bka

�
ÿk#a

�
k" � Cka

�
k#a
�
ÿk" �Dka

�
ÿk"a

�
k"

� Fka
�
ÿk#a

�
k# � Gka

�
ÿk#a

�
k"a
�
k#a
�
ÿk" :

The vacuum state of the SW is denoted by j0i. The coefficients
entering the definition of the operator U�k are easy to find
from the solution of the Schr�odinger equation. However, this
is not needed to find the FP of the ground state, because, for
any parameters of the system, jFi has the form of a super-
position of states with an even number of fermions. There-
fore, the FP of jFi is positive and does not change when the
parameters change.

For a similar reason, the quadratic formsLK acting on jFi
and changing the state of the system preserve the positive FP.

Therefore, the FP of jC I
0i is positive. It is also obvious that

jC IV
0 i has a positive FP. The states jC II

0 i and jC III
0 i have a

negative FP, because the fermion creation operator entering
the definition of these functions generates a superposition of
states with an odd number of electrons when acting on jFi
and LKjFi. It then follows that the conditions for the
realization of states with a negative FP can be represented
by the inequalities������������������������������

�mÿ t�2 � jDj2
q

< h <

������������������������������
�m� t�2 � jDj2

q
; m > 0 ; �69�������������������������������

�m� t�2 � jDj2
q

< h <

������������������������������
�mÿ t�2 � jDj2

q
; m < 0 ;

which determine the domain of the existence of a topologi-
cally nontrivial phase of the SW. In Fig. 9, this domain is
shown in grey.

In the diagonal representation with respect to the
quasiparticle operators, the Hamiltonian becomes

HW � EG �
X
K

�jEK ÿ hja�K aK � �EK � h� b�K bK
�

�
X
k 6�K

�
Eÿ�k�a�k ak � E��k� b�k bk

�
; �70�

where EG is the ground state energy of the SW, EK �
�x 2

K � jDj2�1=2, and the quasiparticle energies E��k� at
nonsymmetric points are given by

E��k� �
������������������������������������������������������
x 2
k � a 2

k � h 2 � jDj2 � 2Bk

q
;

�71�
Bk �

�������������������������������������������
x 2
k �a 2

k � h 2� � h 2jDj2
q

:

In long SWs with the parameters satisfying conditions
(69) in the open geometry, MBSs with exponentially low
MM energies and overlapping wave functions of these modes
are realized. In particular, for such MBSs, the Majorana
polarization is close to its maximum value p ' 1. As the
length of the chain decreases, the domain of realization of
MBSs withp ' 1 diminishes due to hybridization of theMM
wave functions. For the same reason, the Majorana hybridi-
zation states realized on special lines in the parameter space
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Figure 9.Diagram of a topologically nontrivial phase of a closed nanowire
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Majorana number is m � �ÿ1�Nÿ , where Nÿ is the parity of the number

of fermionic modes with momenta k � 0; p and negative energy. The
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exist in the nanowire. In passing through the points
corresponding to the realization of suchMajorana hybridiza-
tion states in the phase space, the system undergoes quantum
transitions with a change in the FP of the ground state, to be
revealed in the study of caloric anomalies. For a short chain,
this situation is shown in Fig. 10. The calculations were
performed using the Bogoliubov±de Gennes matrix (see (16)
and Sections 2.2 and 2.3) with

Â � Â"" Â"#

Â�"# Â##

 !
; B̂ � B̂"" B̂"#

ÿB̂T
"# B̂##

 !
; �72�

whereÿ
Â"#
�
l; l�1 � ÿ

ÿ
Â"#
�
l�1; l � ÿ

a
2
;
ÿ
B̂"#
�
l; l
� ÿD ;

�73�ÿ
Âss
�
l; l
� ÿm� Zsh ;

ÿ
Âss
�
l; l�1 � ÿ

t

2
:

Expression (49) for the Majorana polarization can then be
naturally generalized to the case where the uÿv and wÿz
coefficients depend on spin variables. The caloric character-
istics of the SW were considered for a=jtj ' 0:2 and
D=jtj ' 0:3.

3.3 Principles for the identification
of Majorana bound states and experimental studies
One of the central tasks of Majorana studies is a reliable
experimental confirmation of the realization of MBSs in
condensed media. The identification problem is solved by
using the characteristic features of states containing elemen-
tary Majorana-type excitations. In this section, we discuss

modern approaches to the detection of such states. Most of
the techniques are based on considering the features of
quantum transport in structures with SWs.

3.3.1 Peak conductance measurement at zero voltage.After the
discovery, under certain conditions, of an isomorphism
between the 1D SW model considered in Section 3.1 and the
Kitaev chain [35, 36], experimental results on tunneling
spectroscopy were obtained whose interpretation was related
to the realization of MBSs in InAs and InSb semiconducting
wires [38, 39, 98]. In those studies, the differential conduc-
tance G � dI=dV of the contact between a paramagnetic
metal and a hybrid semiconducting wire with a strong spin±
orbit coupling was investigated (Fig. 11a). The term `hybrid'
means a composite structure with a superconducting pairing
potential in a semiconducting wire induced by the proximity
effect due to contact with a massive superconductor. This
structure is what we call the SW in what follows.

To clarify the features of the conductance that were
discovered in the cited experimental studies, we discuss the
metal±superconductor contact in more detail. At low voltage
and low temperatures, the current is determined only by
electron states with energies e near the Fermi level and e5D
(where D is the superconducting pairing strength). In this
case, the ground state of the superconductor is described by
the wave function given by a superposition of states with an
even or an odd number of particles, and therefore the
transported electron can be present in the superconductor
with a nonzero probability only as part of a Cooper pair. This
is called Andreev reflection [99]. In this case, the electron is
reflected from the interface into the normal metal in the form
of a hole with an opposite spin projection. In the presence of a
potential barrier in the contact region, there is also a nonzero
probability of conventional backscattering of the electron.
The probability of Andreev reflection is inversely propor-
tional to the height of the potential barrier between the
subsystems [100].

In the case of a topologically nontrivial phase, the ground
state of the superconductor becomes doubly degenerate: there
are two many-body wave functions with the same energy
but different parities. In other words, an electron with the
Fermi energy can also be present in the superconductor only
as a result of Andreev reflection. However, this process now
goes via a zero-energy Majorana excitation. As a result, the
Andreev reflection acquires a resonant character: the corre-
sponding probability is equal to unity, regardless of the value
of the hopping integral between the subsystems. This effect
is explained by the fact that, due to the Hermitian self-
adjointness of the Majorana operator, the tunneling interac-
tion of theMM localized in the interface region is the same for
the electron and hole reservoirs of a normal metal [101].

As a consequence, the conductance at zero bias has a
maximum with the height 2G0, where G0 � e 2=h is the
conductance quantum. The factor 2 here indicates the charge
2e transferred in the process of Andreev reflection [101, 102].
In addition, the peak must be stable under fluctuations of the
chemical potential and the magnetic field [103±105].

In the first experiments on SW tunneling spectroscopy [38,
39, 98], a conductance peak was also recorded at zero bias; it
appeared with an increase in themagnetic field, was preserved
only in the case of the simultaneous presence of spin±orbit
coupling and superconducting s-pairing, and was explained
by resonant transfer through an MBS (Fig. 11b). However,
the data obtained showed the absence of stable quantization
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of the conductance, whose values were often much less than
2G0 [38, 39, 98, 106, 107].

This discrepancy has resulted in a wide discussion about
the possible causes of weak conductance and various alter-
native mechanisms leading to a resonance singularity without
involving topologically nontrivial states. In particular, a
serious problem in observing a 2G0 stable peak was the
insufficiently strong superconducting pairing induced in a
semiconducting wire, which resulted in a nonzero conduc-
tance at source±drain electric field energies that were less than
the width of the induced superconducting gap. This effect
can be explained by several causes: disorder in the wire,
thermal fluctuations, roughness of the electrode±wire inter-
face, tunneling barrier fluctuations, and electron±electron
and electron±phonon interactions [108, 109]. It was shown
in addition that intragap quasiparticle states not only
complicate the interpretation of experimental data but also
can negatively affect the topological protection of MBSs,
because they can participate in the so-called braiding of the
quasiparticle worldlines and thereby introduce errors into the
final quantum state [110, 111].

We note that, after the appearance of the first experiments
on tunneling spectroscopy of semiconducting wires, it was
demonstrated that the conductance resonance at zero bias can
result from the appearance of low-energy states in wires with
several subbands, both with and without disorder. Impor-
tantly, these low-energy states are in no way related to the
topological phase transition in the system [112±115]. Such
states can arise if the Zeeman energy exceeds the splitting
between the subbands [116]. Other scenarios for the onset of
resonance are the Kondo effect, which can coexist with
superconducting pairing in nonzero magnetic fields [117],
and weak antilocalization [118].

Further advances in the technology of epitaxial growth of
hybrid SWs allowed implementing induced pairing of a higher
quality, eliminating the factors of disorder and interface
roughness [119±121], and attaining the ballistic transport
mode [122, 123]. This made it possible to observe a stable
2G0 quantization of the conductance at zero bias in the
TNPD [78, 124].

But even the progress achieved does not completely
eliminate the ambiguity in interpreting the latest results
[125]. In particular, there are alternative scenarios according
to which local conductance measurements give a 2G0

resonance at zero voltage. In an SW, low-energy Andreev

bound states (ABSs) can form (1) due to a smooth electro-
static potential at the end of the wire [127]; (2) due to quasi-
one-dimensionality [128]; (3) when MM wave functions
overlap significantly [129]; (4) in the case of a strongly
inhomogeneous potential along the entire length of the
multiband hybrid structure [130, 131].

In many experiments devoted to the detection of MBSs,
there is a semiconducting domain between themetal electrode
and the SW region, where the induced superconducting
pairing is either substantially suppressed or absent alto-
gether, and the potential profile can be significantly different
from that in thewire due to the effect of the gate electrodes. As
a result, a quantum dot (QD) is realized in that domain. In
Fig. 11a, this domain is located between the N and S
rectangular regions.

It was found in a number of studies that, as the chemical
potential or the magnetic field increases, the two ABSs that
arise in such a QD can merge and form a zero mode. In
Fig. 12a, b, the appearance and behavior of such states in
magnetic fields lower than the critical field Bc are shown with
red lines. As we can see, such ABSs are preserved in a certain
range of parameters in the topologically trivial phase. Under
a subsequent topological phase transition, these ABSs turn
into MBSs (see the evolution of the probability density of
Majorana wave functions in Fig. 12b) [126, 132, 133].

Thus, a quantized conductance resonance can arise in
both topologically trivial and topologically nontrivial phases.
Its identical properties in both cases, such as pinning at zero
bias and oscillations in a changing magnetic field, addition-
ally complicate the detection of MBSs by local tunneling
spectroscopy, because it is difficult to determine the exact
values of the chemical potential and of the induced super-
conducting gap under experimental conditions [126, 129,
132±136].

It follows from the foregoing that the conductance peak at
zero bias is a necessary but not sufficient condition for the
unambiguous detection of MBSs in an SW. Therefore, it is
urgent to search for alternative ways to detect these excita-
tions.

3.3.2 Detecting the nonlocality of aMajorana bound state.One
of the new methods for identifying an MBS is with the use of
the above-mentioned nonlocality of this state. To detect two
spatially separated MMs, it was proposed to investigate the
conductance correlations at opposite ends of the wire in a
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two-contact circuit [133]. In a recently performed experiment,
however, no consistent behavior of these quantities was found
[138]. In addition, analyzing quantum entanglement and
dissonance of the state of two QDs interacting with different
MMs can be useful [139].

Despite the noted disadvantages of local transport
measurements in the QD/SW system, the spatial nonlocality
of MBSs can also be studied in this case [137, 140, 141]. As
noted in Section 2.1, Majorana-type Bogoliubov excitation
can be represented as a superposition ofMMoperators whose
wave functions are localized at opposite ends of the SW. The
QD then interacts with each MM separately, as can be seen
from Fig. 13a.

In turn, the magnitude of hybridization with the right-
hand Majorana wave function should actually be much less

thanwith the left-hand one, i.e., tR 5 tL. If there is a trueMBS
with well-separated zero modes, then its energy level remains
unchanged when coinciding with the spin-dependent QD
energy levels (in Fig. 13b, see the green straight line Vsd � 0,
which coincides with the experimental data). This property is
a direct manifestation of the topological protection of MBSs.

