
Abstract. We discuss the current state of a promising area of
modern physics, the study of the physical properties of metal
nanowires and atomic chains. One-dimensional nanostructures
are attractive because of both the promise of their practical
applications and the possibility of using them to test various
theoretical models and approaches by comparing theoretical
results with experimental data. We describe experimental con-
ditions under which metal nanowires form on metal and semi-
conductor surfaces. We give special attention to theoretical
models describing the scenario of nanowire growth on various
surfaces. We analyze the main experimentally determined fac-
tors that affect the distribution of nanowire lengths. We show
that the distribution of nanowire lengths on metal and semicon-
ductor surfaces depends not only on external parameters but
also on the formation time.We consider the magnetic properties
of finite-length atomic chains located on the surfaces of metal
and semiconductor crystals. We demonstrate a correlation
among the structural, electronic, and magnetic properties of

nanowires. We elucidate the effect that nanowires exert on the
electronic properties of the surface on which they form. The
nature of edge states is explained. The electron states of nano-
wire atoms are shown to be sensitive to the nanowire length. We
discuss the Rashba effect for metal nanowires on a semiconduc-
tor surface and analyze how the exchange energy between
atoms and the magnetic anisotropy energy affect the macro-
scopic characteristics of nanowires, such as their critical tem-
perature and the time of spontaneous magnetization reversal.

Keywords: atomic wire, metallic chain, quantum conductiv-
ity, Rashba effect, nanomagnetism, spintronics, edge state,
epitaxial growth

1. Introduction

Designing structures with new physical properties is one of
the fundamental tasks of technology, aiming at extending the
applicability limits of currently existing materials. The key
concept here is the decrease in size to the limit where quantum
effects start exerting a significant influence on the electronic
and magnetic properties. An example of such structures is
provided by metallic atomic chains (two or more interacting
atoms arranged in a line) and wires (infinite atomic chains or
chains long enough for the edge effects to be ignored) on the
surface of metals, semiconductors, and insulators [1±25]. This
is why special attention has been devoted recently to the study
of properties of metallic atomic chains and wires. Revealing
new physical properties in one-dimensional atomic structures
allows producing new electronic devices. Such properties
comprise quantized conductance [26, 27], edge electron states
[28], spin and electron density waves [29], and the gigantic
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Rashba effect [30]. Therefore, one of the most topical
problems in modern physics consists in designing metallic
atomic chains and wires with controlled properties.

The study of the processes of formation of one-dimen-
sional atomic structures is necessary for controlling and
manipulating their electronic and magnetic properties by
selecting suitable experimental conditions. Despite a large
number of studies devoted to the growth processes of one-
dimensional structures, no general approach to the solution
to this problem has been worked out so far. Because the
formation of atomic one-dimensional structures and their
properties is determined by the complicated character of
interatomic interaction, difficulties are encountered in study-
ing the processes of formation of atomic chains and wires. In
providing a detailed description of such systems, essential
help is provided by theoretical methods related to computer
modeling, especially in view of the tremendous progress in
computer modeling achieved recently due to the appearance
of powerful computation facilities. Supercomputers have
paved the way to complicated models describing realistic
interatomic interactions in low-dimension systems, allowing
in-depth studies of self-organization processes in one-dimen-
sional structures.

Despite the progress in methods for studying one-dimen-
sional structures, there are numerous unsolved problems. One
of them is the analysis of the length distribution of epitaxially
grown one-dimensional atomic structures. Among the various
theoretical models [31±37] proposed for describing the length
distributionof one-dimensional atomic structures, none attains
quantitative agreement with experiment [31]. Another problem
is to establish the structure of metallic atomic chains and wires
on the surface of semiconductors. Here, the experimental
methods do not allow determining the chemical composition
of atomic structures, while theoretical approaches do not allow
unambiguously determining the structure of chains and wires
that form in experiment. Also of importance is the study of the
thermodynamic properties of metallic atomic chains and
wires. Knowledge of their behavior under changes in tempera-
ture is necessary for constructing devices and tools in the
future, because it determines the applicability limits of the
produced structures. Only recently did some papers appear in
which the kinetic Monte Carlo method (KMCM) is used to
estimate the lifetime of atomic chains [38±40].

In the last decade, spintronics has become one of the most
promising directions of technological development. An intri-
guing question here is the following: can atomic chains and
wires be used for information storage? Interest in theuse of one-
dimensional atomic structures as memory elements is primarily
related to thepossibility of their high-density arrangement on the
surface of a crystal. It is therefore necessary to study the
magnetic and electronic properties of one-dimensional atomic
structures. In passing to the atomic scale, the leading role starts
being played by the quantum properties of the considered
objects, which entails obvious difficulties in experimental
studies of their magnetic and electronic properties. As regards
the theory, despite some degree of success in studying these
problems, this field overall is still far from a comprehensive
understanding of the nature and mechanisms of the relevant
phenomena. One of the causes is the necessity to take various
interaction types into account in detail, which, due to their
nonlocality, is very laborious for both the analytic theory and
numerical analysis. This is why in this review we give special
attention to theoretical approaches to studying the electronic
and magnetic properties of metallic chains and wires.

In this review, we describe structural, electronic, and
magnetic properties of atomic chains and wires. We discuss
the main theoretical models describing how these structures
are formed. Based on a comparison of experimental and
theoretical results, we analyze and discuss advantages and
drawbacks of various theoretical approaches to the study of
properties of atomic chains and wires.

2. Formation of metallic atomic chains and wires

Currently, atomic chains can only be produced with the help
of a scanning tunneling microscope (STM) [1±3] and epitaxial
growth. As an example, Fig. 1a shows atomic chains of
copper nitride produced with the help of an STM.Manipulat-
ing atoms with an STM requires considerable effort and is
time consuming, and therefore atomic structures produced in
this way are hardly reproducible on an industrial scale.
Hence, self-organization of atoms epitaxially sputtered on a
surface is currently one of the main strategies to formmetallic
atomic chains and wires. Although epitaxial growth of one-
dimensional structures has been investigated for many years,
the role of many atomic processes involved in the formation
of these structures became clear only recently. This was due to
progress in experimental methods and the appearance of
powerful computing systems that allow complicated models
to be considered. The totality of both theoretical and
experimental methods facilitates obtaining deeper insights
into self-organization processes and finding optimum condi-
tions for the growth of metallic atomic chains and wires.

In recent years, many epitaxial systems have been
designed and investigated where one-dimensional atomic
chains and wires form (Fig. 1b±d). They are metallic vicinal
stepped surfaces [4±9] and metal [10±13] and semiconductor
[14±25] surfaces with low Miller indices.

2.1 Formation of atomic structures on a vicinal surface
in the one-temperature regime
Any surface can be considered vicinal, because even the most
thorough treatment of the surface of a single crystal with low
Miller indices leaves a certain number of steps on the surface.

1 nm

15 �A

Co atoms

Pt terrace

a b

c d

Figure 1. STM images of various one-dimensional atomic structures:

(a) nitride copper wire on a Cu(100) surface [1], (b) Co wire on a Pt(997)

surface [9], (c) Pt wire on a Ge(001) surface [23], (d) Co oxide wire on an

Ir(100) surface [12].
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The steps occur due to the mosaic structure of the crystal or
because of the limited precision in orienting the crystal prior
to and in the course of its sawing and polishing. Formetal and
semiconductor surfaces, the mean distance between steps can
be as much as 500 nm, and the spread of inter-step distances
around the mean value can lead to the appearance of terraces
several micrometers in width on the surface. In what follows,
we consider (m, m, m� 2) and (m, m, mÿ 2) type surfaces
with small values of the index m; they are stepped surfaces
with (111) terraces of m rows of atoms. Such surfaces with
small values of m have narrow terraces, and for most metals
the diffusion barrier for hops of atoms over a (111) surface is
equal to a few dozen millielectronvolts [41±45]. On such
surfaces, nanostructure growth occurs near the steps, and
their geometry strongly depends on their formation tempera-
ture.

As an example, Fig. 2 shows nanostructures of cobalt
formed on a Pt(997) surface at different temperatures.
Because the diffusion barrier for the hop of a Co atom over
the terrace is low, this atom has enough time to approach the
step before the next Co atom is sputtered. The probability of
hopping away from the step for Co atoms is low, because the
diffusion barrier for this event exceeds 1 eV. The Co atoms
then travel randomly along the step. When two Co atoms
meet near the step, a dimer forms, which then becomes a
center for nanostructure growth. The number of growth
centers and the subsequent evolution of the system depends
on the deposition rate, the surface coverage, the temperature,
and the magnitude of the diffusion barrier for a single atom
along the step. Hence, the main factor determining the type of
forming nanostructures is the diffusion rate of Co atoms
along the edge of the step. For example, at a temperature
below 250 K, the diffusion rate along the step edge is low,
which leads to the growth of roughness near it. In the
temperature range 250±290 K, Co adatoms move along the
step vigorously enough for atomic chains and wires to form.
Upon a further increase in temperature, diffusion transitions
between layers activate, and, hence, instead of one-atom-
thick chains, wires several atoms in thickness form. At
temperatures above 500 K, the Co atoms are immersed into
the surface, which means fusion of the metals. As can be seen
from Fig. 2, atomic wires form only in a narrow temperature
range. It was established experimentally that the lower
boundary of this range is 175 K for Cu and 250 K for Ag,
Co, and Fe on a Pt(997) surface [46]. The upper boundary is
limited by room temperature.

Another important parameter of epitaxial nanostructure
growth on a surface is the coverage: the ratio of the number of

deposited atoms to the number of atoms contained in one
surface monolayer (ML). We discuss the effect of this
parameter with the example of depositing cobalt on the
vicinal surface of copper at room temperature. At low values
of the coverage, of the order of 0:1 ML, two main processes
are observed on the surface. First, the terrace boundaries are
decorated with residual cobalt on both the higher and the
lower sides of the step, such that the terrace edge acquires a
`broken' shape. Second, islets of mixed copper and cobalt
atoms are placed continuously and irregularly along the step
edge [48±50], making up a structure 5 nm in width. Similar
one-dimensional knots also form when iron is deposited onto
a vicinal surface of copper [51, 52]. As the coverage increases,
adatoms on the terrace surface start forming two-layer islets
[53]: small and irregularly shaped [54] as well as larger ones
(about 4 nm in size) of a pronounced triangular shape. As the
coverage increases further, the size of the islets increases [49]
and then the islets merge [55, 56].

The above results of experimental work show that, for
Co/Cu(111) at constant temperature, one-dimensional
atomic structures can form in the shape of knots near the
step. This behavior is also characteristic of the deposition of
iron atoms on a vicinal surface of copper [51, 52].

The growth mechanism of one-dimensional atomic
metallic structures on the vicinal surface of copper in the
one-temperature regime was proposed in [57]. The formation
of one-dimensional atomic structures at the step edge consists
of the following processes: an atom approaching the clean
boundary of the terrace (first phase) and an atom approach-
ing an atomic structure already formed at the first phase
(second phase).

In the first phase, iron and cobalt atoms behave similarly
(Fig. 3). As an example, we therefore consider the behavior of
an iron atom in this phase. In the first phase, an iron adatom
prefers to occupy an fcc site on the surface (fcc stands for face-
centered cubic), irrespective of its position on the surface (in
the middle of the terrace or at the edge next to the step). The
diffusion barrier for the hop of an adatom on the terrace is
equal to 0:025 eV, and, therefore, if the terrace is narrow, the
adatom soon arrives the vicinity of the step. At the step edge,
in the case of in motion from its upper part, the adatom
motion mechanism is much more complex. Instead of
hopping to the lower terrace, with an energy barrier of 1 eV
(Fig. 3, A1 ! B1), the iron adatom immerses into the step via
exchange with a copper atom (Fig. 3, A1 ! D1), with the
energy barrier equal to only 0:07 eV. The displaced copper
atom then prefers to stay at the base of the step, next to the
iron adatom.
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Figure 2. Formation of various Co nanostructures on a Pt(997) surface at

different substrate temperatures [5, 47].
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Figure 3. First phase of wire formation at the edge of a copper step: top

view (left) and energy diagrams for iron (bottom left) and cobalt (bottom

right). White and gray dots, respectively, denote copper atoms on the top

layer and on the next layer; black dots are adatoms. Relative energies and

activation energies for transitions between states are expressed in eV and

are shown next to the vertical arrows [57].
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We consider an adatom located near a step on the lower
terrace. The iron adatom then has to first expel a copper atom
from the step (Fig. 3, B1 ! C1), overcoming a barrier equal to
0:66 eV. After that, the copper atom hops to the lower terrace,
overcoming the energy barrier of 0:34 eV (Fig. 3, C1 ! D1).
As a result, the final configuration is the same in both cases,
irrespective of whether the iron adatom arrives at the step
edge from above or from below.

As the second iron adatom approaches a terrace edge
already containing an immersed iron atom (Fig. 4), it most
probably continues the formation of an immersed structure
two atoms in length. Subsequent iron adatoms also immerse
nearby, giving rise to an immersed row of iron atoms at the
edge of the step on the surface of copper.

For an iron adatom approaching the boundary of a step
that already contains a row of iron atoms, it is energetically
beneficial to stay above, over the atomic wire immersed near
the step. As a result, additional iron adatoms placed on the
vicinal surface of copper give rise to the appearance of an
atomic wire made of iron on the upper boundary of the step.
This is followed by an increase in the width of the wire [57, 58].

Because iron and cobalt atoms interact with a copper
surface in the same way, the exchange processes occur
similarly for cobalt atoms (see Fig. 3). The distance between
the nearest neighbors in a copper crystal is dCuÿCu � 2:56 �A,
but is lower for the body-centered cubic (bcc) lattice of iron:
dFeÿFe � 2:48 �A. For cobalt, the distance between nearest
neighbors is dCoÿCo � 2:51 �A, which allows the immersed
cobalt wire to embed into the surface of the copper substrate
fcc lattice even better than into the iron lattice. Although the
first phase (formation of an atomic wire) occurs in the same
way for both iron and cobalt atoms, essential differences
show up in the second phase, because the cobalt crystal has a
hexagonal structure, and its (0001) surface has the same shape
as the (111) surface of copper. In addition, the distance
between nearest neighbors is approximately the same in the
two cases, and therefore cobalt atoms immerse into the
surface, thus increasing the width of the embedded cobalt
chain two-fold.

