
Abstract. A novel nontrivial manifestation of quantum effects
in a spherical mesoscopic system of degenerate electrons (with
Ne 9 109 electrons) is demonstrated. Analysis shows that the
electron distribution function has a large spatial scale, of the
order of the system size, which is much greater than the other
spatial scale, the Fermi length of the electron. This result is
obtained following four different strategies: an analytic method
of semiclassical Green's functions, direct numerical summation
of the exact solutions for electron wave functions in an infinitely
deep potential well, numerical construction of the exact Green's
function using two linearly independent solutions, and the den-
sity functional method. The results obtained with these methods
are in good qualitative and quantitative agreement with each
other.We relate the nature of this phenomenon to quantum shell
effects in a spherical mesoscopic system.

Keywords: electron distribution in a spherical potential, Green's
function, density-functional theory, jellium model

1. Introduction

This paper is devoted to a nontrivial manifestation of
quantum effects in a spherical mesoscopic system of degen-
erate electrons. Specifically, we mean the appearance of a
large scale in the spatial distribution of electrons.

The inhomogeneity of the spatial distribution of electrons
in atoms is well known and well studied. In a spherically
symmetric potential, the electron distribution density exhibits
an oscillating behavior along the radius of the sphere. The
spatial inhomogeneity scale is of the order of the atomic size.
This is a general feature of electron density distributions and
manifests itself in the results of calculations performed within
different approaches: the Hartree±Fock and Hartree±Fock±
Dirac methods, the Thomas±Fermi approximation [1±4], and
the density functional theory (DFT) [5].

The oscillating behavior of the density is characteristic
feature of not only the electron system but also systems of
other particles with a more complicated interaction, e.g., in
nuclear physics problems. In all such systems, the number of
particles is relatively small (N < 102) and the inhomogeneity
scale is of the order of several Fermi lengths.

In this paper, we show that the spatial distribution of a
mesoscopic number (Ne 9 109) of degenerate electrons also
demonstrates an oscillating behavior, but with a spatial scale
of the order of the system size. This scale can be much greater
than the Fermi length of electrons lF.

We attribute the nature of this effect to quantum shell
effects occurring in a spherical mesoscopic system similarly to
such effects inmetallic clusters. An example is provided by the
oscillating behavior of specific energy as a function of the
number of particles.

In this methodological note, we analyze this effect using
four different approaches.
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In Section 2, we outline two methods that allow to
calculate numerically the concentration of a large number
(up to Ne � 109) of degenerate electrons trapped in a
spherical potential well with infinite walls.

In Section 2.1, we present an effective computational
technique that allows to determine the electron density by
numerical summation over the exact solutions, i.e., wave
functions of free electrons in a potential well. In the frame-
work of this approach, various systems with the number of
electrons approaching � 109 have been studied. Such a large
number of electrons Ne in the system has to be attained
because it turns out, unexpectedly, that a homogeneous
distribution does not simply set in, as was tacitly assumed in
the limit of large Ne. The obtained results demonstrate the
existence of a large inhomogeneity scale in the distribution of
electrons.

In Section 2.2, we outline a numerical method for con-
structing an exact Green's function of the problem under
study with the help of two linearly independent solutions.
Using the determined Green's function, we calculate the
concentration of electrons in the system. The results coincide
with those obtained by numerical summation of the exact
solutions for free-electron wave functions in Section 2.1.

An analytic treatment of the distribution of free electrons
in a spherical potential well with the method of semiclassical
Green's functions in Section 3 offers an insight into the cause
of the inhomogeneity appearing in the system. Analysis shows
that the spatial inhomogeneity scale is of the order of the
radius of the potential well and can be several orders of
magnitude greater than the distance between particles.

In Section 4, we present a numerical analysis of the
inhomogeneous spatial distribution of electrons in a strongly
pressurized deuterium gas bubble of submicrometer size.
Characteristic values of the thermodynamical parameters
pertaining to the pressurized gas are as follows: rgas �
10ÿ30 g cmÿ3, ne � 1030ÿ31 mÿ3, EF � 20ÿ100 eV, and
Ti � Te � 0:1ÿ1 eV (where Ti and Te are the ion and
electron temperatures, EF is the Fermi energy, and rgas is the
gas density). All the electrons are free (the plasma is fully
ionized) and degenerate, while the ions form a classical
nonideal gas. The distribution of electrons was calculated
numerically with theDFTmethod.We used the jelliummodel
for hydrogen and sodium clusters (with the number of atoms
in the model ranging from 8 to 400 thousand). The obtained
results confirm the existence of a similar effect also in
pressurized hydrogen gas bubbles.

2. Numerical methods

2.1 Direct summation of wave functions
2.1.1 Exact wave functions. A sufficiently simple model of a
plasma bubble with up toNe � 109 electrons is proposed. We
consider a system of Ne electrons in the ground state in a
spherically symmetric potential well of radius R0 with
impenetrable (i.e., infinitely high) walls,

V�r� � 0 ; r4R0 ;
1 ; r > R0 ;

�
�1�

where r is the coordinate. This problem has an exact analytic
solution; it was apparently for the first time studied by
Gamow [6] and has long been included in textbooks (see,
e.g., books [7] and [8]), already without references to the

original source. We outline briefly the principal points of the
solution. Due to the spherical symmetry, the Schr�odinger
equation enables the separation of variables, and its solutions
can be written as

u�r; y;j� � w�r�
r

Ylm�y;j� ; �2�

where Ylm�y;j� is a spherical harmonic [9]. The radial wave
function w�r� satisfies the equation�

d2

dr 2
ÿ l�l� 1�

r 2
� k 2

�
w � 0 ; k 2 � 2mE

�h 2
; r4R0 : �3�

The boundary condition

w�0� � 0 �4�

follows from the boundedness of solution (2). The second
boundary condition

w�R0� � 0 �5�

is related to the impenetrability of the walls. As a pair of
linearly independent solutions of Eqn (3), we choose the
Riccati±Bessel functions z1 jl�z1� and z1yl�z1� (see [10]),
where z1 � kr, and jl and yl are spherical Bessel functions
(see formulas (A.7) and (A.8) in the Appendix). The first
boundary condition, Eqn (4), is satisfied automatically by the
choice of the first solution in the form

w�r� � �kr� jl �kr� : �6�

The second boundary condition, Eqn (5), implies that

jl �kR0� � 0 ; �7�

which results in the set of admissible values of k,

knr; l �
znr; l
R0

; �8�

where znr; l is the nrth consecutive root of the spherical
function jl�z�. Below, the corresponding solutions and the
related quantities are indexed in the similar manner, for
example,

Enr; l �
�h 2

2m

�
znr; l
R0

�2

�9�

for the energy spectrum.
The normalized eigenfunctions

wnr; l �r� � Cnr; l r jl�knr; l r� ; �10�
unr; lm�r; y;j� � Cnr; l jl�knr; l r�Ylm�y;j� �11�

are required to construct theGreen's function bymeans of the
spectral representation. The normalization constant Cnr; l can
easily be found analytically, using the known result (see, e.g.,
[11]) for the indefinite integral:�

xJ 2
n �ax� dx

� x 2

2

�
J 2
n �ax� ÿ Jnÿ1�ax�Jn�1�ax�

�� const : �12�

August 2021 Two scales of quantum effects in a mesoscopic system of degenerate electrons 837



Because znr; l is a root of spherical Bessel function (A.7), we
can find (cf. (A.28) in the Appendix)

Cÿ2nr; l
� ÿR 3

0

2
jlÿ1�znr; l� jl�1�znr; l� ; l5 1 : �13�

For l � 0, the normalization integral is especially simple,
since j0�x� � sin �x�=x.

2.1.2 Expression for the density. We find the density by
summing the squared moduli of normalized wave functions
of occupied single-particle states (11). We assume that all the
shells (labeled by a pair of quantum numbers nr and l ) are
filled. This allows us to perform the summation over angular
momentum projections analytically using the Uns�old theo-
rem [9]:

Xl
m�ÿl

��Ylm�y;j�
��2 � 2l� 1

4p
: �14�

The sum of contributions to the density of states is

rs�r� �
1

4pr 2
X
nr; l

�2l� 1�jwnr; lj2 : �15�

With taking the spin states of the electron into account
this result should be multiplied by the additional factor of 2.
Thus, we obtain the following expression for the density of
electrons ne:

ne�r� � 2

4pR 3
0

X
nr; l:Enr ; l 4EF

2�2l� 1� j 2l
�
znr; l r

R0

�
� �ÿjlÿ1�znr; l� jl�1�znr; l��ÿ1 : �16�

This implies, in particular, the self-similarity property: as
the radius R0 of the cavity changes, the density changes self-
similarly as f �x�=R 3

0 , where x � r=R0.