But if the MM wave functions overlap, then the
hybridization of an electron or hole state in the QD and the
MBS leads to significant splittings (anticrossings) of the
energy levels of the MBS at the points of intersection with
the QD energy levels (the anticrossing at Vdot � 1:75 V in
Fig. 13c, d). The magnitude of this splitting depends on the
spin polarization of the outer MM located farther from the
QD. In addition, it has been noted that, as a result of a
decrease in the nonlocality of the MBS, the peak of the QD
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density of states at zero frequency acquires a dependence on
the spin projection [142]. The nonlocality of theMBS can also
be detected if the QD is in the Kondo mode [143].

3.3.3 Analysis of the fluctuation characteristics of transport
current. Another tool that can yield additional proof of the
existence of MBSs is the analysis of current fluctuations. The
study of autocorrelations in a system where two MMs are
connected to opposite contacts shows that the ratio of the
shot noise of the contact to the current in it (the Fano factor of
the contact) is equal to unity in the weak conductance regime
[101, 103, 144, 145]. The main contribution to the current is
then made by the processes of Andreev cross reflection on the
MBS or direct charge transfer through the MBS, which is a
direct consequence of the nonlocality of this quasiparticle
excitation. In addition, in the weak conductance regime, the
cross-correlation of currents in opposite contacts is positive
and reaches a maximum at e0 4 eV, where e0 is the MBS
energy [144]. In the opposite limit, e0 5 eV, cross-correlations
tend to zero, which indicates the dominance of the processes
of resonant local Andreev reflection on theMBS [145, 146]. A
similar behavior of cross-correlations is observed in the
topologically trivial phase. When only one of the two MMs
is coupled to a contact in a single-contact geometry, its Fano
factor is equal to 2 in the low-conductance regime, because
the processes of local Andreev reflection on the MBS again
prevail in that case [103].

In a number of studies, the features of current fluctuations
were studied in a system where both contacts were coupled to
a QD that, in turn, interacted with one of the two MMs via
tunneling [129, 147±151]. In such a situation, the universal
behavior of noise in the contact was demonstrated both at a
low voltage and in an essentially nonequilibrium regime [147,
150, 151]. In contrast to the cross-correlation of currents in
contacts associated with different MMs, this characteristic
turns out to be negative and tends to zero in the high-voltage
limit [129, 148, 149]. This behavior also allows distinguishing
the existence of an MM from other scenarios of the
occurrence of a conductance peak at zero bias (Kondo
effect, ABSs).

3.3.4 Study of the spin polarization of the Majorana bound
state. Another characteristic of the MBS is its spin polariza-
tion [152±154]. It was shown in [153] that, if a magnetic fieldB
is directed along the z-axis and the effective Rashba field
vector BSO is collinear to the y-axis, then the spin polarization
at the ends of the SW changes in the xz plane. This
characteristic can be used as a local (coordinate-dependent)
order parameter in describing a topological phase transition
[153, 155, 156]. The magnitude and direction of the spin
polarization vector can depend on both the nature of the
spin±orbit coupling [153] and the magnitude and direction of
the external magnetic field [140, 157, 158]. In high magnetic
fields and high values of the spin±orbit coupling correspond-
ing to the experimentally observed ones, the z component is
dominant, while the x component has the orderO�D=B; a=B�
and measures the skewness of the spin polarization. We note
that this spin polarization component is proportional to a
similar component of the local Majorana polarization if Bkz
and BSO ky [153, 155]. In the general case, the relation
between the x and z components can be determined, for
example, based on the anticrossing values of the QD and
MBS energy levels under the resonance conditions for these
subsystems (Fig. 13a, d) [137, 140].

In transport processes, a nonzero spin polarization of the
MBS gives rise to Andreev scattering without changing the
spin projection [159, 160] and noncollinearAndreev reflection
[161]. Thus, the existence of an MBS can be verified by spin-
polarized tunneling spectroscopy. In [76], the symmetry
breaking of spin-polarized currents in the SW was shown to
occur due to the spin polarization of the MBS. Based on this
effect, it is possible to implement a current switch with the
direction of the current controlled by the gate magnetic field.

3.3.5 Method based on the Coulomb blockade effect. The
results discussed in Sections 3.3.1±3.3.4 pertain to the
situation where the SW is grounded directly. However, a
number of effects that are promising from the standpoint of
MBS detection and applications also occur when the charging
energy Ec is taken into account in the processes of tunneling
between the wire and the contacts, or, in other words, in the
Coulomb blockade regime. Such a dependence can arise when
the hybrid wire under study is sufficiently short. Then, if the
ABS energy E0 in Fig. 14a is greater than Ec, the conductance
peaks at zero bias associated with the degeneration of states
with 2N and 2N� 2 electrons are separated by the field on the
gate, which is proportional to 2e, and hence transport is
implemented by Cooper pairs (the blue parabolas and the
blue curve at the top and bottom of Fig. 14a) [162±164].

As the magnetic field increases, the quasiparticle energy
decreases due to the Zeeman effect. For E0 < Ec, when the
gate voltage changes, a state with an odd number of particles
can become the ground state, and the conductance peaks then
split (the green parabolas and the green curve at the top and
bottom of Fig. 14a). If an MBS is realized (E0 � 0), the
distance between the conductance maxima becomes propor-
tional to 1e (the red parabolas and the red curve at the top and
bottom of Fig. 14a). Because adding the charge 2e to the wire
in a topologically nontrivial phase becomes less energetically
advantageous than adding the charge e, the processes of local
Andreev reflection on the MBS are suppressed. As a result,
the leading contribution to the current starts being made by
the processes of one-electron tunneling; therefore, in the
regime of a strong Coulomb blockade, the conductance
maximum is G0 rather than 2G0 [165±167]. Moreover, a
twofold decrease in the conductance peak is also observed at
nonzero temperatures [168]. Because coherent transport
between opposite contacts then occurs via two spatially
separated noninteracting MMs (which is equivalent to
passing through a single QD), such processes can be
interpreted as quantum teleportation [166]. If the MM wave
functions overlap, the transport time between them becomes
nonzero and inversely proportional to the magnitude of this
hybridization [169].

In the experiment in [162], an SW in the Coulomb
blockade mode was used to demonstrate the topological
protection of the MBS [12, 104]. For this, the average values
of the distanceweremeasured between the conductance peaks
resulting from the degeneration of states with an even and odd
number of particles, hSe; oi. It can be seen fromFigs 14b, c that
these quantities oscillate with an amplitude A when the
Zeeman field changes. Moreover, as can be seen from the
insets in Fig. 14, Se;o for Bjj � 120 mT is half of Se for
Bjj � 90 mT, which indicates the 1e-periodicity of conduc-
tance resonances and single-electron transport in stronger
fields. Most important, however, is that the amplitude A
decays exponentially as the wire length increases, as can be
seen from Fig. 14g.
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We note that another effect characteristic of MBSs, an
increase in the amplitude of oscillations with an increase in the
magnetic field, was not found in [162]. This can be explained
by the combined effect of the temperature factor, multi-
bandedness, and the presence of ABSs localized in domains
containing QDs located between the contacts and the hybrid
structure [170].

3.3.6 Detection of a Majorana bound state in interference
structures. Starting with the classic work by Aharonov and
Bohm [171], the effect of the electromagnetic potential on the
motion of a quantum particle has been used in many studies
to analyze the features of coherent transport in mesoscopic

structures (see, e.g., [172±174]). This effect was also investi-
gated in systems containingMBSs.We can distinguish several
versions of Aharonov±Bohm interferometers that include a
topological superconductor.

In standard geometry, the SW is located in one of the arms
of the ring. The topological phase transition in such a
structure can then be inferred from the doubling of the
period of the Aharonov±Bohm oscillations in conductance,
irrespective of the degree of disorder; this is explained by the
possibility of individual Fermi quasiparticles, rather than
Cooper pairs, being transferred [175, 176] (for the same
reason, the 4p-periodic Josephson effect exists in a junction
of two topological superconductors [12, 177, 178]). When
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considering the persistent current in such a ring, the nontrivial
phase is characterized by the appearance of an h=e harmonic,
which remains finite in a zero magnetic flux and has the sign
determined by the ground-state FP of the SW [179]. The
parity is then fixed by transferring the wire into the Coulomb
blockade regime. The same system was considered when the
differences between interference patterns forMBSs andABSs
were determined in structures with zero [180] and nonzero
charge energies [181, 182].

A variant of nonstandard geometry is provided by the
MM/QD/MM scheme, where a topological superconductor
has a ring shape and a QD is placed between two MMs
located at the opposite ends of the wire. This system was
proposed as a topological qubit in which the operation of
non-abelian rotation in the space of degenerate ground states
can be implemented by means of one-electron tunneling into
the QD in the Coulomb blockade regime. The magnetic flux
through such a ring allows it to be transferred to the desired
energy degeneration point [183, 184].

The described MM/QD/MM configuration has been
used to analyze the differences between the topological
h=e-periodicity of conductance and the nontopological one
observed in the case of a normal rather than a superconduct-
ing ring [185]. In [181], the QD placed between the MMs
was replaced with an extended 1D electrode connected to a
contact. It has been shown that conductance oscillations with
a period of 4p (if the flux quantum is defined as f0 � h=�2e�)
are observed in the topologically nontrivial phase due to the
processes of nonlocal tunneling through the MBS, while no
oscillations are observed in the trivial phase.

The destructive interference accompanying coherent
transport in the Aharonov±Bohm ring gives rise to Fano
resonance [186]. Several methods have been proposed for
detecting MBSs based on this effect. In [187], a modification
of the Fano resonance was studied for the conductance of a
ring consisting of two QDs connected in parallel with the
contacts. In that case, one of the QDs interacts with a Kitaev
chain. Such a chain placed between QDs was considered in
[188]. In [189, 190], an SW serves as one of the contacts in a
two-contact circuit. In addition, the Fano resonance and its
properties were studied in the local transport regime [191].
Additionally, the contributions of the local and crossed
Andreev reflection processes to the Fano effect were
analyzed for various geometries of an interferometer with an
MBS [192].

In most theoretical studies of the transport characteristics
of anAharonov±Bohm ringmade of two arms, the contacts in
one of the arms are assumed to be directly connected via
tunneling. The interaction of the SW located in the other arm
is also described by the processes of direct hopping to the left
and right contacts. As a result, the presence of lead wires in
the normal phase (hereafter referred to as normal wires, or
NWs), which connect the SW to contacts or the contacts with
each other, is not taken into account. On the other hand, it
was shown recently that quantum devices based on semi-
conducting wires, including the Aharonov±Bohm ring, can be
constructed such that these objects themselves, both in the
normal and superconducting phases, serve as the arms (see
the inset on the left side in Fig. 15) [122].

In view of the foregoing, we now consider an interferom-
eter (or a ring) consisting of four NWs: two of them make up
the upper arm, and the other two, the lower arm (Fig. 16). The
SW separates the upper left and the lower left NWs from the
upper right and lower right NWs and at the same time

connects the upper and lower arms, playing the role of a
bridge. The ring is placed in an external magnetic field B,
applied parallel to the SW (the magnetic field component
perpendicular to the plane of the ring is responsible for the
appearance of the Aharonov±Bohm phase). The magnetic
field induces a topological phase transition in the bridge and
allows topologically trivial low-energy excitations to exist in
the NW. As a result, the interference interaction of carriers
propagating in the NW and bridge transport channels leads
to the Fano effect. Using the method of nonequilibrium
Green's functions [194±196], we study the influence of the
magnetic field, the strength of superconducting pairing, and
other factors on these Fano resonances.

We note that a similar geometry was also investigated in
[188]. However, the authors of [188] did not use the micro-
scopic description of the SW, and considered QDs instead of
NWs. A ring with a bridge containing fractional fermions was
discussed in [193] in the tight-binding framework, but the
coupling of these states to low-energy modes of the NW was
not analyzed there.