As shown in Fig. 4, when an adatom moves from the
lower part of the step, its final position is lower in energy
than the initial one, which makes its immersion into the
step possible via exchange with the atoms of the step. If
cobalt atoms move to the terrace edge from above, they
immerse into the step by displacing copper atoms, which
results in an increase in the width of the embedded cobalt
wires [57, 58].

2.2 Formation of atomic structures
on a vicinal surface in the two-temperature regime
Epitaxial growth of thin metallic films and nanostructures on
the surface of metals has been in the focus of interest of
research groups for more than half a century; for example,
growth of cobalt on a copper surface was first described in
1936 [59]. Since then, the Co=Cu�111� system has been
intensely studied by various research groups [8, 48, 49, 52±
56, 60, 61]. Despite this, however, it was long considered
impossible to produce atomic chains of Co and Fe on the
vicinal surface of copper by epitaxial growth. Indeed, as was
shown both experimentally [48, 49, 52±56, 60] and theoreti-
cally [37, 57, 58, 62], the formation of atomic Co and Fe
chains on the vicinal surface of copper is impossible in the
one-temperature regime. But the formation of atomic Co
chains has been demonstrated in the two-temperature regime
[8, 61], when Co atoms were first deposited onto the vicinal
surface of Cu(775) in the amount of 0:02 ML at the rate of
0:01MLminÿ1 at 165 K. After that, the sample was heated to
room temperature for some time.

The mechanism of growth of one-dimensional atomic
metallic structures on the vicinal surface of copper in the
two-temperature regime is as follows [58, 62]. After sputtering
on the surface, Co adatoms perform random walk over the
terrace, overcoming the barrier of 40meV, until they reach the
edge of the step. On a clean surface, an adatom approaching
the terrace edge must overcome its repulsive barrier. The
repulsive barrier for a Co adatom is much higher on the
upper terrace (136 meV) than on the lower one (69 meV).
This can be clearly seen from Fig. 5a, which plots the potential
energy for a Co adatom on the vicinal surface of Cu(775). This
is why at temperatures in the range 150±170 K the adatoms
most probably approach the step from the lower side of the
terrace. Only a few adatoms (two or three out of a thousand)
approach the edge from above [63]. Such a difference is caused
by charge redistribution on the step edge [63, 64] and leads to
the interaction between an adatom and the step being different
on the upper and lower terraces. For example, decreasing the
electron density on the upper terrace edge reduces the screen-
ing of the direct Coulomb interaction between the Co adatom
and the atoms of the step edge and hence decreases the
repulsive barrier. As a result, repulsion between the adatoms
and the step edge can considerably decrease the diffusion of
adatoms toward the edge.

A detailed analysis of the interaction of a Co adatom with
the vicinal surface of Cu(111) reveals an amusing effect [58, 62].
The chain located near the terrace edge increases the energy of
the adatom interaction with the surface in the middle of the
lower terrace (Fig. 5b) and, conversely, decreases it in the
middle of the upper terrace (Fig. 5c). Therefore, the cobalt
chain stops the diffusion of adatoms on the lower terrace and
facilitates it on the upper terrace, thus playing, as it were, the
role of a nanosemaphore [62] for adatoms moving over the
terrace. In this case, the Co adatoms have a higher probability
of approaching the step from the lower terrace and in the
locations least crowded with the Co adatoms. The few Co
adatoms that arrive from the side of the upper terrace can
embed into the step edge due to fluctuations of its atoms caused
by vacancy diffusion or via the exchangemechanism at the step
edges [65]. The potential barrier for such an event is 250 meV.
Two adatoms meeting on the terrace can form a dimer. The
probability of this process decreases as the temperature
increases and as the terrace width decreases. The first stage
terminates when most of the adatoms come to the step edge.
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Figure 4. Second phase of wire formation at the edge of a copper step: top

view (left) and energy diagrams for iron (bottom left) and cobalt (bottom
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At the second stage, the formation of atomic chains
continues on the vicinal surface due to the coalescence of
adatoms and dimers near the step. Because the diffusion
barrier for a hop of a Co adatom near a 300-meV step is an
order of magnitude higher than on the terrace, it follows that
increasing the temperature increases the diffusion rate [8, 46].
The duration of the second stage depends on the ratio of the
binding energy in the atomic chain to the temperature. The
lower that ratio, the faster the atomic chains merge and the
sooner equilibrium is reached. For example, a system of
atomic chains of silver on a Pt(997) surface with a binding
energy of 60 meV at 160 K arrives at thermodynamic

equilibrium in several seconds [38]. If the temperature is
decreased, then the time for the system to arrive at thermo-
dynamic equilibrium drastically increases. As can be seen
from Fig. 6, at 100 K, the Ag=Pt�997� system does not come
to thermodynamic equilibrium even in the course of several
days. We note that, at temperatures below 105 K, atoms of
silver become less mobile near the step, and, therefore, at low
temperatures atomic chains do not equilibrate within the
duration of the experiment. For atomic chains of cobalt on
the Cu(775) surface at temperatures above 160 K, the
relaxation time is much shorter than the experiment duration
time [39, 40, 66]. The second stage terminates when atomic
chains and wires of different lengths form.

2.3 Formation of one-dimensional atomic structures
on the surface of metals (110) and semiconductors (001)
An important factor determining nanostructure growth,
besides the nature of the impurity and substrate material,
the temperature, the deposition rate, and the coverage, is the
symmetry of the substrate surface. We consider its impact on
the growth of one-dimensional structures with the example of
the unreconstructed metal surface fcc(110) [11, 51, 67, 68] and
the reconstructed surface of diamond-type (001) semiconduc-
tors [19, 69±73]. On such surfaces, symmetry arguments allow
epitaxial growth of one-dimensional atomic structures.

The unreconstructed fcc(110) surface of metals consists of
densely packed rows of atoms placed at a distance of next-to-
nearest neighbors from each other (Fig. 7a). Therefore, the
diffusion of atoms over the surface occurs primarily along
these rows, i.e., along the �1�10� crystallographic direction, and
to a minor degree, along the perpendicular direction [001],
because activation barriers for diffusion along these direc-
tions differ strongly for most metals [43]. For example,
diffusion barriers for Cu=Cu�110� along �1�10� and �001� are,
respectively, equal to 241 and 1020 meV [43]. Another
example is given by the reconstructed surfaces of diamond-
type (001) silicon and germanium, c�4�2� and p�2�2�, made
of a row of surface dimers [74, 76] placed in every second row,
as shown in Fig. 7b. As in the case of an fcc(110) surface,
diffusion of adatoms also primarily occurs along one direc-
tion. The possibility of epitaxial formation of one-dimen-
sional atomic structures on the fcc(110) surface of metals [11,
51, 67, 68] and on the reconstructed surface of diamond-type
(001) semiconductors [14±25, 75] has been confirmed experi-
mentally. In Fig. 7c, d, we show STM images of atomic wires
for Cu=Pd�110� [67] and Ir=Si�001� [75].

Besides the anisotropy of diffusion barriers for single
atoms, the surfaces under consideration exhibit anisotropy
of the binding energy. In the case of sputtering up to 0:10ML,
just this anisotropy, alongwith the temperature, the coverage,
and the deposition rate, determines the conditions for the
formation of atomic wires [77±81]. We consider how the ratio
of the coverage Y to the atom deposition rate F affects the
formation of one-dimensional structures on the (110) surface.
For smallY=F, the mobility of atoms is low, because the time
interval between the appearance of two atoms is very short,
and within this short period of time the atom can only reach
another atom or a defect. Thus, at the first stage, a large
number of growth centersÐdimersÐ form. Subsequently,
only short chains two to three atoms in length and one to two
atoms in width form. We note that, in contrast to (001) and
(111) metal surfaces, the growth of dendrites is impossible on
a (110) surface. Atomic chains are kinetically stabilized
structures as long as the energy is insufficient for breaking
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Figure 5. (Color online.)Map of the potential energy for a Co adatom on a

Cu(775) vicinal surface. (a) Atomic chains of cobalt are present on the

surface. (b, d) Atomic chains of cobalt are present on different terraces on
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the bond of an edge atom to the chain. AsY=F increases, the
number of growth centers decreases and self-organization of
atomic chains occurs. A further increase in Y=F leads to the
widening of atomic chains and the formation of rectangular
islets.

We discuss mechanisms whereby the binding energy
anisotropy affects the shape of self-organizing structures.
We let E1 and E2 be the binding energies of two atoms on
the surface, placed along two perpendicular directions.
Because of the anisotropy of the surface (Fig. 7a or b), the
distance between two atoms on the surface is shorter in one
direction than in the other, perpendicular, direction, and
hence E1 4E2. As a result, for a small number N of atoms,
the energetically stable configuration is given by a linear chain
of atoms. If the length of the chain reaches the critical length
Ncrit (the number of atoms), the formation of a second row of
atoms becomes energetically advantageous. To find the
critical length Ncrit, we consider two atomic structures: a
chain 2Ncrit in length and an islet Ncrit in length and two
atoms in width. The binding energy for the atomic chain is
�2Ncrit ÿ 1�E1, and that of the islet is �2Ncrit ÿ 2�E1 �NcritE2.
Equating these two, we can estimate the critical length of the
atomic chain asNcrit � E1=E2. For Cu=Cu�110�, for example,
E1 � 0:3 eV andE2 � 0:03 eV [78], andNcrit � 10. As a result,
for low concentrations, atomic chains up to 10 atoms in length
form, and at higher concentrations, rectangular elongated
islets form.

3. Length distribution of atomic chains

One-dimensional atomic structures are attractive as regards
the design of new modern electronic devices. For their use in
electronic devices, it is desirable that they have the same
length and be well ordered systematically. This is why one-
dimensional structures and their size distribution are investi-
gated both experimentally and theoretically. In experiment,
the length distribution of atomic chains is most commonly
studied at low temperatures with the help of an STM [8, 20,
31]. Theoretical studies and analyses of the length distribution

of one-dimensional atomic structures are performed for
epitaxially grown systems. Currently, three main types of
length distributions for chains are identified (Fig. 8). Those of
the first type have a maximum corresponding to one
structural element, and their distribution function decreases
as the length of the one-dimensional structure increases. In
Fig. 8a, we show a distribution of this type, observed for
Co0:33Ni0:67O2=Ir�001� chains. Distributions of the second
type have one pronounced maximum (Fig. 8b). Distributions
of the third type are characterized by two or more maxima,
with the height of the subsequent maxima greatly reduced. In
Fig. 8c, we show the distribution for Ir=Ge�001� chains as an
example.

Modeling the process of growth of atomic chains and
wires, as well as studying the effect of external factors on their
length distribution, is of primary importance for under-
standing the physical properties of irreversible systems far
from equilibrium, and also for assessing the possibility of
controlling the morphology of the emerging structures. There
are three approaches to the theoretical analysis of the length
distribution of atomic chains and wires. In the first, in the
framework of thermodynamics with the use of a one-

�1�12��1�10�

�110�
�001�

a b

c d

c�4� 2� p�2� 2�

Figure 7. (a) View of an fcc(110) surface and three possible directions for

the diffusion of adatoms [43]. (b) Reconstructed diamond type (001)

surfaces c�4� 2� and p�2� 2� [74]. (c) STM image of Cu atomic wires on a

Pd(110) surface [67]. (d) STM image of Ir atomic wires on an Si(001)

surface [75].
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dimensional lattice gas model, an analytic expression is
obtained for the length distribution function of one-dimen-
sional structures [31, 32]. The second approach is based on
solving the rate equations, which are solved analytically by
scaling functions [82]. The third approach is based on the use
of the KMCM [37±39, 83±85]. Currently, however, the length
distribution of one-dimensional structures is most often
studied by combining two approaches. In particular, rate
equations are solved, after which the solution is compared
with KMCM results [33, 35, 86±91]. The approaches named
above have yielded many important and interesting results
which sometimes contradict each other. In what follows, we
give a detailed description of the use of these approaches in
theoretical studies of the length distribution of atomic chains
and wires.

3.1 Equilibrium length distribution of atomic structures
in the one-dimensional lattice gas model
To derive the equilibrium length distribution function for
one-dimensional atomic structures, we consider the model
of a one-dimensional lattice gas [31, 32]. We consider a row
of n sites along which the atoms can be located. Each of the
n sites can be either occupied or free. We restrict ourself to
the interaction between neighboring atoms. The atomic
chain in this model is a sequence of occupied sites, limited
by unoccupied sites on both ends. The equilibrium distribu-
tion function can be found in the canonical ensemble
framework, i.e., assuming the number of occupied sites n1
to be constant.

We first find the number of atomic chains. The partition
function of the system can be written as [32]

Z �
X
q

n

q
g1g2 exp

�
ÿ E

kBT

�
; �1�

where g1 and g2 are the degeneracy factors, q is the number of
chains, related to the energy as

E � ÿE �n1 ÿ q� ; �2�

and E is the binding energy.
Summation in expression (1) ranges all possible values of

q. The minus sign in front of the right-hand side in (2) implies
that the neighboring atoms are attracted for positive E. The g1
factor is equal to the number of arrangements of n1 occupied
sites among the q chains,

g1 � �n1 ÿ 1�!
�n1 ÿ q�!�qÿ 1�! ; �3�

and g2 is equal to the number of arrangements of n0 � nÿ n1
unoccupied sites in the q voids between the chains:

g2 � �n0 ÿ 1�!
�n0 ÿ q�!�qÿ 1�! : �4�

The factor n in (1) is the number of possible configura-
tions, and 1=q is introduced for correction for the superfluous
configurations occurring in the case of periodic boundary
conditions. Depending on which of the q clusters is the first
one, we can divide the collection of ng1g2 configurations into
q subcollections, which are identical.

