
Abstract. The theory of spin noise in low-dimensional systems
and bulk semiconductors is reviewed. Spin noise is usually
detected by optical means continuously measuring the rotation
angle of the polarization direction of a probe beam passing
through a sample. Spin noise spectra yield rich information
about the spin properties of the system, for example, g-factors
of the charge carriers, spin relaxation times, parameters of the
hyperfine interaction, spin-orbit coupling constants, frequencies
and widths of the optical resonances. The review describes basic
models of spin noise, methods to theoretically describe it, and
their relation to experimental results. We also discuss the rela-
tion between spin noise spectroscopy and strong and weak
quantum measurements, as well as spin flip Raman scattering,
and analyze similar effects, including manifestations of the
charge, current, and valley polarization fluctuations in the op-
tical response. Possible directions for further development of
spin noise spectroscopy are outlined.

Keywords: spin noise, spin correlation functions, nanosys-
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1. Introduction

Studies of spin phenomena have formed a broad and
rapidly developing branch of solid state physics since the
beginning of the 21st century. Such rapid progress is related
to, on the one hand, the prospects of realizing quantum
methods for information processing and, on the other hand,
the novel fundamental physics of spin phenomena which
manifest themselves in condensed matter. Usually, the
dynamics of electron and nuclear spin ensembles in
semiconductors are studied via monitoring the response of
the system to external perturbations, mainly, to alternating
electric and magnetic fields. One can detect, using the
polarization of emitted light and spin-Faraday and Kerr
effects, i.e., the rotation of the probe beam polarization
plane upon its transmission through the medium or its
reflection from it, spin precession in external fields and
spin relaxation resulting from the excitation of spin
polarization, e.g., by circularly polarized light.

It is natural to ask a question regardingwhat one can learn
about the spin dynamics from studies of the Faraday or Kerr
rotation without any excitation of the system. Imminent
fluctuations of electron spins, dSz�t� (see Fig. 1), result in a
stochastic contribution to the Faraday rotation angle:

dyF�t� / dSz�t� : �1�

Here, z is the light propagation axis, and we assume that the
retardation effects upon light transmission can be ignored. By
definition, spin fluctuations are absent, on average,
hdSa�t�i � 0. Here, the angular brackets denote time aver-
aging, namely,



dSa�t�

� � lim
T!1

1

2T

�T
ÿT

dSa�t� dt; a � x; y; z ; �2�
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where T is a macroscopic time which exceeds by far the spin
precession period in external fields, times of spin decoherence
and relaxation, etc. Spin fluctuationsÐ spin noiseÐare
characterized by correlation functions. Of prime interest are
the second order correlation functions under the steady-state
conditions [1], which are defined as follows:

Cab�t� �


dSa�t� t� dSb�t�

�
: �3�

In accordance with the general theory of fluctuations [2, 3],
the averaging in Eqn (3) takes place over time t at a fixed
difference between arguments t. It is assumed in Eqn (3) that
the quantity dSa�t� is a classical one. Generally, one has to
symmetrize quantum mechanical operators [2]

Cab�t� �

�

dŜa�t� t� dŜb�t�
	
s

�
; �4�

where fÂB̂gs � �ÂB̂� B̂Â�=2, and the spin fluctuation
operator dŜa � Ŝa ÿ hŜai, with the angular brackets here
denoting quantum mechanical averaging.

Owing to Eqn (1), the autocorrelation function of the
Faraday rotation angles hdyF�t� t� dyF�t�i is directly pro-
portional to the spin autocorrelation function Czz�t�. Thus, by
observing fluctuations of the Faraday and Kerr rotation (as
well as those of the ellipticity), one can directly measure the
spin correlation function, which contains fundamental
information on spin dynamics. In thermal equilibrium
conditions, the functions Cab�t� are related via the fluctua-
tion-dissipation theorem to the spin susceptibility of the
system. E B Aleksandrov and V S Zapasskii were the first to
detect spin fluctuations and, correspondingly, spin suscept-
ibility in the noise of Faraday rotation in atomic gas vapors
[4]. These experiments from the 1980s were reproduced at the
beginning of the 2000s [5±7]. Later on, this method was
applied to bulk semiconductors [8±10] and semiconductor
nanosystems [11±14]. As a result, a novel area of spin
dynamics studies, known as spin noise spectroscopy, was
established [15±20].

To detect spin fluctuations superconducting interfero-
metric devices [21, 22], scanning tunneling microscopy [23,
24], and magnetic resonance microscopy [25, 26] can be
applied. However, in semiconductor systems, the optical
methods described above are the most efficient.

In the next section of this review, a consistent description
of the simplest methods for calculating spin fluctuations will
be presented using, as an example, the spin precession in an
external static magnetic field and isotropic spin relaxation,
which is typical for bulk semiconductors. Next, in Sections 3±
5, the specifics of the spin noise in, respectively, zero-, one-,

and two-dimensional systems will be detailed. In Section 6,
high order spin correlation functions will be described.
Further, in Section 7, the capabilities of the spin noise
spectroscopy technique, which go beyond measurements of
spin correlators, will be described. The concluding Section 8
contains a summary and description of prospects for further
development of the spin fluctuation theory in semiconduc-
tors.

2. Methods of spin noise spectrum calculations

2.1 Methods of the fluctuation theory
Let us consider fluctuations of a single electron spin ds�t� in a
static magnetic field B, which is characterized by a Larmor
frequencyXL � gmBB=�h, where g is the g-factor and mB is the
Bohr magneton. Spin correlation functions can be calculated
by a number of methods. We present, first, the Langevin
random forces approach based on the solution of the Bloch
equation for spin fluctuation

dds�t�
dt
� ds�t�

ts
� ds�t� �XL � n�t� ; �5�

where ts is the phenomenological spin relaxation time, and
n�t� are the randomor Langevin forces. These fictitious forces
are included on the right-hand side of Eqn (5) to support
mean square fluctuations of the spin components


dsa�t� dsb�t�
� � 
fdŝa�t� dŝb�t�gs� � dab

4
: �6�

This expression is given in the high-temperature limit,
kBT4 �hOL, where magnetic field induced equilibrium polar-
ization is negligible. Equation (6) directly follows from the
spin operators definition. Since the Langevin forces are
fictitious, i.e., they are not directly related to any real physical
process, their correlation function must not contain any
temporal scales, i.e., they reduce to the d-function [2, 27 ± 29]:


xa�t�xb�t� t�� � 1

2ts
dabd�t� : �7�

Solving Eqn (5), the spin correlators can be calculated in
both the temporal and frequency representations. By defini-
tion,

~Cab�o���dsadsb�o�
��1
ÿ1



dsa�t�t� dsb�t�

�
exp �iot� dt : �8�

In the coordinate frame x1, y1, z1 with the axis z1 k XL, we
have [1, 30]

�ds 2z1�o �
p
2
D�o� ; �9a�

�ds 2x1�o � �ds 2y1�o �
p
4

�
D�oÿ OL� � D�o� OL�

�
; �9b�

�dsy1dsx1�o��dsx1dsy1��o�
2ioOLt 2s

1�t 2s �o 2�O 2
L�
�ds 2x1�o ; �9c�

where a broadened d-function is introduced in accordance
with

D�x� � 1

p
ts

1� �xts�2
: �10�

It follows from Eqns (9) that the fluctuation of the long-
itudinal to the magnetic field spin component is unaffected by

Sample

Probe beam

z

dyF / dSz

Figure 1. Illustration of spin fluctuations detection: z is the direction of

linearly polarized light propagation, double arrows show orientation of

linear polarization plane of the beam before and after its transmission

through the medium with fluctuating spins.
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the field (the B-dependence can arise from the field depen-
dence of the spin relaxation time ts(B)). The spin fluctuations
transverse to the field precess at the frequency OL, resulting
both in a shift of the arguments of the broadened d-functions
in �ds 2x1�o, �ds 2y1�o and in the appearance of cross-correlators
�dsy1dsx1�o � �dsx1dsy1��o.

The Langevin random forces method is not the only one
for calculating spin correlators. In many cases, it is con-
venient towrite and solve kinetic equations for the correlation
functions Cab�t� [31]. In the simplest case under consideration,
these equations have the form (at t > 0)

q
qt
Cab�t� �

X
gd

EagdCgb�t�Od � Cab�t�ts
� 0 ; �11�

where Eagd is the Levi-Civita symbol. In agreement with the
general approach, Eqns (11) are supplemented by initial
condition (6), which describes single-time correlators. This
approach turns out to be particularly convenient for describ-
ing spin noise in nonequilibrium conditions [32, 33].

As we already mentioned, the spin correlation functions
~Cab�o� under thermal equilibrium conditions can be
expressed via corresponding components of the spin suscept-
ibility. This statement, known as the fluctuation-dissipation
theorem, can be formulated as follows. Let us introduce
generalized forces f with the Cartesian components

fa�t� � fa;o exp �ÿiot� � c:c: ;

which lead to a perturbation of the spin system Hamiltonian
in the form

V̂ � ÿ
X
a

ŝa fa : �12�

We also introduce the spin susceptibility, mab�o�, with respect
to these forces in accordance with the linear response theory:

dsa;o �
X
b

mab�o� fb;o : �13�

Thus, at high temperatures, kBT4 �ho, the spin noise
spectrum can be recast as [1, 2]

�dsadsb�o �
ikBT

o

�
m �ba�o� ÿ mab�o�

�
: �14�

This establishes a relation between the spin noise spectro-
scopy and the electron spin resonance technique. We stress
that this relation holds true in thermal equilibrium only.
In nonequilibrium systems, the susceptibility to external
fields and noise spectra are, generally speaking, indepen-
dent [29, 30].

Also, spin noise spectra can be expressed via the
eigenfunctions and eigenenergies of the spin system [2]; see
Section 3 and Eqn (27) therein.

2.2 Onsager relations
Let us now analyze several general properties of correlation
functions. By definition, Eqn (4), the second order correlator
Cab�t� satisfies the permutation relation

Cab�t� � Cba�ÿt� : �15a�

In equilibrium, the time reversal symmetry leads to additional
relations for the correlation functions [2]. In the absence of

magnetic fields, it is of no importance which of the spin
components dsa or dsb is taken at the earlier or later moment
of time in Eqns (3) and (4). Hence, at XL � 0, we have
Cab�t� � Cba�t� � Cab�ÿt� � Cba�ÿt�. In the presence of a
magnetic field in addition to Eqn (15a), we obtain

Cab�t;XL� � Cba�t;ÿXL� ; �15b�

because the magnetic field changes its sign at a time reversal
t! ÿt: XL ! ÿXL. Naturally, correlators in the frequency
domain have the same properties. Moreover, since the
replacement o! ÿo corresponds to a complex conjuga-
tion, it follows then that

~Cab�o� � ~C �ba�o� � ~Cba�ÿo� ; �16a�
~Cab�o;XL� � ~Cba�o;ÿXL� : �16b�

Equations (15b) and (16b) are known as Onsager relations.
They describe the principle of symmetry of kinetic coefficients
in thermal equilibrium conditions [2, 34]. Evidently, Eqn (9)
satisfies the principle of symmetry of kinetic coefficients (16).

2.3 Relation between spin noise spectroscopy
and Raman scattering of light
In optical experiments on spin noise spectroscopy, as
discussed above, the spin noise is detected via fluctuations of
the Faraday, Kerr, and ellipticity effects. Fluctuations of the
sample magnetization result in a modulation of the polariza-
tion of the monochromatic wave transmitted through the
sample. As a result, the spectrum of the electromagnetic field
is enriched. This results in a relation between fluctuations of
the Faraday and Kerr rotations, as well as ellipticity, and the
spin-flip Raman scattering of light [35].