3.4 Features of coherent transport
in the Aharonov±Bohm ring with a bridge
in the topological superconducting phase
3.4.1 Current in an interference device in terms of non-
equilibrium Green's functions. The features of coherent
quantum transport that are discussed below are associated
with the presence of an SW. To use the SW Hamiltonian HW

with U � V � 0, introduced in Section 3.2 (Eqn (57)), we
choose the axes as shown in Fig. 16. The NWs that make up
the arms of the ring (see Fig. 16) are assumed to be identical.
The NW Hamiltonians H1ÿ4 are obtained from (57) with
D � a � 0. The tunnel interaction between the SW and an
NW is described by the Hamiltonian

HT � ÿt0
X
s

��b�Lns � b�Rns�a1s � �d �L1s � d �R1s�aNs
�� h:c: ;
�74�
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where t0 is the parameter of hopping between edge sites of the
SW and the NW, the operator b�L�R�ns creates an electron with
spin s on the nth site of the upper left (right) NW, and the
operator d �L�R�1s creates an electron with spin s on the first site
of the lower left (right) NW. In turn, the (SW+NW) system
is also coupled to the contacts, as described by the Hamilton-
ian

HV � ÿ
X
ks

�
c�Lks

�
t1 exp

�
ÿi FL

2

�
bL1s

� t2 exp

�
i
FL

2

�
dLns

�
� c�Rks

�
t2 exp

�
i
FR

2

�
bR1s

� t1 exp

�
ÿi FR

2

�
dRns

��
� h:c: ; �75�

which simultaneously serves as the interaction operator
when using the diagram technique for nonequilibrium
Green's functions. Here, the operator c�L�R�ks creates an
electron with the wave vector k and spin s in the left
(right) contact, t1; 2 are the hopping parameters between
contacts and the device, FL�R� � fL�R�=f0, fL�R� is the
magnetic flux through the left (right) semiring, and
f0 � �h=e is the flux quantum (we set �h � 1 in what
follows). The Hamiltonian of the ith contact (i � L;R)
has the form Ĥi �

P
k�ek ÿ mi�c�iksciks, where mL;R �

m� eV=2 is the electrochemical potential of the contacts,
taking the applied bias voltage into account.

We analyze the transport properties of the interference
device using the method of nonequilibrium Green's func-
tions, which are determined from equations written in
the site representation. To calculate the stationary current
within this approach, we diagonalize the ring Hamiltonian
HD �HW �

P4
i�1 Hi �HT using the Nambu operators

f̂l� � fl" f �l# fl# f �l" �T, where fls is the annihilation operator of
an electron with spin s on the lth site of the NW or SW [75].
The matrix nonequilibrium Green's function of the device is
then defined as

Ĝ ab�t; t 0� � ÿi
TCĈ�ta� 
 Ĉ��t 0b�
�
; �76�

where TC is the ordering operator on the Keldysh contour
that includes the lower (superscript�) and upper (superscript
ÿ) branches [194], a; b � �;ÿ, and Ĉ contains the Nambu
operators of the SW and all the NWs:

Ĉ � ÿb̂L1 . . . b̂Lnd̂L1 . . . d̂Lnâ1 . . . âNb̂R1 . . . b̂Rnd̂R1 . . . d̂Rn

�T
:

�77�

The electron current in the left contact I � eh _NLi (where
NL �

P
ks c

�
LkscLks is the particle number operator in the left

contact) can be expressed in terms the above Green's
functions as

I � 2e
X
k

Tr

�
ŝRe

�
t̂�L1�t�Ĝ�ÿk;L1�t; t� � t̂�Ln�t�Ĝ�ÿk;Ln�t; t�

��
;

�78�

where ŝ � diag �1;ÿ1; 1;ÿ1�. As a result of a unitary
transformation [197, 198], the dependence on the source±
drain voltage is carried over to the operatorHV, such that the
matrices t̂L1�n��t� become time dependent:

t̂L1 � t1
2
ŝT̂F̂L ; t̂Ln � t2

2
ŝT̂F̂�L ; �79�

T̂ � diag

�
exp

�
ÿi eV

2
t

�
; exp

�
i
eV

2
t

�
;

exp

�
ÿi eV

2
t

�
; exp

�
i
eV

2
t

��
;

F̂L � diag

�
exp

�
ÿi FL

2

�
; exp

�
i
FL

2

�
;

exp

�
ÿi FL

2

�
; exp

�
i
FL

2

��
:

In (78), the mixed Green's functions are Ĝ�ÿk;L1 �
ihb̂�L1 
 ĉLki and Ĝ�ÿk;Ln � ihd̂ �Ln 
 ĉLki. Because ĤD has the
form of a free-particle Hamiltonian in the space of Nambu
operators, the averages involved in Ĝ�ÿk;L1 and Ĝ�ÿk;Ln are
evaluated using the same principle as those used for the
averages of TC-ordered products of secondary-quantization
operators [195, 199]. Hence, as t! 0, expression (78)
becomes

I � 2e

�
C

dt1 Tr

�
ŝRe

�
Ŝ�aL1;L1�ÿt1�Ĝ aÿ

L1;L1�t1�

� Ŝ�aLn;Ln�ÿt1�Ĝ aÿ
Ln;Ln�t1� � Ŝ�aL1;Ln�ÿt1�Ĝ aÿ

Ln;L1�t1�

� Ŝ�aLn;L1�ÿt1�Ĝ aÿ
L1;Ln�t1�

��
; �80�

where Ŝ�aLi;L j�ÿt1� � t̂�Li�0�ĝ�aLk �ÿt1�t̂L j�t1� is the i j block of
the self-energy matrix function describing the effect of the
left contact on the ring (i; j � 1; n), and ĝ�aLk �ÿt1� �
ÿihTCĉLk�0� 
 ĉ�Lk�t1�i0 is the bare matrix Green's function
of the left contact.

Integrating over the time t1 and using the Fourier
transform, we arrive at

I � e
X

i; j�1; n

� �1
ÿ1

do
p

Tr

�
ŝRe

�
Ŝ r
Li;L j�o�Ĝ�ÿL j;Li�o�

� Ŝ�ÿLi;L j�o�Ĝ a
L j;Li�o�

��
: �81�

Because there are no many-body interactions in the system,
the Green's functions in the integrand in (81) are defined with
all the tunneling processes between the device and the
contacts taken into account [195]. In particular, Ĝ a

L j;Li,
which is a block of the advanced matrix Green's function Ĝ a

of the device, is to be found from the Dyson equation

Ĝ a �
hÿ
oÿ ĤD ÿ Ŝ r�o��ÿ1i� ; �82�

where Ŝ r�o� � Ŝ r
L�o� � Ŝ r

R�o� is the matrix of the retarded
self-energy function, reflecting the effect of both contacts on
the interferometer. Inwhat follows, we use the approximation
of wide-band contacts, in accordance with which the real
parts of the self-energy functions can be neglected and the
imaginary parts can be considered constant. Then, the
nonzero blocks of Ŝ r are

Ŝ r
L1;L1 � Ŝ r

Rn;Rn � ÿ
i

2
Ĝ11 ; Ŝ r

R1;R1 � Ŝ r
Ln;Ln � ÿ

i

2
Ĝ22 ;

22 V V Val'kov, M S Shustin, S V Aksenov, A O Zlotnikov, A D Fedoseev, V AMitskan, M Yu Kagan Physics ±Uspekhi 65 (1)



Ŝ r
L1;Ln � ÿ

i

2
Ĝ12�F̂ 2

L�� ; Ŝ r
Ln;L1 � ÿ

i

2
Ĝ12F̂ 2

L ;

Ŝ r
R1;Rn � ÿ

i

2
Ĝ12�F̂ 2

R�� ; Ŝ r
Rn;R1 � ÿ

i

2
Ĝ12F̂ 2

R ; �83�

where Ĝii � Gii Î4,Gii � 2pt 2i r is the level broadening function
due to the coupling to the contact (i � 1; 2), r is the density of
states of the contact, G12 �

��������������
G11G22

p
, Î4 is the 4� 4 identity

matrix, and

F̂R� diag

�
exp

�
i
FR

2

�
; exp

�
ÿiFR

2

�
; exp

�
i
FR

2

�
; exp

�
ÿiFR

2

��
:

When dealing with an asymmetric (symmetric) ring, we
assume that G22 � G11=2 � 0:01 (G22 � G11 � 0:01). The
values of G11; 22 are given in units of t.

The Ĝ�ÿLi;L j blocks in (81) can be found by solving the
Keldysh equation Ĝ�ÿ � Ĝ rŜ�ÿĜ a. The nonzero blocks of
Ŝ�ÿ are given by

Ŝ�ÿai; aj � ÿ2Ŝ r
ai; a jF̂a ; a � L;R ; i; j � 1; n ; �84�

F̂L�R� � diag

�
f

�
o� eV

2

�
; f

�
o� eV

2

�
;

f

�
o� eV

2

�
; f

�
o� eV

2

��
;

where f �o� eV=2� is the Fermi±Dirac function.

3.4.2 Breit±Wigner and Fano resonances in the ring conduc-
tance when the bridge is in a topologically nontrivial phase. As
follows from Section 3.3, the main MBS features whose
detection is attempted in modern experiments are their zero
energy and nonlocality. Hence, in considering the transport
properties of the interference device shown in Fig. 16, we are
interested only in those properties that are determined by the
presence of low-energy excitations in both the NW and the
SW, and by the nature of the spatial distribution of
excitations with zero or nearly zero energy in the SW. Direct
numerical calculations are therefore carried out in the linear
response regime, when eV! 0.

It is assumed in what follows that the SW and NW are
relatively short, N � 30, and n � 20, which significantly
reduces the amount of computation. As a result of this
assumption, however, an unnaturally large value of the
lattice constant a � 50 nm [105] has to be used in order to
consider the topologically nontrivial phase in the frame-
work of the parameters corresponding to experiments (D �
250 meV, aR � 0:2 eV �A, g � 50, B � 0:1ÿ1 T) [38]. With
the effective mass of carriers in semiconducting wires
m � � 0:015m0 [38], we have the hopping parameter
t � �h 2=�m �a 2�, which is used as the unit of measurement in
what follows. The main parameters of the SW used to
construct most of the plots in Section 3.4 are then a � 0:195
and D � 0:243. The other quantities take the values kBT � 0,
m � 0, and t0 � 0:1.

We start with the case without interparticle interactions in
the SW, U � V � 0 [75]. We turn to the dependence of the
conductance on the energy of the magnetic field h in the plane
of the device. Transport in the system is determined by single-
particle excitations in the vicinity of the Fermi level. The
corresponding energies el1 (blue dashed curve) of an indivi-
dual NW and the energies ew1 and ew2 (red solid and green
dashed curves) of the SW as functions of h are shown in

Fig. 17a. We see that the energy el1 oscillates, vanishing
periodically for h9 2. In turn, in the TNPD defined by
inequality (69) with E0 � t [35, 36], the SW energy ew1 splits
off from ew2 and also vanishes periodically. TheMBS zeros of
ew1 therefore coexist with the zeros of el1, which have a
topologically trivial nature.

The dependence of conductance on the magnetic field
energy for a symmetric ring is shown in Fig. 17b. In weak
fields h9 0:25, the peaks of G �h � el1) are significantly
suppressed because ew1 4 0 (Fig. 17a). In this domain,
resonances at which G �h � el1� ! 1 can arise, for example,
if Fi 6� 0. The bridge in the topological superconducting
phase corresponds to a collection of resonances of two types
(the range 0:259 h9 2). The first are symmetric Breit±
Wigner resonances and the second are asymmetric reso-
nances or Fano resonances. In strong magnetic fields, h0 2,
the conductance is close to zero because el1, ew1 4 0.

To better understand the causes of the appearance of
resonance features at 0:259 h9 2, we turn to the simplest
situation where each NW is made of only one site, and the
SW, of two. As a result, there is a structure made of six QDs,
with the upper and lower arms connected in parallel with the
contacts. Because the magnetic field approximately gives rise
to spin-polarized transport in the ring, we analyze the six-QD
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Figure 17. (Color online.) Dependence (a) of the energy of one-electron

excitations of arm wire, el1, and the bridge, ew1;w2, and (b) of the

conductance of the ring on the energy of a magnetic field applied in the

plane of the device. The parameters are U � V � 0 and F � 0.
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system in the spinless case. The energy spectrum of such a
structure with a � D � 0 is given by

e1; 2 � x# � e ;

e3; 4 � e� 1

4

�����������������
t 2 � 8t 20

q
� t

4
; �85�

e5; 6 � eÿ 1

4

�����������������
t 2 � 8t 20

q
� t

4
:

In a closed system, as we see from (85), there are a pair of
degenerate states (e1; 2) and two pairs of bound and antibound
states (e3; 4 and e5; 6). The presence of such solutions is
conducive to the realization of bound states in continuum
(BICs) [200], i.e., discrete-spectrum states that are not
coupled to the contacts in the case of an open system, when
G 6� 0 [201, 202]. The appearance of states of this type is a
natural consequence of the non-one-dimensionality of the
structure under consideration [203, 204].