To find q, we use the asymptotic method in which the
partition function is replaced with its greatest summand.

Solving the resultant equation in the thermodynamic limit
n!1, we obtain the number of chains as

q �
�������������������������������������������������������������
n 2 � 4n0n1

ÿ
exp �E=kBT � ÿ 1

�q
ÿ n

2
ÿ
exp �E=kBT � ÿ 1

� : �5�

From the number of chains and the temperature of the
system, we find the binding energy

E � kBT ln
�n1 ÿ q��nÿ n1 ÿ q�

q 2
: �6�

To derive the distribution function of the chain lengths,
we rewrite the partition function using other variables. We let
ql denote the number of chains of length l. Then each
collection of chains fqkgmust satisfy the conditions

n1 �
X1
k�1

kqk ; q �
X1
k�1

qk : �7�

Substituting these into (2), we express the total energy of the
collection of chains fqkg as

E � ÿE
X1
k�1
�kÿ 1�qk : �8�

We next find the degeneracy factor for the collection fqkg.
We first suppose that the chains have different lengths. With
the periodic boundary conditions, there are n ways to choose
the position of the first cluster. By definition, each chain is
bounded by two unoccupied sites, which leaves n0 ÿ 1 �
nÿ n1 ÿ 1 positions for the remaining qÿ 1 chains. There
are �n0ÿ1�!=�n0ÿq�! possibilities to arrange these chains. But
because all chains of the same length are indistinguishable, we
must introduce a correction for the number of translations
inside each group of chains of length k. We can then write the
degeneration factor for the collection of chains fqkg as

g3 �
n
ÿP1

k�1 kqk ÿ 1
�
!ÿ

nÿP1k�1�k� 1�qk
�
!
Q1

k�1 qk!
; �9�

and the partition function as

Z �
X
fqkg

g3 exp

�
ÿ E

kBT

�
; �10�

where summation ranges all collections of clusters satisfying
conditions (7). To find the number of chains of length l, we use
the Lagrange method to find an extremum of the natural
logarithm of the partition function. We can then write

q
qql

�
ln g3

ÿfqkg�ÿ E
ÿfqkg�
kBT

� l1

�
n1 ÿ

X1
k�1

kqk

�
� l2

�
qÿ

X1
k�1

qk

��
� 0 ; �11�

where the expression in square brackets is a Lagrange
function constructed from (10) and constraint equations (7),
and l1 and l2 are Lagrange multipliers. Using expressions (8)
and (9), we can rewrite system (11) as

ql � Sl
1S2 ; �12�
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where

S1 � nÿ n1 ÿ q

nÿ n1 ÿ 1
exp

�
ÿ E
kBT

�
exp �ÿl1� �13�

and

S2 � �nÿ n1 ÿ q� exp
�
ÿ E
kBT

�
exp �ÿl2� �14�

are constants independent of l. Substituting (12) into (7) and
solving for S1 and S2, we obtain

S1 � 1ÿ q

n1
; S2 � q2

n1 ÿ q
: �15�

With these relations, expression (12) for the size distribu-
tion of chains becomes

ql � q 2

n1

�
1ÿ q

n1

�lÿ1
: �16�

Dividing Eqn (16) by the total number of chains q, we finally
obtain the distribution function

F �l � � q

n1

�
1ÿ q

n1

�lÿ1
: �17�

The distribution function of chain lengths (17) well describes
distributions of the first type, shown in Fig. 8, but poorly
describes other distribution types. It has been hypothesized
that the one-dimensional lattice gas model does not take the
strong deformation of short chains into account [31]
(although, as we show below, this is not the case). Never-
theless, the one-dimensional lattice gas model is used to find
the binding energy E. The experimental distribution of lengths
of atomic chains is approximated by theoretical distribution
function (17), and the number of chains q is then determined.
Next, Eqn (6) is used to find the binding energy of atomic
chains [8, 31]. The binding energies obtained for some systems
in this approach differ significantly from those calculated in
the framework of the density functional theory. For example,
for Co=Cu�775�, the binding energy is 0:13 eV [8], whereas the
density functional theory gives 0:56 eV [8, 31]. Thus, the
model of a one-dimensional lattice gas describes not all one-
dimensional atomic structures, which necessitates developing
other approaches to the analysis of length distributions of
atomic one-dimensional structures.

3.2 Solution of the rate equations
Another approach to the analysis of length distributions of
atomic one-dimensional structures amounts to solving rate
equations with the use of scaling functions. This approach is
one of the best for studying the formation of atomic structures
at the stage preceding their coalescence [92± 95]. One of the
most interesting properties of such distributions is so-called
scaling [92 ±96].

The growth of one-dimensional islets (atomic chains and
wires) on the surface can be divided into two stages: transient
and steady-state. At the first stage, the density of single
adatoms N1 increases due to the deposition of new atoms,
but, at the second stage, it is compensated by the adatoms
being adjoined to islets. In the transient regime, the density of
single adatoms increases as N1 � Ft, which leads to the

appearance of islets located at some distance from each
other (Fig. 9a). The islets are surrounded by depletion
bands, and therefore the number of single adatoms N1

decreases due to the their adjoining the islets in these bands.
The radii of depletion zones increase with time as

���
t
p

,
where t is the time from the nucleation start instant
(Fig. 9b). With time, depletion zones overlap and cover
the entire surface. At that instant, the depletion zones turn
into capture zones that surround each newly formed islet
(Fig. 9c). In the subsequent stable regime, most of the
sputtered atoms join the islets, mainly those in the center of
the corresponding capture zone (Fig. 9d). Thus, knowing
the parameters of capture zones allows estimating the islet
growth rate [97±99].

We consider the case where the islets are immobile. For
simplicity, we introduce the islet critical size i, upon attaining
which the islet becomes stable, which means that an atom
cannot detach from an islet consisting of i� 1 or more atoms.
The density of stable islets is Nisl �

P
s>i Ns, where Ns is the

density of islets made of s atoms. We introduce the surface
coverage parameter Y �Ps5 i sNs � Ft, where t is the
deposition time and F is the deposition rate. We consider the
rate equations for the formation of mean-density islets. The
nucleation rate is Knuc � sihN1Ni (where h is the eigenfre-
quency of adatom hops, si is the capture coefficient describ-
ing the probability of capture of wandering adatoms by
unstable islets of size i, and N1 is the density of single
atoms). To simplify the analysis, we disregard the possibility
of depositing an adatom from above or in the immediate
vicinity of the islet. The rate of aggregation (of the capture of
adatoms by islets) is Kagg � hsihN1Nisl, where hsi is the
mean capture coefficient for stable islets. The rate equations
for the mean densities of adatoms and islets take the form
[100±102]

dN1

dt
� F �1ÿY� ÿ �i� 1�Knuc ÿ Kagg ; �18�

dNisl

dt
� Knuc ; �19�

Ni � ci exp �ÿbEi��N1�i ; �20�

where (20) describes the density of critical clusters [103],
with ci being the number of states of critical clusters with
the minimal energy Ei < 0, and b � 1=kBT. Integrating
this system yields two different regimes: transient and
steady-state. As was qualitatively shown above,
�d=dt�N1 � F in the transient regime, which gives

a b

c d

Transient regime

Steady-state regime

Figure 9. (Color online.) (a) Diagram of depletion zones (thin color lines)

around newly formed one-dimensional islets (thick lines of the same color)

in the transient regime, their (b) growth, (c) overlap, and (d) transforma-

tion into capture zones in the steady-state regime. Color coding corre-

sponds to different growth centers.
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N1 � Ft�Y, and ��d=dt�N1 � F�1ÿY� ÿ Kagg � 0 and
N1 � F �1ÿY�=�hsi hNisl� � F=�hsi hNisl� in the steady-
state regime. The transition from one regime to another
occurs atY � � exp �bEi=�i� 3�� �h=F �ÿ2=�i�3�.

Assuming that the capture coefficients si are independent
of Y, it can be shown [100±102, 104±106] that

Nisl � Y i�2 exp �ÿbEi�
�
h

F

�
�21�

in the transient regime,

N �isl � exp

�
ÿ bEi

i� 3

��
h

F

�ÿw �
�22�

at the crossover where Y � Y �, and

Nisl � Y 1=�i�2� exp
�
ÿ bEi

i� 2

��
h

F

�ÿw
�23�

forY close to 1.
The scaling exponents w and w � satisfy the conditions

w � i=�i� 2� and w � � �i� 1�=�i� 3�, whence

w � ÿ w � 2

�i� 2��i� 3� > 0 ;

and therefore Nisl > N �isl in the steady-state regime. This
indicates that, in the limit as h=F!1; nucleation occurs in
the steady-state regime. The same is also true for finite h=F,
especially for small i.

We consider the scaling of the islet size distribution. At a
large ratio of the adatom diffusion coefficient D to the
deposition flux F, D=F!1, the expected form of the
density distribution of islets consisting of s atoms at instant t
has the form

n�x; hsi;Y� � Y

hsi2 f �x� ; x � s

hsi �24�

for all times except very short ones. Here, hsi and Y are the
time-dependent mean size of an islet and the coverage, and
f �x� is a universal scaling function independent of both hsi
andY. Because the surface density of islets N is related to hsi
and Y as Nhsi � Y, the scaling function must satisfy two
normalization conditions:�1

0

f �x� dx �
�1
0

x f �x� dx � 1 : �25�

The characteristic form of the scaling function for different
values of Y is shown in Fig. 10. In modeling, the growth of
islets is always assumed irreversible or having a time-
dependent critical islet size. The irreversible character of
growth leads to pronounced asymmetry of the distribution
function shape, in contrast to models where the decay of islets
is allowed. Reversible growth, on the contrary, is character-
ized by distribution functions close to the normal distribution
in shape [93].

In studying the growth of islets, the heterogeneous
irreversible growth model is typically considered [107, 108].
As an example, we discuss a simplemodel where isletsAs grow
due to mobile adatoms A1 in accordance with the pattern
As � A1 ! As�1; s5 1, which is described by a set of rate

equations for the surface concentration of islets Ns:

dN1

dt
� Fÿ 2Ds1N 2

1 ÿDN1

X
s5 2

ssNs ;

�26�
dNs

dt
� DN1�ssÿ1Nsÿ1 ÿ ssNs� ; s5 2 ;

where ss is a capture coefficient dependent on the cluster size
and introduced as

ss�Y� � a�Y��a� sÿ 1� ; s5 1 ; �27�

where a�Y� is a suitable function that ensures agreement with
the results of numerical modeling [99, 109, 110] at large s. We
note that s is a linear function not for all islet sizes [99, 109±
112], and therefore this model may not ensure full corre-
spondence with real experiment. However, choosing s in this
way allows obtaining an exact analytic solution in the form
of a modified beta distribution depending on two para-
meters, a and p, and satisfying condition (25).

According to [113, 114], rate equations (26) can be
simplified by introducing a time-dependent variable z as

dz

dt
� DN1a ; z �t � 0� � 0 ; �28�

which leads to linearizing the equations. We assume a power-
law dependence

a�Y� � cY p ; �29�

with c > 0 and p > ÿ1. Solving the system of equations by the
method of generating functions, we obtain a discrete distribu-
tion of islet sizes in the form [108]

Ns�1
ÿhsi;Y� � Y

hsi2
�p� 1�bp�1

ahsip
B �s; aÿ p�
B �s; a�

� I1ÿb=hsi�s; aÿ p� ; �30�
where

b � �a� 1��p� 1�
p� 2

; �31�

Iy�s; q� � 1

B �s; q�
�y
0

t sÿ1�1ÿ t�qÿ1 dt �32�

f �x� f �x�

0 1 x 0 x

Y � 0.1 Y � Yperc

a b

Figure 10. Scaling functions for the size distribution of islets f �x�
depending on the scaled islet size x � s=hsi (a) at a low coverage Y and

(b) near the percolation threshold. Adapted from [93].
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is a regularized incomplete beta function,

B �s; q� � G�s�G�q�
G�s� q� �33�

is the beta function, and G�s� is the gamma function. The
obtained distribution (30) depends on two parameters, a and
p, which have different physical meanings depending on the
system. The p parameter determines the dependence of the
capture coefficient ss on the coverage Y and is equal to zero
when they are independent. In particular, in the case of a
homogeneous growth of a two-dimensional islet, the a
parameter is referred to as the rate of dimerization [108].

Using the asymptotic form of the incomplete beta
function as s!1, hsi ! 1 for finite values of b and aÿ p,
we can write

I1ÿb=hsi�s; aÿ p� � g
�

bs

hsi ; aÿ p

�
; �34�

where

g� y; a� � 1

G�a�
�1
y

t aÿ1 exp �ÿt� dt �35�

is the regularized incomplete gamma function. Also using the
property of the gamma and beta functions,

B �s; aÿ p�
B �s; a� � s p

G�aÿ p�
G�a� ; s4 a ; �36�

we obtain a continual approximation for discrete distribution
(30) in form (24) with the scaling function

f �x� � �p� 1� pb�1 G�aÿ p�
G�a� 1� x

pg�bx; aÿ p� : �37�

We see that scaling function (37) is universal, i.e., is
independent of both hsi and Y. Substitution shows that this
function satisfies normalization condition (25) for any a and
p. In Fig. 11, we compare numerical solutions of rate
equations (26) with the dependence f �x� satisfying Eqns (27)
and (29) for the parameter values a � 2, p � 0:5, c � 10, and
D=F � 105.

The scaling hypothesis also enjoys successful use in
describing the growth of one-dimensional structures on a
surface in numerical modeling via the KMCM [35, 88, 90,
115, 116] and in real experiments for various systems [86, 89,
117, 118].