2.1.3 Large scale of the spatial distribution of electrons. Results
of the direct summation over states. In Fig. 1, red line 1 shows
the results of calculations of the concentration of electrons for
different numbers of electrons, performed with expression
(16). The plot demonstrates an oscillatory behavior with a
spatial scale of the order of the Fermi length. In order to
demonstrate clearly the existence of the second spatial scale,
we calculate the electrostatic potential arising in the system:

V�r� � 4p
�
1

r

� r

0

rc��r��r 2 d�r�
� R0

r

rc��r��r d�r

�
: �17�

Here, rc � jej�ni ÿ ne� is the charge density, e is the elemen-
tary charge, and ne�r� is the density of electrons found from a
calculation using formula (16); the simplest approximation of
the homogeneous density

ni�r� � const �18�

is adopted for ions, small-scale oscillations are smoothed out
by integration in (17) and the large scale manifests itself.
Thus, the electrostatic potential calculation procedure plays
the role of a filter with respect to small-scale oscillations.

We should note the following. In the model problem
under consideration, electrostatic interaction between
electrons and ions is not taken into account, and due to the
boundary condition the electrons are displaced toward the
center from the domain near the spherical well walls. This
results in the essential excess of the mean concentration of
electrons over the mean concentration of ions, and respec-
tively an excess of negative charge emerges in the main
domain. In order to eliminate a parabolic-profile potential
arising in this case, we increase the mean density of ions to the
mean density of electrons. Just that value is used in (18).
Technically, this means that the constant in (18) is chosen
from the condition of theminimal potential difference inside a
sphere of radius R0.

The results of calculations of the electrostatic potential are
presented in Fig. 1 (and also in Fig. 10 below). These results
demonstrate the existence of an inhomogeneity in the system
and the appearance of a spatial scale of the order of the system
size, which is much greater than the Fermi length. The
behavior of the potential has the same character (with several
extremum points) irrespective of the number of electrons and
the value of the Fermi length � h=pF.

The spatial distribution of electrons averaged over a scale
greater than the Fermi length was calculated by means of
averaging and smoothing procedures and depicted in Fig. 2.
These results also demonstrate the existence of inhomogene-
ity in the system and the appearance of a spatial scale of the
order of the system size, which is much greater than the Fermi
length. The dependence of the density on the radius is similar
to the dependence of the potential: several extremum points
are detected.

Spherical symmetry of the system or closeness to this
symmetry is of great importance for the effect. This can be
shown with the example of the simplest problem of a one-
dimensional electron gas in a potential well with infinitely
high walls. The wave functions of electrons are

Ck �
����
2

L

r
sin

pkx
L

; Ek � p2�h 2k 2

2meL2
: �19�
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Figure 1. (Color online.) Oscillations of the electron density (red line 1) and the electrostatic potential (blue line 2) for three different numbers of electrons.

Scale of half the Fermi length of the wave corresponding to the period of fast oscillations is shown in addition.

838 S E Kuratov, D S Shidlovski, S I Blinnikov, S Yu Igashov Physics ±Uspekhi 64 (8)



Accordingly, the concentration ne is given by

ne �
XN0

1

C 2
k �

XN0

k�1

� ����
2

L

r
sin

pkx
L

�2

� 1

L

XN0

k�1

�
1ÿ cos

2pkx
L

�

� n0

�
1� 1

N0
ÿ 1

N0
cosec

px
L

sin
�N0 � 1�px

L
cos

N0px
L

�
:

�20�
The final expression for the concentration ne � N0=L has

two spatial scales. The first scale is the distanceL=N0 between
particles �the factor sin ��N0� 1�px=L� cos �N0px=L��, which
is essentially the Fermi length � h=pF. The second scale is of
the order of the system size L �the factor cosec �px=L��.

The behavior of the concentration of electrons deter-
mined by the large scale L has the following features. The
concentration increases from zero to ne � n0�1� 1=N0� in a
small domain near the boundary, and remains constant in the
main domain. Near this mean value, the concentration of
electrons oscillates with a spatial scale of the order of the
Fermi length of the electron �the factor sin ��N0� 1�px=L��
cos �N0px=L��.

As shown above, in a spherically symmetric system, the
behavior of the concentration of electrons averaged over a
small scale is qualitatively different from the flat case. A
similar behavior is observed near the boundary: an increase
from zero to some mean value of the order of ne � n0. But the
mean value of the concentration is not constant in the main
domain: rather, it is of an oscillatory character, with a spatial
scale of the order of the system size (see Fig. 2).

2.2 Numerical method for finding the concentration
using the exact Green's function
2.2.1 Constructing the Green's function with the help of two
linearly independent solutions. The Green's function of the
Schr�odinger equation is defined as a solution to the inhomo-
geneous equation�

ÿ �h 2

2m
H 2 � V�r� ÿ E

�
G�r; r 0;E� � d �3��rÿ r 0� ; �21�

satisfying the boundary conditions of the quantum mechan-
ical problem under consideration. In the case of a spherically

symmetric potential V�r�, the Green's function can be
conveniently represented as a partial decomposition [12],

G�r; r 0;E� � ÿ 2m

�h 2

X1
l�0

Xl
m�ÿl

gl�r; r 0;E�
rr 0

Y �lm�nr 0 �Ylm�nr� : �22�

The common factor is chosen in (22) for convenience.
Substituting this decomposition into (21) leads to an equa-
tion for partial Green's functions gl�r; r 0; k�,�

d2

dr 2
ÿ l�l� 1�

r 2
ÿ v�r� � k 2

�
gl�r; r 0; k� � d�rÿ r 0� ;

�23�
v�r� � 2mV�r�

�h 2
;

which has the form of an inhomogeneous radial Schr�odinger
equation. The relation between k and E is defined in (3).
Knowing all the functions gl�r; r 0; k� is equivalent to ability to
construct the full function G�r; r 0;E�. In most of the cases in
quantum mechanical problems, restrictions occur for the
orbital angular momenta involved, and therefore only a
finite number of terms occur in decomposition (22).

In this paper, we use the model potential of an infinitely
deep spherical potential well, Eqn (1). Requiring the solution
of Eqn (21) to be bounded leads to the zero boundary
condition at zero for the solution of radial equation (23).
The other, also zero, boundary condition is imposed on the
wall of the well.

The Green's function gl�r; r 0; k� being sought can be
expressed in terms of two (linearly independent) solutions
j1; 2�r� to homogeneous equation (3) that satisfy the respec-
tive boundary conditions (4) and (5):

j1�0� � 0 ; �24�
j2�R0� � 0 : �25�

The solutions j1�r� and j2�r� can be expressed through the
already noted Riccati±Bessel functions

j1�r� � kr jl�kr� ; �26�
j2�r� � akr jl�kr� � bkr yl�kr� : �27�

The solution j1�r� obviously satisfies condition (24). As
regards the second solution j2�r�, satisfying condition (25)

n
e
=n

0

1.070

1.065

1.060

1.055

1.050

1

0

ÿ1

0 10 20 30
r, at. u.

lF=2

Ne � 33;610

D
V
�r�

,V

Rwell � 37.8 at. u.

3

4

1

2

1.038

n
e
=n

0

1.036

1.034

1.032

1.030

2

1

0

ÿ2

ÿ1

0 20 40 60
r, at. u.

Ne � 136;178

D
V
�r�

,V

Rwell � 60.3 at. u.