The existence of BICs in a structure of six QDs is
illustrated in Fig. 18a, which shows the dependence of the
total density of states (TDOS) on the Zeeman energy,

TDOS �o � 0; h� � ÿ
Tr
h
Im
�
Ĝ r�o � 0; h�	i

p
; �86�

where o is the particle energy. The case a � D � 0 corre-
sponds to the red curve. In the case of degenerate states, the
wide maximum of the TDOS at h � 1, which belongs to the
state with energy e1, coincides with a narrow peak due to the
BIC with energy e2 (the width of this peak is proportional to
d 2, where d is the infinitesimal parameter responsible for the
analytic continuation of Ĝ r�o��. In addition, for two pairs of
bound and antibound states with energies e3; 4 and e5; 6, the
wide maximum and the narrow peak of the BIC are spatially
separated. In Fig. 18a, in accordance with (85), they are
located to the left and to the right of h � 1. All three broad
maxima in the density of states manifest themselves as
symmetric resonances in conductance (the red solid line in
Fig. 18b). In turn, the presence of BICs leaves the transport
properties unaffected.

For a;D 6� 0, a nonzero broadening of the BIC levels close
to e4; 6 occurs, because the spin±orbit coupling leads to the
breaking of the spatial symmetry of the ring eigenstates (blue
dashed line in Fig. 18a) [205]. As a consequence, Fano
resonances appear in conductance at the same values of h as
broadened peaks in the density of states do. Further, the
lifetime of a BIC associated with a pair of degenerate states
can be made finite by introducing the Aharonov±Bohm
phase [206, 207]. All three BIC peaks in the density of states
then acquire a nonzero width, and the conductance has
three asymmetric Fano peaks (the black dotted curves in
Fig. 18a, b). It follows from (85) that the energy splitting in a
pair of bound and antibound states is determined by the
parameter t. In particular, if t � 1 (and hence t4 t0), then two
broad maxima and two BIC peaks in the density of states
occur in the vicinity of h � 1. In addition, one wide maximum
(BIC peak) occurs at a distance to the left (right) of this point.

As the number of sites in the system increases and the ring
is restored, the number ofmaxima andBIC peaks increases. It
is then essential that the BIC lifetime become finite only if the
SW lowest excitation energy ew1 is close to zero, which in the
case under consideration implies the realization of a topolo-
gically nontrivial phase (Fig. 17a).

A typical structure of conductance resonances in the
TNPD is shown in Fig. 19a. This dependence is modified
compared with the above-described picture of transport
through the structure of six QDs. In particular, one of the
Fano resonances in Fig. 18b transforms into a set of Breit±
Wigner peaks for the ring. As a result, only the Fano
resonances near the minima of el1�h� remain (one of them is
shown in Fig. 19a). At the same time, the positions of the
Breit±Wigner resonances are determined by the zeros of
ew1�h�. At fixed h, D, and a, the widths of respective sym-
metric and asymmetric resonances depend on el1 and ew1: the
higher el1;w1, the narrower the resonances.

As noted above, a nonzeroAharonov±Bohmphasemakes
the corresponding BICs amenable to observation in transport
characteristics. In Fig. 19b, we show a new very narrow Fano
resonance occurring at FL � FR � F 6� 0, whose position
coincides with a zero of el1�h�.

Thus, the presence of two types of resonances in con-
ductance can be qualitatively explained by the presence of a
few interacting channels for the transport of carriers in the
device. Indeed, if the leading contribution is made by the
channel related to the SW (m � ew1), then the Breit±Wigner
resonance is realized. If, on the contrary, the transport
channel mainly involves the NW (m � el1), then interference
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occurs in accordance with the Fano scenario. Here, we
can trace a similarity with double QDs, whose conducting
properties were studied in detail in [207, 210, 211]. In
particular, a similar realization of a wide Breit±Wigner
resonance and a narrow Fano resonance was noted, which
was interpreted as a manifestation of the Dicke effect known
from optics [208, 209, 211], which amounts to the appearance
of wide and narrow peaks in the luminescence spectrum of a
pair of atoms [212]. The first peak is associated with a short-
lived collective excitation (super-radiant state) and the
second, with a long-lived excitation (subradiant state). The
realization of symmetric and asymmetric resonances in
transport in other low-dimensional structures has also been
noted [213]. In our case, for a certain choice of parameters, a
similar behavior of conductance can be interpreted as the
topological Dicke effect, because two types of resonance
occur precisely in the TNPD.

3.4.3 Effect of Coulomb interactions and disorder. To describe
the effect of Coulomb repulsion in an SW on the obtained
resonance features of the conductance of an interferometer,
we use the generalized mean-field approximation, whose
applicability domain is determined by the inequalities
U;V5 t. In the framework of this approach, the four-
operator terms in SW Hamiltonian (57) can be written

as [74]

Unl"nl# � U
�hnl"inl# � hnl#inl" ÿ ha�l#al"ia�l"al#

ÿ ha�l"al#ia�l#al" ÿ ha�l"a�l#ial"al# ÿ hal"al#ia�l"a�l#
�
;

V
X
ss 0

nlsnl�1; s 0 � V
X
ss 0

�hnlsinl�1;s 0 � hnl�1; s 0 inls
ÿ ha�l�1;sals 0 ia�ls 0al�1; s ÿ ha�lsal�1; s 0 ia�l�1; s 0als
ÿ ha�lsa�l�1; s 0 ialsal�1; s 0 ÿ halsal�1; s 0 ia�lsa�l�1; s 0

�
: �87�

It is important that, when even weak Hubbard repulsion is
switched on, an increase in the effective Zeeman splitting and
a decrease in the superconducting pairing potential result in
shifting the boundaries of the regions of the existence of
topological phases of a wire with a spin±orbit coupling [214].
These effects, respectively proportional to ha�lsalsi and
halsal�si, must be taken into account when considering
transport, because they have the same order of smallness as
h and D.

The normal and anomalous averages in (87) are to be
found self-consistently using the spin-dependent coefficients
umls and vm js of the Bogoliubov transformation,

ha�lsajs 0 i �
X2N
m�1

�
fmumlsu

�
mjs 0 � �1ÿ fm�v �mlsvm js 0

�
;

�88�

halsajs 0 i �
X2N
m�1

�
fmvmlsu

�
mjs 0 � �1ÿ fm�u �mlsvm js 0

�
;

where fm is the Fermi function at an energy equal to the mth
quasiparticle excitation energy. When Coulomb interactions
are taken into account in approximation (87), renormaliza-
tion occurs and new matrix elements appear in the matrix of
the Hamiltonian ĤW.

The effect of Coulomb interactions on the properties of
the conductance of the ring in the TNPD is shown in Fig. 20.
One-site correlations can be seen to slightly shift the
maximum of the asymmetric Fano peak, while its minimum
(or antiresonance) preserves its position (cf. the red dashed
and blue dashed curves). At the same time, the Breit±Wigner
peak shifts to the left, because a corresponding shift is also
acquired by the zero energy ofMBS forU 6� 0. ForV 6� 0, the
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Breit±Wigner resonance shifts in the opposite direction (black
solid curve). The Fano resonance, in turn, remains in the same
position, and its width is practically unchanged. We note that
similar effects are observed when diagonal disorder is taken
into account in the SW, xs � dxl, l � 1; . . . ;N (where dxl is a
random addition to the one-particle energy at site l, taking
values in the interval �ÿ1=2; 1=2�).

3.4.4 Dependence of Fano resonance properties on the type of
low-energy excitations of the bridge. It follows from the results
in Section 3.4.2 that, regardless of the length of the super-
conducting bridge, Fano resonances appear for any nonzero
a, D, and m if the magnetic field satisfies condition (69). In
other words, this resonance is present regardless of the spatial
distribution of the probability density of the state with energy
ew1, which changes from edge (Majorana) to bulk (Andreev)
as the gap width in the SW excitation spectrum decreases
[129]. But the properties of the Fano resonance are substan-
tially dependent on the type of this state, which can be
controlled using a magnetic field or by varying the magni-
tude of the superconducting gap. The latter case is shown in
Fig. 21, where the red dotted and blue dashed curves show
the G�h� dependences corresponding to D � 0:243 and
D � 0:097. As we can see, the width of the asymmetric peak
decreases significantly if an ABS is realized at D � 0:097 (cf.
the upper and central insets in Fig. 21a).

The state with energy ew1 atD � 0:097 can be transformed
into the Majorana-type one by taking a longer wire (see the
central inset in Fig. 21b). As a result, the width of the Fano
resonance is restored and stays unchanged until the overlap of
the wave functions of the two MMs tends to zero (red dotted
and blue dashed curves in Fig. 21b). If, further, D! 0, then
the Fano resonance collapses (its width becomes infinitesi-
mal) even though ew1 � 0, i.e., a BIC arises [215, 216]. This
situation corresponds to the black solid curves in Fig. 21a, b.

As we have discussed, the transition from an MBS to an
ABS can be observed as the magnetic field increases. This
evolution can be easily traced, for example, using the
Majorana polarization introduced above. For clarity, we
restrict ourself to a simpler and more intuitive quantity
characterizing the overlap of the MM wave functions as
the sum of the probability densities of the first Bogoliubov
excitation at two central sites of the SW,

GMBS �
XN=2�1

s; l�N=2

ÿju1lsj2 � jv1lsj2� ; �89�

where u1ls and v1ls are spin-dependent coefficients of the
Bogoliubov transformation for an excitation with energy ew1
at the lth site. The behavior of this quantity as a function of
the magnetic field energy is shown by the red dashed-dotted
curve in Fig. 22 on a logarithmic scale. In the topologically
trivial phase (h < D), GMBS remains practically unchanged,
and the conductance exhibits small-amplitude peaks (blue
solid curve in Fig. 22). In the case of a topological quantum
phase transition, GMBS decreases sharply (by a factor of 10

10)
due to the change in the type of excitation from bulk to edge.
In the topologically nontrivial phase (h > D), two domains
can be distinguished. For h � 0:1ÿ0:3, the MM overlap
increases, but is still insignificant. In this range of Zeeman
energies, the high transmission regime is dominant, G � 1,
with periodically arising Fano antiresonances (with G � 0).
On the contrary, for h > 0:3, a low transmission regime sets
in, G5 1, with periodically arising Breit±Wigner resonances

with G � 1. In this domain, the hybridization of the
Majorana wave functions becomes substantial in strong
magnetic fields.

It follows from (85) that the positions of themaxima in the
density of states and the corresponding conductance reso-
nances are directly dependent on the hopping parameters.
Numerical calculations show that, as the size of the system
increases, the effect of the parameter t0 on the Fano
resonances is largely determined by the type of spatial
distribution of the state with energy ew1. Namely, as t0
increases, the asymmetric peak preserves its position in the
case of an MBS. If the state transforms into an ABS, an
increase in t0 is accompanied by a shift in the Fano resonance.

3.4.5 Asymmetric ring. Additional transport features asso-
ciated with the nonlocality of MBSs are manifested in
asymmetric rings [217]. We recall that asymmetry is under-
stood as a difference in the diagonal broadening parameters,
G11 � 2G22, while preserving the symmetry of the tunneling
processes between the NW and the SW. In this case, an
additional narrow Fano resonance arises (cf. the solid and
dashed curves in Fig. 23), which is identical to the resonance
induced by a nonzero Aharonov±Bohm phase in Fig. 19b. In
Fig. 23, this resonance is realized at h � 1:2225. As the length
of the bridge increases, the wide Fano antiresonance located
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around h � 1:222 at N � 30 (dashed line) shifts toward the
narrow one. At the same time, the asymmetry-induced Fano
resonance collapses as N increases, as can be clearly seen in
the inset in Fig. 23, and a BIC is formed. In other words, we
can speak of a kind of topological blockade of the Fano effect,
because the Fano resonance disappears only if a true MBS
with two decoupled MMs is realized.

To explain the mechanism leading to the collapse of the
Fano resonance, it is important to recall that this asymmetric
peak corresponds to a BIC that arises due to the degeneracy
of the zero-energy eigenstates of a closed system. The
disappearance of a Fano resonance can therefore be indica-
tive of an increase in the degeneracymultiplicity of this state if
the overlap of the Majorana wave functions becomes
negligible. To test this hypothesis, we turn to the spinless
model of a ring with n � 1. In this situation, we regard a
Kitaev chain with an even number of sites as a bridge
connecting four QDs with energies xj ( j � 1; . . . ; 4) [12].
Diagonalizing the Hamiltonian of the device with xj �

x � eÿ m � 0, we obtain the equation for the spectrum

e 4
ÿ
eP1 ÿ 2t 20 d

N=2ÿ1
1

�ÿ
eP2 � 2t 20 d

N=2ÿ1
1

�
� ÿeP3 ÿ 2t 20 d

N=2ÿ1
2

�ÿ
eP4 � 2t 20 d

N=2ÿ1
2

� � 0 ;

where d1; 2 � t� D, Pi is the ith polynomial of degree N=2,
andP2; 4 � P1; 3 due to the electron±hole symmetry e! ÿe. It
follows from this equation that, at singular points of the
Kitaev model, D � �t, where the MMwave functions do not
overlap, the degeneracy multiplicity of the zero-energy state
does indeed increase forN > 2, leading to a suppression of the
narrow Fano resonance in Fig. 23.