Let us address these effects in more detail following
Ref. [36]. Let the probe beam polarized along the x-axis with
frequency o propagate through a medium along the z-axis.
Then, the contribution to the dielectric polarization of the
medium caused by the spin fluctuation dSz�t� can be written
in the form [1, 36]

dPy / dSz�t�E0;x exp �ÿiot�
o0 ÿ oÿ ig

; �17�

where E0; x is the amplitude of the probe beam, and o0 and g
are the eigenfrequency and damping of the resonance of the
medium used to detect the spin fluctuations. It is assumed that
the detuning jo0 ÿ oj is small compared to the distances to
other resonances. We also assume that the spin fluctuations
dSz�t� are `slow' compared to gÿ1. The presence of an
orthogonal to the initial polarization component dPy of the
dipole moment results in polarization plane rotation, with the
instantaneous fluctuation of the Faraday rotation angle being
[cf. Eqn (1)]

dyF�t� / Re fdPyE
�
0; xg / dSz�t� oÿ o0

�oÿ o0�2 � g 2
: �18�

In spin noise spectroscopy experiments, the correlator
hdyF�t� dyF�t 0�i (or its Fourier transform) is measured. To
that end, a field transmitted through the sample is detected
using a photodetector, which enables detection of the light
intensity and Stokes parameters (see Fig. 2). Next, the signal
arrives at a spectrum analyzer, where the Faraday rotation

September 2021 Theory of optically detected spin noise in nanosystems 925



angle spectrum (generally speaking, the spectrum of light
intensity) is acquired [36, 37].

It follows from Eqn (17) that the spectrum of the probe
field is enriched due to the fluctuations dSz�t�. For example,
in the simplest case, when a transverse magnetic field is
applied, dSz�t� / cos �OLt� [cf. Eqn (9b)], spin fluctuations
result in the appearance of secondary or scattered waves with
the frequencies o� OL. This secondary field is usually
detected in inelastic spin-flip light scattering [35±37], where
the field transmitted through the sample is first passed
through a spectrometer and then converted into the photo-
current of a detector. As a result, the intensities of corre-
sponding spectral components are detected (Fig. 2). The
analysis above underlines the deep connection between the
spin noise spectroscopy technique and spin-flip Raman
scattering: both methods allow one to determine the correla-
tion function of spin fluctuations.

3. Zero dimensional systems

Semiconductor systems with localized charge carriers are
among the most studied using the spin noise spectroscopy
technique. The key attractive feature of such systems is a
longÐup to micro- or even millisecondsÐspin relaxation
time in typical samples with quantum dots, which results from
quenching of spin relaxationmechanisms related to the orbital
motion of electrons. The main cause of the spin decoherence
of localized charge carriers is, as a rule, the hyperfine
interaction with host lattice nuclear spins [1]. In this section,
we describe the spin noise spectra in systems with pronounced
hyperfine interaction in moderate magnetic fields.

3.1 Central spin model
The spin Hamiltonian of a localized electron in an external
magnetic field B in the presence of a hyperfine interaction
with the host lattice nuclear spins has the form

H � �hXLS�
XNn

k�1
AkIkS : �19�

Here, S is the electron spin operator, XL � gemBB=�h is the
Larmor precession frequency in an external magnetic field, ge

is the effective electron g-factor (its anisotropy is disre-
garded), subscript k enumerates Nn nuclear spins which
efficiently interact with the electron spin, Ik are the nuclear
spin operators, and Ak are the hyperfine coupling constants.
The latter are determined both by the parameters of isotopes
of the lattice and by the electron wavefunction [1, 38]. The
magnetic field, as before, is assumed to be quite weak, and the
temperature is assumed to be sufficiently large to ignore the
average electron spin polarization. In thermal equilibrium,
the nuclear spins are oriented randomly; therefore, the
electron experiences a random nuclear field

�hXN �
XNn

k�1
AkIk : �20�

In real III±V semiconductor systems, the number of nuclei in
a quantum dot isNn � 104±106. The mean square fluctuation
of the nuclear field is given by hX2

Ni � 3d 2
e =2, where the

parameter de is defined as

d 2
e �

2

3

XNn

k�1
Ik�Ik � 1�A

2
k

�h 2
: �21�

The description of the intertwined spin dynamics of electron
and nuclei in the framework of Hamiltonian (19) is known in
the literature as the central spin model [39, 40].

In the framework of the model described by Eqn (19), the
nuclear spin dynamics are driven by the electron spin.
Generally, the nuclear spin dynamics in quantum dots can
also be related to the quadrupole interaction, i.e, the splitting
of nuclear spin levels due to strain and nuclear spin precession
in the external magnetic field. Corresponding characteristic
times exceed by far the electron spin precession period in the
field of nuclear fluctuation � 1=de. This is because of the
small nuclear g-factor and quadrupole splittings, as well as
the small ratio of the Knight and Overhauser fields of the
order of 1=

������
Nn

p
. Due to the separation of the timescales,

nuclear spins at times relevant for the electron spin dynamics
can be considered frozen [41]. In this case, one can apply a
`semiclassical' approach to describe the spin noise [30], which
is based on the averaging of the dynamics of the electron spin
fluctuations over the distribution of XN.

E0 exp �ÿiot�
E0 exp �ÿiot�
+E exp �ÿiot�Sz�t�

PD

SA

SA

PD

Spin noise spectroscopy

OLÿOL 0

x

z

B

Spin-êip Raman scattering

ooÿ OL o� OL

Figure 2. Transmission of the probe beam through a sample. `SA' denotes the spectrum analyzer and `PD' denotes the photodetector. In spin-flip Raman

scattering experiments, the spectrum analyzer is used in the optical frequency domain. In spin noise spectroscopy, it is used in the radio frequency domain.

(Adapted from Ref. [36].)
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Hence, for a given direction of the nuclear field, the
electron spin correlation functions are given by Eqn (9),
where X � XL �XN is the total electron spin precession
frequency. Due to the large number of nuclei, Nn 4 1, and
the statistical independence of their spins, the distribution
function of nuclear fields is Gaussian [41]:

F�XN� � 1

� ���pp de�3
exp

�
ÿ O 2

N

d 2
e

�
: �22�

In the case of holes, the hyperfine interaction is anisotropic,
so the dispersions of the Overhauser field as well as the
effective g-factors in different directions can differ [42, 43].
Making use of Eqn (9), one can readily calculate the spin noise
spectrum per electron [30],

�dS 2
z �o �

p
2

�
dXN F�XN�

�
�
cos 2 yD�o� � sin 2 y

D�oÿ O� � D�o� O�
2

�
; �23�

where y is the angle between X and the z-axis and ts in D�x�
[see Eqn (10)] is the phenomenological spin relaxation time
unrelated to the hyperfine interaction. In the `box' model,
where all hyperfine coupling constants are equal, the number
of nuclear spins is large, and an external field is absent,
Eqn (23) is exact [44, 45]. The case of a nonzero field is
analyzed in [46].

As a rule, the spin relaxation time is much longer than the
spin precession period in the nuclear field, i.e, the condition
dets 4 1 holds. In this case, it is possible to derive an
analytical expression for the spin noise spectrum in a zero
magnetic field:

�dS 2
z �o �

p
6
D�o� � 2

���
p
p

o 2

3d 3
e

exp

�
ÿ o 2

d 2
e

�
; �24�

which is shown by the black curve 1 in Fig. 3. The spectrum
consists of two peaks. The first one at the zero frequency, is
very high and narrow. It corresponds to relaxation with time
constant ts of the spin component parallel toXN. This peak is
denoted as relaxational. The second peak, with the maximum
at o � de, corresponds to the electron spin precession in a
random nuclear field, its shape reflects the distribution

function of the absolute value XN, and its width is of the
order of de.

Note that the spectral weight of the zero frequency peak is
1=3 of the total intensity of the spin noise. This is a result of
the isotropic distribution of hyperfine fields. Application of
the transverse external magnetic field reduces the probability
of finding the total field X parallel to the z-axis. This
probability is proportional to cos 2 y. As a result, the peak at
the zero frequency gets suppressed, while the precession peak
shifts to the higher frequencies, as shown inFig. 3. In the high-
field limit, OL 4 de, the spin noise spectrum has the form

�dS 2
z �o �

���
p
p
4de

exp

�
ÿ �oÿ OL�2

d 2
e

�
: �25�

It follows from Eqn (25) that the spectrum is Gaussian,
centered at OL, with the width determined by a typical
fluctuation of the Overhauser field. For electrons localized
in quantum dots, as a rule, the spread of g factors is present,
resulting in additional broadening of the spectrum, which
linearly increases with an increase in the field [12].

The effect of the longitudinal magnetic field is opposite.
It results in a decrease in the typical values of the angle y in
Eqn (23), i.e., in the suppression of the precessional peak
and enhancement of the relaxational one. In the strong
magnetic field limit, OL 4 de, the spin noise spectrum is
Lorentzian,

�dS 2
z �o �

p
2
D�o� ; �26�

and it is centered at o � 0. Its height is three times larger
than in the case of a zero field. In quantum dot ensembles,
the shape of the peak differs from Lorentzian, which
corresponds to nonmonoexponential spin relaxation in the
longitudinal magnetic field [13]. In a single quantum dot, the
zero-frequency peak is well described by the Lorentzian
function [14].

The model described above was successfully applied to
describe the spin noise and determine the spin parameters in
quantum dot ensembles doped with electrons and holes [47].

The results presented above were derived in the model
where the nuclear spin dynamics is ignored. The central spin
model can account for the nuclear spin precession in the
Knight field. Generally, the spin noise spectrum can be
calculated as

�dS 2
z �o�

2p
N
X
n;m



njSzjm

�

mjSzjn

�
D
�
oÿ EnÿEm

�h

�
; �27�

where n;m � 1; . . . ;N enumerate eigenstates of Hamilton-
ian (19), and En and Em are their energies.

Despite the fact that the central spin model can be exactly
solved by the Bethe ansatz [39], the actual calculations are
most efficiently performed in the time representation by
decomposition of the evolution operator exp �ÿiHt=�h� over
the Chebyshev polynomials [48]. This ensures a uniform
convergence, regardless of the initial state of the system.
Since the number of eigenstates N exponentially increases
with an increase in the number of nuclei Nn, in actual
calculations it is possible to address only several tens of
nuclei (apart from the case of the simplified `box' model [44,
45]). An advantage of the numerical approach is the
possibility of exactly taking into account the quadrupole
splitting of nuclear spin sublevels [49].

1 2 3 4
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Figure 3. (Color online.) Spin noise spectra calculated according to

Eqn (23) (solid curves) and numerically in the central spin model taking

into account the nuclear spin dynamics (dots) for different transverse

external fields OL � 0 (black 1), OL �
���
2
p

de (red 2), OL � 3
���
2
p

de (blue 3),
OL � 5

���
2
p

de (green 4) for tsde � 25
���
2
p

. Inset shows solid curves in the

bilogarithmic scale.
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The results of numerical calculations [50] are shown by
dots in Fig. 3. It is seen that the shape of the precessional peak
almost coincides in both approaches. The agreement becomes
better with an increase in the number of nuclear spins in the
numerical modeling. The agreement is almost complete at the
transverse magnetic field OL0de.

From an experimental point of view, peak broadening due
to the hyperfine interaction and g-factor distribution can be
considered to have a detrimental effect on applications. In
Refs [51, 52], an application of an alternating magnetic field
to overcome it has been suggested. It results in a series of
narrow peaks with a width of 1=ts at frequencies determined
by the field modulation frequency. If, in addition to the
alternating field, the system is subject to a static magnetic
field, the spin noise spectra demonstrate the Mollow triplet
structure [53]. It can be used to measure the spin relaxation
time ts under conditions when it is long compared to the spin
dephasing time T �2 � 1=de. This kind of experiment has been
performed for potassium atoms [54], and it is worthwhile to
carry out similar studies for quantum dots.