3

4

2

1

lF=2

Figure 2. (Color online.) Original oscillations of the electron density for first two versions from Fig. 1 (thin red line 1) on an enlarged scale, and highly

smoothed density oscillations (thick green line 2). Original electrostatic potential is shown by blue line 3 without changing the scale, and the smoothed

electrostatic potential is shown by purple line 4.
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requires that

a
b
� ÿ yl�kR0�

jl�kR0� : �28�

Following [12], we represent gl�r; r 0; k� as

gl�r; r 0; k� � j1�r<�j2�r>�
Wr�j1;j2�

; �29�

where r< � min �r; r 0�, r> � max �r; r 0�, andWr�j1;j2� is the
Wronskian of solution j1; 2�r�:

Wr�j1;j2� � j1�r�
dj2�r�
dr

ÿ j2�r�
dj1�r�
dr

� kb : �30�

Relations (26)±(30) allow finding an explicit expression for
gl�r; r 0; k�:

gl�r; r 0; k� � 1

k

�
ÿ yl�kR0�

jl�kR0� �kr� jl�kr��kr
0� jl�kr 0�

� �kr<� jl�kr<��kr>� yl�kr>�
�
: �31�

Expression (31) is used for numerical calculations in what
follows.

2.2.2 Expressing density in terms of the Green's function. In the
single-particle problem, when the fermions densely (without
gaps) fill all the states up to EF, it is relatively easy to evaluate
the density of the spatial distribution of particles using the
Green's function. The simplest case occurs for the problem
with a purely discrete spectrum. As can be seen from the
spectral representation of the Green's function

G�r; r 0;E� � ÿ
X
j

u �j �r 0� uj�r�
Eÿ Ej

; �32�

the integral of G�r; r;E� in the complex plane of energy E
along a closed contour that encompasses all poles corre-
sponding to the filled states is equal to

ÿ2pi
X

j :Ej<EF

��uj�r���2 : �33�

The multi-index j here includes all the quantum numbers
labeling states (11). Thus, the numerical calculation of the
density can be based on contour integration. Methodologi-
cally, it may be interesting to note that the representation (22)
and (29) of the Green's function also allows arriving at
this conclusion. Eigenfunctions satisfy two boundary condi-
tions (24) and (25) simultaneously, which means the coin-
cidence of solutions j1�r� and j2�r� and hence zeroing of the
Wronskian in the denominator in (29), corresponding to a
pole of gl�r; r 0; k� in the complex k plane. Let us consider the
pole singularity of the Green's function in more detail for the
example considered here, with the Green's function gl�r; r 0; k�
having the relatively simple form (31). Heaving in mind the
aim to calculate the spatial density by integrating along a
complex-density contour encompassing some number of
poles, it is sufficient to consider the pole term

g
�pol�
l �r; r 0; k� � ÿ 1

k

yl�kR0�
jl�kR0� �kr� jl�kr��kr

0� jl�kr 0� ; �34�

which does indeed make a contribution. The other term
contains no singularities in the finite domain of the complex
energy plane and does not contribute to the calculation of the
contour integral. The poles in (34) are related to the roots zn; l
of the spherical Bessel function jl�z�. In the vicinity of some
root zn; l, restricting ourselves to the linear term, we can write

jl�z� � j 0l �zn; l��zÿ zn; l� ; �35�

which allows to find an approximate expression for (28) in the
form

a
b
� ÿ yl�kn; lR0�

j 0l �kn; lR0��kR0 ÿ kn; lR0� ; kn; lR0 � zn; l : �36�

For further consideration it is advisable to transform
expression (36) as follows. We first get rid of the numerator
yl�kn; lR0� by expressing it through j 0l �kn; lR0� using the known
value of the Wronskian

Wz

�
jl�z�; yl�z�

� � jl�z� y 0l �z� ÿ j 0l �z� yl�z� �
1

z 2
�37�

and taking into account that zn; l is a root of jl�z�. Next, we
express the squared derivative � j 0l �zn; l��2 that then appears in
the denominator in (36) in terms of the integral [11]

2

� 1

0

�
x jl�zn; lx�

�2
dx � � j 0l �zn; l��2 ; �38�

which is a particular case of the more general Lommel-type
integral

� x

0

zJ 2
n �lz� dz �

l2

2

��
J 0n �lx�

�2 � �1ÿ n 2

�lx�2
��

Jn�lx�
�2�

:

�39�
As result of these transformations, we represent g

�pol�
l �r; r 0; k�

near the pole as

g
�pol�
l �r; r 0; k� � �kn; l r� jl�kn; l r��kn; l r

0� jl�kn; l r 0��R0

0

��kn; l ~r� jl�kn; l ~r��2 d~r

1

2k�kÿ kn; l� :

�40�

The first factor in (40) is the product of normalized wave
eigenfunctions of the problem. The denominator of the
second factor can be rewritten as 2k�kÿ kn; l� � �k� kn; l��
�kÿ kn; l� � k 2 ÿ k 2

n; l for k in the close vicinity of kn; l. As
expected, the characteristics of the pole (its position and
residue) coincide with those for the corresponding term in
the spectral representation.

The aim of this analysis is not only to discuss the
methodological aspect, which in this specific example allows
clearly tracing the relation between the spectral representa-
tion of the Green's function and its representation with the
use of two linearly independent solutions, but also to give a
practical recipe for calculating the spatial density. We note
once again that, in calculating the contour integral, it suffices
to take only one of the pole terms (34) of the Green's function
into account. We now briefly discuss some aspects relating to
the method of calculation used in this paper. Integration in
the complex energy plane can be transformed to integration in
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the complex plane of the k variable, which is more convenient
for performing numerical calculations.

One of possible choices of the integration contour is
shown in Fig. 3. This contour, chosen as rectangle ABCD,
encompasses a set of poles located to the left of kF. In
calculating the integral, it suffices to find only its imaginary
part. If we choose segments AB and CD sufficiently short,
then their contributions to the integral can be neglected.
For the further simplification, we note that the values of the
Green's function corresponding to complex-conjugate values
of k are also complex conjugate. It then becomes clear that the
imaginary parts of the integrals along segments BC and DA
are the same. We can therefore restrict ourselves to integrat-
ing just the imaginary part of the Green's function along
segment DA, which is assumed to be located sufficiently close
to the real axis. These observations strongly reduce the
number of calculations. Regarding the calculation of inte-
grals of Green's function (34), we briefly note the methods for
finding numerical values of the Bessel functions entering (34)
with a small imaginary addition to the argument. Computa-
tions of the Bessel function yl�z� are usually not encounter
difficulties. Recurrence relations are sufficiently effective and
rather stable as l increases. Thus, starting with the values
found from explicit expressions [10] for l � 0 and l � 1, we
can calculate all the necessary values for larger l.

As for the function jl�z�, its computations should be
performed in the opposite direction. Asymptotic values of
jl�z� for very large l can be used as the starting values. It is
also rather convenient to use continued fractions. The values
found can be corrected, for example, by comparing the j0�z�

obtained within this approach with those evaluated directly
from the explicit expression. Overall, these computation
techniques allow calculating the Green's functions suffi-
ciently effectively in the problem under consideration.
Details of the algorithms for calculating Bessel functions can
be found in [13, 14].

2.2.3 Results of calculations. Comparison of the approaches.
The treatment in Section 2.2.2 allows us to formulate a
sufficiently useful recipe for numerical calculations. The sum
of squares of normalized radial wave functions (10) corre-
sponding to states with an energy not exceeding EF can be
found in the form

sl�r� �
X

nr:Enr ; l 4EF

ÿ
wnr; l�r�

�2 � 1

2p
Im

�
CF

g
�pol�
l �r; r; k�2kdk

� ÿ1
pR0

Im

�
CF

yl�z�
jl�z�

�
zz jl�zz�

�2
dz

� 2

pR0
Im

� zF�id

0�id

yl�z�
jl�z�

�
zz jl�zz�

�2
dz ; �41�

where z � kR0, zF � kFR0, and z � r=R0. The spatial density
of states is found by summing the partial contributions (see
(15))

rs�r� �
1

4pr 2
X
l

�2l� 1� sl�r� �
X
l

�2l� 1� rl�r� ; �42�

where

rl�r� �
1

2p2R 3
0

Im

� zF�id

0�id

yl�z�
jl�z�

�
z jl�zz�

�2
dz : �43�

Applying the theory of residues to integral (43), it is easy to
verify that it leads to the expression for density in Eqn (16),
obtained by direct summation of wave functions, without any
knowledge that this integral was obtained from the Green's
function of the system.

The electron densities of states for two systems were
calculated in the framework of the above method, with the
results presented in Fig. 4. There, we also show the results

Im (k)

k1l k2l k3l . . . Re (k)

kFA

B C

D

Figure 3. Integration contour.
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of similar calculations performed by direct summation of the
wave functions (see Section 2.1). The results are practically
coincident. This indicates the high accuracy of the proposed
numerical techniques for computing the concentration of
electrons.