For clarity, we discuss the system in the representation
of self-adjoint Majorana operators gjl � g�jl ( j � A;B): al �
�gAl � igBl�=2. In Fig. 24, we schematically depict devices in
the framework of such a description at the singular point of
the Kitaev model D � t with N � 2 and N > 2 (straight
lines show the coupling between different kinds of Majorana
operators). As we can see, the upper and lower arms remain
connected in the first case. The eigenergies of the chains
shown with dashed straight lines, which have only two
links in the horizontal direction, are e1 � 0 and e2; 3 �
�t0=

���
2
p

. In turn, the energies of the chain with hopping
between the arms taken into account (shown with solid
straight lines) are e4;5 � 0, e6; 7 � ��t 2 � 2t 20 �1=2 � t�=2, and
e8; 9 �ÿ��t 2 � 2t 20 �1=2 � t�=2. As a result, the zero-energy state
is fourfold degenerate.

In the second case,N > 2, the device splits into upper and
lower identical subsystems, which are not coupled to each
other, because the Majorana operators belonging to one site
do not interact for x � 0. Each subsystem includes two
chains. In this case, the energies of the second chain shown
by solid straight lines containing a structural element in the
vertical direction (similar to the Fano±Andersonmodel [218])
are e1; 2 � 0 and e3; 4 � ��t 2 � t 20 =2�1=2. As a result, the zero-
energy level is sixfold degenerate in this case.

Thus, it is the appearance of T-shaped structures of
Majorana operators that leads to the suppression of Fano
resonance in the asymmetric ring. We emphasize that this
effect, being related solely to the nonlocality of the MBS,
has a universal character and arises in the most general
situation characteristic of an experiment, when all the
parameters of tunneling between different subsystems are
different. In addition, it becomes obvious fromFig. 24 that, in
the simplest case of t � 0 (two decoupled arms), the Fano
resonance is not suppressed.

3.4.6 T-shaped geometry. The fundamental difference
between quantum transport through an MBS and an ABS
can be clearly demonstrated by considering one of the limit
cases of an asymmetric ring, the T-shaped geometry, where
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there is no coupling between the lower NWs and the contacts.
In Fig. 25a, we show the dependences of the conductance of
the ring on the Zeeman energy when the SW is in a nontrivial
phase for several values of N (which is the number of bridge
sites). An exponential decrease in the overlap of theMMwave
functions with an increase in the wire length is shown in the
inset in Fig. 25. We can see that GMBS decreases by two orders
of magnitude if the number of sites in the wire increases from
N � 30 to N � 100. The state with the energy ew1 then
transforms from an Andreev state into a Majorana state and
the antiresonance in the vicinity of h � 0:777 elevates; hence,
G 6� 0 in this case (cf. the red dotted and blue dashed lines in
Fig. 25a). With a further increase in the length of the SW,
GMBS decreases by several orders of magnitude. As a result, a
conductance plateau of the height G0 arises (purple dashed-
dotted and black solid lines).

This behavior is due to the fact that, in the T-shaped
transport scheme, the coupling of the lower left and right
NWs to the conducting channel (or contacts) is dependent on
the type of low-energy state in the bridge. In the case of an
MBS (N0 100), the coupling of these structural elements to

the contacts is absent, and the Fano resonance disappears. If
an ABS is realized (N < 100), then the aboveNWs are lateral,
as in the case of the Fano±Andersonmodel [218]. In that case,
a Fano resonance is realized.

More significant differences can be seen when we turn to
the features of local transport viaMBSs andABSs. In the case
ofMBSs, the height of the conductance plateau doubles upon
passing from the nonlocal, b � 1, to the local, b � 0, regime
(where b is the asymmetry parameter; see Hamiltonian (90)).
The corresponding dependences G�h� are shown by the solid
line and black circles in Fig. 25b. In the case of ABSs, the
conductance of the local configuration is suppressed (dashed
line in Fig. 25b).

The properties of the conductance of the T-shaped
structure found in numerical calculations can be described
analytically. For this, we have to clarify that transport
through an MBS essentially implies the coupling of the
contacts to only one Majorana operator. But tunneling
through an ABS, which corresponds to the Bogoliubov
operator a�, actually implies the coupling to both MMs, gA
and gB, because a

� � gA � igB� �=2.
We systematically consider the transport properties of a

T-shaped structure in which either anMBSorABS is realized.
To analyze transport in the case of an MBS, we use the
effective low-energy SW Hamiltonian that describes the
coupling of a pair of MMs with strength e0, i.e., HW �
ie0gAgB=2 [12]. For simplicity, we replace the NW with a
single-level QD with energies xj ( j � 1; . . . ; 4) and discuss the
spinless case. Then,

HT � ÿt0
�
b�1 ÿ b1 � b�b�2 ÿ b2�

�
gA

ÿ t0
�
d�3 ÿ d3 � d�4 ÿ d4

�
gB ; �90�

HV � ÿ
X
k

ÿ
t1c
�
Lkb1 � t2c

�
Rkb2 � h:c:

�
:

Applying formula (81) to a symmetric T-shaped system
(t1 � t2) leads to the expression for the conductance of the left
contact in the linear response regime,

ĜL � Ĝ0
G 2

2

h
2
��F̂ r

11e�0�
��2 � ��Ĝ r

12e�0�
��2 � ��Ĝ r

12h�0�
��2i ; �91�

where F̂ r
11e�o�, Ĝ r

12e�o�, and Ĝ r
12h�o� are Fourier transforms

of the anomalous and normal Green's functions:

F̂ r
11e�tÿ t 0� � ÿiY�tÿ t 0�
�b�1 �t�; b�1 �t 0�	� ;

Ĝ r
12e�tÿ t 0� � ÿiY�tÿ t 0�
�b1�t�; b�2 �t 0�	� ;

Ĝ r
12h�tÿ t 0� � ÿiY�tÿ t 0�
�b�1 �t� ; b2�t 0�	� :

Here, Y is the Heaviside function. We note that the term
proportional to F̂ r

11e in (91) describes the contribution of the
processes of local Andreev reflection. The next two terms are
responsible for the direct charge transfer processes. The
contribution of the processes of crossed Andreev reflection
is absent because mL�R� � m� eV=2 [161].

Using the method of the equations of motion [219], we
obtain the required Green's functions:

F̂ r
11e � ÿ

2t 20 zZBC2

zZTZB ÿ e 20CTCB

;
�92�

Ĝ r
12e�h� �

2bt 20 zZBC1h�e�C2h�e�
zZTZB ÿ e 20CTCB

;
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where

z � o� id ; Cje�h� � z� xj �
idj jTG
2

; jT � 1; 2 ;

Cj � CjeCjh ; CT�B� � C1�3�C2�4� ;

ZT � zCT ÿ 2t 20 �C1e � C1h��b 2C1 � C2� ;
ZB � CB ÿ 4t 20 �C3 � C4� :

If x1 � x2 � x3 � x4 � 0, then

Ĝ r
12e � Ĝ r

12h � ÿbF̂ r
11e �

2bt 20 �z 2 ÿ 8t 21 �
C1eZ1

; �93�

where Z1 � �z 2 ÿ 8t 20 ��zC1e ÿ 4t 20 �1� b 2�� ÿ e 20 zC1e.
Hence, at b � 1, the conductance becomes equal to G0=2.

The resulting conductance value can be explained qualita-
tively if we consider the entire system in the representation of
Majorana operators. From the form of the operator repre-
senting the coupling between theQDs and theMBS, Eqn (90),
it follows that the left and right contacts are coupled only by a
chain containing a vertical connection, shown by solid
straight lines in Fig. 24a.

In the general case, as with ordinary fermions and
electromagnetic fields [220], the presence of a conductance
resonance or antiresonance at o � 0 depends both on the
number of coupled Majorana operators in the lower branch
and on the particular operator that directly couples to gA. In
the situation under consideration, the lower chain includes
three operators: g3B, gB, and g4B. Moreover, because its
eigenvector corresponding to a zero-energy state is propor-
tional to sin �pl=2� (where l � 1; 2; 3) and HW � ie0gAgB=2,
the upper and lower chains effectively decouple. In other
words, the Fano effect is absent and resonance transmission is
observed.

We note that in considering the T-shaped geometry, the
case with only one Majorana operator in the lower chain is
also possible. It occurs if the SW is represented by the Kitaev
chain model at a singular point and x1 � x2 � 0. In terms of
Majorana operators, such a system is presented in Fig. 24b.
Similarly to what was shown in [184], the total conductance is
equal to the sum of contributions from chains with two and
three links. In the first case, it isG0=2, and in the second, 0 due
to the Fano effect.

In the local transport regime b � 0, we haveGL � G0. The
same results can be obtained for x1 � x2 � x3 � x4 6� 0 and
e0 � 0 (see Fig. 25). In the general case of xj; e0 6� 0,
conductance (91) tends to zero.

We turn to transport in a T-shaped structure with an ABS
of energy x. The corresponding low-energy SW Hamiltonian
is HW � xa�a. Because the ABS and the original secondary
quantization operators are related by a Bogoliubov transfor-
mation, a1�N� � ua� va�, we can represent the Hamiltonian
of tunneling between the QD and the ABS in the form [180]

HT � ÿt0e�b�1 � bb�2 � d�3 � d�4 � a
ÿ t0h�b1 � bb2 � d3 � d4� a� h:c: ;

where t0e�h� is the electron (hole) tunneling amplitude.
Solving the equations of motion for the Green's functions

with x1 � x2 � x3 � x4 � 0 gives

F̂ r
11e � ÿ

2t0et0hz
3

Z2
; �94�

Ĝ r
12e�h� �

bz
C1eZ2

n
zC1e

ÿ
t 20eCh�e� � t 20hCe�h�

�
ÿ ÿt 20e ÿ t 20h

�2�
z�1� b 2� � 2C1e

�o
;

where Ce�h� � z� x and

Z2 � z 2C 2
1eCeCh � �t 20e ÿ t 20h�2

�
z�1� b 2� � 2C1e

�2
ÿ 2z 2C1e�t 20e � t 20h�

�
z�1� b 2� � 2C1e

�
:

It follows from (94) that, in the linear response approxima-
tion, the conductance vanishes in both local and nonlocal
regimes. As in the case of an MBS, the obtained result can be
explained qualitatively by moving to the representation in
terms of Majorana operators. At x � 0, the Hamiltonian of
the system ABS� four QDs then becomes

H � i
t0e � t0h

2
�g1A � bg2A � g3A � g4A�gB

ÿ i
t0e ÿ t0h

2
�g1B � bg2B � g3B � g4B�gA : �95�

Thus, there are two chains, in each of which the central
operator gA�B� interacts laterally with two others, g3B�3A� and
g4B�4A� (which are not coupled to each other). Ato � 0,G � 0
in both chains due to the Fano effect.

In the general case of xj 6� 0, the Green's functions have
a rather cumbersome form and are not presented here.
However, we emphasize that, in this case, F r

11e�0� � 0 for
b � 0; 1 and G r

12e�h��0� 6� 0 for b � 1. This behavior is in
qualitative agreement with the results of the numerical
calculations presented in Fig. 25.

Thus, the considered Aharonov±Bohm ring with a super-
conducting bridge allows a topological phase transition in
the system to be detected due to the appearance of Fano
resonances. In addition, an analysis of the properties of these
asymmetric features of the conductance allows distinguishing
a true MBS, which has an edge character, from a low-energy
excitation of a bulk type, i.e., an ABS.

4. Majorana modes in systems
with noncollinear magnetic order

4.1 Introduction to the problem
Recently, work has intensified on revealing topologically
nontrivial superconducting phases and MMs not only in
systems with spin±orbit coupling but also in a wide class of
structures and materials with magnetic ordering. Interest in
the topological properties of such systems increased signifi-
cantly after a connection was established in [221] between the
Hamiltonians describingmaterials with noncollinear or spiral
spin ordering and those of the systems considered in Sec-
tion 3.