For example, the growth of Ga [86] and In [89] chains on
an Si(100) surface was investigated experimentally using the
STM and numerically via the KMCM. A distinctive feature
of the Si(100) surface is the existence of defects of various
types [119]. It has been shown that the existence of diverse
defects does not have a strong effect on the results, and
therefore some types of defectsÐ those that are not nuclea-
tion centersÐcan be disregarded. For Ga deposited with the
deposition rate F � 10ÿ3 ML sÿ1 at room temperature,
gallium wires form along the direction perpendicular to the
silicon dimers paving the surface. Calculations done for six
different values of the coverage parameter (ranging from
0:066 to 0:131 ML) show that the distributions of chain
lengths overlap when constructed in normalized coordi-
nates, thereby confirming the scaling theory. Similar results
are also observed for In/Si(100).

Of special interest are the results of calculations that
reveal the experimental conditions under which the distribu-
tion function of atomic chain lengths changes from a
monotonically decreasing function (Fig. 8a) to a function
with a pronounced maximum (Fig. 8b).

For example, at the critical concentration of defects equal
to 0:0025ML, the distribution function of chain sizes changes
from a unimodal to a monotonically decreasing form [36].
The possibility of the distribution changing from the uni-
modal to the monotonically decreasing form as the tempera-
ture or the coverage of the sputtered atoms varies was shown
in [87]. It was claimed in [33] that, at thermodynamic
equilibrium, the distribution function of lengths of one-
dimensional atomic structures has a maximum when the
dependence of the binding energy of chains on length has a
positive curvature. However, with this dependence of the
binding energy, the atoms must repel each other in short
chains and attract each other in long chains. As a result,
dimers should not form, because atoms repel. But dimers are
growth centers for one-dimensional structures.

Thus, the principal advantage of scaling functions is their
simplicity. At the same time, their main drawback is the
impossibility of deriving quantitative characteristics.

3.3 Analysis of the distribution of atomic chain lengths
with the kinetic Monte Carlo method
Wenowdiscuss another approach to the analysis of the length
distribution of atomic chains with the example of
Co=Cu�775� and Ag=Pt�997� systems. In this approach, the
KMCM is used; this is laborious, because the density
functional theory must be used to evaluate energy character-
istics such as diffusion barriers and binding energies [37±39,
83]. Employing a very simple theoretical model in combina-
tion with the KMCM allows fixing these parameters
variationally [84].

The length distributions of Co=Cu�775� atomic chains
obtainedwith theKMCMfor two different temperatures, 160
and 190 K, are shown in Fig. 12a. As the temperature
increases, the mean length of cobalt chains and its mean
square deviation increase. For Co=Cu�775�; the distribution

Y � 0.005, hsi � 1.73

Y � 0.010, hsi � 3.24

Y � 0.015, hsi � 4.74

Y � 0.030, hsi � 9.33

Y � 0.05, hsi � 15.44

Scaling function

1.0

0.8

0.6
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x � s=hsi

f
�x
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N
shs
i2 =

Y

Figure 11. (Color online.) Comparison of numerical solutions of the rate

equations with the capture coefficients linear in islet size, with a � 2,

p � 0:5, c � 10, and D=F � 105, at different values of the order

parameter Y. The analytic function f �x� is shown with a solid line.

Adapted from [108].
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of chain lengths is of the second distribution type, having one
maximum, is well approximated by the normal distribution,
and is poorly approximated by the equilibrium distribution
(curve 3 in Fig. 12a). But a different situation is observed for
Ag=Pt�997�. As the temperature increases, the distribution of
chain lengths changes little and is approximated well by the
equilibrium distribution (Fig. 12b).

The cause of this difference is an order-of-magnitude
difference between the Co=Cu�775� and Ag=Pt�997� binding
energies, which means that diffusion processes occur at
different rates in these two systems. For example, for atomic
chains of silver, the binding energy is Ebind � 0:06 eV, and at
160K the system reaches thermodynamic equilibrium in a few
seconds. If the temperature is decreased, the time to reach
thermodynamic equilibrium increases considerably. As can
be seen from Fig. 12c, at 100 K the Ag=Pt�997� system does
not even reach thermodynamic equilibrium in several days.
Concurrently, however, amaximum for single atoms (curve t3
in Fig. 12c) starts transpiring. We note that, at temperatures
below 105 K, atoms of silver have reduced mobility near the

step, and therefore at low temperatures the atomic chains do
not arrive at equilibrium within the time of the experiment.

In most cases, one-dimensional atomic structures are
obtained by annealing at a temperature above room tempera-
ture, and the system reaches equilibrium rather soon. Prior to
making measurements, the sample is cooled. We consider the
transition from one equilibrium state to another under
cooling in more detail. At the initial instant at a high
temperature, the atomic chains are in equilibrium (Fig. 13,
left). In equilibrium, the number of atoms detached from the
chain is equal to the number of atoms attached to it. As the
temperature decreases, the speed of single atoms decreases,
and the lifetime of the chains increases. Because the mean
lifetime of short chains ismuch less than that of long ones, they
rapidly decay. Thus, the number of short chains decreases, and
the number of long chains increases. At that instant, atomic
chains are in a nonequilibrium state (Fig. 13, center).
Simultaneously, the distance between chains increases. When
it becomes critical, an atom detached from one chain fails to
attach to another chain in the available time. In this case, the
number of single atoms increases, as does the number of short
chains located between two long chains. Consequently, a
second, single-atom, maximum appears in the distribution of
chain lengths. The system next arrives at equilibrium and is
then described well by the model of a one-dimensional lattice
gas (Fig. 13, right). Thus, under cooling or annealing, one-
dimensional structures pass from one equilibrium state to
another via a nonequilibrium state, which is indeed observed
experimentally. We see from Fig. 12c that the results of
modeling are in good agreement with experimental data.

Studies of the evolution of one-dimensional atomic
structures by the KMCM show that the distribution of
lengths of one-dimensional structures depends not only on
external parameters of the experiment but also on time. At
low temperatures, the lifetime of many one-dimensional
structures is much longer than the experiment duration time,
and they are therefore in a nonequilibrium state. It hence
follows that experimental data cannot be analyzed using
models in which one-dimensional structures are regarded as
equilibrium.

The above examples qualitatively show how the size of
one-dimensional structures depends on various external
parameters. Yet, a problem in fundamental physics is to find
the values of physical quantities from the size distribution of
one-dimensional structures. Currently, the only way to find
the binding energy and other energy characteristics is still to
compare experimental data with modeling results. Other
approaches are either inapplicable or give only a qualitative
estimate.
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Figure 12. (Color online.) Length distributions of (a) Co=Cu�775� and
(b) Ag=Pt�997� atomic chains for temperatures of 160 K (1) and 190 K (2).

The solid black line shows the result of fitting in the framework of the one-

dimensional lattice gas model [32]. (c) Length distributions for chains

Ag=Pt�997� at T � 100 K depending on the duration of the experiment
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experimental study [31].
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4. Structural properties of atomic wires

The physical properties of metallic atomic chains and wires
largely depend on their size, shape, and chemical composi-
tion. It is therefore important and relevant to study structural
properties and to determine stability conditions of one-
dimensional structures.

4.1 Determining the structure
and chemical composition of atomic chains
Recently, scanning tunneling microscopy has been enjoying
wide use in studying atomic one-dimensional structures. The
method has a high resolving power, which allows obtaining
information on the geometry and structure of such systems.
However, an STM does not allow the chemical composition
of atomic structures to be determined. When chains form on
the surface (see Fig. 2 or Fig. 14), an STM alone is sufficient
for determining their structure. But when atomic chains
immersed into the surface are investigated, the use of an
STM to extract their structural properties is insufficient. This
is why combinations of diverse methods are used to study
structural properties: either several experimental methods or
experimental methods together with computer modeling.

In Fig. 14a, b, we show an example of STM images of
atomic chains Co0:5Ni0:5O2 (a) and Co0:67Ni0:33O2 (b). The
oxygen atoms cannot be seen in the STM image, but, knowing
the relations between atoms in the alloy, we can determine the
chemical composition of atomic chains. For example, in
Fig. 14a, exactly half the dots are bright and the other half
are dim, but the number of bright dots in Fig. 14b is 50% of
the number of dim dots. By analyzing these two STM images,
we can conclude that the bright dots are theNi atoms, and the
dim dots are the Co atoms. Knowing the chemical composi-
tion of atomic chains, we can then study their properties. As
can be seen from Fig. 14c, Co atoms in the chain are closer to
the surface than the Ni atoms, and therefore interact more
strongly with the surface atoms.We note that, besides Co and
Ni shown in Fig. 14a, b, atomic chains up to 500 atoms in
length also form from oxides of alloys of other transition
metals. Such chains of different transition metal alloys offer a
unique possibility of designing complicated systems, for
example, magnetic structures for memory elements, in which
ferromagnetic chains would be separated by antiferromag-
netic or nonmagnetic chains [12].

This shows that the use of an STM does not allow
determining the chemical composition of a nanostructure.
This is especially transparent for materials with atoms of
several types, because it is unclear which atom type is
observed in which position. Moreover, STM images do not
pertain directly to specific atoms but map the electron density
distribution. For semiconductors, the electron density max-
imum corresponds to atomic bonds, and for metals, to atoms.
Therefore, in order to determine the structure, an STM is used
together with calculations in the framework of the density
functional theory [19, 24, 69, 120±125]. This method allows
determining the chemical composition of nanostructures, but
has various limitations: the number of atoms in the computa-
tion cell, the modeling time, etc. In addition, computations
require specifying the initial configuration that would be
sufficiently close to the real structure.

As an example of such a multifaceted application of an
STMand theoretical calculations, we consider the Pt=Ge�001�
system. As can be seen from Fig. 1c, one-dimensional
structures form on the Ge(001) surface under sputtering

with Pt atoms. Despite the existence of excellent-quality
STM images where the positions of individual atoms and
dimers can be seen, the real atomic structure of wires remains
undetermined, because the STM does not allow finding the
chemical composition. The following approach was used to
determine the composition and structure of atomic Pt wires
on the Ge(001) surface [18, 21, 24, 120, 123, 126]. First, a
model of the surface with atomic wires was constructed, as is
shown in Fig. 15a. Next, STM images for filled (Fig. 15b, left)
and unfilled (Fig. 15b, right) states were simulated. As can be
seen from Fig. 15, the simulated STM image agrees with the
experimental one. In the case where the simulated STM image
does not agree with the experimental one, a new model is
proposed and the algorithm is repeated.

Several models of the structure of atomic wires were
proposed in the papers cited above. For example, in the
model in [126], the Pt atoms are located between two rows
of surface Ge dimers. The analysis of the electron density
reveals a significant degree of hybridization of the Pt atom
orbitals. This is why the STM reveals the wires made up of
dimers. In another study [123], a structure model was
proposed in which the Pt atoms are immersed into the
surface layer, and above them the Ge dimers form one-
dimensional structures. A similar model was developed in
[19, 24]. There, the immersed wires made of Pt atoms interlace
with rows of surface dimers located nearby. Every second
surface dimer then decays.

However, comparing an image obtained experimentally
and with the help of modeling can be insufficient for
determining the geometry and chemical composition. This is
why other characteristics are sometimes compared in order to
find the nanostructure parameters, for example, the conduc-
tance spectrum with the density of states of one-dimensional
structures [18, 19]. A comparison of the differential con-
ductance spectrum with the computed averaged density of
states at different temperatures is shown in Fig. 15c. At a low
temperature, the density of states at the Fermi level (E � 0) is
equal to zero. The energy gap also occurs at an energy of
0:25 eV below the Fermi level in the direction of the atomic
wire, which agrees with experiment [127]. The peak of the
density of states between two energy gaps is determined by the
d states of Pt atoms and sp3 states of Ge atoms. As the
temperature increases, the localized state is washed out, and
the energy gaps on the Fermi level vanish at the energy of
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Figure 14. STM images of atomic chains (a) Co0:5Ni0:5O2 and

(b) Co0:67Ni0:33O2. (c) Displacement of Co0:5Ni0:5O2 chain atoms relative

to the surface [12].
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0:25 eV (Fig. 15d). Thus, at low temperatures, one-dimen-
sional atomic wires of Pt on the Ge(001) surface are
semiconductors [127], whereas at room temperature they are
metals [19].

4.2 Structural phase transition
in atomic chains of cobalt on the vicinal surface of copper
In some cases, a surface carrying one-dimensional structures
has several phases [17, 18, 61]. We consider this phenomenon
in detail with the example of atomic chains of cobalt on the
vicinal surface of copper. In [61], the existence of two phases
in long atomic chains of cobalt was found experimentally. On
the Cu(775) surface at T � 5 K, the atoms are located at
different distances from each other in these phases (Fig. 16).
STM measurements have shown that, at low temperatures,
the distances between a cobalt atom and two of its nearest
neighbors are 0:20 and 0:31 nm, which means that the
dimerization process is observed. For comparison, the
interatomic distance for triangular atomic islets of cobalt on
the surface of copper is 0:250±0:256 nm. As the temperature
changes from 5 to 91 K, the shortest distance between atoms
in the chain changes from 0:200 to 0:256 nm. Hence, two
different phases of the chains are observed at temperatures
below 91 K. As the chain length increases, the effect of edge
atoms diminishes, and as a result dimerization is observed.
Therefore, the structure of short atomic chains of cobalt
located near a step on the vicinal surface of copper (111) is
different from that of long atomic chains of cobalt [128]. This

is because the cobalt atoms at the edges of the chain are freer,
and, hence, the interaction between the cobalt atoms and
copper atom of the step can vary considerably. For example,
the chain of five Co atoms on the Cu(554) surface has a
complicated shape resembling the letter M. The edge atoms,
together with the central atom, are displaced downward,
while the other atoms are displaced upward. The surface
copper atoms under the atomic chain are then displaced
downward.

Dimerization of atomic chains of cobalt was also con-
firmed using calculations in the framework of the density
functional theory [62, 129], although it had been asserted
previously that the density functional theory [130] does not
allow finding a dimerized structure of atomic chains of cobalt
on stepped copper surfaces [131]. This controversy occurred
because magnetic interaction in nanostructures is highly
sensitive to the interatomic distance [27, 128, 132±134].
Determining the equilibrium state therefore requires numer-
ous calculations with different initial positions of atoms in the
system and with different computation cells, which was not
done in the earlier study [131]. For example, the vicinal
surface of copper was modeled as periodically repeated
layers comprising 8 atomic layers in [131] and 60 atomic
layers in [62].