3. Analytic method.
Method of semiclassical Green's functions

We use the method of Green's functions to analyze the
distribution of free degenerate electrons in a spherical
potential well with infinitely high walls. The electron states
are characterized by rather large orbital angular momenta
and are therefore semiclassical. This allows using the
semiclassical approximation in the theoretical analysis. This
way allows understanding the underlying cause of the
appearance of inhomogeneity in the system and obtaining
analytic dependences of the distribution of electrons on the
system parameters. The semiclassical approach is widely used
for the analysis of metallic clusters [2], for calculating the
energy spectrum of nuclei [15], and for calculating oscillations
of the electron concentration in an atom [4].

3.1 General relations
To find the electron concentration, we use the representation
of the Green's function G�r 00; r 0;E� for electrons within the
semiclassical approximation [15±19], where r 0 and r 00 are the
respective initial and final points of the trajectory, andE is the
energy:

G�r 00; r 0;E� � G0 ÿ 1

�2ph 5�1=2

�
X
a

�
prD

1=2 exp

�
i

h
Sa�r 00; r 0;E� ÿ ip

4

��
a
; �44�

where Sa is the classical action integral:

Sa �
� r 00

r 0
pa dla ; �45�

G0�r 00; r 0;E� � ÿ m

2ph 2jr 00 ÿ r 0j exp
�

i

h
jr 00 ÿ r 0j p�r�

�
; �46�

r � r 0 � r 00

2
; p 0 � dSa�r 0; r 00;E�

dr 0
; p 00 � dSa�r 0; r 00;E�

dr 00
:

�47�

To evaluate G�r 00; r 0;E�, it is more convenient to use a
cylindrical coordinate system �rzj�, where the z-axis is
directed along �0; r�, the point r being the center. The
momentum components pr and pz and the angle jp are then
expressed as pr � �p 2

x � p 2
y �1=2, pz, and jp � arctan �py=px�:

D � det

dp 0r
dr 00

dp 0r
dz 00

dp 0r
dE 00

dp 0z
dr 00

dp 0z
dz 00

dp 0z
dE 00

dta
dr 00

dta
dz 00

0

2666666664

3777777775
; �48�

ta�r 0; r 00� � dSa�r 0; r 00;E�
dE

�
� r 00

r 0

1

j_rj dla : �49�

The summation in (44) is performed over all real classical
trajectories a that connect points with the coordinates r 0 and
r 00, and ta is the time of motion along a.

The electron concentration is determined by the following
expression, which includes the imaginary part of the Green's
function:

ne�r� � ÿ 2

p

� EF

ÿ1
Im
�
G�r; r;E�	 dE : �50�

In our case, the calculation of electron density (50)
consists in taking into account all orbits with coincident
initial and finite points.

All of the closed electron orbits starting and terminating
at r belong to one of two types: closed periodic and closed
nonperiodic. The classification of all such closed (periodic
and nonperiodic) orbits adopted here is based on the well-
known �n;m� classification of closed periodic orbits, where n
is the number of turning points and m is the number of turns
of the trajectory around the center. Closed nonperiodic orbits
can be formed from periodic ones by a single transformation,
which is a shift of one of the vertices to the point r, i.e., by a
deformation of a periodic �n;m� orbit. We therefore label
them def �n;m�. Closed periodic orbits are just the known
periodic �n;m� orbits that goes through the point r. Depend-
ing on r, the orbit can be oriented differently in the plane of
the drawing. As r varies, the periodic �n;m� orbit rotates in the
plane of the drawing, and we therefore use the notation
rot �n;m� for such orbits.

Â
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b

Figure 5. (a) Periodic trajectories of an electron. (b) Formation of two trajectory types.
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Examples of trajectories of both types are presented in
Fig. 5. These trajectories, as noted above, can be formed from
the known periodic orbits (Fig. 5a) in two ways: by rotation
or deformation (Fig. 5b).

Closed periodic trajectories occur more frequently in
the literature because they alone are used to calculate the
energy spectrum of the system. However, our study is devoted
to the spatial distribution of electrons. This requires to take
into consideration both types of trajectories in calculations,
as noted, for example, in [18, p. 1797], where it was stated that
the spectrum is determined only by periodic orbits, despite the
wave functions being made of both types of trajectories.

The general expression for the contribution of each
trajectory to the concentration n in (50) is

Sa � pR0La

�
r 0

R0
;
r 00

R0

�
� pR0La�x 0; x 00� ; �51�

whereLa is a dimensionless length of the trajectory a andR0 is
the radius of the well. Here and hereafter, the notation
x � r=R0 is adopted. We define a dimensionless function Fa

as follows:

prD
1=2
a � m

���
p
p������
R0

p Fa�x 0; x 00� : �52�

The second term of the right-hand side of expression (44)
for the Green's function can be represented as

DG�r 00; r 0;E� � 1

h 5=2
p

�
m 2

R0 p

�1=2

� Fa�x 0; x 00� exp
�

i

h
pR0La�x 0; x 00�

�
: �53�

The imaginary part of DG�. . .� determines the difference
between concentrations n�r� and n0:

n�r� ÿ n0 � Dn�r� � ÿ 2

p

� EF

ÿ1
Im
�
DG�r; r;E�	 dE : �54�

Since the density of electrons is expressed through the
Green's function with r 0 � r 00 and depends only on r � jrj in
the spherically symmetric case, we use r instead of r, as an
argument ofG in (50) and (54). Correspondingly, the notation
x � jrj=R0, rather than x, is used in the functions Fa and La

below.
To calculate the integral in (54), we assume a large (� 103)

absolute value of the exponential in (53). As a result, we
obtain the expression

Dn�r�
n0
�
X
a

Fa�x; x�
La�x; x�

�
8

N

�1=2

sin

�
1

h
pFR0La�x; x�

�
: �55�

The contribution of each trajectory to (55) is taken into
account additively. Several corollaries follow from expres-
sion (55).

The dependence of the relative deviation of the concentra-
tion on the number of particles has the form�

Dn
n0

�
sphere

�
����
8

N

r
: �56�

Expression (55) contains two spatial scales. The first of them
is the Fermi length� h=pF and the second one is the sizeR0 of
the potential well. The spatial dependence in (55) has a
qualitatively different nature for two types of trajectories,
rot �n;m� and def �n;m�.

For rot �n;m� trajectories, the spatial dependence of each
term in (55) is determined by the factor Fa only, because La is
independent of x. Therefore, the total contribution to (55)
from trajectories of this type formsa function that has a spatial
inhomogeneity scale of the order of R0 only. For def �n;m�
trajectories, each term in the sum is the product of a rapidly
oscillating function sin

�
pFR0La�x; x�=h� with the spatial

inhomogeneity scale � h=pF and a slowly varying function
Fa�x; x�=La�x; x� with the spatial scale � R0. Therefore, the
spatial dependence of the relative deviation of concentration
consists of a rapidly oscillating part (Fermi length scale) and a
slowly oscillating part (scale of the system size):�

Dn
n0

�
sphere

�
�
Dn
n0

�
FOscil

�
�
Dn
n0

�
SOscil

: �57�

The former part is defined by the sum in (55) over
def �n;m�-type trajectories, and the latter part is defined by
the sum in (55) over rot �n;m�-type trajectories.

Each term in (55) is proportional to 1=La and decreases as
m increases, because La � m. Therefore, the sum is deter-
mined by terms with small m, i.e., the trajectories def �n; 1�
and rot �n; 1�.

3.2 Examples of diagram calculations
As was shown in Section 3.1, the expression for the
concentration of electrons is determined by closed trajec-
tories and is given by (55).

In this section, we show the main properties of the
functions Fa�x; x� and La�x; x� with the example of
def �3; 1�, def �4; 1�, rot �3; 1�, and rot �4; 1� trajectories, for
which analytic expressions can be found in a closed form.
These results suggest general conclusions regarding the
structure of Fa and the nature of the spatial distribution of
electrons. In addition, these trajectories make the leading
contribution to the respective sums in (76) and (75) (see
Section 3.3 in what follows), because they correspond to
small values of m. Search for Fa�x; x� turns into calculating
the determinant at r 0 � r 00. The closeness of r 0 and r 00 to each
other simplifies the calculation.