To demonstrate this connection, we subject Hamiltonian
(57) to a unitary transformation corresponding to the
successive rotation of the coordinate system in the spin space
through the angle p=2 around the y- and x-axes,

HW ! ~HW � UHU y ; �96�
where the unitary transformation operator has the form

U �
Y
l

�
exp

�
ÿ i

p
2
sx
l

�
exp

�
ÿ i

p
2
s y
l

��
: �97�

January 2022 Topological superconductivity and Majorana states in low-dimensional systems 29



We use the notation sx; y; z
l for spin operators of itinerant

electrons on the lth site. Given the transformation law for
Fermi operators

als ! ~als � UalsU
y � 1� iZs

2
als � i

1ÿ iZs
2

al�s ; �98�

we obtain the transformed Hamiltonian (57) (withU � 0 and
V � 0)

~HW �
X
l;s

�
�e0 ÿ m�a�lsals ÿ

t

2
�a�lsal�1s � h:c:�

�

ÿ ia
2

X
l

��a�l"al�1" ÿ a�l#al�1#� ÿ h:c:
�

ÿ h
X
l

ÿ
a�l"al# � a�l#al"

��X
l

ÿ
Dal"al# � h:c:

�
; �99�

where a is the spin±orbit coupling constant. The structure of
the Hamiltonian corresponds to the case [221] where the
magnetic field is directed along the x-axis and the spin±orbit
coupling vector BSO is parallel to the quantization axis z.

Following [221], we perform the transformation U2 �Q
l exp �ÿiQls z

l �, under which

als ! a 0ls � U2alsU
y
2 � als exp

�
ÿ iZsQl

2

�
: �100�

We relate the transformation parameter Q to the hopping
parameters and the spin±orbit coupling as Qa �
2 arccos �1� a2=t 2�ÿ1=2, where a is the lattice constant. In
the site representation, the Hamiltonian then becomes

H 0
W �

X
l;s

�
�e0 ÿ m�a�lsals ÿ

~t

2
�a�lsal�1s � h:c:�

�

ÿ
X
l;s; s 0

a�ls�hlr�ss 0als 0 �
X
l

�Dal"al# � h:c:� ; �101�

where ~t � t
��������������������
1� a2=t 2

p
and r is a vector composed of Pauli

matrices. The transformed Hamiltonian corresponds to an
ensemble of fermions with the superconducting gap D
in the magnetic field of a helicoidal structure hl �
h�cos �Ql�;ÿ sin �Ql�; 0�. We can see that the spin±orbit
coupling parameter a determines the renormalization of the
hopping integral and the structure of the helicoidal spin
ordering in terms of the wave number Q.

Based on this correspondence and using the results on the
prediction of MMs in superconducting systems with spin±
orbit coupling in a uniform magnetic field [30, 34, 35], a new
class of topologically nontrivial systems without spin±orbit
coupling but with inhomogeneous magnetic ordering was
proposed.

It was shown in [40] that topologically nontrivial phases
exist in chains of magnetic nanoparticles (or atoms) with
arbitrary magnetization directions placed on a superconduct-
ing substrate. It was assumed that the distance between the
nanoparticles is less than the coherence length of the super-
conductor. It was argued that an inhomogeneous external
magnetic field can induce MMs in a nanowire with induced
superconductivity without a pronounced spin±orbit coupling
[222±224]. Such a field can be produced by placing submicro-
meter magnets near the nanowire, as shown in Fig. 26.
Subsequently, it was proposed to use quasi-1D conductors,
in which the required magnetic structure of localized

magnetic moments sets in due to the Ruderman±Kittel±
Kasuya±Yosida (RKKI) interaction [225±227]. In this case,
the pitch of the magnetic helicoid is determined by the Fermi
momentum of conduction electrons.

It is known that the introduction of an isolated magnetic
impurity into a superconductor gives rise to Yu±Shiba±
Rusinov states [228±230] whose energies lie inside the super-
conducting gap. In diluted chains of magnetic atoms,
different impurity states can overlap, giving rise to impurity
bands. Such regimes were considered in detail in a recent
review [231]. Here, we summarize the main results for chains
in the case where the magnetic atoms are so close that their
atomic orbitals overlap.

The first experimental studies of a chain of Fe atoms on
superconducting lead by scanning tunneling microscopy were
carried out in [232, 233]. The length of the chains reached
several hundred angstroms. The presence of a conductance
peak at zero voltage was found when the microscope tip was
located near the edge of the magnetic chain, which could be
associated with the presence of an MM (Fig. 27). In the
same experiment, at nonzero energies not exceeding the
superconducting gap, the appearance of Yu±Shiba±Rusinov
impurity states was observed.

A similar system was investigated using a tunnel micro-
scope with a superconducting tip [234] and using atomic force
microscopy [235]. In both studies, a conductance peak was
found, but it was not observed for all synthesized magnetic
chains. Additional resonances were found near zero energy
(for energies of the order of 80 meV). It should be borne in
mind that these resonances, due to their proximity in energy,
could modify the MBSs. In view of these complications in
the interpretation of the experimental data, we emphasize
that the identification of MBSs against the background of
topologically trivial low-energy states is still an experimental
problem that is far from solved.

Resonance at zero voltage was also observed in a ferro-
magnetically ordered chain consisting of Co atoms on a single
crystal of lead [236]. However, it was detected when the tip
passed over the entire chain, which indicated its delocalized
character. Therefore, such a peak could not be associated
with MMs. It was believed that an even number of Fermi
points were realized in the Co chain when the Fermi level
crossed the electron bands, in contrast to an odd number of
points in the case of an Fe chain, and therefore the cobalt
chain was in a topologically trivial phase and the conductance
peak was determined by other mechanisms.

The results of the experimental studies cited above did not
allow unambiguously interpreting the observed conductance
peak as the one related to MBSs existing in the chain for the
following reasons: (1) the peak was not quantized; (2) it was
asymmetric with respect to the voltage reversal; (3) it was
observed only for some chains.
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d

Figure 26. (Color online.) Schematic of a quantum nanowire placed in an

inhomogeneous magnetic field [222].
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Inmore accurate experiments carried out at a temperature
of 20 mK [237], it was possible to separate the presumed
MBSs from the Yu±Shiba±Rusinov impurity states and
demonstrate a symmetric Majorana peak. Its magnitude
increased, but it was still an order of magnitude less than the
predicted conductance value of 2G0 � 2e 2=h. Additional
difficulties in the interpretation also arose, because the
influence of defects in the chain on the realization of a zero-
voltage resonance remained insufficiently studied.

We note that, in practice, for a number of reasons, it is also
difficult to identify the helicoidal ordering of spin moments in
atomic chains. In [233], ferromagnetic ordering was assumed
to occur in the chain of Fe atoms. In this case, the presence of
MBSs was associated with the spin±orbit coupling in lead.
However, as noted in [235], even the formation of a spin
helicoid with a small angle in the chain can be sufficient for
MMs to be partially generated by this mechanism.

Later, 120-degree ordering of the spin moments of Fe
atoms was realized when they were placed on a super-
conducting rhenium substrate Re (0001) [238]. However, an
experiment using scanning tunneling spectroscopy did not
confirm the presence of MMs in such a structure. Notably, in
the study of differential conductance at zero voltage with the
tip located near the boundaries of the chain, the presence of
only local maxima, and not peaks, was demonstrated.
Experimental studies of an Mn monolayer on Re (0001)
[239] have led to the discovery of a complex spin structure
(the so-called 3Q state). Such spin ordering can also induce
topological superconductivity and MMs [240]. We note that
several hybrid superconducting structures with magnetic
ordering allowing the realization of MBSs have been
proposed recently [241, 242].

Note that MBSs can be realized in chains with antiferro-
magnetic ordering of magnetic atoms brought into contact
with a superconductor. In that case, the underlying mechan-
ism is the modification of the initial impurity states by an
external magnetic field oriented in the plane of the super-
conductor and by the supercurrent running along the
chain axis [243]. Additional information on the possibility of
realizing MBSs in spin chains is contained in recent reviews
[231, 244].

A transformation similar to (98), (100) can also take place
in 2D systems. In this case, as shown in [41], the helicoidal
spin ordering corresponds to a certain combination of
Rashba and Dresselhaus spin±orbit couplings. This mag-
netic ordering does not set in due to external conditions but
is induced by internal mechanisms. Hence, the realization of

MMs can be expected in spin-singlet superconductors with a
noncollinear magnetic order.

Evidence of the formation of the phase of coexisting
superconductivity and helicoidal or noncollinear magnetic
order (SC�NCM) has been found in ternary rare-earth
borides and chalcogenides, for example, HoMo6S8 and
ErRh4B4 [245], and recently in EuRbFe4As4 [246±248]. In
HoMo6S8 and ErRh4B4, superconductivity first appears as
the temperature decreases, and then a tendency toward
ferromagnetic ordering reveals itself. But because of super-
conductivity, nonuniform magnetic ordering forms in a
narrow temperature range [245]. With a further decrease in
temperature, the ternary compounds pass into the normal
state with ferromagnetic ordering.

Promising materials with the possible realization of the
SC�NCM phase include superconductors with a triangular
lattice, such as NaxCoO2 � yH2O [249], Ir1ÿxPtxTe2 [250],
and k-(BEDT-TTF)2X [251]. They are conducive to the
appearance of the SC�NCM phase, because the frustration
of the triangular lattice facilitates the realization of a noncol-
linear structure during the formation of magnetic ordering
[252±257]. We note that competition between the nearest-
neighbor and subsequent exchanges can also lead to helicoi-
dal magnetic ordering [258].

It was shown in [259] that, if a stripe magnetic order is
formed in a triangular lattice with chiral d1 � id2 super-
conductivity, then MMs arise in such a system. We empha-
size that the existence of magnetic ordering and Cooper
instability was ensured in [259] by adding the mean-field
terms that generate the corresponding averages to the
quadratic Hamiltonian. Sodium cobaltates are also interest-
ing, because topologically nontrivial surface states were
recently discovered in their normal phase at high doping
levels x [260].

For most compounds whose phase diagrams contain
the superconductivity and antiferromagnetism coexistence
regions [261±263], the conditions for the formation of
MMs are not satisfied. At the same time, in many theoretical
studies where MMs were considered in systems with anti-
ferromagnetic ordering, their realization mechanism was not
directly related to magnetism. For example, the presence of
zero modes in a state with antiferromagnetic ordering and
triplet superconductivity was demonstrated in [264] for
weakly doped cuprates. In that case, the zero modes occur
solely due to triplet superconductivity. In iron pnictides and
chalcogenides, the possible realization of topologically non-
trivial surface states is due to the multiorbital electron
structure of these compounds and already manifests itself in
the normal phase [265]. In the superconducting phase, such
states can coexist [266] with ABSs induced by the s�-wave
symmetry of the superconducting order parameter [267]. In
the phase of coexistence of superconductivity and a spin
density wave, which is experimentally observed in pnictides,
superconductivity with a spin-triplet order parameter that is
even in orbital angular momentum (p-even, s-wave) and
odd in frequency (T-odd) [268] can form at the boundary of
the material due to the presence of magnetic ordering and
translation symmetry breaking; this superconductivity can be
accompanied by the formation of MMs [269±271].

4.2 Concepts of the coexistence phase of superconductivity
and noncollinear spin ordering
In this subsection, we consider the formation of MMs in
materials with a triangular lattice when the SC�NCMphase
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Figure 27. (Color online.) (a) Schematic of scanning tunneling spectro-

scopy experiment with a spin chain for observing MMs. (b) Dependence

of the conductance on energy for different positions of the microscope tip

(1 and 2). Zero-energy peak for dependence 1 is associated with an MM.

Vertical dashed lines intersecting the horizontal axis at nonvanishing

energy values determine magnitude of the superconducting gap on a lead

substrate [233].
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is realized in them. To be specific, we discuss the compound
NaxCoO2 � yH2O, the minimal model for which is the
tÿJÿV model [18, 272]. In this model, the electron states
correspond to the upper Hubbard subband. In view of this,
the Hamiltonian in the atomic representation has the form

HtJV �
X
fs

�eÿ m�X ss
f �

X
f

�2e�Uÿ 2m�X 22
f

�
X
f ms

tfmX
2�s
f X �s2

m �
V

2

X
fd

nf nf�d

�
X
f m

Jfm
ÿ
X "#f X #"m ÿ X ""f X ##m

�
; �102�

where e is the bare on-site energy of an electron, m is the
chemical potential, U is the on-site Hubbard repulsion, tfm is
the electron hopping rate, nf � X ""f � X ##f � 2X 22

f is the
operator of the number of electrons at a site, and Jfm is the
exchange interaction parameter. The intersite Coulomb
interaction is taken into account by the term with the
parameter V. The Hubbard operators are defined standardly
[273]: X

np
f � j f ; nih f ; pj, where j f ; ni are the basis electron

states at a site f and n is a single-site state index: the value
n � s corresponds to a state with one electron with the spin
projection s, and n � 2, to a state with two electrons.We note
that Hamiltonian (102) is defined in the Hilbert subspace
from which states that do not contain electrons are excluded.
The Hubbard operators act on the basis states as
X

np
f jm; qi � d f mdpqj f ; ni , where d f m and dpq are Kronecker

symbols.