In addition to the problem of calculating the spin noise of
an electron interacting with a large number of nuclei, one can
analytically describe spin fluctuations of an electron interact-
ing with a single nuclear spin I. This situation is realized, for
example, for donor-bound electrons in isotopically purified
II±VI semiconductors [55, 56]. Since the isotropic hyperfine
interaction conserves the total spin, it is convenient to project
the Hamiltonian of the system onto a subspace, where the
total spin component along the magnetic field axis is
Iz1 � Sz1 � m� 1=2. For m � ÿI; . . . ; Iÿ 1, this `shortened'
Hamiltonian can be written as (for states with m � ÿIÿ 1
where the spin dynamics of I is absent)

Hm � �h�Xm �XL�Sÿ A

4
; �28�

where �hOm � �hO � �I� 1=2�A is the splitting between the
states with the total momenta I� 1=2 in the absence of a
magnetic field, A is the hyperfine coupling constant, and the
direction of the vector Xm is determined by its component
�hOm; z � �m� 1=2�A. Here, as above, we ignore Zeeman
splitting of nuclear spin sublevels. For a zero magnetic field,
after averaging over all values of m, we find the spin
correlation function in the following form:


Sz�0�Sz�t�
� � exp �ÿt=ts�

12�2I� 1�2

� �4I 2 � 4I� 3� 8I �I� 1� cos �Ot�� : �29�

The corresponding spin noise spectrum consists of two peaks
at o � 0 and o � O. For a transverse magnetic field, for
I � 1=2, the spin correlator has the form


Sz�0�Sz�t�
� � exp �ÿt=ts�

4
cos

�
Ot
2

�

�
�
cos

�
OLt

2

�
cos

� ~Ot
2

�
ÿ OL

~O
sin

�
OLt

2

�
sin

� ~Ot
2

��
;

�30�

where ~O �
��������������������������
O 2

L � �A=�h�2
q

. The corresponding spin noise
spectrum is shown in Fig. 4. Generally, it consists of four
peaks at the frequencies o � jO� OL � ~Oj=2. In the strong
field limit OL 4O, the spectrum consists of two peaks at

OL � O=2 [46, 57]. A weak magnetic field shifts the relaxa-
tional peak towards the frequency OL=2, which corresponds
to an effective g-factor of ge=2. Indeed, a weak field does not
mix the singlet and triplet states of the electron-nucleus
system; thus, the total spin precesses at half the frequency of
the electron. In the general case of I > 1=2, the small-field
effective g-factor equals ge=�2I� 1� [58].

3.2 Effect of exchange interaction
Many-body effects can be prominent in ensembles of
localized electrons. Let us consider, for example, an
ensemble of donor-bound electrons in a bulk GaAs-type
semiconductor. A typical magnitude of the electron spin
precession frequency is de � 2� 108 sÿ1 [10, 59]. Electron±
electron exchange interaction becomes comparable to the
hyperfine interaction at distances between the donors of
about 0:1 mm, which corresponds to the donor density
nd�1014ÿ1015 cmÿ3. Since in GaAs the metal-insulator
transition takes place at much higher donor densities
� 2� 1016 cmÿ3 [60], one has to take into account an
interplay between the electron±electron exchange interac-
tion and hyperfine interaction between electron and nuclear
spins to describe the spin noise of donor-bound electrons in a
bulk semiconductor even at a relatively low doping level.
This interplay from the point of view of spin noise has been
theoretically studied in Ref. [61].

A model of clusters has been proposed, where the
ensemble of donors is divided into groups where the
exchange interaction is more efficient then the hyperfine
one. Inside the cluster, the spin dynamics is controlled by
both the exchange and hyperfine interaction, while the
exchange interaction between the clusters can be disre-
garded. It can be said that a many-body localization of spin
excitations on clusters takes place.

Competition between hyperfine and exchange interaction
effects can be most simply described, for the illustrating case
of two electrons strongly bound by the exchange interaction.
Ignoring the hyperfine interaction, the states of the pair of
electrons are characterized by the total spin S � 0 (singlet)
and S � 1 (triplet) and spin component Sz along a given axis
z. If the splitting between the singlet and triplet is large
enough, the mixing of these states via the hyperfine interac-
tion can be disregarded. One can, therefore, consider
separately the dynamics of the triplet state with the total
spin S � 1. Fluctuations dS of the triplet spin state are
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described by Eqn (5) with the effective nuclear field

Xeff � X1 �X2

2
: �31�

The dispersion of Xeff is half that of the nuclear fields X1

and X2 acting on two electrons. Hence, the spin noise
spectrum normalized per electron is given by Eqn (24) with
the replacement of de by de=

���
2
p

. As a result, the peak ato � 0
is the same as in the absence of the exchange interaction, while
the peak resulting from spin precession is shifted to the
frequency de=

���
2
p

, its height increases by a factor of
���
2
p

, and
its width, respectively, decreases by a factor of

���
2
p

compared
with that of the peak in the absence of the exchange
interaction. This is due to an effective averaging of the
nuclear fields caused by the exchange interaction.

In the ensemble of donors, with an increase in electron
density characterized by a dimensionless parameter Z �
pndR 3

c =6, where Rc is the distance between the donors with
the exchange interaction equal to �hde, the precessional peak in
the spin noise spectrum shifts to lower frequencies (see Fig. 5),
in qualitative agreement with the experimentally observed
increase in spin relaxation time with an increase in the density
of the donor-bound electrons in bulk GaAs [60].

At a sufficiently high density of donors, the cluster model
described above can not be applied. In this case, an infinite
cluster is formed in the system, which corresponds, in the
classical description, to percolation, and in the quantum
description, to a delocalization of spin excitations by many-
body interactions. The spin diffusion takes place over the
infinite cluster, which, due to hyperfine fields, results in spin
relaxation [62]. The spin noise spectrum in this situation
consists of a single zero-frequency peak with the width
controlled by the spin relaxation time. Modification of the
spin noise spectra with an increase in the donor density is
discussed in more detail below in Section 3.4.

3.3 Effect of electron hopping
Apart from the exchange interaction, electron hopping
between the localization sites can also result in quantitative
and even qualitative modification of the spin noise spectra.
When only a small fraction of localization centers is occupied
with electrons, the spin noise spectrum can be found from
single-particle kinetic equations:

dSi

dt
� Xi � Si �

X
j

�Wi j Sj ÿWjiSi� ÿ Si

ts
; �32�

where Si is the average spin at the ith site, Xi is the
corresponding precession frequency in a field of the
nuclei, and Wij are the hopping rates between the centers.
According to a general rule, the correlation functions
hdSi; a�t� t� dSj; b�t�i satisfy the same set of equations [3],
which should be solved together with initial conditions
describing the same-time correlators (see Section 2). This set
of equations can be solved analytically provided that the rates
of all transitions are equal to each other:Wi j �W0=N, where
W0 is the rate of electron departure from a given site, andN is
the total number of sites. The spectrum of the total spin
fluctuations per electron, S �Pi Si, in this model has the
form [64]

�dS 2
z �o �

to
4

A�to�
1ÿW0toA�to� � c:c: ; �33�

where 1=to � 1=ts �W0 ÿ io and

A�t� �
�
1� O 2

i; zt
2

1� O 2
i t 2

�
; �34�

with the averaging performed over all sites. This expression is
valid both in the absence of an external field and when the
field is applied along the z-axis. Expressions for the spin noise
in the transverse field are more cumbersome; they are given in
Ref. [64].

When the field is absent, averaging with distribution
function (22) can be done analytically with the result

A�t� � 1

3
� 4

3�det�2
ÿ 4

���
p
p

exp
ÿ
1=�det�2

�
3�det�3

erfc

�
1

det

�
: �35�

Depending on the ratioW0=de, the shape of the spectrum can
be qualitatively different, as will be discussed in more detail in
Section 3.4. This model well describes the Si donor bound
electron spin noise in GaAs [65] and the Al donor bound
electron spin noise in CdTe [63], as illustrated in Fig. 6.

Themodel withN4 1 described above neglects the effects
of electron return to the initial localization center. These
effects can be easily described for a pair of localized electrons
[66]. Spin noise spectra for two electrons taking into account
the exchange and hyperfine interactions, as well as electron
hopping between sites, have a universal low-frequency
divergence � ln �1=o�. It is caused by competition between
the spin blockade effect [67, 68] and nuclei-induced electron
spin precession. Indeed, if for two electrons the frequencies of
spin precession are parallel,X1 k X2, then, in the triplet state,
where the electron spins are parallel to the axis of frequencies,
electron hops are forbidden, and the spin relaxation (at
ts !1) is absent. If the angle between the hyperfine fields y
is small, the spin fluctuations decay due to electron hopping
between the sites as [69]

dS�t� / exp

�
ÿ g
�
1ÿ cos �y��t

2

�
; �36�

where g is the hopping rate in the singlet state. Averaging of
this expression over the directions of nuclear fields results in
long-time asymptotic behavior / 1=t, which corresponds to
the logarithmic divergence of the spectra at low frequencies.
For a small number N of interacting electrons, the same
arguments demonstrate that the spin fluctuations decay as
1=tNÿ1; thus, the noise amplitude at low frequencies remains
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finite even at ts !1. Hence, the effects of electron returns
result, generally speaking, in qualitative modification of the
spin noise spectra at low frequencies. Note that there is an
exponentially wide spread of the transition rates Wi j in real
systems, which may result in additional features of low-
frequency spin fluctuations [69].

3.4 Effect of quantum-mechanical tunneling
The spin noise spectra can be modified by the electron
tunneling between the localization centers apart from the
effects of exchange interaction and hopping. In this section,
we assume, for simplicity, that the electron density is much
lower than the density of the localization sites. Thus, we

disregard the electron-electron interaction. We also assume
that inelastic hopping is absent, e.g., due to the low
temperature. In this situation, the system Hamiltonian has
the form

H �
X
i; j; s

ti jc
y
i; scj; s � �h

X
i

XiSi ; �37�

where ti j are the tunneling matrix elements between the
centers, and ci;s is the annihilation operator of the electron
in the spin state s at the site i. The spin noise spectrum in this
case can be calculated using Eqn (27).

It is instructive to compare the modifications of the noise
spectra in the models described above, which account for an
exchange interaction, electron hopping, and tunneling. With
this in mind, we have calculated the spin noise spectra for an
ensemble of N � 10 randomly and independently distributed
sites with different densities using the periodic boundary
conditions. For the three models under consideration, we
have chosen the analogous set of parameters: (a) exchange
interaction constants Ji j � J0 exp �ÿri j=aB�, (b) hopping rates
Wij �W0 exp �ÿri j=aB�, and (c) tunneling constants ti j �
t0 exp �ÿri j=aB�, with J0=��hd� �W0=d � t0=��hd�4 1, where
aB is the Bohr radius. The results of the calculations are
presented in Fig. 7.

Since the characteristic distance between the centers is
l � nÿ1=3, the shape of the spectra is determined by a dimension-
less parameter x�J0 exp �ÿl=aB�=��hd��W0 exp �ÿl=aB�=d �
t0 exp �ÿl=aB�=��hd�. For the black curves in Fig. 7, this
parameter is small (x � 10ÿ17). In this case, the hyperfine
interaction of electron and nuclear spins is much stronger
than the coupling with the other centers. The spin noise
spectrum is, therefore, described by Eqn (24). With an
increase in the density, the spin gets distributed over several
centers. In the case of the exchange interaction (Fig. 7a), as
described in Section 3.2, a many-body localization on small
clusters takes place [70, 71], and afterwards the spin becomes
distributed over all N sites. In this case, the nuclear fields are
effectively averaged, so the spin precession peak shifts to
lower frequencies. As noted above, the spin noise spectrum
consists of a single peak at zero frequency in the limit of an
infinite number of localization sites and their high density.

In the case of hopping, the spin fluctuations are also
delocalized. Qualitatively, the electron spin precesses in the
effective magnetic field, which changes with time as a result of
electron hopping between the centers with different XN; i. If
the hops are inefficient, W0=de 5 1, they only broaden the
zero frequency peak. In this case, Eqn (24) holds with the
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replacement tÿ1s ! tÿ1s � 2W0=3. At a higher density of
centers and higher temperature, when the hopping becomes
fast,W0=de 4 1, a dynamical averaging of nuclear fields takes
place. In the infinite system, N!1, the spin noise spectrum
has a Lorentzian shape with the width � d 2

e =W0. Note that,
for the green curve in Fig. 7b, the electron travel time around
all N centers is shorter than the spin precession period; thus,
the fields of all the centers are averaged.

The case of quantum-mechanical tunneling is qualita-
tively different from those described above. This is because,
even if the parameter x is not small, the electrons are localized
by the Lifshitz mechanism [72, 73]. The origin is the
exponentially broad distribution of the tunneling constants
(strong `off-diagonal' disorder). With an increase in density,
the localization length slowly increases, and the spin preces-
sion peak shifts to lower frequencies. However, in contrast to
the previous cases, the electron delocalization takes place at
much higher densities, when na 3

B � 1. This regime is not
reached for the parameters of the calculations used for Fig. 7.

Interestingly, in the model where the nuclear fields are
absent, but the exchange interaction between the localized
electrons is present with an exponentially broad distribution
of the coupling constants, the many-body localization of the
spin fluctuations due to this spread (i.e., by a mechanism
analogous to the Lifshitz model) does not take place. The
localization is prevented by the conservation of the total
angular momentum. It is clear, for example, that the state
with the maximal total spin of all electrons is many-body
delocalized [74]. An analysis of the symmetries of the
Hamiltonian shows that the system in this case is ergodic
[70]. If the total angular momentum conservation law is
broken, e.g., in the case of anisotropic exchange interaction,
the system allows a many-body localization. Such situations
are analyzed in more detail in the next Section 4 in respect to
the fluctuations in one-dimensional spin chains.