Let us describe the calculation for the def �3; 1� trajectory
in detail. Figure 6 demonstrates a closed nonperiodic def �3; 1�
trajectory together with a nearby nonclosed trajectory (shown
in red) whose initial and final positions r 0 and r 00 are close, but
distinct. In a Cartesian coordinate system �x; y�, we introduce
the notations �r 0z 0� and �r 00z 00� for components of these
vectors.

The following relations hold:

sin a
r
� cos 2a

R0
;

sin �a� e�
r� D

� cos �2a� 2e�
R0

: �58�

Because r 0 and r 00 are close, the parameters e andD have small
values, and therefore

e
�
cos a
r
� 2 sin 2a

R0

�
� D sin a

r 2
; �59�

D � 1

2r�R0 sin a� r�
��
ÿ r 2 sec a

R0
ÿ r tan a

�
�ÿR0r 0 sin a

ÿ R0r 00 sin a� R0z
0 cos aÿ R0z

00 cos aÿ rr 0 ÿ rr 00�
�

ÿ rr 0 sec a� R0r 0 tan aÿ R0z
0

R0
; �60�
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o � 1

2r�R0 sin a� r�
�
ÿ R0r 0 sin aÿ R0r 00 sin a

� R0z
0 cos aÿ R0z

00 cos aÿ rr 0 ÿ rr 00
�
; �61�

pr � p�2e sin 2aÿ 2o sin 2aÿ cos 2a� ; �62�
pz � p�ÿ2e cos 2a� 2o cos 2aÿ sin 2a� : �63�
Substituting the obtained expression in (48) and also

tending r 0 and r 00 to r, we find

Fdef �3;1��x; x� � ÿ1�
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8x 2 � 1
p

4x 2

�
���������������������������������������������������������������������������������������������������������������������

8x 3
ÿ
4x 2 � 5� 3

����������������
8x 2 � 1
p �����������������

8x 2 � 1
p ÿ

4x 2 ÿ 1� ����������������
8x 2 � 1
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Ldef �3;1��x; x� � 4
cos3 a
cos 2a

; sin a � ÿ1=2�
���������������������
1=4� 2x 2

p
2x

;

0 < x < 1 : �65�

Similar calculations yield closed analytic expressions for
the def �4; 1� trajectories (Fig. 7):
Fdef �4;1��x; x�

�

�������������������������������������������������������������������������������������������
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1� 1
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for x5
1

3
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0 for x <
1

3
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8>>>>>>>>><>>>>>>>>>:
�66�

Ldef �4;1��x; x� � 2 sin 2a
�

1

sin 3a
� 1

sin a

�
;

�67�
x � sin a

sin 3a
; 0 < x < 1 :

For rot-type trajectories (Fig. 8), we have

Frot �3;1��x; x� �
ÿ 1

2x

��������������������������
1���

3
p �4x 2 ÿ 1�

s
for x5
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2
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0 for x <
1

2
;

8>>><>>>: �68�

Lrot �3;1��x; x� � 3
���
3
p

; �69�

Frot �4;1��x; x� �
1

4
���
2
p �2x 2 ÿ 1� for x5

���
2
p

2
;

0 for x <

���
2
p

2
;

8>>><>>>: �70�

Lrot �4;1��x; x� � 4
���
2
p

: �71�

Now it is clear that the nonoscillating part of the sum
in (55) is associated with the terms where La is constant.
Accordingly, the oscillating one is the part of (55) where La is
variable.

Several important properties follow from the obtained
expressions.

(1) The function Fa is nonvanishing for r > sa:

�a� srot �n; 1� � R0 sin
�nÿ 2�p

2n
;

�b� sdef �n; 1� � srot �nÿ1; 1� :

(2) The function Fa is singular at the points da:

�a� drot �n; 1� � srot �n; 1� ;

�b� ddef �n; 1� � srot �nÿ1; 1� :

Thus, Fa can be represented as

Fa�x; x� � Y�rÿ sa�Ga

�
x;

r

sa

�
; �72�
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Figure 6. def �3; 1� electron trajectories.

r

Â b

r

Figure 7. (a) def �3; 1� and (b) def �4; 1� electron trajectories.
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Figure 8. (a) rot �3; 1� and (b) rot �4; 1��b� electron trajectories.
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where Y is the Heaviside step function and sa is a singular
point of Fa.

3.3 Large-scale inhomogeneity
of the spatial distribution of electrons
Due to the electron concentration deviates from the mean
value, an electric field appears in the system. The radial
component of this field is denoted as E. We evaluate E for
the oscillating and nonoscillating parts of Dn using the
expression

E�r� � 4pe
r 2

� r

0

Dn�r�r 2 dr : �73�

At first we calculate the contribution of the rapidly
oscillating part of (55) using the stationary phase method.
Two cases can occur. In the first one, the function La has no
stationary points on the integration interval, and therefore
the field E exhibits a distinctly oscillatory behavior. There-
fore, the spatial distribution of electrons has the same
inhomogeneity scale, the Fermi length h=pF.

In the second case, the function La has stationary points.
All def �n;m�-type trajectories possess this property. An
example of such trajectory def �4; 1� is presented in Fig. 9.
To evaluate the E field, we apply an approximate expression
of the stationary phase method,� b

a

f �x� exp �ils�x�� dx � f �x0�
����������������

2p
ls 00�x0�

s
exp

ÿ
ils�x0�

�
;

�74�

where x0 is an extremum point, with s 0�x0� � 0.
We have arrived at the following expressions for the field

components related to DnF;oscil and DnS;oscil:
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� 1������������������������������������
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p s 2a
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0

� sin
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1

h
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�
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R0
;
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R0

��
Y�rÿ da� ; �75�

DES;oscil � 3
���
8
p e

����
N
p

r 2

X
a

� r=R0

sa=R0
Fa�x; x�x 2 dx

La

� sin

�
1

h
pFR0La

�
: �76�

Summation in (75), as well as in (76), involves all trajectories a
for which sa < r.

The obtained expression for E�r� has a spatial inhomo-
geneity scale of the order of the spherical well size. For much
greaterN, E�r� is determined by expression (76). The structure
of the sum in (76) is such that E�r� has extremum points sa.
For rot �n;m�-type trajectories with small n and m, we have
sa � R0=4,R0=2,

���
2
p

R0=2 (see Section 3.2). Radial integration
of the field E�r�, which yields the potential, preserves the
revealed periodicities as well as the large-N asymptotic
behavior.

Thus, the results obtained using Green's functions (56)
and (76) are in good agreement with numerical results for
the behavior of the potential obtained by other methods
described above (see Sections 2.1 and 2.2 and Fig. 10).

4. Inhomogeneous distribution of electrons
in a compressed gas bubble: calculations
using the electron density functional method

So far, we have discussed a system of free noninteracting
electrons; we demonstrated that the distribution of the
potential that they produce is inhomogeneous with a spatial
scale of the order of the system size. In this section, we
demonstrate that this effect also occurs in a system of inter-
acting electrons, such as a pressurized bubble of ionized gas.

Figure 9. def �4; 1� electron trajectory. The triangular trajectory has the

minimal length.
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Numerical calculations of the spatial distribution of
electrons and of the potential were done with the use of the
DFT for the jellium model. Such calculations based on the
jellium model had been done previously, e.g., in [20], but only
for a relatively small number of electrons. In the jellium
model, ions are represented as a continuous fixed distribution
of positive charge. To perform calculations and analysis, it is
most convenient to use a spherically symmetric distribution
of ions and their potential, because it allows reducing the
problem to one dimension. Here, we also use a modification
of the jellium model, also called the stabilized jellium model
[21±23], with a correction taking the averaged difference
between jellium and point-like ions into account.