As noted in the Introduction and in Section 2.2, the
possibility of realizing edge states is closely related to a
nontrivial value of the TI for the energy structure of the
material under periodic boundary conditions. Such a TI can
be calculated most easily in the case where the system under
consideration is described by a quadratic form in secondary-
quantization operators. Unfortunately, this approach is
ineffective for systems with strong electron correlations.

A more general method for finding the TI is to calculate it
using the Green's functions. In this case, the most convenient
approach is based on the use of the TI ~N3. Let us discuss this
in more detail.

The TI ~N3 was first proposed in [274] in the study of
conductance in the quantumHall effect andwas subsequently
used for various phases of superfluid 3He [4, 14]. According to
[4, 274], the ~N3 invariant is applicable to spatially 2D systems
(so-called (2� 1)-dimensional systems, where the additional
dimension is time), in which the excitation spectrum has a gap
in the entire Brillouin zone. It is essential that this invariant
also preserves its form for interacting systems.

The TI ~N3 can be calculated based on its relation to the
Green's functions and their derivatives,

~N3 � emnl
24p2

�1
ÿ1

do
� p

ÿp
dp1 dp2 Sp � bGqm bGÿ1 bGqn bGÿ1 bGql bGÿ1� ;

where emnl is the Levi-Civita symbol, q1 � q=qp1, q2 � q=qp2,
and q3 � q=qo. The notation bG�p; io� is introduced for a
matrix composed of the propagator parts of the Fermi
normal and anomalous Green's functions in the SC�NCM
phase:

As is known, the full matrix Green's function in the
atomic representation can be expressed as the productbD � bG bP, where bP is the force operator matrix. The matrix bD
is thenmade of Fourier transforms of theGreen's functions in
the Matsubara representation,

Dn; m� f t; f 0t 0� � ÿ


Tt ~X n

f �t� ~Xÿmf 0 �t 0�
�
; �104�

where n and m are indices indicating pairs of single-site states.
To calculate the TI ~N3, we have to move from the discrete
Matsubara frequencies ion to the continuous frequency io.

For noninteracting systems, the Green's functions can be
calculated exactly. But for strongly correlated systems, these
functions can only be found in some approximation. In
describing the Cooper instability in materials with noncol-
linear spin ordering, the loopless approximation is often used.
In that case, the vanishing of the determinant of the inverse
matrix bGÿ1 yields an expression for the spectrum of
elementary Fermi excitations of a system in the SC�NCM
phase,

e1; 2 p �
�
1

2

ÿ
x 2
p � x 2

pÿQ � jDpj2 � jDÿp�Qj2
�

� RpRpÿQ � lp

�1=2
; �105�

where

lp �
�
1

4

ÿ
x 2
p ÿ x 2

pÿQ � jDpj2 ÿ jDÿp�Qj2
�2

� RpRpÿQ
��xp � xpÿQ�2 � jDp � Dÿp�Qj2

��1=2

:

In (105), we use the following notations:

xp � e�Uÿ m� J0

�
1ÿ n

2

�
� V0n� ntp

2
;

n � hnfi is the on-site concentration of electrons, J0 and JQ are
the values of the Fourier transform of the exchange integral
for the magnetic structure vectors �0; 0� and Q, V0 � 6V,
Rp �M�tp ÿ JQ�, RpÿQ �M�tpÿQ ÿ JQ�,M is the amplitude
of the inhomogeneous magnetic order parameter that defines
the spin structure, hSfi �M�cos �Qf�;ÿ sin �Qf�; 0�, andDp is
the superconducting order parameter.

In most cases, MMs are studied within a simplified
scheme, where the essential parameters of the model vary
arbitrarily. There are a small number of studies in which the
proximity effect in topologically nontrivial heterostructures
or the order parameters are calculated self-consistently when
the nontrivial topology is caused by internal interactions (see,
e.g., [37, 277±280]).
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In contrast to these simplified approaches, we discuss the
results of solving the problem of finding topologically
nontrivial regions and topological transitions in the
SC�NCM phase in the framework of the tÿJÿV model,
with the order parameters determined from the system of
integral self-consistency equations.

It is essential for what follows that, near the filling n ' 1,
the 120-degree spin ordering (Q � �2p=3; 2p=3�) is more
favorable [256, 257, 281, 282]. In the Heisenberg regime,
n � 1, this order is stable up to J2 � J1=10 [255]. It turns out
that, in the SC�NCM phase, the superconducting order
parameter symmetry correlates with the spin ordering struc-
ture. For example, for the stripe structure proposed in [259]
for J2=J1 !1, the chiral symmetry of the superconducting
order parameter becomes disadvantageous in comparison to
the modified dx 2ÿy 2 symmetry or the dxy symmetry [275]. At
the same time, the 120-degree magnetic order preserves the
chiral symmetry type of superconductivity in the SC�NCM
phase. Importantly, in the dx 2ÿy 2 � idxy superconducting
phase without magnetic ordering, topologically protected
edge states [16] are realized that are not Majorana states,
whereas no such states exist in the superconducting dx 2ÿy 2 or
dxy phase. Therefore, it seems relevant to search for MMs in
the phase of coexistence of superconductivity and 120-degree
magnetic ordering (SC� 120).

To simplify the calculation, we here consider only the
exchange interaction between Hubbard fermions at the
nearest-neighbor sites. As a result, the quasimomentum
dependence of the superconducting order parameter in the
SC� 120 phase takes the form

Dp � 2Dj21�p�; j21�p� � cos p2 � exp

�
i2p
3

�
cos p1

� exp

�
i4p
3

�
cos �p1 � p2� : �106�

A more general case with the exchange interaction in the
second coordination sphere and the intersite Coulomb
repulsion taken into account was considered in [276].

From the Green's functions found in considering periodic
boundary conditions, self-consistency equations follow for
the magnetic order parameter M and the amplitude D of the
superconducting order parameter [276, 277]. The equation for
M has the compact form

M � n

2
� 1

2
ÿ
X
q

Aq=2ÿ JQ

2gq
ÿ 1

2

X
p

� f 1p � f 2p�

ÿM
X
p

JQ ÿ �tp � tpÿQ�=2
e�0�2p ÿ e�0�1p

� f 1p ÿ f 2p� ; �107�

where Aq � Jq � �JqÿQ � Jq�Q�=2, Jq is, as previously, the
Fourier transform of the exchange integral, and gq is related
to the bare spectrum of spin-wave excitations as

o0q � 2Mgq � 2M

���������������������������������������������������������������
�Jq ÿ JQ�

�
JqÿQ � Jq�Q

2
ÿ JQ

�s
; �108�

where fjp � f �e�0�jp =T � is the Fermi±Dirac function. In
deriving this equation, the effect of superconducting pairing
on spin ordering was neglected.

The use of this approximation is justified by the following
argument. First, both types of long-range order are induced
by the same exchange interaction. As a result, magnetic
ordering forms at temperatures TN � J, often exceeding the

Cooper instability temperature Tc. Second, we see in what
follows that the SC� 120 phase is realized mainly in the
underdoped region of the phase diagram, far from the
optimal doping, where the condition TN 4Tc is certainly
satisfied. To describe quantum topological transitions, it
suffices to restrict ourself to the low-temperature limit, and
therefore Eqn (107) is then written with T5TN. As a result,
the branches of Fermi spectrum (105), without corrections
coming from the superconducting order parameter, are deter-
mined by expressions for the spectrum in the normalmagnetic
phase with 120-degree ordering:

e�0�1; 2 p �
xp � xpÿQ

2
�

������������������������������������������
xp ÿ xpÿQ

2
� RpRpÿQ

r
: �109�

The self-consistency equation for D can be expressed as

1ÿ J1
N

X
qj

�ÿ1�jf21�q� tanh �ejq=2T �
ejqlq

�
n
cos q2

h
e 2jq ÿ x 2

qÿQ ÿ
��D�ÿq�Q���2i

� cos �q2 ÿQ2�RqRqÿQ
o
� 0 ; �110�

where j � 1; 2.
In Fig. 28b, we show the concentration dependences of the

order parameters obtained from the solution of Eqns (107)
and (110), including in the SC� 120 phase, for the nearest-
neighbor exchange parameter J1 � 0:5t1. The dependence of
the TI ~N3 on the electron concentration corresponding to
these parameters is shown in Fig. 28a.We can see that a series
of quantum topological transitions with a change in the value
of ~N3 is realized in the system as the electron concentration
increases. Regions with a nonzero ~N3 correspond to
topologically nontrivial phases. An even value of ~N3 then
indicates the possible realization of edge states in a system
with open boundary conditions, and an odd value indicates
the possibility of forming anMBSwith zero excitation energy
[57, 285].

In the considered strongly correlated 2D system with a
triangular lattice, as n increases, the onset of the phase of
coexistence of superconductivity and 120-degree spin order-
ing is accompanied by a transition from the topologically
trivial phase to a topologically nontrivial phase. With a
further increase in the electron concentration, two more
topological quantum transitions occur, separating topologi-
cally nontrivial phases with different values of ~N3. The critical
electron concentrations of such transitions are indicated by
dashed vertical lines.

At the critical electron concentrations, the energy spec-
trum of the system in the SC� 120 phase with periodic
boundary conditions becomes gapless. In this case, for the
first and third transitions, the gap closes at the K 0 point of the
hexagonal Brillouin zone, and for the second, at points K and
G. As can be seen from Fig. 28, the dependence of the
magnetization M on the electron concentration has kinks
at the topological transition points, which is due to the
rearrangement of the electron structure and the realization
of gapless excitations in the SC� 120 phase [277]. Despite the
small magnitude of the effects and the difficulties in experi-
mentally detecting them, they are of fundamental interest,
indicating the possibility in principle of realizing a series of
topological quantum transitions in superconductors with
noncollinear spin order.
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We note that, in the considered approach, an increase in
the intersite Coulomb repulsion leaves the characteristics of
magnetic ordering unchanged, but strongly suppresses super-
conductivity. As a result, in particular, Cooper instability
arises at higher values of the electron concentration when the
Coulomb interaction is taken into account. The number of
topological transitions can then decrease [277]. Another
important effect of intersite Coulomb repulsion in the
SC� 120 phase is the mixing of triplet superconducting
pairing potentials [276] into the kernel of the integral self-
consistency equation for the superconducting order para-
meter.

We also note that the possibility of realizing the SC� 120
phase was investigated previously in the tÿJ model by the
variational Monte Carlo method [283]. Our method of con-
sidering a system with strong electron correlations leads to
similar results at a qualitative level. The formation ofMMs in
the SC� 120 phase for a quadratic Hamiltonian without
interaction is described in [284, 285].

4.3 Majorana modes in the coexistence phase
of superconductivity and noncollinear magnetism
In seeking the MMs, we assume that the sites of a triangular
lattice occupy N1 positions along the direction of the
translation vector a1 and correspond to an open geometry,
while the periodic boundary conditions are realized along the
direction a2 (cylinder geometry).

For this geometry, the closed system of equations for the
Green's functions can be represented in the block form

ionÎN1
ÿ x̂k2 ĥk2ÿQ2

�Q� 0̂N1
D̂k2

ĥk2�ÿQ� ionÎN1
ÿ x̂k2ÿQ2

ÿD̂k2ÿQ2
0̂N1

0̂N1
ÿD̂ yk2ÿQ2

ionÎN1
� x̂k2ÿQ2

ÿĥk2 �ÿQ�
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y
k2
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ÿĥk2ÿQ2

�Q� ionÎN1
� x̂k2

0BBBB@
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�
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d̂l 0

0̂

0̂
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2664
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where ÎN1
and 0̂N1

are the unit and zeroN1 �N1 matrices. The
matrices x̂k2 , D̂k2 , and ĥk2�Q� are the same size. In the
approximation where the operator averages are independent
of the site number and are calculated within the problem with
periodic boundary conditions, the expressions for x̂k2 , D̂k2 ,
and ĥk2�Q� take the form

x̂k2 �

x0 � Ftk2 FTk2 0 0
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. .

. . .
.

0

0 . .
. . .