The energy diagram of atomic chains of cobalt near an
atomic step of the surface of copper is shown in Fig. 17. The
following configurations were selected: a chain with an
antiferromagnetic ordering of spin and a uniform arrange-
ment of atoms (Fig. 17a), a dimerized chain with ferromag-
netic ordering of spins (Fig. 17b), a nondimerized chain with
ferromagnetic ordering of spins (Fig. 17c), and a chain with
zero spins and a uniform arrangement of atoms (Fig. 17d). It
follows from the energy diagram (Fig. 17e) that the most
energetically advantageous state is B, but the difference in
energy with respect to state C (dimerization energy DE ) is
very small. It is equal to 2 meV per atom for the Cu(111)
surface and DE � 4 meV per atom for the Cu(332) surface,
which explains the instability of dimerized chains upon
increasing the temperature above some critical value. How-
ever, the dimerization energy of the cobalt chain is much
higher on the copper (775) surface (6 meV per atom) than on
the copper (111) surface (2 meV per atom) [62, 129].
Interatomic distances in the dimers for the respective (775)
and (111) copper surfaces are 0:23 and 0:24 nm. In all these
cases, the stepped surface consists of small terraces, and
atomic chains of Co located near neighboring steps interact
with each other. Thus, the dimerization energy of the chains
also depends on the width of the surface terraces.

Formation of the dimerized phase in atomic chains of
cobalt is strongly affected by the electric field. It has been
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established experimentally that, the greater the potential
difference between the STM tip and the surface, the higher
the temperature at which dimerization of the atomic chain is
observed. This is because the surface and the atomic chain
deform under the action of the electric field [135]. It is
known that the STM tip is not smooth. Therefore, on the
surface of the main tip, there is a mini-tip (one or several
atoms), which is just what is used for nanostructure
scanning [136]. If the distance between the tip and an
atomic chain is sufficiently small, then the chain is
significantly deformed under the action of the electric field
near the STM tip. When the tip is scanning along the atomic
chain, the deformed domain changes continuously, making
it impossible to determine the distances between atoms with
high accuracy, because the STM images are blurred. As the
distance between the chain and the STM tip increases, the
effect of the mini-tip becomes inessential, and in that case
the domain of deformation has a size of several nanometers
[135]. The curvature radius of the STM tip is 2 to 30 nm,
which is comparable to the mean length of the relevant
chains. The STM tip then alters the properties of the entire
chain when interacting with it. If we eliminate the effect of
the mini-tip, then the dimerization phenomenon for atomic
chains of cobalt depends only on the potential difference
between the tip and the chain [135]. This is confirmed by
results of calculations showing that the chain dimerization
energy DE in the interaction with the STM tip changes from
2 to 18 meV per atom [62, 129]. Therefore, the greater the
potential difference between the STM tip and the surface,
the greater the temperature interval within which atomic
chain dimerization occurs [61].

Modeling the phase transition in atomic chains of Co on
the Cu(775) surface has shown that the phase transition
temperature also depends on the length of the atomic chains

[62, 129]. For this purpose, the Metropolis algorithm [137]
was used in the framework of a simple model where the state
of an atomic Co chain is characterized by the order parameter

Z � 2

N

����XN=2
i�1

s2i

���� ; �38�

where N is the number of atoms in the chain and si is the
parameter determining the position of the ith atom with
respect to its ideal position. We have si � 0 for an atom in
the ideal position, si � ÿ1 for an atom displaced to the left,
and si � 1 for an atom displaced to the right (Fig. 18). The
summation in expression (38) ranges all even sites, and
therefore in the case of a totally dimerized chain, Z � 1. An
atom with a number i and its displacement direction Ds � �1
are chosen at random at each step.

The system evolution is governed by the following rules. If
si � 0 and si�Ds � 0, then the system passes into a new state
si � Ds and si�Ds � ÿDs, which means the formation of a
dimer from the ith and �i� Ds�th atoms, leading to a decrease
in the total energy of the system by 2DE, which is the per atom
energy difference between the dimerized chain and the chain
with equal interatomic distances (the dimerization energy).
Otherwise, if si � �1 and Ds � ÿsi, then the system passes
into a new configuration si � 0 and si�Ds � 0 with the
probability exp �ÿ2DE=kBT �. The decay of a dimer is
attended by an increase in the total energy by 2DE.

In Fig. 19a, we show the temperature dependence of the
order parameter Z for a chain consisting of 32 Co atoms. At
zero temperature, all atoms in the chain make up dimers, and
hence Z � 1. As the temperature increases, the symmetry of
the chain is violated, and the order parameter Z monotoni-
cally decreases and tends to zero. This situation is typical of a
second-order phase transition. The phase transition tempera-
ture TC is determined by the decrease in the maximum of the
order parameter derivative takenwith theminus sign,ÿdZ=dT
(Fig. 19b). For example, for a chain 32 atoms in length with a
dimerization energy of 16 meV, the phase transition tempera-
ture is 71 K, which agrees with experiment [131].

We note the dependence of the phase transition tempera-
ture on the chain length (the size effect). As the length of the
chain increases, the phase transition temperature decreases
and tends to zero in the limit of an infinite chain (Fig. 19c),
which is in agreement with the one-dimensional Ising model
[138]. The dependence of the phase transition temperature
on the length of the chain is approximated well by the
formula

TC � A
DE
lnN

; �39�

where A � 20:16 K meVÿ1. Thus, the phase transition
temperature in one-dimensional structures depends not only
on the potential difference between the STM tip and the
sample and on the width of terraces on the underlying surface,
but also on their length.
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5. Quantum effects in atomic chains

Vigorous development of electronics and computation
methods requires constant miniaturization of various
devices, first and foremost, of data storage elements. One of
the ways to achieve such a minimization and to increase the
density of recording information is to use information storage
elements in the form of magnetic atomic wires placed on
various surfaces. This requires knowing not only how atomic
wires can be formed but also what their electronic properties
are.

5.1 Density of states of a two-dimensional electron gas
To analyze the electronic properties of atomic chains and the
effect exerted on them by surface states, we first consider the
density of states of an idealized surface. A simple model is
provided here by a two-dimensional electron gas. In the

framework of this model, we can obtain an expression for
the density of states of the idealized surface.

We consider the model of a two-dimensional electron gas
in detail and obtain an expression for its density of states. We
assume that the electrons canmove freely only in the xy plane.
In the transverse direction (z axis), the energy is quantized and
takes discrete values Enz , where nz is a quantum number. The
total spectrum is then also discrete±continuous, but with only
two continuous degrees of freedom:

E � Enz �
�h 2�k 2

x � k 2
y �

2m
� Enz �

�h 2k 2

2m
: �40�

For one subband, the number of allowed states in an
annulus with an area of 2pk dk (where k is the wave number)
is equal to the number of cells �2p=L�2, where L is a
characteristic size. Therefore, the number of quantum states
is equal to

dN � 2
L2

�2p�2 2pkdk ; �41�

where the factor 2 accounts for two allowed values of the spin
quantum number for each allowed value of k. We now rewrite
Eqn (41) in terms of energy:

dN � L2m

p�h 2
dE : �42�

For the density of states per unit area for a subband, we
can use (42) to obtain

r 2D�E � � m

p �h 2
: �43�

For a two-dimensional system, as noted above, there is a
constraint along one direction (z), and therefore expression
(43) must be summed over all quantum numbers nz:

r 2D�E � � m

p �h 2

X
nz

Y �Eÿ Enz� ; �44�

where Y�Eÿ Enz� is the Heaviside function.
The density of states of the two-dimensional electron gas

is zero for energies below the first energy level. For an energy
equal to the first level (the bottom of surface states), the
density of states increases jumpwise and then remains
constant until the next energy level; such a jumpwise increase
occurs at each level. In Fig. 20a, for states of the two-
dimensional electron gas, we show the experimental conduc-
tance spectrum that forms near the surface. Both in the model
of the two-dimensional electron gas and in reality, the density
of surface states has the shape of a step (Fig. 20a). For
example, the bottom of surface states for the Ag(111) surface
is 67 meV, and for Cu(111), 445 meV below the Fermi level
[139]. For vicinal surfaces, surface states are displaced toward
higher energies compared with the Cu(111) surface [140±142].
Their position depends on the width of the terrace. In
particular, for Cu(443) and Cu(554), the positions of the
bottom of surface states calculated in the framework of
density functional theory are ÿ170 and ÿ300 meV (with
respect to the Fermi level), and the corresponding experi-
mental values areÿ150 andÿ250meV [140±142]. In addition,
decorating a vicinal surface with magnetic atomic wires also
has a significant effect on surface states [142, 143].
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5.2 Localization of surface states in single atoms
and the edge state of atomic chains on a surface
If an atom or atomic chain is placed on a surface, the density
of states differs significantly from the density of states of a
clean surface. For example, near the edge of a chain or an
atom, the density of states already has the shape of a peak,
located near the bottom of the surface states. Such edge
states for atomic chains and atoms were first revealed
experimentally in [28, 139, 144]. The conductance spectra
measured near Ag and Co atoms located on the Ag(111)
surface are shown in Fig. 20b. The conductance spectra of
atoms have peaks at energies of ÿ70 meV for Ag(111) and
ÿ450 meV below the Fermi level for Cu(111), which
corresponds to the bottom of the surface states shown in
Fig. 20a.

For a realistic description of the localization of a surface
state on single or edge atoms, we must recall the coupling
between surface and bulk states [139, 145]. For this, we
consider an extended Newns±Anderson model [146, 147],
which in our case describes an atom in a state jai with energy
ea, interacting with the bulk Bloch states jqi and with surface
states jki of the Cu(111) substrate. The Hamiltonian of the
system can be represented in the form

H �
ea Vaq

~Vak

~V �aq eq 0

~V �ak 0 ~ek

0B@
1CA ; �45�

where eq is the energy of bulk electrons, ~ek is the energy of
surface electrons, and Vaq and ~Vak are matrix elements of the
interaction. Here, k denotes a two-dimensional Bloch wave
vector and q is a three-dimensional vector.

The conductance spectrum registered when the STM tip is
located over an atom can be considered the density of states of
the atom na�E �. Using the formalism of the Green's functions
[139], we obtain

na�E � � 1

p
D�E ��

Eÿ ea ÿ L�E ��2 � D�E �2
: �46�

In the imaginary part of the eigenenergy S�E � �
L�E � � iD�E �, the coupling of the atomic level to both bulk
states Db�E � and surface states Ds�E � is taken into account:

D�E � � Db�E � � Ds�E � : �47�

The bulk contribution

Db�E � � p
X
q

jVaqj2d�Eÿ eq� � Db �48�

is assumed to be constant in the entire energy range of
interest. The contribution of surface states

Ds�E � � p
X
k

j ~Vakj 2d�Eÿ ~ek� � DsY�Eÿ E0� �49�

is determined by a stepped function of the density of surface
states. The real part L�E � of the eigenenergy S�E � can be
found if we know D�E �, using the Hilbert transformation
[139]. The density of surface states has a logarithmically
divergent term at the energy equal to E0 [148],

L�E � � Ds

p
ln jEÿ E0j � C ; �50�

where C is a constant.
To quantitatively estimate the experimental results, we

must find the density of surface states in the framework of the
model as precisely as possible [139, 149]. For this, we must
take the lifetime of electrons in a surface state into account,
which then leads to smoothing the density of states and a
quantitative coincidence with the experimental conductance
spectrum. In this case, the density of states can be represented
as [149]

n�E � � 1

2
� arctan

�
2�Eÿ E0�=G

�
p

; �51�

where G is the inverse lifetime of the surface state. The real
part of the eigenenergy then takes the form

L�E � � Ds

2p
ln

�
�Eÿ E0�2 �

�
G
2

�2 �
� C : �52�

The constant can be eliminated if we renormalize the energy
of the impurity atom level. The results of a theoretical
calculation of the density of states of Ag and Co atoms on
an Ag(111) surface are shown in Fig. 20b (bright line). In
constructing the density of states of an atom, the Newns±
Anderson model parameters were fixed by fitting to the
experimental data [139].

Such localized surface states appear not only in conduc-
tance spectra of single atoms on the surface but also for edge
atoms of the chain. In Fig. 21b, we present the conductance
spectrum of a chain made of seven Au atoms on an Si(553)
surface whose STM image is shown in Fig. 21a. Measure-
ments were made with different positions of the STM tip,
which are denoted by numbered dots in Fig. 21a. As can be
seen from Fig. 21b, for an edge atom, the conductance
spectrum has a characteristic peak, which disappears at a
distance from the chain. For the next-to-last atom in the
chain, the peak in the conductance spectrum splits into two.
This phenomenon is explained in the next section. We note
that localized surface states disappear at a distance of 1 nm
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from the atom [28, 150]. In addition, the results of calcula-
tions in the density functional theory framework show that, in
the case of magnetic impurities, localized surface states are
spin-polarized [150±152]. The position of characteristic peaks
can then differ slightly in energy for electrons with different
spin orientations.

5.3 Density of states of atomic chains
Wenext discuss the density of electron states in atomic chains.
Changes in the structure and size of atomic chains lead to
changes in their electronic properties. The size of atomic
chains is determined by the number of atoms in them and the
interatomic distance. The density of states of atomic chains is
measured with scanning tunneling spectroscopy. For this, the
STM tip is positioned at a point where the electronic
properties of the system are to be investigated, and the
conductance spectrum is measured. The conductance spectra
measured in themiddle of gold atom chains of various lengths
on an NiAl(110) surface are shown in Fig. 22. As can be seen

fromFig. 22, the density of states of atoms in themiddle of the
chain increases sharply and falls off smoothly.