4.1 Computational method
For spherically symmetric problems, one-dimensionalKohn±
Sham equations are to be solved in the jellium model [24].
Using a decomposition of the one-electron wave function (see
Eqn (A.1) in the Appendix), we can write the Kohn±Sham
equation for the radial wave function (to simplify the
expressions, we use the atomic system of units with
�h � c � e � 1):�
ÿ 1

2

d2

dr 2
� VKS�r� � l�l� 1�

2r 2

�
wnl�r� � enlwnl�r� ; �77�

VKS�r� � Vion�r� � VH�ne; r� � Vxc�ne; r� � hdviWS

ÿ
nion�r�

�
;

�78�
whereVKS is the effective Kohn±Sham potential,VH andVion

are the respective electrostatic potentials of electrons (Hartree
potential) and of the ionic jellium multiplied the electron
charge ÿe, i.e., VH � ÿeje � ÿje and Vion � ÿejion �
ÿjion. Next, Vxc is an exchange-correlation potential and
hdviWS is the stabilized jellium correction. The electron
density is defined in the following way:

ne�r� � 2
X
n; l

�2l� 1�Ynl
w 2
nl�r�
4pr 2

; �79�

where Ynl � Y�EF ÿ enl� is the Heaviside step function. The
potentials and the stabilized jellium model are considered in
more detail in Section 4.2 below. Hereinafter, we imply that
the electrostatic potential has the form of the following sum:

VES � Vion � VH � hdviWS : �80�
Equations (77) are to be solved self-consistently by the

method of simple iterations with mixing. At each iteration,
Eqn (77) with potential (78) is solved. The new value of the
electron density for the next iteration is then constructed as a
combination of the one used at the current step and the one
evaluated in accordance with (79). In other words, at each
step of the iteration procedure, an admixture evaluated by
formula (79) is added to the density. The iterations proceed
until the electron density becomes self-consistent. To calcu-
late Vxc in the DFT model, we every time used the exchange-
correlation Perdew±Zunger potential [25] in the local density
approximation (LDA) in the spin-unpolarized case.

In the case of a spherically symmetric charge distribution,
the Poisson equation Dj � 4pn�r� can be easily integrated,
and, similarly to (17), we obtain the electrostatic potential of
electrons

VH�r� � 1

r

� r

0

4p�r 2ne��r� d�r�
� �1
r

4p�rne��r� d�r : �81�

The potential generated by the homogeneous distribution of
ions Vion is nothing but the potential of a uniformly charged
ball.

4.2 Stabilized jellium model
There exists a correction to the Kohn±Sham effective
potential hdviWS within the stabilized jellium model. That is
the averaged over the volume per ion Z=nion difference
between the potential V�r� of a uniformly charged ball
carrying the ion charge Z and the model pseudo-potential
[21±23]:

hdviWS �
3

4pr 30

� r0

0

dr 4pr 2
�
o�r� � V�r�� ; �82�

r0 � Z 1=3rS � Z 1=3

�
3

4pnion

�1=3

; �83�

whereZ is the ion charge, rS is theWigner±Seitz radius, nion is
the ion jellium density. V�r� is the potential of a uniformly
charged ball, and

o�r� � ÿZ

r
; r > rc ;

0 ; r < rc

8<: �84�

is the model pseudo-potential of the interaction between an
electron and a charge-Z ion; rc is the characteristic radius of
an `empty' core specified by the model. Some comparisons
between the stabilized jellium model and three-dimensional
calculations are presented in [26].

4.3 Calculation results for homogeneous jellium
Based on the jellium model, we have performed a large
number of calculations for hydrogen bubbles of various
sizes and densities of ions. In this section, we consider
only the case of a homogeneous density of ions, when the
positive-charge density is equal to the averaged density
inside the spheres, �ne � Ne�3=4pR 3

0 �, and is equal to zero
outside.

First, let us show how the distribution of free electrons in a
spherical potential well with infinitely high walls is related to
that in the DFT calculation. A comparison of the result for a
relatively small number of electrons is shown in Fig. 11,
where, with a view to better superimpose the plots, the radius
of the well is taken to be slightly larger than the ion jellium
radius. The distribution of free electrons is self-similar and
can therefore be simply scaled with the radius. As can be seen
from the figures, the density profiles are close to each other,
and the positions of maxima and minima also agree.

In the series of computations that we performed, the ion
jellium density was in the range of 1028ÿ1032 mÿ3, and the
number of electrons (equal to the number of ions) varied up to
4� 105. In Fig. 12, we show an example of the spatial
distribution of the electron density for a bubble 1 nm in
radius with a jellium density of 1030 mÿ3 and also show the
plots of the electrostatic potential and the exchange-correla-
tion and effective Kohn±Sham potentials.

We now discuss the oscillation of the electron density and
the electrostatic potential in detail. Because the ion jellium
density nion is homogeneous and is approximately equal to the
mean electron density ne, the quantity characterizing the
electron density oscillations can be conveniently chosen as
the difference ne ÿ nion. We next take the magnitude Dn of
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electron density oscillations to be equal to half the difference
between maximum and minimum values of ne ÿ nion in the
intermediate domain, excluding the vicinity of the boundary
and the central part of the bubble, because oscillations are
always very strong in the center. Oscillations in a bubble with
a radius 1 nm at three different values of the ion jellium
density are shown in Fig. 13. The following regularity can be
discerned from the figure: the amplitudes of electron density
oscillations decrease as the number of electrons increases,
which is entirely consistent with the estimate in (56).

To extract the electrostatic potential oscillationsDVES, we
can, for example, subtract the mean value VES, which can be
approximately expressed in terms of the Fermi energy EF,

DVES � VES � Vxc��ne� �
ÿ
EF��ne� ÿ emax

nl

�
; �85�

because

VES � Vxc � VKS � ÿEF : �86�

The energy of the last filled electron level emax
nl is subtracted

here so that the values of DVES are in the vicinity of zero. In
(85), �ne denotes the mean electron density. Examples of
electrostatic potential oscillations DVES obtained for several
bubbles with different parameters are shown in Fig. 14.

Oscillations of the electron density and potential that were
obtained from numerous computations are shown in Fig. 15.
Figure 15a demonstrates the magnitude of electron density
oscillations depending on the number of electrons, on a
logarithmic scale. We also show dependence (56) and the
power-law approximation obtained by the least-square
method. The fitting curve corresponds to Dne=ne / Nÿ0:4e .

From expression (76), obtained within the analytic
semiclassical theory, we have

j�r� /
������
Ne

p
R0
/ n

1=3
0 N 1=6

e : �87�

The potential oscillation magnitude depending on the
density, which is illustrative of the semiclassical behavior,
together with the dependence defined by (87) and the power-
law approximation are presented in Fig. 15b. The figure does
not reflect the results obtained for Ne < 15;000, because
oscillations of the potential do not satisfy (87) for a relatively
small number of electrons, being several times greater than
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they should be according to the power law. The fitting curve
for oscillations of the potential corresponds to the depend-
ence DVES / j1:07, where j is taken from (87). This corre-
spondence means that the magnitude of oscillations of the
potential is in good agreement with the analytic result.

We note the following feature of the dependence of
the electrostatic potential on the number of particles in
the system. Due to the factor sin �pFR0La=h� in (76), this
dependence is oscillatory. In particular, there are values ofNe

(magic numbers) at which the electrostatic field amplitude is
maximal. This can be clearly seen from Fig. 16, which shows
the results of computations of the electrostatic potential
amplitude DVES and the oscillating part of the total energy
�Eosc � Eÿ �E � as functions of the number of electrons in
the system. Computations were performed in the DFTmodel
framework at the density ne � 1030 cmÿ3. The obtained
results for the oscillating part of the energy are similar to the
results in [20]. The dependences are of an oscillating character

with DN 1=3
e � 0:55. By means of the Fourier transform, we

can find the characteristic frequencies of such a periodic
dependence. The Fourier transform was performed with
respect to the argument N

1=3
e at the interval from N1 � 200

to N2 � 20;000; the harmonic amplitudes are then given by

Ak �
� N

1=3
2

N
1=3
1

exp �ÿiokN
1=3
e � f �N 1=3

e � dN 1=3
e ;

�88�
ok � 2pk

N
1=3
2 ÿN

1=3
1

;

where f �N 1=3
e � is the function being sought and k is the

harmonic number ranging from 0 to the number of points
used in the discrete Fourier transform.

In Fig. 16c, we show the oscillating part of the energy
Eosc and the amplitudes of the potential oscillations DVES

as functions of the frequency number k. The frequency curve
for energy exhibits several evident peaks that correspond to
closed trajectories (see Fig. 5) (a similar analysis is given in
[27]). For example, the peak at k � 26 corresponds to the
simplest periodic trajectory, the motion along the diameter
(see Fig. 5). The maxima at k � 34 and 38 correspond to the
periodic trajectories of an equilateral triangle and a square.
The maxima at higher k correspond to repeated periodic
trajectories. Similarmaxima (not necessarily well-defined) are
also present on the frequency curve for the amplitude of
electrostatic oscillations.