3.5 Spin noise in nonequilibrium conditions
Initially, spin noise spectroscopy was considered a tool to
study the spin properties of a system under conditions close to
thermal equilibrium [11, 13]. Indeed, the fluctuation dissipa-
tion theorem is applicable in this case, and the spin noise
spectrum reflects the frequency dependence of the imaginary
part of the spin susceptibility (see Eqn (14)). If the system is
brought out of equilibrium, e.g., in conditions of the optical
orientation of spins, the fluctuation dissipation theorem is not
applicable. This situation requires development of the
corresponding microscopic theory of nonequilibrium spin
noise analogous to that of nonequilibrium fluctuations of
electric current [27, 29, 33, 75, 76]. In this case, spin noise
spectroscopy allows one to obtain more information about
the system dynamics than in the equilibrium conditions [54].
For bulk semiconductors under optical orientation condi-
tions, this problem was solved in the pioneering study [77].

As we have already demonstrated, the spin dynamics of
localized charge carriers are mainly controlled by hyperfine
interaction with the host lattice nuclei. Naturally, a question
arises about the modification of the spin noise spectra when
the nuclear spin system is out of thermodynamic equilibrium.
The simplest example is nonequilibrium nuclear spin polar-
ization. Experimentally, it can be achieved using the dynamic
polarization of nuclei by circularly polarized light, which will
be analyzed in more detail in Section 7. Here, we only note
that a considerable (exceeding 50%) nuclear spin polarization
suppresses the nuclear spin fluctuations and modifies the

distribution function of nuclear spins F�XN� (22) [78]. As a
result, the precessional peak in the electron spin noise
spectrum can narrow compared with the result of Eqn (25)
[79]. Its width can be reduced by several orders of magnitude
if the nuclear spin polarization approaches 100%.

The electron spin precession mode-locking effect in the
external magnetic field arising in the optical orientation by a
train of circularly polarized pulses [80, 81] can serve as
another example. The nuclear spins get tuned in such a way
that the electron spin precession becomes commensurable
with the pulse repetition rate. As a result, the electron spin
noise spectrum takes the shape of a sequence of narrow peaks
at frequencies satisfying this synchronization condition [82].
Such a structure of the spin noise spectrum directly reveals the
nonequilibrium nuclear field distribution function.

Experimentally, themost natural nonequilibrium situation
arises when either the absorption of the probe beam or
additional nonresonant excitation of the system creates none-
quilibrium electrons and holes in a quantum dot. It affects
both the dynamics of the system andmicroscopic mechanisms
of the Faraday and Kerr rotation effects. A broad range of
nonequilibrium spin noise spectroscopy experiments can be
described within the four-level model formulated in Refs [33]
and [83]. In this model, in addition to the spin-degenerate
ground state, a two-fold degenerate excited state, e.g., the trion
state, is taken into account (see Fig. 8).

Let us assume that the excitation and recombination
processes in the four-level model conserve the spin z
component. The rates of these processes G and R, respec-
tively, do not depend on the spin orientation, as shown in
Fig. 8. Thus, the occupancy of the ground state ng satisfies the
equation

dng
dt
� ÿGng � Rnexc ; �38�

where nexc � 1ÿ ng is the occupancy of the excited state. In
the steady state,

ng � R

R� G
: �39�

Equations of motion for a spin in the ground state, Sg, and
excited state, Sexc, have the form

dSg

dt
� Xg � Sg ÿ Sg

tgs
ÿ GSg � GS exc � 1

t0
S exc
z ez ; �40a�

dS exc

dt
� Xexc � Sexc ÿ Sexc

texcs

ÿ RS exc � GSg ; �40b�

texcs

tgs

jexci

jgi

G RRG

Figure 8. Transitions between ground, jgi, and excited, jexci, states of the
localization center and of spin relaxation in both states. Solid and dashed

thick arrows denote spin component, S g; exc
z , in ground and excited states,

respectively. (Adapted from Ref. [84].)
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where Xg; exc are the frequencies of the spin precession in the
ground and excited states due to both the external magnetic
field and hyperfine interaction, tg; excs are the phenomenologi-
cal spin relaxation times, and ez is a unit vector along the
growth axis of the structure. We have taken into account in
Eqns (40) that the rate of recombination (accounting for two-
level system saturation effects) can be recast asR � G� 1=t0,
where t0 is the spontaneous trion recombination time. In the
latter process, according to the selection rules, only the z-spin
component is conserved [33, 85]. Spin noise spectra can be
calculated analytically in this model solving the kinetic
equations for the spin correlators (see Section 2).

The situation of a nonresonant excitation of singly
charged (by electrons or holes) quantum dots is the most
illustrative one [84]. Corresponding spin noise spectra are
shown in Fig. 9a, b. The spin noise spectra have a Lorentzian
form, whose area and half-width are shown in Fig. 9c, d as
functions of the excitation power density. The precessional
peak in these spectra is at higher frequencies and not shown in
the figure.

Despite the fact that, under nonresonant excitation there
are many excited states instead of two, the model described
above can quantitatively describe the spin noise spectra and
their modification due to the generation of nonequilibrium
electrons and holes. Assuming that the generation and
recombination processes are faster than the spin relaxation,
one can show that the average rate of the spin relaxation is a
weighted sum of the relaxation rates in the ground and excited
states:

1

t �s
� n g

tgs
� nexc
t excs

; �41�

where the occupancies of the states are given by Eqn (39). The
spin noise power is proportional to n2g. From a fit of the
experimental data, the spin relaxation times t gs � 200 ns and
t excs � 19 ns are obtained for both the studied samples.

In order to enhance the spin signals, one can use
microcavities which, however, also increase the amplitude
of the electromagnetic field acting on the charge carriers
[86]. In the weak coupling regime, the model described
above can be used to calculate the nonequilibrium spin
noise spectra of charge carriers localized in the quantum

well width fluctuations taking into account the absorption
of the probe beam and excitation of trions [83]. The spin
relaxation of resident charge carriers becomes faster and
anisotropic with an increase in the excitation power, and at
the same time the effective spin precession frequency
decreases. The anisotropy is related to the specifics of the
selection rules, according to which the excitation of the
trion and its consequent radiative recombination erases the
spin components perpendicular to the growth axis of the
structure, while this process does not affect the longitudinal
spin component (see Eqn (40)).

Figure 10 shows the spin noise spectra measured experi-
mentally (a) and calculated theoretically (b) for different
intensities of the probe beam. Generally, the spectra consist
of two peaks related to the spin relaxation (at the zero
frequency) and the spin precession (at a positive frequency).
An increase in the power of the beam results in the
suppression of the precessional peak and enhancement of
the relaxational peak.

Interestingly, a simplified description of the spin
dynamics at a high power of the probe beam can be carried
out in the terms of the quantum Zeno effect [87 ± 89]. In
agreement with general postulates of quantum mechanics, a
continuous detection of electron spin should result in the
`freezing' of the spin dynamics due to the quantum back-
action [90]. It results in a renormalization of the spin
precession frequency in the external transverse magnetic
field OLas [91, 92, 200]

O �
�����������������
O 2

L ÿ l2
q

: �42�

Here, the phenomenological parameter l characterizes the
`measurement strength', which is proportional to the power
of the probe beam. In the framework of the four-level model,
it can be found that

l � Gt excs

2�t excs � t0� ; �43�

so both descriptions of nonequilibrium spin fluctuations are
equivalent.

In amicrocavity with a single quantum dot, a strong light-
matter coupling regime can be realized [86]. Electron spin
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polarization in such structures can result in macroscopic
values of the polarization plane rotation angle [93], and it
can also allow for a complete reflection of one of the circular
components of the probe beam with a complete transmission
of the other one. It is important to note that, for a single spin,
ensemble averaging does not take place. Therefore, the
fluctuations of the optical signals, particularly, those of the
reflection and transmission coefficients of light passing
through the system, can be macroscopic as well.

A theoretical description of spin noise in the strong-
coupling regime requires consideration of the quantum
nature of the electromagnetic field. The correlation functions
of the Faraday, Kerr, and ellipticity signals can be expressed
through the averages of the four field operators in the
microcavity, by analogy with the second-order correlation
function g �2��t�, which describes light intensity fluctuations
[94]. These fluctuations depend on the electron spin dynamics
due to the fact that, depending on the mutual orientation of
the electron spin and photon angular momentum, the light
can pass through the cavity or be reflected from it. The
simplest optical signal reflecting the spin noise in such a
system is the intensity transmission coefficient T of circularly
polarized light. Its correlation function, hdT�t� dT�t� t�i,
can be expressed as


dT�t� dT�t� t��
T 2
0

� g �2��t� ÿ 1 ; �44�

with T0 being the average transmission coefficient.
Usually, the spin relaxation time and precession period in

an external magnetic field are much longer than the trion
recombination time, the photon lifetime in the cavity, and the
period of Rabi oscillations between the polariton states. This
separation of time-scales allows for developing an analytical
approach to calculate the electron and photon dynamics in
the system. In the framework of this approach, the expres-
sions for the correlation function of the light transmission
coefficients have been derived in the limit of small light
intensities [94]. These expressions agree well with numerical
calculations based on the density matrix formalism. The
spectrum of the transmission coefficient noise, generally,
consists of the spin and photon components which contain
information, respectively, about the spin dynamics in the
system and about the properties of the excited states, such as
polariton splitting and the lifetimes of the excited states.

4. Spin chains

Among the most intriguing objects for the analysis of spin
dynamics and spin fluctuations are one-dimensional spin
chains. Interest in spin diffusion and spin localization in
chains is related, on the one hand, to the fact that one-
dimensional systems are traditionally used as objects to test
theoretical approaches that can also be applied to systems
of larger dimensions, and, on the other hand, to the
presence of a number of objects that demonstrate pro-
nounced one-dimensional properties [95±98]. Here, we will
focus on one of the most studied and widely applied models
of spin chains: a spin-1=2 XXZ chain ofN sites with disorder
described by the Hamiltonian

HXXZ � ÿJ?
XNÿ1
m�1
�Sx

mS
x
m�1 � Sy

mS
y
m�1
�

ÿ Jz
XNÿ1
m�1

Sz
mS

z
m�1 � �h

XN
m�1

OmS
z
m ; �45�

where index m numerates N sites in the chain, J? and Jz are
the exchange interaction constants between the nearest-
neighbor spins, S a

m are spin components of sites m
(a � x; y; z), and Om are random magnetic fields at the chain
sites oriented along the z-axis. Using a Jordan±Wigner
transformation [99], one can map the spin-1=2 XXZ chain
model onto a chain of spinless fermions. In this mapping,
exchange interaction constants J? and Jz describe fermion
hopping between nearest-neighbor sites and nearest-neighbor
interaction, respectively, while the termsOmS

z
m correspond to

random on-site energies. In this model, the projection of the
total spin S �PN

m�1 Sm on the z-axis is conserved.
In particular, for the XX model without disorder, when

J? � J, Jz � 0, and O z
m � 0, the Hamiltonian of the system

after Jordan±Wigner transformation has a very simple form,

H � J

2

XNÿ1
m�1
�aymam�1 �H:c:� ; �46�

where operators am and a
y
m obey the standard commutation

rules for fermions and describe annihilation and creation of
quasi-particles at the chain sites. The z components of spins
are given by

Sz
m � aymam ÿ 1=2 ; �47�
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Figure 10. (Color online.) Spin noise spectra under conditions of the generation of singlet trions for different optical excitation powers: (a) experiment,

(b) theory. (Adapted from Ref. [83].)
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so the problem of spin fluctuations is reduced to the
calculation of the correlation function of particle density.
Hamiltonian (46) is diagonalized by the Fourier transforma-
tion

H �
X
k

Eka
y
kak ; �48�

with the corresponding dispersion law

Ek � J cos k ; �49�

where ak�
�������������������
2=�N�1�p PN

m�1 sin �km� am with k�pn=�N�1�,
and index n takes values 1; 2; 3; . . . ;N.