.
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Figure 28. (Color online.) (a) Dependence of topological index ~N3 on

electron concentration n for exchange and Coulomb interaction para-

meters on neighboring sites J1 � 0:5t1 and V � 0. (b) Concentration

dependence of magnetic and superconducting order parameter ampli-

tudes (M and D) at the same parameter values.
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0BBBBBB@

1CCCCCCA :

For the Hubbard renormalization in the noncollinear
ordering phase, we introduce the notation F � hnll2i=2
and M � hS�ll2i exp �i�Q1l�Q2l2��, where hnll2i is the on-
site electron concentration. The coordinate of a lattice site
is here given in the two-parameter form: l for the
coordinate along the a1 direction and l2 along the a2
direction. The additional notation is tk2 � 2t1 cos k2,
Dk2 � 2D cos k2, Tk2 � t1�1� exp �ik2��, and

ck2
� D exp

�
i2p
3

��
1� exp

�
i2p
3
� ik2

��
: �113�

We write Ĝn; m�k2; k2; l 0; ion� for the column vector whose lth
element is Gn;m�k2; k2; l; l 0; ion�, where l is the site number
along the a1 direction for the first Hubbard operator in
definition (104) and l 0 is the site number along the same
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direction for the second Hubbard operator. The quasi-
momentum dependence on the k2 component appears after
taking the periodic boundary conditions along a2 into
account. The nonzero element on the right-hand side of
system of equations (112) can be represented in terms of the
Kronecker symbols: d̂ � �d1l 0 ; d2l 0 ; . . . ; dN1l 0 �.

We write system of equations (111) in the compact form�
ionÎ4N1

ÿ M̂
�
V̂G � Ĉ �114�

and multiply this relation from the left with the matrix
Ŝ y, such that Ŝ yM̂Ŝ � M̂D, where M̂D is the diagonal matrix
composed of the positive excitation energies ejk2 ( j � 1;
2; . . . ; 2N1) and the corresponding negative energies. For
definiteness, we assume that the elements on the diagonal of
M̂D are ordered as follows: the first 2N1 elements are the
energies ejk2 taken in ascending order, and the other 2N1

elements are the energiesÿejk2 taken in descending order. As a
result, we obtain the expression�

ionÎ4N1
ÿ M̂D

�
Ŝ yV̂G � Ŝ yĈ : �115�

We introduce new `quasiparticle' Green's functions:

Ĝa;#2�k2; l 0; ion�
Ĝb;#2�k2; l 0; ion�
Ĝa y;#2�k2; l 0; ion�
Ĝb y;#2�k2; l 0; ion�

266664
377775 � Ŝ y

Ĝ#2;#2�k2; k2; l 0; ion�
Ĝ"2;#2�k2 ÿQ2; k2; l

0; ion�
Ĝ2#;#2�k2 ÿQ2; k2; l

0; ion�
Ĝ2";#2�k2; k2; l 0; ion�

266664
377775 :
�116�

It is then easy to find the Green's function of low-energy
quasiparticles with the jth energy ( j � 1; 2; . . . ;N1):

Gaj;#2�k2; l 0; ion� �
�Ŝ y�jl 0

ion ÿ ejk2
: �117�

Relation (116) between the Green's function found in
(117) and the original Green's functions allows finding the
Fermi operators of elementary excitations for the SC� 120
phase as linear combinations of the Hubbard operators,

ajk2 �
XN1

l�1

ÿ
ujlXk2; l;" � wjlXk2ÿQ2; l;#

� zjlX
y
ÿk2�Q2; l;" � vjlX

y
ÿk2; l;#

�
; �118�

where the coefficients ujl,wjl, zjl, and vjl are elements of the jth
row of the matrix bS y. It follows from this definition and
symmetry considerations [285] that MMs are realized in the
cylinder geometry at the momentum space point correspond-
ing to the symmetry between particles and holes, the particle±
hole invariant momentum point K2 � ÿK2 �Q2 � G, where
Q2 � 2p=3 andG is the reciprocal lattice vector, i.e., exactly at
the pointK2 � ÿ2p=3, for which, as can be seen from Fig. 29,
the excitation energy is zero.

The dependence of the excitation spectrum of the system
on the quasimomentum k2 at the electron concentration
n � 1:025 and V � 0 is plotted in Fig. 29. The dashed line
shows the boundaries of the bulk excitation spectrum under
periodic boundary conditions along both directions of the
triangular lattice.We can see that, for the chosen values of the
parameters, a superconducting gap is realized in the excita-
tion spectrum. For the cylinder geometry, edge states appear

inside the spectrum gap (thick solid line). Thin lines represent
the excitation branches lying in the bulk spectrum.

To show the spatial structure ofMMs forK2 � ÿ2p=3, we
use the approach described in [12]. For this, we introduce two
self-adjoint operators, b 00 � a1 � ay1 and b 000 � i�ay1 ÿ a1�.
Using expansion (118), we then express these operators in
terms of Majorana operators in the atomic representation:

gAls � Xls � X
y
ls ; gBls � i�X yls ÿ Xls� : �119�

As a result, we find

b 00 �
XN1

l�1

�
Re �u1l � z1l�gAl" �Re �w1l � v1l�gAl#g

ÿ
XN1

l�1

�
Im �u1l ÿ z1l�gBl" � Im �w1l ÿ v1l�gBl#

	
;
�120�

b 000 �
XN1

l�1
fIm �u1l � z1l�gAl" � Im �w1l � v1l�gAl#

	
�
XN1

l�1

�
Re �u1l ÿ z1l�gBl" �Re �w1l ÿ v1l�gBl#

	
:

In Fig. 30, we show the site-number dependence of the
coefficients Al � Re �u1l � z1l� and Bl � Im �u1l � z1l�
appearing in the decompositions of the operators b 00 and b 000
in terms of Majorana operators gAls and gBls in the atomic
representation. We can see that the dependence of these
coefficients on the site number exhibits localization near the
opposite edges. Other decomposition coefficients have a
similar localization, and we do not show them in Fig. 30.

In the region with the TI ~N3 � ÿ4, after the third
topological quantum transition, the excitation spectrum in
the cylinder geometry is shown in Fig. 31.We can see from the
figure that, although excitation energies that are exponen-
tially close to zero are realized for four values of k2, there are
no MMs at the symmetric point K2 � ÿ2p=3. The positions
of the four points with momenta k2 and zero energy can
change, and therefore such zero modes are sensitive to the
parameters of the system and are not of primary interest. The
distribution of the coefficients Al and Bl for these zero modes
is localized at the same edge, in contrast to that shown in
Fig. 30.

0.10

0.05

0

ÿ0.05

e jk
2
=
t 1

ÿ0.10
ÿ2p=3 0

k2

2p=3

Figure 29. (Color online.) Spectrum of Fermi excitations in the phase of

coexistence of superconductivity and noncollinear magnetism at electron

concentration n � 1:025 corresponding to the TI value ~N3 � ÿ3, for

cylinder geometry.
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In a narrow range of electron concentrations of the
SC� 120 phase with the TI ~N3 � ÿ1, the formation of
MMs is also possible at K2 � ÿ2p=3. In this region, in
contrast to that in the region with ~N3 � ÿ3, a branch of
edge states forms only near K2 � ÿ2p=3. However, such a
topologically nontrivial phase is of little practical interest
due to the extremely small values of the superconducting
gap, even if the intersite Coulomb interaction V is dis-
regarded.

Thus, based on a self-consistent calculation of the order
parameters and a TI, we have demonstrated a series of
quantum topological transitions between regions with dif-
ferent nontrivial topologies in the phase of coexistence of
superconductivity and noncollinear 120-degree magnetic
ordering, as well as the formation of MMs in one of the
regions. It is essential that the Majorana states are induced
just by the noncollinear spin order in the presence of
superconductivity. The presented results expand the list of
probable candidates for the experimental detection of
Majorana fermion modes.

5. Conclusions

We have analyzed the origination and development of the
problem of realizing and identifyingMMs in low-dimensional
condensed matter systems that allow the existence of super-
conducting phases with a nontrivial topology. Systems in
which the superconducting pairing potential arises as a result
of either the proximity effect or the Cooper instability
initiated by internal interactions are considered as objects
allowing the existence of MMs.

With the example of a Kitaev chain, we discussed the
principles of realization of elementary excitations corre-
sponding to MMs. For clarity, we considered particular
cases where simple analytic expressions exist that reflect the
structure of such modes. A correspondence has been demon-
strated between the conditions for the realization of MMs in
an open geometry of the system and those for the formation
of a topologically nontrivial state determined by the value of
the Zak±Berry phase for a closed chain. As we have seen, an
analysis of the properties of the Kitaev Hamiltonian in the
quasimomentum representation and its ground state yields a
simple method for determining the fermion parity (FP) of the
ground state for various parameters of the model and allows

identifying the regions of the realization of a topologically
nontrivial phase in the phase diagram.

We have shown that the hybridization of the MM wave
functions due to the effects of a finite chain size gives rise to a
cascade of quantum transitions in an open system accom-
panied by a change in the FP of the ground state. Quantum
critical points appear in the parameter region where a
topologically nontrivial phase is realized in a closed system.
Identifying these quantum transitions based on the analysis
of electrocaloric anomalies is important for experimental
applications.

The noted possibility of detecting quantum transitions is
available not only in the Kitaev chain but also in systems that
are more realistic from the practical standpoint. This has
been demonstrated for a semiconducting nanowire with the
Rashba spin±orbit coupling and induced superconductivity
(superconducting nanowire) placed in an external magnetic
field. Of significant importance is the result on the preserva-
tion of magneto- and electrocaloric anomalies when the
electron±electron interactions are taken into account. The
detection of caloric anomalies can therefore not only serve as
a test for the manifestation of quantum transitions but also
give grounds to assert the realization of states with MMs.

We have reviewed the experimental results related to the
realization of the conductance peak at zero bias in a finite
range of magnetic fields. Arguments have been scrutinized
that allow regarding the occurrence of this feature as evidence
of the realization of MMs in a superconductor±semiconduct-
ing nanowire hybrid structure. We have also discussed
alternative scenarios for the appearance of the conductance
peak, unrelated to a topological phase transition.

We have discussed the properties of MMs and the kinetic
and static characteristics of systems that are currently being
used to identify MBSs. We have shown that the modern
principles of detecting MMs are based on the study of the
nonlocality of such excitations and their spin polarization.
In addition, we discussed the features of the fluctuation
characteristics of the current (shot noise), transport in the
Coulomb blockade regime, and interference processes.

In the framework of the last area, we theoretically
analyzed the conducting characteristics of a device in the
form of an Aharonov±Bohm ring with the arms connected by
a superconducting wire (SW, bridge). The transport proper-
ties of such a device were discussed, with the interaction

jAlj
jBlj

0.3

jA
lj,
jB

lj

0.2

0.1

100 200 300 400
l

0

Figure 30. (Color online.) Spatial structure of MMs at the K2 � ÿ2p=3
point in the superconductivity and magnetism coexistence phase with TI

value ~N3 � ÿ3. Parameters are the same as in Fig. 29.
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Figure 31. (Color online.) Spectrum of Fermi excitations in the super-

conductivity and magnetism coexistence phase at electron concentration

n � 1:08 corresponding to TI value ~N3 � ÿ4, for the cylinder geometry.
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between the low-energy states of the normal-phase wires that
make up the arm and the bridge taken into account.

In the linear response approximation at low temperatures,
we have shown that a number of symmetric and asymmetric
resonances (respective Breit±Wigner and Fano resonances)
arise in the conductance of the ring when the wire is
transferred by a magnetic field into a topologically nontrivial
phase. We analyzed the dependence of the properties of Fano
resonances on the spatial distribution of the low-energy SW
state (Majorana or Andreev types). It is important that the
type of this state can be effectively tested for a particular case
of the ring, a T-shaped transport scheme.

The predicted Fano effect and its features are of
considerable interest for establishing differences in the
transport properties of the Majorana and Andreev states.
The results obtained can contribute to the further develop-
ment of experimental methods for detecting MBSs in
coherent quantum transport.

Superconducting systems with inhomogeneous magnetic
ordering were shown to be promising for the detection of
MMs. In such systems, a dense magnetic nanostructure is
applied on a superconductor, a superconductor is placed in
an inhomogeneous magnetic field, or a superconductor is
considered in the phase of coexistence with noncollinear
magnetic ordering. For such magnetic superconductors, it
has been shown that a nontrivial topology of the ground state
can be preserved even in the regime of strong electron
correlations, and MMs can arise. It has been shown that
topological quantum transitions can, in principle, affect the
characteristics of the magnetic ordering of such superconduc-
tors. The experimental detection of topologically nontrivial
surface states in such systems is an urgent issue for future
experiments.

We note that the effect of strong electron correlations on
topologically nontrivial phases can be significant and lead to
the induction of new topological transitions and even to a
change in the topological classification of these phases.
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