The magic numbers in the simple model of a spherical
potential well were originally obtained by Gamow [6] and
Elsasser [28]. They considered only small numbers of particles
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(similarly to Fig. 17a). The simple model allows us to also
observe beats in various integral characteristics of the system
for a large number of particles (Fig. 17b). The differences
between values of the magic numbers and those in the DFT
model can be explained by differences in the behavior of the
potential as r tends to the wall. The potential well has a finite
depth in the DFT jellium model and is infinite in the simple
model. Therefore, already at Ne of the order of a hundred,
differences between the magic numbers of these models start
appearing. In view of this, the 20% difference in the magic
numbers that we obtain between the simplest model and the
DFT is remarkably small forNe of the order of ten thousand.
In the simple model, importantly, the qualitative effect of
beats can even be traced to very large Ne (Fig. 17b).

5. Conclusions

Using several methodological approaches, a new nontrivial
manifestation of quantum effects in a mesoscopic system of
degenerate electrons in a spherical potential well is demon-
strated. We have shown that the electron density distribution
has two spatial scales. The first one is the well-known Fermi
length� h=pF. We attribute a new manifestation of quantum
effects to the existence of a second spatial scale, which is of the
order of the system size. The second scale is most conspicuous
in the emergence of an electric field acting on the ionic

system. The potential has a large-scale oscillatory behavior
with several extremum points.

This result was obtained for two physical systems: the gas
of degenerate noninteracting electrons in a spherical potential
well with infinitely high walls and a cold pressurized gas
bubble of submicrometer size.

The first system was analyzed within two approaches:
numerical modeling (direct numerical summation of the exact
solutions for electron wave functions, numerical computation
of the exact Green's function) and the analytic method of
semiclassical Green's functions. The obtained results are in
good agreement with each other. Numerical results confirm
the main analytic dependences obtained by the method of
semiclassical Green's functions.

The large-scale spatial distribution of the concentration of
electrons and of the emerging electric field has several
extremum points, and the amplitudes of deviations from the
mean values depend on the number of electrons in the system
as

Dne�r�
ne

/
�

8

Ne

�1=2

; �89�

Dj / eN
1=2
e

e0R0
: �90�

A similar effect exists for the second system as well. DFT
calculations of the pressurized gas bubble yield a similar
spatial distribution of the concentration of electrons and of
the electrostatic potential. In contrast to the system of free
degenerate electrons, the electrons in a gas bubble interact
with ions andwith each other. This results in the weakening of
the effect, but the functional dependences of the amplitude of
deviations from the mean value exhibit a similar dependence
on the number of electrons.

Of fundamental importance for the effect is the spherical
symmetry of the system or its proximity to spherical sym-
metry. However, the effect is preserved at large deformations
and under the transformation of the sphere into an ellipsoid,
as was shown, e.g., in [29]. This problem was investigated in
the quantum theory of elliptic billiards. Only when the
deformation reaches ten percent the electron density distribu-
tion (withNe � 1000) changes qualitatively (see, e.g., [30] and
references therein). The effect is absent in flat geometry and
manifests itself much more weakly in systems with cylindrical
geometry [29].

The nature of this effect is different from the known
manifestations of quantum effects in mesoscopic systems,
such as size quantization, resonance phenomena, mesoscopic
conductance fluctuations, and coherent inverse scattering.

For size quantization effects to manifest themselves, it is
necessary that the system sizes be of the order of some char-
acteristic length [31]. In particular, when a crystal sample
size is comparable to the mean free path of the electron,
kinetic properties such as electric conductance begin to
depend on the size and shape of the crystal [32]. The effect
analyzed here involves two scales: the Fermi length of the
electron and the size of the domain. The ratio of these two
scales has no effect on the existence of the effect or on its
magnitude.

For the same reason, the effect cannot be assigned to the
class of quantum resonance effects, which require that the
system dimensions be equal to an integer number of half-
waves (or an integer number of quarter-waves), as is the case
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of resonance tunnel diodes and transistors [33], and also in the
Ramsauer±Townsend effect [34].

The effect also has no interference nature, which is
inherent for such phenomena as mesoscopic fluctuations of
conductance and coherent inverse scattering observed in
mesoscopic systems. We note that, in one of the approaches
discussed in this methodological paper, concentration is
determined by summing the squared moduli of the electron
wave functions, which obviously eliminates any interference
effects.

Our result is also essentially different from other manifes-
tations of inhomogeneity in systems of a quantum nature:
Friedel oscillations [35] and Kohn singularities [36] of the
potential distribution. In those cases, the size of the inhomo-
geneity domain is of the order of several Fermi lengths near
the boundary and is unrelated to the size and geometry of
the system, with the spatial distribution of electrons being
homogeneous in a major part of the system.

The nature of the phenomenon studied here is related to
quantum shell effects in a spherical system. This follows from
our theoretical and computational analysis, according to
which the oscillatory nature of the dependence of the
amplitude of the emerging large-scale electric field on the
number of electrons is identical to the known dependence of
the specific energy of a cluster and is determined by filled
electron orbitals. The nature of the spatial distribution of the
potential (the existence of several extremum points) is
determined by the first few classical periodic trajectories of
the electron in a spherically symmetric potential well.
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6. Appendix

The Schr�odinger equation in the problem with potential (1)
allows separation of variables, and its solution can be written
as

u�r; y;j� � 1

r
wnr; l�r�Yl;m�y;j� ; �A:1�

where Yl;m�y;j� is a spherical harmonic. The radial wave
function satisfies Eqn (3), which we reproduce here,�

d2

dr 2
ÿ l�l� 1�

r 2
� k 2

�
wnr; l � 0 ; k 2 � 2mE

�h 2
; �A:2�

in the interval 04 r4R0 and vanishes everywhere outside
the interval. We here note immediately that the function w�r�
corresponds to different energy levels E depending on the
orbital angular momentum l and the radial quantum number
nr, because k is to be fixed by boundary conditions. By
introducing the new variable

x � kr �A:3�
and replacing

wnr; l � x 1=2j�x� ; �A:4�

the above equation can be brought to the form

j00 � 1

x
j0 �

�
1ÿ �l� 1=2�2

x 2

�
j � 0 : �A:5�

But this is the Bessel equation. Hence, the general solution to
Eqn (A.2) can be written as a combination of the linearly
independent solutions

wnr; l�r� �
��������
pkr
2

r �
C1Jl�1=2�kr� � C2Yl�1=2�kr�

�
: �A:6�

Spherical Bessel functions are defined as follows:

jl�x� �
������
p
2x

r
Jl�1=2�x� ; �A:7�

yl�x� �
������
p
2x

r
Yl�1=2�x� : �A:8�

For reference, we describe the recursive calculation of jl�x�.
The spherical Bessel function jl can be expressed in terms

of elementary sines and cosines:

j0�x� � sin x

x
; j1�x� � j0�x� ÿ cosx

x
: �A:9�

Next, we can use the recursion relation for the general case of
Bessel functions (see [37, æ 17.21])

Jn�1�x� � 2n Jn�x�
x

ÿ Jnÿ1�x� : �A:10�

The details of the calculation of Bessel functions are
discussed in Section 2.2.2. The accuracy of the calcula-
tion was compared with the new results in [14].

For the derivative of the Bessel function, we have

J 0n�x� �
1

2

�
Jnÿ1�x� ÿ Jn�1�x�

	
: �A:11�

Using (A.11), we can eliminate Jnÿ1 from (A.10),

Jn�1�x� � n Jn�x�
x
ÿ J 0n�x�; �A:12�

and obtain a recursion relation for spherical Bessel functions:

jl�1�x� � l jl�x�
x
ÿ j 0l �x� : �A:13�

To avoid the singularity at r � 0, we must set C2 � 0;
then, the solution for wnr; l�r� becomes

wnr; l�r� � Cnr; l r jl�kr� ; �A:14�

where Cnr; l is a normalization constant that absorbs C1, k,
and p.