Exact expressions for the correlation functions
hSz

m�t�Sz
m 0 �0�i between the chain sites with indexes m and m 0

were found for the XX model without disorder [100, 101]. In
the limit of an infinite number of sites in the chain, the
expression for correlation functions of spin z-components
has a simple form:


Sz
m�t�Sz

m 0 �0�
� � 1

4
J 2
jDmj

�
Jt
�h

�
; �50�

where the order of the Bessel function JjDmj�Jt=�h� is
determined by the absolute value of the difference between
chain site numbers Dm � mÿm 0 and the argument of the
Bessel function depends on the strength of the exchange
interaction. Here, as it was done earlier, we assume that the
temperature exceeds by far all other energy scales in the
system, but the thermalization time is long enough to ignore
inelastic processes. The XX model also allows one to obtain
exact expressions for the transverse correlation functions
hS a

m�t�S a
m 0 �0�i, where a � x; y, which correspond to the

correlations of fermionic operators a
y
m, am 0 [102±105]. In the

case of large number of sites and high temperatures, spin
correlation functions for x- and y-components are equal to
each other and can be written as

Sx
m�t�Sx

m 0 �0�
� � 
Sy

m�t�Sy
m 0 �0�

� � 1

4
exp

�
ÿ
�
Jt
2�h

�2�
dm;m 0 ;

�51�

which corresponds to the spectrum of total spin noise

�S 2
x ��o� �

N�h
���
p
p
2J

exp

�
ÿ
�

�ho
J

�2�
: �52�

These expressions demonstrate that spin fluctuations along
the x- and y-axes are localized and do not propagate, while
spin fluctuations along the z-axis propagate with the typical
velocity / J [106, 107], i.e., nondiffusively. It was shown in
Ref. [108] that for the XXZmodel with Jz 6� 0 the behavior of
correlation functions changes and can become diffusive.

Let us now analyze spin correlators in the presence of
random fields Om, which can be caused, for example, by the
hyperfine interaction with the nuclear spins of the crystal
lattice. Following Eqn (22), let us consider the Gaussian form
of the distribution function of random fields:

F�O� � 1���
p
p

d
exp

�
ÿ O2

d 2

�
: �53�

For the XX model, any small disorder leads to the localiza-
tion of spin fluctuations. Formally, this problem is equivalent

to the one of noninteracting electron localization in the 1D
system with `diagonal' disorder [109].

First, random fields lead to themodification of the density
of states, which in the absence of disorder reads

r0�E � �
1

p
�����������������
J 2 ÿ E 2
p �54�

and diverges in the vicinity of E � � J, as the velocity of
carriers is equal to zero for these energy values (see Eqn (49)).
As it was shown in Refs [109, 110], weak disorder (d5 J )
modifies density of states r in the vicinity of the band edges:

r�E � � 1

p2

������
E0

J

r
d

dDE
1

Ai2�ÿ2DE=E0� � Bi2�ÿ2DE=E0�
;

�55�
where DE � �Eÿ J, E0 � �hd

����������
�hd=J3

p
, and Ai�x�, Bi�x� are

Airy functions of the first and second kind, respectively.
Second, the presence of disorder leads to the localization

of wave functions. The distribution function of the inverse
localization length w�A� can be found by averaging the
distribution function of the inverse localization length for a
given velocity over all the wave vectors [111, 112]. The result
reads

w�A� � 1

2pi

� i1

ÿi1

dxx

A0 sinh
2� ���xp �

� exp

�
xA

A0

��
I0

�
xA

A0

�
� I1

�
xA

A0

��
; �56�

where A0 � 3��hd�2=�2J 2�. Integration is performed along the
imaginary axis, Re �x� � 0.

Similarly, one can find spin correlation function
hSz

m�0�Sz
m 0 �1�i in the long time limit, because in this limit

one can disregard the interference effects between the wave
functions corresponding to the different eigenstates. Figure 11
shows the result of numerical calculations performed for the
105 sites. For a fixed value of the particle wave vector k, the
localization length is equal to l0 � 2J 2=��hd�2 sin2 k [113], and
the explicit expression for the correlation function of particle
density was found in Ref. [114]. Its long distance asymptotic
form is [115]

p�Dm� � p3
���
p
p

16l0

�
l0
Dm

�3=2

exp

�
ÿ Dm

l0

�
: �57�
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Figure 11. Spin correlation function for the XXmodel with disorder in the

long time limit. Solid curve is calculated analytically; dots correspond to

the numerical calculations performed for the 105 sites with periodical

boundary conditions for �hd � 0:035J.
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Averaging of the exact correlation function over the wave
vectors gives the possibility of obtaining the expression for the
spin correlation function in the limit of long distances and
high temperature:



Sz
m�0�Sz

m 0 �1�
� � p3J 2

32d 2Dm 2
exp

�
ÿ d2

8J 2
Dm
�
: �58�

For the XXZ model, the localization takes place in the
presence of arbitrary small disorder. In this case, the thresh-
old of many-body localization can be studied [116±117].
However, for the isotropic XXX model (J? � Jz), the
conservation of total angular momentum makes complete
many-body localization impossible [70].

The role of inelastic processes in the dynamics of spin
correlators in 1D systems is still not well understood. The
interplay between electrons hopping between the localized
states and hyperfine interaction with nuclear spins of the
lattice in a quantum wire was analyzed in Ref. [119]. In the
case of a low density of sites, the localization leads to an
exponentially broad distribution of the hopping times,
resulting in low frequency singularity in the noise spectra.
The dynamics of spin fluctuations in this regime can be well
described by the model of pairs of closely localized sites and
single states, similarly to the model of clusters, which was
discussed in the previous Section 3.

5. Two-dimensional systems

The key difference between two-dimensional and one dimen-
sional systems with disorder and zero dimensional systems
from the point of view of the spin dynamics and spin noise is
the free propagation of the charge carriers. This leads to
considerable suppression of the hyperfine interaction, so that
the spin dynamics is mainly driven by the spin-orbit
interaction.

In structures without an inversion center, the effective
Hamiltonian consists of the term responsible for the kinetic
energy of a particle ek � �h 2k 2=2m, where k is the quasi-
wavevector and m is the effective mass of an electron, and
spin-dependent terms, which can be written in the form [15,
120, 121]

Hso � �h

2
�Xkr� : �59�

Here, Xk is the pseudovector with the absolute value and
direction strictly related to the electron wavevector k. In
quantum well structures based on III±V and II±VI materials
and in a number of systems based on silicon and germanium,
the components of vector Xk are linearly related to the
components of k. In particular, in quantum wells with the
zinc blend structure grown along the z k �001� direction,
pseudovector Xk can be presented in the following form
[122±125]:

Xk � �b1ky; b2kx; 0� ; �60�

where the axes x k �1�10� and y k �110� are the main axes of the
C2v point symmetry group, which generally characterizes the
symmetry of such structures. The constants b1; 2 are deter-
mined by the specific structure and microscopic mechanisms
of the lifting of the spectrum spin degeneracy. Notably, the
case of b1 � ÿb2 corresponds to the dominant structure
inversion asymmetry (the Rashba contribution to the spin

splitting), and b1 � b2 corresponds to the bulk (or in some
cases interface) inversion asymmetry (the Dresselhaus con-
tribution).

It follows from the form of effectiveHamiltonian (59) that
the electron spin precesses in the effective magnetic field with
the frequency Xk, which determines the dynamics and
relaxation of the spin fluctuations. The regime of the spin
dynamics is determined by the relation between the typical
frequency Ok and the electron collision time t � (strictly
speaking, the single electron momentum relaxation time,
which accounts for the scattering of the static disorder and
phonons as well as electron-electron collisions [126, 127]).
Hereafter, we assume that the typical spin splitting �hOk is
much smaller than the electron kinetic energy, which allows
us to ignore the effect of the spin dynamics on the orbital
electron motion. In the limit of frequent collisions

Okt �5 1 ; �61a�

the relaxation of spin fluctuations is described by the
exponential law, and the correlation functions obey the
system of equations (cf. Eqn (11) and Refs [2, 124])

dCab�t�
dt

� Gaa 0 Ca 0b�t� � 0 ;

Gab �

�O 2

kdab ÿ Ok; aOk; b� t �
�
: �61b�

In the tensor of the inverse spin relaxation times Gab, the
averaging is performed over the electron ensemble described
by the equilibrium Fermi±Dirac distribution function f �ek�
according to


F �k�� �Pk F �k� f 0�ek�P
k f
0�ek� :

The situation turns out to be fundamentally different
when the collisions are relatively rare:

Okt �01 : �62a�

In this case, the electron spin rotates by a considerable angle
between the consequent collisions, so the spin noise demon-
strates an oscillating behavior in time, which is analogous to
the spin polarization oscillations after pulsed optical excita-
tion [128±130]. As an example, let us consider equations that
describe the dynamics of the correlation function of the z
component of the total spin of electron gas for arbitraryOkt�.
Let us introduce the auxiliary function

Czz�t; k; k 0� �

�

dsk; z�t� t�dsk 0; z�t�
	�
;

where sk; z�t� is the component of the spin polarization with
the wave vector k. We have Czz�t� �

P
k; k 0 Czz�t; k; k 0�. This

function obeys the equation�
q
qt
� 1

t �

�
q
qt

Czz�t; k; k 0� � O 2
kCzz�t; k; k 0�

�
�

q
qt
� 1

t �

�
Czz�t; k; k 0� ÿ �Czz�t; k; k 0�

t �
� 0 ; �62b�

where the bar above the expression denotes averaging
over the directions of vector k for its fixed absolute
value. This differential equation of the second order in t
is obtained from equations of the first order for the
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correlator hfdsk; z�t� t� dsk 0; z�t�gi and the combination
Ok; yhfdsk; x�t� t�dsk 0 ; z�t�gi ÿ Ok; xhfdsk; y�t� t�dsk 0; z�t�gi,
accounting for the fact that frequency Xk is perpendicular
to the z-axis. In particular, for degenerate electrons,
isotropic spin splitting in the quantum well plane and
OkFt

�4 1, where kF is the Fermi wave vector, we have
Czz�t� / cos �OkF t� exp �ÿt=2t �� [128].

Interestingly, the degeneracy of the electron gas leads to
the suppression of the spin noise intensity. In can be easily
seen from the direct calculation of the equilibrium values of
the correlators

Cab�0� � dab
4

X
k

f �ek�
�
1ÿ f �ek�

�
� N

4

kBT

EF
; kBT5EF � �h2k 2

F

2m
;

1; kBT4EF .

8<: �63�

Here, N is the electron concentration. As expected from the
qualitative arguments, in the degenerate gas, the electron
spins fluctuate only in the states in the energy window kBT in
the vicinity of the Fermi energy. The filled states with
EF ÿ e4 kBT do not contribute, since in each such state
there are two electrons with opposite spins. A similar
suppression also takes place in three-dimensional systems
with free electrons and was experimentally observed in GaAs
crystals [9]. In the finite area, even at zero temperature, the
quantum correlations [2] give rise to an additional contribu-
tion, which is related to the finite wavelength of the electrons.

The linear relation between the magnetic fieldXk and the
electron wave vector k, as well as the possibility of free
electron propagation in the quantum well plane, leads to a
number of vivid features of spatio-temporal spin correlators.
Let us illustrate these effects by the case of compensation of
the Dresselhaus and Rashba terms b1 6� 0, b2 � 0. In this
case, the spin precession axis coincides with the x axis of the
structure and the spin rotation angle during electron motion
is determined only by its displacement along the y-axis, Dy:

y � mb1
�h

Dy : �64�

Notably, in this situation, the spin fluctuations in the different
places are correlated or anticorrelated depending on the value
of y in Eqn (64) and independently of ballistic or diffusive
electron motion. In this situation a persistent spin helix
emerges [132±135]. If b1 � 0, b2 6� 0, the spin helix forms
not along the y-axis, but along the x-axis. The absence of the
exact compensation of the structure and bulk asymmetries in
the spin splitting, as well as the presence of terms cubic in the
wave vector in the effective Hamiltonian, leads to the
violation of relation (64), but, in a broad range of para-
meters, long-lived spin modes with nontrivial spin correla-
tions are formed in two-dimensional structures.