An analytic expression for the density of states of chains
can be derived in the framework of the one-dimensional
electron gas model. An argument similar to the one
presented in the foregoing allows obtaining an expression
for the density of states of the one-dimensional system as [27]

r 1D�E � �
�������
2m
p

p �h

X
ny ; nz

Y�Eÿ Eny; nz����������������������
Eÿ Eny; nz

p ; �53�

where ny and nz are quantum numbers.
The density of states in the idealized one-dimensional

case, in accordance with expression (53), must increase
discretely and then fall off as 1=

����
E
p

to the next energy level.
Such a jumpwise increase and further decrease in the density
of states occurs at each level. Thus, the density of states of a
one-dimensional system consists of peaks corresponding to
each energy level. However, in contrast to the idealized case,
peaks of the density of states of atoms are somewhat smeared
in energy in a chain, because it has a finite length and its atoms
interact with the surface.

The conductance spectrum of a single atom of gold on
an NiAl(110) surface has a resonance shaped like the
normal distribution. The conductance spectrum resonance
occurs at a voltage of 1.95 V (see Fig. 22). When a second
gold atom is added in an adjacent position, a dimer forms,
entailing a change in the electronic properties of the gold
atoms. The conductance spectrum resonance of a single
atom at the voltage of 1.95 V is split into a doublet, with
peaks at 1.50 and 2.25 V, which is indicative of a strong
binding between the atoms in the dimer. The energy
splitting is similar to the well-known example of two 1s
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surface near the atomic chain [28].
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states of hydrogen making bonding and antibonding levels
in the hydrogen molecule. The formation of a chain of
three gold atoms shifts one peak to 1:10 V and the other to
2:60 V. A third peak also appears in the conductance
spectrum at 1:80 V due to the overlap of electron orbitals
of the gold atoms. All the peaks are marked with arrows in
Fig. 22.

With further changes in the length of a chain, changes in
the conductance spectrum or the density of states are
observed for atoms in the middle of the chain [153]. We can
see from Fig. 22 that the conductance spectrum peaks shift
toward lower energies. Thus, unfilled electron states are
displaced toward the Fermi level. The displacement of peaks
in the density of states is proportional to Lÿ2, where L is the
length of the atomic chain.

The observed changes in the conductance spectrum of
atomic chains show a dependence of the electronic properties
of the system on its geometry. For example, a correlation is
observed between quantum effects and structure properties
at the atomic scale. Knowing the dependence of the
electronic properties of one-dimensional structures on their
length, it would be possible to control the properties of the
structures and thus to design electronic devices. In addition,
edge states can also be useful for designing electronic devices,
because they allow determining the edge of one-dimensional
structures using conductance spectrum measurements.

5.4 Rashba effect
In [154], Rashba demonstrated that, if a crystal has one axis of
high symmetry (of at least the third order) and an invariant
vector n is oriented along it, then the Hamiltonian of spin±
orbit coupling of the electron has the form

ĤR � an �r� k̂� ; �54�

where r are the Pauli matrices, k̂ � ÿiH is the wave vector
operator of the electron, and a � const. Hamiltonian (54) lifts
the two-fold spin degeneracy of the energy spectrum in a zero
external magnetic field (B � 0) and leads to a number of
nontrivial effects at B 6� 0. Subsequently, the Rashba effect
was studied in the case of two-dimensional systems [155, 156],
where the vector n is the normal to the surface. The Rashba
effect is being actively studied for various three-dimensional
and two-dimensional systems. Interest in the Rashba effect
was rekindled with the discovery of graphene and other two-
dimensional materials.

Recently, the Rashba effect was actively investigated in
one-dimensional systems: atomic wires and chains. To con-
sider an infinite wire or a finite-length wire, wemust generalize
Rashba Hamiltonian (54) to the case of an inhomogeneous
wire (a 6� const). This can be done as [158]

ĤR � gHU �r��r� k̂
�
; �55�

where U �r� is the potential energy of the electron and
g � const. For gUR�r� � a�nr� and a � const, generalized
Hamiltonian (55) passes into the one in (54). The total
potential energy of the electron U �r�, besides the UR�r�
contribution, must contain the potential energy of confine-
ment Uc�r?�, which keeps the electron inside the nanowire.
Here, r? is the radius vector in the plane perpendicular to the
nanowire. In what follows, we assume the function Uc�r?� to
be sufficiently smooth for jHUcj in Hamiltonian (55) to be
neglected compared with jHURj.

We first discuss a homogeneous infinitely long wire in the
absence of external fields. Following [57], we introduce the
coordinate axes as shown in Fig. 23a: x is directed along the
nanowire, y is perpendicular to the surface, and z lies in the
plane of the surface and is perpendicular to the nanowire. If
the direction of the normal to the surface is n � �0;ÿ1; 0�,
then the one-electron Hamiltonian is given by

Ĥ � Ĥ? � p̂ 2
x

2m �
� a

�h
�sxp̂z ÿ szp̂x� ; �56�

where

Ĥ? � p̂ 2
?

2m �
�Uc�r?� ; �57�

and m � is the effective mass of the electron in the nanowire.
Knowing the potential energy of confinement Uc�r?�, we can
find the eigenfunction c?; n�r?� and eigenvalues E?; n of
Hamiltonian (57). For simplicity, we assume that, at a near-
zero temperature of the system (T � 0 K), all electrons in the
nanowire are at the level with n � 0. But if the temperature is
different from 0 K, then this approximation implies that we
neglected the nanowire thickness, i.e.,Uc�r?� � ÿjAjd �2��r?�.
Averaging Hamiltonian (56) over the wave function c?; 0�r?�
and setting E?; 0 � 0, we obtain the one-dimensional Hamil-
tonian of the electron in the nanowire:

Ĥ1D � p̂ 2
x

2m �
ÿ a

�h
szp̂x : �58�

Hamiltonian (58), obviously, commutes with the spin projec-
tion operator ŝz. The eigenvalues of Hamiltonian (58) are

E1D � �h 2

2m �
�kx ÿ skSO�2 ÿ ESO ; �59�

where kSO � am �=�h 2, ESO � �h 2k 2
SO=2m

� (here and hereafter,
the index SO refers to spin±orbit coupling), and s takes the
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Figure 23. Schematic of (a) an infinitely long nanowire and (b) a finite-

length nanowire placed between two electrodes [157]. SO is the spin±orbit

coupling.
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value �1 for spin-up electrons (sz � �h=2) and ÿ1 for spin-
down electrons (sz � ÿ�h=2). The dispersion law for spin-up
and spin-down electrons is given by two parabolas shifted
with respect to one another by 2kSO (Fig. 24a). In Fig. 25, we
represent the dispersion law of electrons in Pt±Si nanowires
on an Si(110) surface, in accordance with the data of angle-
resolved photoelectron spectroscopy [30]. Near the G point,
the dispersion law of electrons agrees well with formula (59)
form � � ÿ0:66me, ESO � 81 meV, and kSO � 0:12 �Aÿ1. This
implies that a � 1:36 eV �A. Because ESO and kSO turned out
to be much greater than for the one-dimensional systems
investigated previously [159, 160], the authors of [30] called
the effect that they revealed in Pt±Si nanowires the gigantic
Rashba effect. Subsequently, the gigantic Rashba effect was
also observed in a number of one-dimensional systems, such
as Pb nanoribbons on an Si(553) surface [161], zigzag Bi
chains on an InAs surface [162], and Bi edge clusters on an
Si(111) surface [163].

We now consider the wire in an external magnetic field
B 6� 0 at zero temperature T � 0 K. For this, we must add the
term ÿ�hr� to Hamiltonian (58), where h � gmBB=2, mB is
Bohr's magneton, and g is the Land�e factor. As a result, the

one-dimensional Hamiltonian of the electron in the nanowire
takes the form

Ĥ1D � p̂ 2
x

2m �
ÿ
�
a
�h
p̂x � hz

�
sz ÿ �h?r?� ; �60�

where h? � �hx; hy; 0� and r? � �sx; sy; 0�. We see that the
nonvanishing component of the magnetic field hz 6� 0 results
in the appearance of a piece ÿshz in energy (59), i.e., to
shifting one of the parabolas in Fig. 24a upward and the other
downward.

Much more interesting results follow in the case of a
nonzero magnetic field h? 6� 0. Following [157], we now
assume that the magnetic field is directed along the nano-
wire, i.e., h? � �hx; 0; 0�. Then, the two branches of the
dispersion law of an electron no longer intersect, and a gap
2Dz in width appears at kx � 0, with Dz � jhxj � jgmBBx=2j.
Two cases must then be distinguished. For Dz < 2ESO, the
Rashba effect exceeds the Zeeman effect (Fig. 24b). In that
case, the wave number corresponding to the energy minima
decreases,

k 0SO � kSO

�������������������
1ÿ D 2

z

4E 2
SO

s
;

and the depth of the minima increases,

E 0min � ÿESO

�
1� D 2

z

4E 2
SO

�
:

Conversely, for Dz > 2ESO, the Zeeman effect exceeds the
Rashba effect (Fig. 24b), and the dispersion law for an
electron has a single minimum at kx � 0: E 0min � ÿDz.

The most interesting result in [157] is the prediction of a
nonvanishing spin polarization P and spin current Js in a
nonvanishing magnetic field h? � �hx; 0; 0�. As was to be
expected, the electrons are polarized in the magnetic field
direction, i.e., P � �Px; 0; 0�, where

Px � 1

r

�
dkx
2p

hx
�
f
ÿ
Eÿ�kx�

�ÿ f
ÿ
E��kx�

��������������������������
�akx�2 � h 2

x

q : �61�

Here, r is the concentration of electrons, f �E � �
f1� exp ��Eÿ m�=kBT �gÿ1 is the Fermi±Dirac distribution,
and

E��kx� � �h 2k 2
x

2m �
�

������������������������
�akx�2 � h 2

x

q
:
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Figure 24. Dispersion law for an electron in an infinitely thin nanowire:
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At the same time, it turns out that the spin current is directed
perpendicular to the external magnetic field: Js � �0; 0; J s

z �
with

J s
z �ÿ

X
b��

�
dkx
2p

�
a
2
� b�h 2

2m �
ak 2

x������������������������
�akx�2 � h2x

q �
f
ÿ
Eb�kx�

�
:

�62�
This quantity can be conveniently written in the spectral
decomposition form

J s
z �

�
dE

�X
b��

J s
z; b�E � gb�E �

�
f �E � ; �63�

where

g��E � �
�
dkx
2p

d
ÿ
Eÿ E��kx�

� �64�

is the density of states of spin-up or spin-down electrons. The
functions J s

z;��E �g��E � and J s
z;ÿ�E �gÿ�E � are plotted in

Fig. 24b, c with thin solid lines. We note that the form of
J s
z;ÿ�E �gÿ�E � substantially depends on the magnetic field

strength.
We now address effects due to the finite length of the

nanowire. We assume that a nanowire of length Lw is located
between two electrodes, as shown in Fig. 23b, and that the
spin±orbit coupling responsible for the Rashba effect is
absent in the electrodes. It then follows that a depends on
the coordinate x along the nanowire. Substituting a�x� in the
expression for the generalizedRashbaHamiltonian, Eqn (55),
we obtain the following one-dimensional Hamiltonian
instead of (60):

Ĥ1D � p̂ 2
x

2m �
ÿ
� fa�x�; p̂xg

2�h
� hz

�
sz ÿ �h?r?� : �65�

Here, f. . .g is the anticommutator of the function a�x� and the
operator p̂x. We can take a�x� to be any model function
smoothly changing from zero in the domain of the electrodes
to a0 � const inside the nanowire. Following [157], we choose
a�x� as

a�x� � a0
2

�
Erf

�
Lw=2� x���

2
p

l

�
� Erf

�
Lw=2ÿ x���

2
p

l

��
; �66�

where l is the width of the domain on the electrode±nanowire
border where spin±orbit coupling is turned on.

In Fig. 26, we show the coordinate dependences of the
electron spin polarization P, of the spin current projection J s

z ,
and of the torque Th

z exerted on the electron by the magnetic
field, for short (Lw � 200 nm) and long (Lw � 2 mm)
nanowires. The width of the domain where spin±orbit
coupling turns on is l � 20 nm in both cases. We see that
taking the finite length of the nanowire into account leads to
the following effects. First, near the electrode, the electrons
are polarized in the y direction, perpendicular to both the
external magnetic field h � �hx; 0; 0� and the z axis, along
which the effective field due to the spin±orbit coupling acts. A
nonzero spin polarization Py in turn gives rise to a nonzero
torque T h � r�P� h� that the magnetic field produces on the
electron:

Th
z � ÿrPyhx : �67�

Second, because the electron is localized in a domain of length
Lw in a nanowire, oscillations of the spin polarization Px and
of the spin current projection J s

z are observed. The length of
these oscillations can be estimated as

losc � p�h���������
2m �
p

�
m�2ESO�

��������������������������������������
4mESO�4E 2

SO�D 2
z

q �ÿ1=2
: �68�
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Figure 26. (a, c) Coordinate dependence of the electron spin polarization and (b, d) spin current density J s
z and torque Th

z exerted on an electron by a

magnetic field. The coordinate axes are shown in Fig. 23a. (a, b) Nanowire length 200 nm, (c, d) nanowire length 2 mm. Parameters of the model:

Dz � 0:4 meV, m � ÿ0:2 meV, T � 50 mK, l � 20 nm, a0 corresponds to the case ESO � 0:3 meV, and m � � 0:015me [157].
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Substituting the parameters specified in the caption to Fig. 26
into formula (68), we obtain losc � 165 nm. For a short
nanowire, it turns out that losc � Lw, and oscillations are
not observed. Third, we see that spin polarization penetrates
from the nanowire into the bulk of the electrodes, and the
penetration pattern is strongly dependent on the relation
between the chemical potential m and Dz [157].