From the zero condition imposed on the wave function on
the wall at r � R0, we have jl�kR0� � 0, whence we can find
the energy levels if we find roots xnr; l of the Bessel function
Jl�1=2�x�:

Jl�1=2�x� � 0 for x � xnr; l : �A:15�
Here, for each orbital number l, index nr denotes the
consecutive number of a root of Jl�1=2�x�. The energy of the
level nr; l is then expressed as

Enr; l �
�h 2

2mR 2
0

x 2
nr; l

: �A:16�

Hence, the root xnr; l gives the dimensionless energy of the
level x 2

nr; l
, and the wave number is

knr; l �
xnr; l
R0

: �A:17�
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The spherical harmonic Yl;m�y;j� is defined as

Yl;m�y;j� � Nl;m exp �imj�Pm
l �cos y� ; �A:18�

where Pm
l �cos y� is the associated Legendre polynomial, and

is normalized by the condition� ��Yl;m�y;j�
��2 dO � 1 ; dO � sin y dy dj : �A:19�

This condition is satisfied when

Nl;m � �ÿ1�m
�
2l� 1

4p

�1=2� �lÿm�!
�l�m�!

�1=2

: �A:20�

From the normalization of the full wave function� juj2 dx � 1, we then obtain� R0

0

���� 1r wnr; l�r�Yl;m�y;j�
����2r 2 dr dO � 1 ; �A:21�

whence� R0

0

��wnr; l�r���2 dr � 1 : �A:22�

But, wnr; l�r� � Cnr; l r jl�kr�, whence

C 2
nr; l

� R

0

r 2
�� jl�kr���2 dr � 1 ; �A:23�

and therefore normalizing the wave function requires
calculating the integral� R0

0

r 2
p
2kr

��Jl�1=2�kr���2 dr � p
2k

� R0

0

r
��Jl�1=2�kr���2 dr ; �A:24�

which must be equal to 1=C 2
nr; l

. As in (A.3), we set x � kr,
which then allows us to write

p
2k 3

� R0

0

kr
��Jl�1=2�kr���2 d�kr�

� p
2k3

� kR0

0

x
��Jl�1=2�x���2 dx � 1

C 2
nr; l

: �A:25�

The relevant integral can be evaluated as an indefinite integral
(see [11], 1.8.3.11):�

xJ 2
n �x� dx �

x 2

2

ÿ
J 2
n �x� ÿ Jnÿ1�x�Jn�1�x�

�
� x 3

p

ÿ
j 2l �x� ÿ jlÿ1�x� jl�1�x�

�
for n � l� 1

2
: �A:26�

This allows finding the normalization Cnr; l analytically,
because the integral in (A.24) is taken for r ranging from 0
to R0, which corresponds to x � kR0 ranging from 0 to xnr; l:

C 2
nr; l
� 2k 3

nr; l

�
x 3
nr; l

ÿ
j 2l �xnr; l�ÿ jlÿ1�xnr; l� jl�1�xnr; l�

��ÿ1
: �A:27�

From (A.17) and the condition jl�xnr; l� � 0, it follows that

C 2
nr; l
� 2

R 3
0

�ÿjlÿ1�xnr; l� jl�1�xnr; l��ÿ1: �A:28�

The case l � 0 is not described by formula (A.28), but the
integral then reduces to the elementary

�
sin2 xdx.

References

1. Kirzhnits DA, Lozovik Yu E, ShpatakovskayaGV Sov. Phys. Usp.

18 649 (1975); Usp. Fiz. Nauk 117 3 (1975)

2. Shpatakovskaya G V Phys. Usp. 55 429 (2012); Usp. Fiz. Nauk 182

457 (2012)

3. Shpatakovskaya G V J. Exp. Theor. Phys. 98 455 (2004); Zh. Eksp.

Teor. Fiz. 125 518 (2004)

4. Kirzhnits D A, Shpatakovskaya G V Sov. Phys. JETP 35 1088

(1972); Zh. Eksp. Teor. Fiz. 62 2082 (1972)

5. Ekardt W Phys. Rev. B 29 1558 (1984)

6. Gamow G Nature 131 433 (1933)

7. Fl�ugge S Practical Quantum Mechanics (New York: Springer-

Verlag, 1971); Translated into Russian: Zadachi po Kvantovoi

Mekhanike (Moscow: Nauka, 1974)

8. Messiah AQuantumMechanicsVol. 1 (Amsterdam: North-Holland

Publ. Co., 1961); Translated into Russian: Kvantovaya Mekhanika

Vol. 1 (Moscow: Nauka, 1979)

9. Varshalovich D A, Moskalev A N, Khersonskii V K Quantum

Theory of Angular Momentum (Singapore: World Scientific Publ.,

1988); Translated from Russian: Kvantovaya Teoriya Uglovogo

Momenta (Leningrad: Nauka, 1975)

10. Abramowitz M, Stegun I A (Eds) Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables (New

York: Dover Publ., 1972); Translated into Russian: Spravochnik po

Spetsial'nym Funktsiyam s Formulami, Grafikami i Matematicheski-

mi Tablitsami (Moscow: Nauka, 1979)

11. Prudnikov A P, Brychkov Yu A, Marichev O I Integraly i Ryady

(Integrals and Series) Vol. 2 Spetsial'nye Funktsii (Special Func-

tions) (Moscow: Nauka, 2003)

12. Baz' A I, Zel'dovich Ya B, Perelomov A P Rasseyanie, Reaktsii i
Raspady v Nerelyativistskoi Kvantovoi Mekhanike (Scattering,

Reactions and Decays in Nonrelativistic Quantum Mechanics)

(Moscow: Nauka, 1971)

13. Amos D E ACM Trans. Math. Software 12 265 (1986)

14. Bremer J, arXiv:1705.07820
15. Strutinskii V M, Magner A G Sov. J. Part. Nucl. 7 138 (1976); Fiz.

Elem. Chastits Atom. Yadra 7 356 (1976)

16. Gutzwiller M C J. Math. Phys. 8 1979 (1967)

17. Gutzwiller M C J. Math. Phys. 10 1004 (1969)

18. Gutzwiller M C J. Math. Phys. 11 1791 (1970)

19. Reichl L E The Transition to Chaos: Conservative Classical Systems

and Quantum Manifestations (New York: Springer, 2004)

20. Koch E, Gunnarsson O Phys. Rev. B 54 5168 (1996)

21. Perdew J P, Tran H Q, Smith E D Phys. Rev. B 42 11627 (1990)

22. Perdew J P Prog. Surf. Sci. 48 245 (1995)

23. Kiejna A Prog. Surf. Sci. 61 85 (1999)

24. Kohn W, Sham L J Phys. Rev. 140 A1133 (1965)

25. Perdew J P, Zunger A Phys. Rev. B 23 5048 (1981)

26. Shidlovski D S, Mukhanov A E J. Phys. Conf. Ser. 1009 012012

(2018)

27. Puska M, Ogando E, Zabala N Phys. Rev. B 64 033401 (2001)

28. Elsasser WM J. Phys. Radium 4 549 (1933)

29. Kuratov S E, Shidlovski D S, Blinnikov S IPhys. Plasmas 26 022709

(2019)

30. Kim J-H et al. Phys. Rev. E 96 042205 (2017)

31. Datta S Electronic Transport in Mesoscopic Systems (Cambridge:

Cambridge Univ. Press, 1995)

32. Li Y et al. Nanoscale Res. Lett. 10 420 (2015)

33. Sun J P et al. Proc. IEEE 86 641 (1998)

34. Capri A Z Problems and Solutions in Nonrelativistic Quantum

Mechanics (River Edge, NJ: World Scientific, 2002)

35. Friedel J Philos. Mag. 43 153 (1952)

36. Kohn W, Vosko S H Phys. Rev. 119 912 (1960)

37. Whittaker E T, Watson G N A Course of Modern Analysis

(Cambridge: The Univ. Press, 1927); Translated into Russian: Kurs

Sovremennogo Analiza Pt. 1 Osnovnye Operatsii Analiza (Moscow:

Fizmatlit, 1962)

August 2021 Two scales of quantum effects in a mesoscopic system of degenerate electrons 851


	1. Introduction
	2. Numerical methods
	2.1 Direct summation of wave functions
	2.2 Numerical method for finding the concentration with the aid of the exact Green's function

	3. Analytical method. Method of semiclassical Green's functions
	3.1 General relations
	㌀⸀㈀ 䔀砀愀洀瀀氀攀猀 漀昀 搀椀愀最爀愀洀 挀愀氀挀甀氀愀琀椀漀渀猀
	3.3 Large-scale inhomogeneity of the spatial distribution of electrons

	4. Inhomogeneous distribution of electrons in a compressed gas bubble: calculations using the...
	4.1 Computational method
	4.2 Stabilized jellium model
	4.3 Calculation results for homogeneous jellium

	5. Conclusions
	6. Appendix
	 References