A consistent theory of spin noise with spatial and time
resolution is developed in Ref. [136] (see also review [137]),
where experimental data concerning the observation of the
spin helix in the spin diffusion are given. Spatio-temporal spin
noise is characterized by the correlation function [cf. Eqn (4)]

Kab�q; t� �

fdsa�r� q; t� t�dsb�r; t�gs

�
; �65�

where the averaging is performed over t and r (with fixed t
and q). In the case of frequent collisions (61a), the authors of
Ref. [136] derived the compact analytical expression for the

Fourier transform of correlator (65):

Kab�q;o� �
� �
Kab�q; t� exp �iotÿ iqq� dq dt

� mkBT

16p�h2

�
1

ÿio� Ĝ�Dq 2 � i2t �L̂�q� �H:c:
�

ab
: �66�

Here, D is the electron diffusion coefficient, Ĝ is the tensor of
inverse spin relaxation times (61b), and the tensor L̂ has the
components

Lab�q� � ÿEabg�h
�2p
0

Og; k�qk� djk

2pm �
;

where jk is the polar angle of the vector k. This tensor
describes the electron spin precession and diffusion. The
electron gas is assumed to be degenerate.

In Fig. 12 (a), a possible scheme is presented for the
experimental detection of spatio-temporal spin noise in a
structure with a quantum well, while panels (b±e) show the
results of the calculation of the spatial distribution of the spin
density correlation functions performed inRef. [136]. One can
distinctly see the spatial oscillations of the spin polarization
even when the Rashba and Dresselhaus contributions to the
spin splitting are considerably different. This is related to the
fact, that, despite the many trajectories of electron propaga-
tion in the diffusive regime between the given positions, the
main contribution to the spin correlator is given by the
trajectories close to the rectilinear one.

Above, the situation where the spin splitting Xk does not
depend on the coordinates was considered. There are a
number of systems where the spin splitting of the bands is
absent or is significantly suppressed `on average', but the
spatial fluctuations are still present (see review [138]). The
spin dynamics in these systems can be considerably different
from the case of coordinate independent spin splitting. One
may expect that the spin noise in these systems will demon-
strate a number of specific features as well. This question
remains poorly investigated, but in quasi-one-dimensional
systems with the spatial fluctuations of spin splitting, a power
law divergence at low frequencies is expected [139].

Now, let us turn to a description of spin noise in two-
dimensional systems out of thermal equilibrium. The role of
spin-orbit interaction is particularly important if an external
electric field E is applied to the system and causes electron
drift. The nonzero average wave vector hkdri � �mm=�h�E,
with m being the mobility of the charge carriers, leadsÐdue
to spin-orbit interactionÐ to the nonzero average effective
magnetic field, which causes the regular precession of the spin
fluctuations with frequency Xkdr . This results in a current
induced shift of the peak in the spin noise spectrum. This
effect was proposed and theoretically described in Ref. [140].
If the external magnetic field is absent, the peak in the spin
noise spectrum is centered at the frequency Okdr , or at the
frequency jXkdr �XLj, with XL being the Larmor spin
precession frequency, if a magnetic field is present. Experi-
mentally, an analogous effect was observed in electron spin
resonance measurements in noncentrosymmetric SiGe quan-
tum wells [141].

With an increase in electric current, the nonequilibrium
effects in the spin noise spectra become even more pro-
nounced [29]. The general theory of spin noise in such
conditions is described in Ref. [33].

In Ref. [142], a microscopic theory of spin dynamics and
fluctuations of electron gas is developed for the streaming

936 D S Smirnov, V NMantsevich, M MGlazov Physics ±Uspekhi 64 (9)



regime taking into account the spin-orbit interaction. The
streaming regime is realized in relatively clean semiconductor
structures under the application of moderately strong electric
fields. It is characterized by ballistic electron acceleration to
the optical phonon energy during the time ttr, followed by the
emission of a phonon, loss of energy, and return to the region
of small energies [143].

In Ref. [142] the kinetic equation is derived that describes
the spin dynamics in the streaming regime taking into account
the spin-orbit interaction. It turns out to be convenient to
separate the region in the momentum space with the small
momentum component in the direction perpendicular to the
applied electric field (the so-called `needle') from the rest of
the momentum space. The dominant part of electrons in the
streaming regime is in the `needle'. Elastic scattering on
impurities or quasielastic scattering on acoustic phonons

leads to the scattering of electrons from the needle to the rest
of the momentum space. The separation of the two contribu-
tions to the spin distribution function allows the description
of the spin dynamics to be reduced to the determination of the
spin noise spectrum and analysis of the eigenmodes in the
system.

The damping rates of the different spin modes can be
considerably different. Depending on the relation between
Rashba and Dresselhaus spin splittings, the spin distribution
in the momentum space can quickly relax to the homo-
geneous one (zeroth eigenmode) or to the oscillating one
(one of the higher modes). In the latter case, a spin helix in
the momentum space arises. The damping of the most long-
lived spin mode can be determined by a combination of the
spin-orbit coupling and the quasielastic scattering, in
analogy with the Dyakonov±Perel mechanism [144], or by
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the electron penetration in the region, where the energy is
larger than the optical phonon energy, depending on the
system parameters.

The complex spin dynamics in the system manifests itself
in the spin noise spectra. The noise spectrum consists of a
series of peaks with their positions determined by the time of
acceleration to the optical phonon energy ttr / 1=E and the
average spin precession frequency in the spin-orbit field, Odr.
The shape of the spectra for different values of the parameter
Odrttr is shown in Fig. 13. The central frequencies and widths
of the peaks are determined by the eigenfrequencies and
decay times of the corresponding spin modes in the system.
The dominant peak is centered at the frequency Odr.
However, in the case of Odrttr � 2pk, where k is an integer
number, the spin helix in the momentum space emerges in
the system, as mentioned above, and the electron spin
rotates by an angle that is a multiple of 2p between the
two consequent phonon emissions, independently of the
number of elastic scatterings during this time. In this case,
the amplitude of the peak at the lowest frequency
drastically increases (see the black curve corresponding to
Odrttr � 2p).

Apart from electron systems, exciton and exciton polar-
iton systems are actively studied from the spin noise view-
point. The key feature of these systems is the fact that they are
fundamentally nonequilibrium, because excitons in quantum
wells and exciton polaritons in quantum microcavities have
finite lifetimes, so a considerable role in these systems is
played by the pumping and fluctuations of a number of
quasiparticles accompanying it (generation-recombination
noise). Moreover, excitonic systems have a rich fine struc-
ture: in quantum wells, there are optically active (bright)
excitons with a projection of the total angular momentum of
the electron hole pair on the growth axis mz � �1, as well as
dark states withmz � �2. InRef. [32], the spin noise theory of
bright and dark excitons is developed for quantum wells in a
transverse magnetic field, and the interplay between electron-
hole interaction leading to splitting between states with
jmzj � 1 and jmzj � 2 and the external magnetic field-
induced mixing of bright and dark states is analyzed. In
Refs [145, 146], the spin noise of exciton polaritons is studied
theoretically. Here, important effects are the deceleration of

the noise due to the Bose stimulation effect, modification of
spin noise statistics with an increase in the pump power [147],
and the considerable role of particle-particle interactions [146].
It was shown theoretically and experimentally that, in
structures with quantum microcavities, giant enhancement
of the spin noise can take place due to the effects of optical
instability [148].

6. High order spin correlators

In the previous sections, we considered the spin correlation
functions of the second order only. These correlators carry
information about the spin dynamics, but generally do not
describe them completely. Complete information about spin
properties is contained in the full set of correlators of all
orders. For the classical fluctuating quantity S�t�, the nth
order correlator has the form


dSz�t1� dSz�t2� . . . dSz�tn�
�
: �67�

Generally, for quantum operator dŜz�t�, this expression
should be symmetrized [90]:
�

dŜz�t1�fdŜz�t2� . . . dŜz�tn�
	
s
. . .
	
s

�
; �68�

cf. Eqn (4). Here, the order t1 < t2 < . . . < tn is assumed, and,
as above, we consider the thermal energy to be much larger
than the Zeeman splitting of spin states, so there is no average
spin polarization, hSz�t�i � 0, and all the correlators of odd
order vanish.

For an ensemble of N independent spins, it is con-
venient to study, instead of correlation function (67), the
cumulants [149±151]. They are defined by the generating
function

ln

�
exp

�Xn
i�1

xi dSz�ti�
��

: �69�

In particular, the analog of Eqn (67) is the coefficient Cn of
x1; x2; . . . ; xn in the decomposition of the generating function
into Taylor series. For example, for n � 2 and n � 4, the
cumulants have the form

C2

�
dSz�t�

	 � 
dSz�t1� dSz�t2�
�
; �70a�

C4

�
dSz�t�

	 � 
dSz�t1� dSz�t2�dSz�t3� dSz�t4�
�

ÿ 
dSz�t1� dSz�t2�
�

dSz�t3� dSz�t4�

�
ÿ 
dSz�t1� dSz�t3�

�

dSz�t2� dSz�t4�

�
ÿ 
dSz�t1� dSz�t4�

�

dSz�t2� dSz�t3�

�
: �70b�

Generally, in each average, the products should be symme-
trized similarly to Eqn (68).

The advantage of cumulants over the usual correlators is
additivity,whichcanbeseen fromthegenerating function (69).
For a total spin composed of N independent contributions
Sk�t�,

S�t� �
XN
k�1

Sk�t� ; �71�
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Figure 13. Electron spin noise spectra in the streaming regime for various

values of the external electric field. (Adapted from Ref. [142].)
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the cumulants are the sums of independent contributions as
well:

Cn

�
dSz�t�

	 �XN
k�1

Cn

�
dSk; z�t�

	
: �72�

It can be seen that, for N4 1, the dominant contribution to
the correlator (67) is made by the second order cumulant, and
the higher order cumulants can be ignored. Thus, the noise of
many independent spins is Gaussian, which means that the
high order correlators can be calculated using Wick's
theorem.

The noise from a few spins is, generally, non-Gaussian.
For example, for a single electron spin (S � 1=2), the same-
time fourth order cumulant is not zero:

C4 �


dS 4

z

�ÿ 3


dS 2

z

�2 � ÿ 1

8
: �73�

For different times t1 < t2 < t3 < t4, the cumulant is given by

C4

�
dSz�t�

	 � ÿ
dSz�t1� dSz�t3�
�

dSz�t2� dSz�t4�

�
ÿ 
dSz�t1� dSz�t4�

�

dSz�t2� dSz�t3�

�
: �74�

The cumulant of the nth order depends on nÿ 1 time
intervals, so its spectrum depends on nÿ 1 frequencies. The
simplest illustration of a spectrum of the high order is the
bispectrum, which is a section of the fourth order spin noise
spectrum. It is defined as a Fourier transform of the
correlator (70b) at the times t1 � t, t2 � t� t1, t3 � t� t,
t4 � t� t� t2, integrated over t:

B �o1;o2� �
� �

dt1 dt2 exp �io1t1 � io2t2�C4�t1; t2� ; �75�

where

C4�t1; t2� �
�
dtC4

�
dSz�t� dSz�t� t1�

� dSz�t� t� dSz�t� t� t2�
	
: �76�

The bispectrum reflects the correlation degree of the spin
noise at the frequencies o1 and o2. In the calculation of the
bispectrum of the quantum noise, the operators should be
symmetrized as in Eqn (68). As a result, for an ensemble of
electrons, using Eqn (74), we obtain

NC4�t1; t2� � ÿ�jt1j � jt2j�C2�t1�C2�t2�

ÿ
�1
ÿ1

�
C2�tÿ jt2j�C2�t� jt1j�

� C2�jtj � jt1j�C2�jtj � jt2j�
�
dt ; �77�

where

C2�t� �

fdSz�t� dSz�t� t�gs

�
: �78�

Provided the spin fluctuations precess in a transverse
magnetic field with the frequency OL and relax during time
ts (as in the derivation of Eqn (9)), the bispectrum at positive
o1 and o2 has the form

NB �o1;o2� �
t 3s
��d1 � d2�2 � 4

��d1d2 ÿ 1�
16�1� d 2

1 �2�1� d 2
2 �2

; �79�

where d1; 2 � �o1; 2 ÿ OL�ts and it is assumed that OLts 4 1.
This expression is shown in Fig. 14. The bispectrum is
centered at o1 � o2 � OL, and in the region where o1 ÿ OL

and o2 ÿ OL have the same sign, the bispectrum can be
positive, and it is negative in the other region. These cases
can be interpreted as positive and negative correlations
between the noise at frequencies o1 and o2 [20].