We now discuss effects due to the finite width of the
nanowire at a nonzero temperature. Following [164], we
consider a flat nanowire with a quadratic potential along the
z axis:

Uc�r?� � ÿjAjd�y�m
�o 2z 2

2
: �69�

The eigenfunctions and eigenvalues of Hamiltonian (57) are
E?; n � �ho�2n� 1�=2� Ed and c?; n�r?� � cn�z�f�y�, where
cn�z� are the wave functions of a one-dimensional harmonic
oscillator, and f�y� and Ed are the wave function and the
energy of a particle in a d-shaped well. In what follows, we
reference the energy to the level Ed, i.e., we set Ed � 0.
Averaging Hamiltonian (56) over the wave function f�y�,
we obtain the two-dimensional Hamiltonian for the electron
in a nanowire,

Ĥ2D � p̂ 2
x

2m �
ÿ a

�h
szp̂x � p̂ 2

z

2m �
�m 2o 2z 2

2
� Ĥmix ; �70�

where

Ĥmix � a
�h
p̂zsx : �71�

The Hamiltonian Ĥ0 � Ĥ2D ÿ Ĥmix commutes with the spin
projection operator sz, and its eigenvalues are

E0; n � �ho
�
1

2
� n

�
� �h 2

2m �
�kx ÿ skSO�2 ÿ ESO ; �72�

where n � 0; 1; 2; . . . are natural numbers. We have thus
obtained a set of 2n intersecting parabolas with minima at
the points �kSO. The Hamiltonian Ĥmix leads to a mixing of
states corresponding to different values of n. If we take only
the states with n � 0; 1 into account, we can express the lower
branches of the dispersion law for the electron as [164]

E0;s�kx� � ESO � �ho
2

�
�
2� �kxlo�2ÿ

�����������������������������������������������������������
�1ÿ2skSOkxl 2o�2 � 2�kSOlo�2

q �
; �73�

where lo �
���������������
�h=m �o

p
. The dispersion law for the electron

established numerically for all possible n is shown in Fig. 27a.
We can see that, because of the mixing of states with different
quantum numbers n, the dispersion law is no longer
parabolic. Because the number of the dispersion law
branches is preserved, they still can be labeled by the
quantum numbers n and s. Specifically, curve (1) corre-
sponds to the quantum numbers n � 0 and s � 1, curve (2),
to n � 0 and s � ÿ1, curve (3), to n � 1 and s � 1, and
curve (4), to n � 1 and s � ÿ1. However, the most interesting
result of the mixing of states is that electrons acquire a
nonzero spin polarization Pz (Fig. 27b). As a result, electrons
moving along the nanowire in opposite directions are
polarized differently, which means that the current in the
nanowire is spin-polarized.

The electric current running through the nanowire can be
evaluated in the ballistic regime by the Landauer formula [26,
166, 167]

Iss 0 � 2e

h

XM
m�1

�1
0

dE Tm
ss 0 �E �

�
fs�E; ms� ÿ fd�E; md�

�
; �74�

where Tm
ss 0�E � are the electron transmission coefficients,

fs�E; ms� and fd�E; md� are the Fermi±Dirac distribution
functions with chemical potentials ms and md at the source
(s) and sink (d) of electrons, and s and s 0 are the spin indices
of electrons at the source and at the sink. It follows from (74)
that the electric current running through the nanowire can be
changed by tuning the transmission coefficients Tm

ss 0 �E �.
This idea underlies the operation of a nanowire field
transistor [158]. A schematic of such a transistor is shown
in Fig. 28a. In formula (55), two more terms must be added
to the potential energy U �r�: UEk � eEkx and UE? �
eg �x�E?y, where Ek and E? are the projections of the
electric field strength on the x and y axes, and g�x� is a
function changing smoothly from 0 to 1 at the edges of the
gate. As a result, the transmission coefficients Tm

ss 0�E �
acquire a dependence on the external electric field E?. The
Rashba effect in a nanowire leads to partial spin polarization
of the electric current, with an oscillatory dependence of the
transmission coefficients Tm

ss 0 �E � on the gate voltage. This,
in turn, leads to an oscillatory dependence of the total
current through the nanowire on the gate voltage. In
Fig. 28b, we compare theoretical [158] and experimental
[165] dependences of the current through the nanowire on
the gate voltage. As can be seen from the figure, theoretical
and experimental data agree well in the case of a partially
polarized current (P � 0:4).
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Figure 27. (a) Dispersion law 2�E �kx� ÿ ESO�=�ho and (b) spin polariza-

tion of electrons in an infinitely long wire with the finite thickness taken

into account (kSOlo � 0:9) [164].
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The dependence of the electric conductivity G and heat
conductance K for nanowires exhibiting the Rashba effect on
the longitudinal field strength Ek in the ballistic regime was
studied in [168]. AsEk increases, both the electric conductivity
and heat conductance of nanowires change in jumps by
G0 � e 2=h (the electric conductivity quantum) and K0 �
p2k 2

BT=3h (the heat conductance quantum). Deviations
from the Wiedemann±Franz law (K=K0 � G=G0) are
observed only in a narrow domain near the jumps in electric
conductivity. Importantly, depending on the direction of the
external magnetic field, the dependences of G and K on Ek
can be either monotonic �h � �0; 0; hz�� or nonmonotonic
�h � �hx; hy; 0��.

5.5 Magnetic properties of atomic wires and chains
The study of the magnetic properties of atomic chains is
mainly motivated by the prospects of designing new-genera-
tion data storage elements [169±171]. For an atomic chain to
be used as a bit of information, the time of spontaneous
magnetization reversal of the chain must be sufficiently long.
The possibility of producing such memory elements [172]
appeared after the discovery of the gigantic magnetic
anisotropy of Co atoms on a Pt(997) surface by the methods
of X-ray magnetic circular dichroism [9, 173] and scanning
tunneling microscopy [174±176]. Figure 29 shows the magne-
tization curves for atomic chains of Co on a vicinal Pt(997)
surface for two values of the temperature. At a lower
temperature (Fig. 29b), the atomic chains are ferromagnetic.

Similar behavior is also observed for the epitaxial system
Fe=Cu�111� [51, 177]. The critical temperature TC and the
spontaneous magnetization reversal time t then increase with
chain length. In accordance with the estimate in [173], a chain
of 400 Co atoms can serve as a bit that is stable at room
temperature. To increase the density of information recording,
double or triple ferromagnetic chains could be used [178, 179].
However, experimental and theoretical work has shown that,
as the width of the chain increases, the magnetic anisotropy
energy (MAE) markedly decreases, approaching the MAE
characteristic of monolayers [178, 180, 181]. These data are
consistent with the known effect of a decrease in the MAE of
atoms in a cluster as the cluster size increases [182±184].

Another way to record one bit of information is to use
antiferromagnetic chains [185±188]. Antiferromagnetic
chains interact more weakly with each other than ferromag-
netic ones do. Therefore, the use of antiferromagnetic chains
can give rise to a substantial increase in the density of
information recording. The options for producing such
chains and ensuring magnetization reversal in them with the
help of an STMwas demonstrated with the example of chains
made of Fe atoms on a Cu2N=Cu�001� surface [2, 189]. A
systematic study of the chains of transition metals on the
Cu2N=Cu�001� surface has shown that they can be either
ferromagnetic or antiferromagnetic [190±194]. Similar results
were obtained for atomic chains on the Cu2O=Cu�001�
surface [195]. A strong increase in the stability of the bit can
be ensured by using double antiferromagnetic chains [2]. In
Figs 30a±c, we show STM images of double chains of Fe
atoms on the Cu2N=Cu�001� surface for temperatures of 1.6,
3.0, and 5.0K.We see that the chainmade of eight Fe atoms is
in the antiferromagnetic state at a temperature below 1:2 K,
and the chain of 12 Fe atoms is antiferromagnetic at a
temperature below 3:0 K. In Fig. 30e on a logarithmic scale,
we show the temperature dependences of the spontaneous
magnetization reversal rate n. We see that these dependences
consist of two legs. At lower temperatures, n � const. That
the magnetization reversal rate is independent of the
temperature implies that the transition between two ground
states of the chain occurs due to quantum mechanical
tunneling. At higher temperatures, the dependence n�T � is
described by the classical Arrhenius law ln n � 1=T, i.e., the
magnetic moments of Fe atoms behave like classical vectors.

The interaction of atoms in the chainwith each other, with
atoms of the surface, and with the external magnetic field can
be described with the effective Hamiltonian

H � Hexch �HMAE �HB ; �75�

where the first term Hexch describes the exchange interaction
between atoms of the magnetic chain. In the lowest order in
spin projections �si�a, the Hamiltonian Hexch is given by a
quadratic form [196, 197]

Hexch � ÿ
X
i>j

X
ab

�si�a�Ĵi j�ab�sj�b ; �76�

where the indices i and j label atoms and a; b � 1; 2; 3. This
Hamiltonian can be represented as the sum of three terms:

Hexch �ÿ
X
i>j

Ji j�si sj� �
X
i>j

ÿ
Di j�si � sj�

�
ÿ
X
i>j

X
ab

�si�a
ÿ
Ĵ aniso
i j

�
ab�sj�b : �77�
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Figure 28. (a) Schematic of a field transistor based on a nanowire

exhibiting the Rashba effect. (b) Current oscillations depending on the

gate voltage. The upper image shows the results of theoretical calculations

[158] for the totally polarized current (P � 1, dashed curve) and a partially

polarized current (P � 0:4, solid curve). The lower image shows experi-

mental results [165].
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The first term here is the standard Heisenberg Hamiltonian.
The leading contribution to it is made by the exchange
interaction between nearest neighbors. It can often be
assumed that Ji j � J�di; j�1 � di; jÿ1�, where J > 0 for a
ferromagnetic chain and J < 0 for an antiferromagnetic one.
The second term in (77) is called the Dzyaloshinsky±Moriya
interaction [198, 199]. In atomic chains, the Dzyaloshinsky±
Moriya interaction can give rise to the formation of a spiral
magnetic structure [200, 201]. The last term in (77) is the
symmetric anisotropic part of the exchange interaction

��Ĵ aniso
i j �ab � ��Ĵi j�ab � �Ĵi j�ba�=2ÿ Ji j� and is typically less

than the first two. Whenever needed, higher-order terms in
�si�a can be added to the quadratic form in (76).

The HMAE term in Hamiltonian (75) describes the
interaction of atoms of the chain with surface atoms and is
called the magnetic anisotropy energy. In most practically
relevant cases, the Hamiltonian HMAE has the form

HMAE �
X
i

�
ÿ K�si�2z � E

�
�si�2x ÿ �si�2y

��
; �78�
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Figure 29. Surface magnetization curves for two different magnetization directions:�43� to the normal to the surface (black squares),ÿ57� to the normal

to the surface (circles) for temperatures of (a) 45 K and (b) 10 K [9].
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where the z axis coincides with the easy magnetization axis.
The second term in Hamiltonian (78) is related to the
anisotropy of the surface on which the atomic chain is
located, and is typically much less than the first term,
jEj5 jK j. For isotropic surfaces, E � 0.

The last term in Hamiltonian (75) describes the interac-
tion of atoms in the chain with the external magnetic field and
has the form

HB � ÿ
X
i

mi�si B� ; �79�

where mi is the magnetic moment of the ith atom of the chain
and B is the magnetic induction of the external field.

In studying the properties of individual atoms, quantum
mechanical methods are used, such as the density functional
theory [179, 195, 202] and the Korringa±Kohn±Rostoker
multiple scattering method [175, 203]. These methods allow
evaluating all parameters of effective Hamiltonian (75).
Below, we discuss the application of quantum mechanical
methods to the study of themagnetic properties of chains with
the example of chainsmade of Co andFe atoms. It was shown
in [184] that the spin magnetic moment of Fe atoms (2:7 mB)
immersed into the first layer of a Cu(001) surface is greater
than the magnetic moment of Co atoms (1:7 mB) by approxi-
mately a factor of 1:5, and the spin moments of atoms in the
chains are much greater that those of adatoms. The magnetic
moment increases in chains as a result of the widening of the
density of d states due to the interaction of magnetic atoms
with each other [183]. The spin magnetic moments do not
change significantly in the course of surface relaxation and
are in good agreement with the results in [183, 204], obtained
without taking it into account.We note that the anisotropy of
the spin magnetic moment of immersed Fe and Co atoms is
negligibly small.

In contrast to the spin magnetic moment, the anisotropy
of the orbital magnetic moment is quite significant [184]. For
example, the orbital magnetic moment of an edge atom in a
chain of four Co atoms is equal to 0:42 mB for magnetization
along the chain and 0:19 mB for magnetization perpendicular
to the plane of the surface in which the chain lies. This is
because, for transition metals whose d subshell is more than
half-filled, the orbital moment projection on the easy
magnetization axis is typically the maximal possible [205].
The orbital magnetic moment of magnetic atoms then
decreases due to their interaction with each other. Impor-
tantly, taking the surface relaxation into account leads to a
sizeable decrease in the orbital magnetic moments of the
immersed cobalt atoms [183].

In the Table, we list theMAEper atom,DE �I; z� (I � x; y),
evaluated as the difference between the total energies of all
atoms in the case where the magnetic moments of magnetic
atoms (Fe and Co) are directed along the I and z axes. A
positive value of theMAE DE �I; z�means that magnetization

of impurity atoms along the z axis is energetically advanta-
geous; a negative value, conversely, indicates that the I axis is
preferable. The MAE of immersed atoms of cobalt is 1 to 2
orders of magnitude greater than that of iron atoms located in
similar chains. Similar chains made of Fe and Co atoms
(except the adatoms) have different directions of the easy
magnetization axes. We note the key role of copper surface
relaxation in calculating the MAE of immersed nanostruc-
tures. If we ignore the surface relaxation effect and calculate
theMAE assuming the Co atoms to be located at the site of an
ideal crystal lattice of copper, then the MAE can increase
more than twofold [183]. Evenmore essential differences arise
when taking relaxation into account in calculating the MAE
for chains made of atoms of iron. In [204], without taking
surface relaxation into account, it was shown that the easy
magnetization axis of linear chains immersed into the first
layer of a Cu(100) surface lies in the plane of the surface
perpendicular to the chains. This result explicitly contradicts
the data displayed in the Table, according to which the easy
magnetization axis is perpendicular to the copper surface.