The approach described above is valid for describing so-
called `weak' quantum mechanical measurements, when the
measurement hardly changes the density matrix of the
system [152]. The finite strength of the measurement can be
described using the Krauss operators [153, 154]

K�s� �
�
2l
p

�1=4

exp
�ÿ l�sÿ Sz�2

�
; �80�

where Sz is the spin operator, s is the continuous real
parameter, and l describes the measurement strength. The
probability of the spin measurement is 1ÿ exp �ÿl=2�. After
a pulsed measurement, the density matrix takes the form

r �s� � K �s�rK �s� ; �81�

and it freely evolves between the measurements. After n
measurements, the average of the spin correlation function
can be found as

Sz�t1�Sz�t2� . . .Sz�tn�

�
�
��

. . .

�
s1s2 . . . sn Tr

�
r �s1; s2; . . . ; sn�

�
ds1 ds2 . . . dsn ;

�82�
where the parameters si (i � 1; 2; . . . ; n) characterize measure-
ments at times ti.

In the limit of weak measurements, when the parameter
l! 0, this definition of the correlation function coincides
with Eqn (68) [155]. In the limit of the strong measurements
(l!1), the correlator can be rewritten as


Sz�t1�Sz�t2� . . .Sz�tn�
� � X

m1 m2 ...mn

m1m2 . . .mn

� Tr
�
Pmn

Utnÿtnÿ1
ÿ
Pmnÿ1

�Utnÿ1ÿtnÿ2�. . .Ut2ÿt1�Pm1
rPm1

� . . .�Pmnÿ1
�
Pmn

�
; �83�
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Figure 14. (Color online.) Spin noise bispectrum in a transverse magnetic
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where m are the eigenvalues of the operator Sz, Pm are the
projectors on the corresponding eigenstates (Sz �

P
m mPm),

and superoperator Ut�r� describes the free evolution of the
density matrix during time t. In fact, this expression (83)
describes the average over all possible trajectories of the
system evolution among spin values mi at time moments ti,
andwith eachmeasurement the densitymatrix of the system is
projected to the corresponding state (eigenvalues mi are
assumed to be nondegenerate).

As a simple nontrivial example illustrating the difference
between strong and weak measurements from the point of
view of spin noise spectroscopy, one can consider the
correlators of spin S in a transverse magnetic field. The
second order correlator does not depend on the measurement
strength l and can be calculated using the methods described
in Section 2. ForS � 1=2, the fourth order correlator does not
depend on l either. However, the difference shows up for
S � 1. For example, for three equal time intervals, one can
show that

dSz�0� dSz�t� dSz�2t� dSz�3t�

� � 1

36

�
16 cos2 �OLt�

� exp

�
ÿ 2t

ts

�
�exp

�
ÿ 3t

ts

�
�cos �2OLt� exp

�
ÿ 3t

ts

�

� 6 cos �4OLt� exp
�
ÿ 3t

ts

��
; �84a�



dSz�0� dSz�t� dSz�2t� dSz�3t�

�
strong

� 1

18
cos2 �OLt�

� exp

�
ÿ2t
ts

��
8�exp

�
ÿ t
ts

�
�3 cos �2OLt� exp

�
ÿ t
ts

��
;

�84b�

where the first expression describes the `usual' correlator (68),
which corresponds to the weak measurements, and the
subscript `strong' corresponds to the limit l!1. The spin
relaxation here is described in the `t-approximation' for the
density matrix. These correlators are shown in Fig. 15 by the
black solid (1) and red dashed (2) lines, respectively.

In the limit of many particles, the spin noise is Gaussian,
so the fourth order cumulant vanishes and the fourth order
correlator reduces to the sum of the products of the second
order correlators (see Eqn (70b)). In this case, we obtain (the
spectrum is normalized by the number of spins)


dSz�0� dSz�t� dSz�2t� dSz�3t�
�
Gauss

� 1

9

�
2 cos 2 �OLt�

� exp

�
ÿ 2t

ts

�
� exp

�
ÿ 4t

ts

�
� cos �2OLt�

� exp

�
ÿ 4t

ts

�
� 2 cos �4OLt� exp

�
ÿ 4t

ts

��
; �85�

this expression is shown by the blue dotted curve (3) in Fig. 15.
In the case of the usual Faraday rotationmeasurement for

a single spin, the parameter l can be estimated as Ny 2
F [91],

where N is the average number of photons in the probe pulse
and yF is the Faraday rotation angle for completely polarized
spin. For typical experiments, the authors of Ref. [91] give the
estimate l � 10ÿ4. Measuring the high order spin correlators

allows one, for example, to distinguish between homogeneous
and inhomogeneous broadening of the spin resonances (spin
dephasing and decoherence times) [91, 156, 157], to study the
properties of the reservoir, which leads to spin relaxation [158,
159], and to study the effects of the interaction, which are not
accessible from the second order correlator [160]. For
electrons localized in quantum dots, the measurement of the
fourth order spin correlators allows obtaining the parameters
of the nuclear spin dynamics caused by precession in the
external magnetic field or in the Knight field or by the
interaction of the nuclear quadrupole moment with the
elastic strain in the quantum dot [161, 162].

In the case of monoexponential spin relaxation, the usual
spin noise spectrum consists of a series of Lorentzian peaks
with the corresponding widths centered at the eigenfrequen-
cies of the system (see Eqn (27)). Interestingly, the decom-
position of the free energy into powers of the spin operator
allows one to show that the spectra of the correlators of high
orders are also described by universal expressions with a small
set of parameters [163]. The same approach allows the use of
the time reversal symmetry to establish the general relations
between the spin correlation functions of high orders and
nonlinear spin susceptibility or the dependence of the lower
order spin correlators on the magnetic field [20, 64].

Typically, the spin noise is not measured using probe
pulses, but using continuous light. In this case, spin
measurements at intermediate times do not directly con-
tribute to correlator (82), but modify the density matrix [91,
200]. This was demonstrated in measurements of the second
order spin correlation function for a single quantum dot
[157]. Thus, for example, if strong spin measurements are
performed at the time moment t between the two other spin
measurements at times 0 and t (0 < t < t), then the
correlator takes the form


Sz�0�Sz�t�
�
t � 4



Sz�0�S 2

z �t�Sz�t�
�
; �86�

where the spin 1=2 is considered. For the strong intermediate
measurement, this correlator is generally different from
hSz�0�Sz�t�i [161, 162].

In the limit of strong continuous measurements, the spin
dynamics are almost frozen due to the quantum Zeno effect,
as described in Section 3.5. The spin noise in these conditions
is the telegraph noise: at eachmoment, the spin is in one of the
eigenstates [89].
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Figure 15. (Color online.) Fourth order correlator of a single spinS � 1 for
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940 D S Smirnov, V NMantsevich, M MGlazov Physics ±Uspekhi 64 (9)



In conclusion, we note that the direct measurement of the
high order spin correlators is challenging, and a number of
alternative detection methods are suggested. For example, to
overcome the parametric suppression of the high order
cumulants for many spins, one can study the `stimulated'
spin noise [165], when an external magnetic field [166] or
optical orientation synchronizes single spins, so that they are
no longer independent. The other possibility of high order spin
noisemeasurement is due to the nonlinear relation between the
detected Faraday rotation angle and the spin polarization.
This method allowed the authors of Ref. [167] to observe the
noise of optical alignment in atomic gases. The same method
allows one to study the spin correlators of high orders for
spins that do not directly participate in optical transitions
[168]. Such spins can be provided by the host lattice nuclei,
magnetic impurities, and nuclei of donors and acceptors,
which created electron or hole bound states [169, 170].

In typical experimental conditions, the dominantmechan-
ism of the Faraday rotation by nuclear spin fluctuation dI is
related to the splitting of the trion resonance frequency o0 by
2adIz due to the hyperfine interaction [65, 168] (a is the real
constant; see also Section 7). For s� polarized light at
frequency o, the contribution to the transmission coefficient
caused by a single resonance has the form

t� / 1

oÿ o0 � adIz � ig
; �87�

where g is the homogeneous resonance linewidth. The Fara-
day rotation angle is determined by the difference between the
phases of the transmitted circularly polarized components
and has the form

yF / Im
��t� ÿ tÿ�t �

� / adIzg

�oÿ o0�2 � g 2
; �88�

where t � �t� � tÿ�=2, and we took into account the fact that
adIz 5 g. We can see that, in contrast to Faraday rotation by
spin noise of the resident charge carriers (18), this effect is the
strongest exactly at the resonance (o � o0). To describe the
Faraday rotation in realistic systems, Eqn (88) can be
averaged over the inhomogeneous broadening of the reso-
nance. Alternative mechanisms of the Faraday rotation are
variations of the thermal occupancies of the electron spin
sublevels and contributions from the interband transitions
[169, 170].

For example, at zero detuning, o � o0, the Faraday
rotation signal (see Eqns (18) and (88)) can be presented as

F � Re fdPyE
�
0;xg � C

X1
n�0

�
adIz
g

�2n�1
; �89�

whereC is a real constant. This expression shows that even the
second order correlation function of the Faraday rotation
contains contributions from the spin correlation functions of
high orders:
F�0�F�t���C 2

X
n; n 0

�
a

g

�2�n�n 0�1�

dI 2n�1z �0� dI 2n 0�1z �t�� :

�90�
The drawback of this approach is the possibility of measuring
the spin correlators related to the two time moments 0 and t
only.

7. Extensions of spin noise spectroscopy

Most often, spin noise spectroscopy, as described above, is
used to study the spin properties of electrons and holes. At the
same time, Faraday rotation can be induced by any physical
quantity, which transforms under symmetry operations in the
same way as the component of the pseudovector Sz. In this
section, we describe the capabilities to detect fluctuations of
the host lattice nuclear spins, magnetic impurities, electric
charges in a magnetic field, valley polarization, and electric
current in gyrotropic systems. Apart from that, we discuss
opportunities to study optical spectra and spatial correlations
of spin noise, which have been realized experimentally in the
past few years.

Spins of the host lattice nuclei do not directly participate
in interband optical transitions. However, the mechanism of
the Faraday rotation for nuclei discussed in the previous
section allows one to detect their spin noise. For example, in
Fig. 16, we show the Faraday rotation noise spectrum for
bulk GaAs doped with Si for the frequency of the probe beam
in the vicinity of the trion resonance for donors. The peaks at
the spin precession frequencies of nuclei of 69Ga, 71Ga, and
75As can distinctly be seen [65]. In this system, the hyperfine
interaction with the resident electron and hole in trion leads to
a shift of the trion resonance by

adIz � 1

�h

�
1

2
A e � 3

2
A h

�XNn

k�1
dIk; z ; �91�

as discussed in the previous Section 6. Here, the hyperfine
interaction constants for an electron, A e, and hole, A h in
trion, are assumed to be equal for all nuclei in the vicinity of
the donor [cf. Eqn (20)]. Similarly, the hyperfine interaction
allows one to detect the spin noise of magnetic impurities, for
example, manganese [168, 171].

Nuclear spin noise spectra can be calculated, for example,
in the framework of the central spin model (see Section 3.1)
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Figure 16. Nuclear spin noise spectrum detected in the vicinity of trion

resonance for electrons bound at Si donors in bulk GaAs in a transverse

magnetic field of 3.75 mT. (Adapted from Ref. [65].)
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[46, 172]. The spin noise spectrum of nuclei with I � 1=2 in a
strong transverse magnetic field has the form [57]


dI 2z
�
o �

p�hNn

2
Pÿj2�hoÿ mngnBj

�
; �92�

where P �A� is the distribution function of the hyperfine
interaction constants. Thus, the shape of the spin noise
spectrum, in contrast to the electron spin noise spectrum,
allows determining the distribution function not of the
Overhauser field but of the Knight field.

This approach allows us to study the nuclear spin
dynamics at the submillisecond time scale. However, the
nuclear spin dynamics can take place at a time scale of the
order of minutes, or even hours in the case of dynamic nuclear
polarization or relaxation of nuclear polarization. Since the
rate of energy transfer between nuclear spins is much faster
than that between nuclei and the host lattice or resident
electrons, the nuclear spin system can be described using the
effective nuclear spin temperatureYN�t�, which slowly varies
with time. In realistic systems, this temperature can be smaller
than that of the host lattice by a few orders of magnitude and
can be positive or negative [38].

To study experimentally the nuclear spin dynamics, at the
first stage, the nuclei should be dynamically polarized in a
longitudinal magnetic field using a strong circularly polarized
beam, which induces interband transitions in the semicon-
ductor. At the second stage, the optical excitation should be
switched off and the magnetic field can be optionally
reoriented. Nuclear spin temperature YN�t� slowly relaxes
with laboratory time t to the lattice temperature, and the
electron spin noise of resident electrons is measured during
this time. In a transverse magnetic field (Voight geometry),
the precession peak in the spin noise spectrum is centered at
the frequency Xtot�t� � XB �XN�t� [cf. Eqn (9b)]. Here,

XN�t� � AI

�h

B

B
BI
�

mngnBI
kBYN�t�

�
�93�

is the spin precession frequency in the Overhauser field
averaged over the ensemble [1], where A is the hyperfine
interaction constant, I is the nuclear spin, BI�x� is the
Brillouin function, and mn and gn are the nuclear magneton
and g-factor, respectively.

Since the nuclear spin temperature YN�t� relaxes to the
host lattice temperature, measuring the electron spin noise
spectrum with the time resolution allows one to study
nonequilibrium nuclear spin polarization in the absence of
external excitation [78]. This proposal was realized experi-
mentally [173, 174]. The theoretical and experimental results
are shown in Fig. 17 in panels (a, c) and (b, d), respectively.
The color shows the intensity of the nuclear spin noise at the
given frequency at the given time moment. Depending on the
sign of the nuclear spin temperature, the spin precession
frequency Otot�t� can either always remain positive
(Fig. 17a, b) or cross zero (Fig. 17c, d). Interestingly, the
electron excitation by circularly polarized light creates for
them an effective longitudinal magnetic field due to the
dynamic Zeeman effect [174]. The width of the precession
peak, as mentioned in Section 3, generally depends on the
nuclear polarization degree [78].

Similarly to the nuclear spin polarization, an external
magnetic field B also leads to the Faraday rotation described
by Eqn (88), where the role of the splitting 2adIz is played by
�ge ÿ gh�mBBz=�h (ge and gh are g-factors of the electron and
hole in trion). This Faraday rotation takes place only if the

localized state is occupied with a single charge carrier. If the
occupancy of the state can take two values, n � 0; 1, its
fluctuations dn lead to the noise of the Faraday signal:

dyF / Bzg

�oÿ o0�2 � g2
dn : �94�

In Fig. 18, we show the spectra of Kerr rotation measured for
a single quantum dot [175, 176]. Far from the resonance
(Fig. 18a), the spectrum consists of a peak at the zero
frequency, which corresponds to the hole spin noise. With
the approach of the resonance (Fig. 18b), this peak broadens
(see Section 3.5) and, in agreement with Eqn (94), a new peak
appears, which is related to fluctuations of the quantum dot
occupancy (blue curve 1). A detailed analysis of the spectra
allows one to determine the Auger recombination rate of the
trion in addition to the parameters of the spin dynamics.

Additional extensions of the spin noise spectroscopy are
provided by the spin-orbit interaction, which can lead to the
lifting of spin degeneracy in many-valley semiconductors. In
this case, the time reversal symmetry relates the Bloch wave
vector with the opposite one, so all the states remain twofold
degenerate, in agreement with theKramers theorem.A pair of
degenerate states can be characterized by the valley pseudos-
pin s . Thus, in many-valley semiconductors, the Faraday
rotation noise spectrum consists of two contributions,

�dy 2
F�o � A �dS 2

z �o � B �dt 2z �o ; �95�

which describe the spin and valley noise, respectively (there
can also be a contribution from the cross-correlation
functions hdSz�t�dtz�t 0�i). A microscopic theory of this effect
was developed for transition metal dichalcogenide mono-
layers [177], and the valley noise was measured [178].

The spin-orbit interaction can also lead to the locking
of the spin direction with the direction of electron
propagation. A classical example is bulk tellurium, where
the current flow leads to spin polarization and induces
optical activity [179±181]:

yF / jz / Sz ; �96�

where the z-axis is the main axis of the crystal and also the
light propagation direction. In this case, the Faraday rotation
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Figure 17. (Color online.) Time resolved spin noise spectra of electrons,
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noise spectrum is determined by the current noise spectrum
[182]. Effects of this kind are possible in any gyrotropic
system, for example, for ensembles of chiral nanotubes [183]
and GaAs-based quantum wells with the crystallographic
orientation �001� for the oblique incidence of light [184] (in
this case, the contribution of the spin current noise is also
possible). An illustrative example is given by quantum wells
with the �110� crystallographic orientation with the C2v point
symmetry group, where the spin-orbit interaction Hamilto-
nian allows for contributions of the form [123, 185]

HSO � bes
�e�
z k e

x � bhs
�h�
z k h

x : �97�

Here, be; h are the parameters of the spin-orbit interaction for
the lowest electron and hole subbands, s�e; h�z are the Pauli
matrices acting of the pseudospin, and k e; h

x are the compo-
nents of the corresponding wave vectors (x k ��110�, y k �001�).
From this expression (97), one can see that kx transforms
in the same way as sz, so fluctuations of the current along the
x-axis can lead to the rotation of the polarization plane of the
incident light along with the spin noise. After reflection of the
incident wave, the polarization conversion is determined by
the off-diagonal reflection coefficient [182]

rxy � ÿryx � Pssz � Pj jx ; �98�

where s and j are the spin and current densities, respectively,
and the coefficients Ps and Pj in the spectral range around the
transition between the lowest electron and hole subbands are

Ps � 2pojd j 2
c �E0 ÿ �ho� ; Pj � pojd j 2bm

ec�h�E0 ÿ �ho�2 : �99�

Here, d is the transition dipole moment, E0 is the transition
energy (damping is ignored), b � be ÿ bh, c is the speed of
light, m is the electron effective mass, and the valence band is
assumed to be completely occupied. Thus, the Kerr rotation
noise spectrum consists of contributions from the spin noise,
current noise, and cross-correlations. In this case, in the
vicinity of the resonance, the dominant contribution is
related to the current noise, and, far from the resonance, to
the spin noise.

The measurement of the Faraday rotation noise intensity
as a function of the detection frequency o is termed optical
spin noise spectroscopy [186]. This method allows one to

separate the different contributions to the noise of optical
signals and to distinguish between homogeneous and inho-
mogeneous broadenings of the optical resonances. Indeed, in
the case of homogeneous broadening, the noise intensity is
proportional to the squared Faraday rotation,

hdy 2
Fi /

�oÿ o0�2
�oÿ o0�2 � g 2

hdS 2
z i ; �100�

(see Eqn (18)), and has a dip in the resonance frequency at
o � o0. If inhomogeneous broadening with the typical width
Do0 is present in the system, then this expression should be
averaged with the corresponding distribution. For example,
for Gaussian broadening with Do0 4 g, we obtain

hdy 2
Fi / exp

�
ÿ �oÿ o0�2

Do 2
0

�
hdS 2

z i ; �101�

so the noise intensity is highest at the center of the
inhomogeneously broadened line. Interestingly, in atomic
vapors, where the inhomogeneous broadening is provided
by the Doppler effect, there can be a dip in the center of the
inhomogeneously broadened line, similarly to the case of
homogeneous broadening, which is caused by the fast
momentum relaxation of atoms [187].

It is noteworthy that the proportionality between the spin
noise intensity and the number of charge carriers in the
probed volume (see, for example, Eqn (63)) allows one to
determine the distribution of the concentration of the charge
carriers by moving the focus of the laser beam [188].

Two probe beams instead of one allow one to analyze
the cross-correlations of the Faraday rotation for the two
beams [189, 190]. These fluctuations are largest when the two
beams are crossed [18, 191], but even in the absence of
intersection, the cross-correlations can take place due to the
ballistic or diffusive propagation of electrons from one place
to another [133, 192] (see Section 5). Measurements of this
kind allow one to study the spin dynamics, not only with time
resolution, but also with spatial resolution, and to determine,
for example, parameters of the spin-orbit interaction for
electrons and holes in the quantum wells.

Presently, a few experimental groups are studying the
possibility of the spatial resolution of spin noise based on the
close relation of spin noise spectroscopywithRaman spin-flip
scattering (see Section 2.3). In this way, the interference is
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Figure 18. (Color online.) Kerr rotation noise spectra for (a) joÿ o0j4 g and (b) joÿ o0j5 g in external longitudinal magnetic field Bz � 31 mT,

measured for a single In(Ga)As quantum dot. Blue curve 1 shows the contribution from the quantum dot occupancy noise. (Adapted from Ref. [175].)
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studied between the probe light after propagation through the
sample and the additional (reference) beam, which homo- or
heterodynes the signal [193, 194]. In this case, the Stokes
parameter, that is proportional to the Faraday rotation angle
(see Eqn (18)), has the form

dx1�t� �
2Re �dE pr

y �t�E �0;x�
jE0;xj2

; �102�

where the probe and reference beams are polarized along the
x-axis, E0; x is the amplitude of the reference beam, and Epr is
the amplitude of the beam transmitted through the sample,
and it is assumed that E0; x 4E pr. Experimentally, this
method can be used to increase the sensitivity of the spin
noise measurement [195] and to analyze high-frequency spin
noise [37]. Importantly, after the scattering of the probe beam
with the change in the wave vector by q, the Faraday rotation
is determined, not by the total spin fluctuation, but by its
spatial harmonic dSz�t; q� [193]:

dx1�t� /
�
dsz�t; r� exp �ÿiqr� dr � dSz�t; q� : �103�

For example, provided the spin dynamics are characterized
by spin relaxation time ts and the diffusion coefficientDs, the
Faraday rotation noise spectrum has the usual form:

�dS 2
z �o; q �

t=2

1� �ot�2 �104�

(cf. (9a)); however, its width depends on the wave vector:

1

t
� 1

ts
�Dsq

2 : �105�

Measurements of this kind allow studying the transition from
localized to free electrons with an increase in temperature via
a change in the diffusion coefficient [63, 196]. An example of
the experimental measurement of the width of the spin noise
spectrum as a function of wave vector and of the temperature

dependence of the diffusion coefficient is shown in Fig. 19 for
the case of electrons localized at donors in bulk cadmium
telluride.

8. Conclusions

The theory of spin noise in low dimensional systems and bulk
semiconductors is reviewed. Spin noise in such systems is
usually detected by fluctuations of the Faraday rotation of a
continuous probe beam. General theoretical approaches were
illustrated by a number of experimental results for structures
of various dimensionality from 0D to 3D. At the same time,
the review contains a number of original results concerning
the influence of electrons tunneling on spin noise spectra and
many-body spin localization (Section 3.4), spin fluctuations
in 1D systems (Section 4), and the calculation of fourth order
spin correlators depending on the strength of measurements
(Section 6).

Further perspectives on the development of the spin noise
spectroscopy method follow from Sections 6 and 7. They are
related, first, to the analysis of high order spin correlations;
second, to the development of the experimental technique for
measuring spin noise with the spatial resolution; and third, to
the measurement of the charge and valley fluctuations of
charge carriers in semiconductors. Moreover, as the sensitiv-
ity in the experiments can be increased by homo- and
heterodyne detection [37, 195] and by using squeezed light
[197], it seems promising to combine these two experimental
methods. Optomechanical resonances can also be applied to
increase the noise signal, as was previously done in magneto-
metry [198].

The manifestation of quantum back action when making
spin noise measurements is still not well understood. In spite
of the fact that the quantum Zeno effect has probably already
been observed experimentally [83], its microscopic descrip-
tion and the link between the strength of measurements and
the measured spin signal is still not clear [89]. A fundamental
challenge for the theory is the description of spin fluctuations
in mesoscopic systems. Nowadays, the existing models can
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describe only spin noise spectra for a small number of spins or
for a large ensemble of spins. In the mesoscopic case, for
example, when the spin of an electron interacts with several
tens of nuclei or magnetic impurities, the theory remains
undeveloped, and theoretical predictions of new effects in
such systems are not yet available. Another problem deals
with describing spin noise in nonlinear systems, for example,
in the vicinity of a phase transition or upon formation of spin
polarons [199]. Nonlinear equations of motion can also
describe the nuclear field that acts on the localized electrons,
as it is a classical quantity, not a quantum one.

The evolution of the theory of spin fluctuations is mostly
determined by technological progress and the appearance of
new systems in which new unexpected effects are predicted
and observed. From this point of view, one of the most
promising systems for further investigation of spin noise is
twisted Van-der-Waals structures based on monolayers of
transition metal dichalcogenides, as well as perovskites,
topological insulators, Weyl semi-metals, and organic semi-
conductors.
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