Knowing the individual magnetic properties of atoms, we
can pass to considering collective magnetic properties of
chains, as these follow from Hamiltonian (75). We do not
discuss the properties of infinitely long chains, which have
been studied and expounded on in a number of textbooks,
monographs, and review papers, but concentrate instead on
those properties of finite-length chains that can be derived
experimentally. The length of such chains is typically under
100 atoms. We note that, due to the finiteness of the length of
magnetic chains, the original assumptions of several funda-
mental theorems no longer hold, including the Mermin±
Wagner theorem [206] on the absence of ferromagnetism
and antiferromagnetism in one- and two-dimensional iso-
tropic Heisenberg models. This opens up a number of options
for the practical use of finite-length magnetic chains.

Theoretical methods for studying the magnetic properties
of chains can be divided into three large classes: (1) various
quantum mechanical methods; (2) classical magnetic
dynamics in the framework of the Landau±Lifshitz±Gilbert
approximation; and (3) classical statistical methods based on
the Monte Carlo method.

In studying the properties of magnetic chains with
quantum mechanical methods, �si�a must be understood as
spin projection operators of the ith atom on the a � x; y; z
axes. The methods then essentially depend on the substrate
underlying the atomic chain. As a rule, an insulator (or
semiconductor) or normal-state metal crystal is used as a
substrate. 1

If a magnetic chain is placed on an insulator or
semiconductor surface, the contribution of the MAE to
Hamiltonian (75) is small and can be neglected. The atomic
chain can thus be considered a closed system, and its
dynamics can be described using the formalism of wave
functions. From the practical standpoint, an interesting
result is the possibility of using atomic chains for quantum
transmission of information [208, 209]. The accuracy of
information transmission from one end of the chain to the
other decreases fairly slowly with the chain length, � Nÿ1=3,
where N is the number of magnetic atoms in the chain.
Another interesting phenomenon is the electromagnetic
dipole radiation by the spin-flip wave in a magnetic chain

Table. Average MAE values for adatoms and short chains in the first
surface layer of Cu(100). All the values are expressed inmeVper atom. The
z axis is perpendicular to the surface; the x and y axes lie in the plane of the
surface, with the x axis directed along the chain [184].

Conéguration DEFe�x; z� DEFe�y; z� DECo�x; z� DECo�y; z�
Adatom
Dimer
Trimer
Tetramer

ÿ0.11
0.14
0.06
0.05

ÿ0.11
0.10
0.04
0.03

ÿ2.01
ÿ1.71
ÿ1.59
ÿ1.68

ÿ2.01
ÿ1.11
ÿ0.94
ÿ1.09 1 We do not discuss the properties of magnetic chains on superconductor

surfaces here (see review paper [207] and references therein).
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[210]. It then turns out that, with the quantum fluctuations of
the field taken into account, the radiation energy flux is much
higher than the energy flux in the averaged electromagnetic
field.

If the magnetic chain is placed on ametal surface, the chain
atoms strongly interact with the surface electron gas. In this
case, the magnetic chain is part of the chain� surface system,
and its state must be described in the language of density
matrices rather than wave functions. The density matrix r of a
magnetic chain is a solution of the Lindblad equation [211, 213]

qr
qt
� ÿ i

�h

�
Heff; r

�� L �r� ; �80�

where L �r� is the Lindblad superoperator. A systematic
derivation of Eqn (80) and analysis of its compatibility with
the laws of thermodynamics are available in [214]. In the case of
antiferromagnetic chains of Fe on a Cu2N=Cu�001� surface,
interaction with the substrate leads to the suppression of
quantum mechanical oscillations (Rabi oscillations) between
the twoground states of the antiferromagnetic chain [211].As a
result, magnetization reversal of the chains occurs in a classical
manner, i.e., due to the flip of magnetic moments, by over-
coming an activation barrier. The transition between classical
and quantum mechanical regimes of magnetization reversal
depends on the temperature and the chain length (Fig. 31). As
can be seen from Fig. 31, quantum properties of magnetic
chains manifest themselves only at low temperatures of� 1 K.
At the same time, from the standpoint of practical applications,
the magnetic dynamics of chains at higher temperatures are of
interest. It was shown in [215] that, in the classical limit, the
dynamics of amagnetic chain can be described by the Landau±
Lifshitz±Gilbert equation [202, 216, 217]

qsi
qt
� ÿg�si �H eff

i

�� a
mi

�
si � qsi

qt

�
; �81�

where si is the unit (classical) vector of the magnetic moment
of the ith atom of the chain, g is the gyromagnetic factor, a is
the damping constant, andH eff

i is the effective magnetic field

strength acting on the ith atom:

H eff
i � ÿ

1

mi

qH
qsi

: �82�

Here,H is the effectiveHamiltonian (75) of themagnetic chain.
It must be kept inmind that this interpretation of Eqn (81)

is different from the original interpretation of Landau and
Lifshitz. In the macroscopic derivation of Eqn (81), it is
assumed that s is a unit vector of magnetization of a
macroscopically small volume of a ferromagnet, which
nevertheless contains a large number of atoms. On the other
hand, we here assume that si is the unit vector of the magnetic
moment of a single atom [202, 215].

Equation (81) is especially useful in modeling the
dynamics of magnetization reversal of short ferromagnetic
and antiferromagnetic chains in an external magnetic field.
As an example, we consider the magnetization reversal of an
antiferromagnetic chain made of three Fe atoms on the
Cu2N=Cu�001� surface under the action of an STM tip and
of an external magnetic field [202]. The STM tip is modeled
with the help of a fourth Fe atom placed at a distanceD � 5�A
from the chain atoms. The external magnetic field is a
superposition of a constant magnetic field Hz perpendicular
to the surface (along the easy magnetization axis) and the
pulsed field Hpls�t� directed along the chain. In this case, the
pulsed field is necessary for activating the magnetization
reversal of the chain. It is given by a rectangular pulse 0.3 T
in amplitude (Hpls 5Hz) and 0.3 ps in duration. In Fig. 32, we
show the dynamics of the flip of the edge atom in a chain. The
magnetization reversal time of the chain is 200 to 400 ps, and
the minimal field Hz necessary for magnetization reversal
depends on the position of the STM tip.

In the considered example, magnetization reversal of all
three Fe atoms occurs simultaneously. In longer chains, made
of tens or hundreds of atoms, a magnetization reversal
mechanism accompanied by the formation of domain walls
can be energetically advantageous. It can then be assumed
that the magnetic moments of the atoms flip at random. If we
assume that the flip of magnetic moments is a Markov
process, we can construct a KMCM for magnetic moments.
We consider the KMCM [218] for a special case of the
effective Hamiltonian (75):

H � ÿ
X
i>j

Ji j�si sj� ÿ K
X
i

�si e�2 ÿ m
X
i

�si B� ; �83�

where si and e are the respective unit vectors of the magnetic
moment of atoms and of the easy magnetization axis, m is the
modulus of the magnetic moment of an atom, K is the MAE,
and Ji j � J�di; j�1 � di; jÿ1� is the exchange integral. For a
ferromagnetic chain, J > 0, and for an antiferromagnetic
one, J < 0. We assume that the external magnetic field B is
applied along the easy magnetization axis e. Then, the
magnetic moments of the atoms can be aligned either parallel
or antiparallel to the easymagnetization axis, �si e� � �1. The
magnetic moment of the atom is then directed up if �si e� � 1
and down if �si e� � ÿ1.

The flip of the ith magnetic moment can occur in two
different ways. If 2K > hi, where hi �

P
j Ji j�si sj� � m�si B�,

there is an energy barrier between the initial and the final
states of the chain (Fig. 33a±c), and the magnetic moment flip
rate is given by

ni � n0 exp
�
ÿ �2K� hi�2

4KkBT

�
; �84�
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Figure 31. Temperature±number-of-atoms diagram for Fe chains on a

Cu2N=Cu�001� surface [211]. The dotted line separates the domain where

magnetization reversal occurs as a result of quantum mechanical oscilla-

tions and where it occurs classically. The dots are experimental values

from [2, 212].
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where kB is the Boltzmann constant, T is the temperature of
the system, and n0 is a frequency prefactor. But, if 2K4 hi,

then the energy barrier between the �si e� � �1 states is absent
(Fig. 33d, e), and the magnetic moment flip rate can be
calculated as [219]

ni � n0
exp �ÿ2hi=kBT �

1� exp �ÿ2hi=kBT � : �85�

For chains made of transition metal atoms placed on a metal
substrate, the frequency prefactor n0 is 109 Hz by the order of
magnitude [9].

The proposed KMCM model can be used to estimate the
critical temperature TC and the magnetization reversal time
of the chain t, to construct magnetization curves for chains,
and to find the coercive force [220±226]. As an example, in
Fig. 34a, b, we show magnetization curves of a chain made of
80 Co atoms on a Pt(997) surface at temperatures of 10 and
45 K. Here, M 2 �ÿ1; 1� is the mean magnetization of the
chain (in arbitrary units), averaged over 500 magnetization
reversal cycles. We can see that, at 45 K, the coercive force is
close to zero. But the chain remains ferromagnetic, as can be
seen from the slope of the magnetization curve at M � 0 at
both temperature values. The temperature dependence of the
coercive force for chains made of 10 and 80 Co atoms is
shown in Fig. 34c. This dependence is approximated well by
the formula

Bc � A exp

�
ÿ
�

T

T0

�p �
; �86�

where T0 is some temperature below the critical temperature
TC. The critical temperature TC of the ferromagnetic chain
can be estimated from a plot of the mean magnetization
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modulus jMj as a function of the temperature T. The critical
temperature TC is then determined as the inflection point on
the plot of jMj�T � [224, 225]. The same can be done for
antiferromagnetic chains, but with the order parameter
chosen as the modulus of the difference between magnetiza-
tions of two sublattices, jM1 ÿM2j [226]. The critical
temperature can be found in this way, because the order
parameter is nonvanishing at any temperature for finite-
length chains.

When the parameters J and K differ negligibly for
different atoms in the chain, the KMCM model can be used
to construct a simple analytic procedure for calculating the
magnetization reversal time t for ferromagnetic and anti-
ferromagnetic chains [227, 228]. At temperature T5TC, the
magnetic moments of all atoms in the chain are aligned most
of the time. For definiteness, we assume that all magnetic
moments are directed up. A magnetic moment flip inside the
chain has a low probability at low temperatures. Therefore,
the magnetization reversal of the chain starts with a flip of the
magnetic moment of one of the edge atoms, which means that
a domain wall emerges at the edge of the chain. If this domain
wall propagates to the opposite edge of the chain, the
magnetic moments of all atoms in the chain are directed
down, i.e., the chain reverses its magnetization. If the
temperature is sufficiently low, then a second domain wall
does not appear within the time the first domain wall travels
along the chain. The problem of finding magnetization
reversal of a finite-length atomic chain thus reduces to the
problem of a random walk of one domain wall. If the chain
consists of N atoms, the domain wall can be in one of the

Nÿ 1 positions between atoms i � 1; . . . ;Nÿ 1. If the
magnetic moments of all atoms are directed up or down, we
assign the domain wall the position i � 0 or i � N. To solve
the problem of random walk of the domain wall, we use the
mean-rate method, known to work well in studying random
walks of atoms [229, 230].

We first consider magnetization reversal of an atomic
chain in the absence of an external field, B � 0. The random
walk of the domain wall is then characterized by only three
rates: the rate n1 of domain wall formation at the chain end,
the rate n2 of domain wall disappearance at the chain end, and
the rate n3 of domain wall displacement to a neighboring
position inside the chain; all three can be evaluated from
formulas (84) and (85).

We let ni!j denote the rate of domain wall displacement
from position i to position j� i� 1; then, n0!1�nN!Nÿ1 � n1,
n1!0 � nNÿ1!N � n2, and n1!2 � n2!1 � . . . � nNÿ2!Nÿ1 �
nNÿ1!Nÿ2 � n3. We let t 1i denote the mean time that the
domain wall resides in the ith position. Evidently, t 10 �
t 1N � 1=n1, t 11 � t 1Nÿ1 � 1=�n2 � n3�, and t 12 � . . . � t 1Nÿ2 �
1=2n3.

We assume that, at the initial instant, the domain wall was
in position i � 0. We must evaluate the mean time that the
domain wall takes to move to position i � N. To do so, we
introduce the N�N transition matrix T with the elements

Ti j � t 1j nj!i : �87�

Because the domain wall is in position i � 0 at the initial
instant, the probability of finding it in the first N positions is
P init
i � d0i. The probability Pi of finding the domain wall in

position i after a large number of randommoves can be found
from the system of linear equations

XNÿ1
j�0
�di j ÿ Ti j�Pj � P init

i : �88�

Using the explicit form of the T matrix, it is easy to solve the
system of linear equations (88). The total random walk time
for the domain wall is

ttot �
XNÿ1
i�0

t 1i Pi : �89�

In finding ttot, we assumed that the domain wall appears in
position i � 0. But it can appear on both ends of the atomic
chain with equal probability, and therefore the mean
magnetization reversal time t for the chain must be half the
time ttot. From (88) and (89), after simple calculations, we
find

t � 1

2a

�
a

n3

�
Nÿ 1

2

��
Nÿ 2�1ÿ 2a�

1ÿ a

�
� 1

n1

�
N �1ÿ a� ÿ 2�1ÿ 2a��� ; �90�

where a � n3=�n2 � n3�. Expression (90) is valid not only for
long (N4 1) but also for relatively short (N � 10) chains if
the condition KNÿ 2J4 kBT is satisfied, which ensures that
the probability of domain wall formation is much higher than
the probability of a simultaneous flip of all magnetic
moments.

We generalize formula (90) to the case of a nonvanishing
external magnetic field. Random walk of the domain wall is
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Figure 34. Magnetization curves for a chain of 80 Co atoms on a Pt(997)
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coercive force for chains made of 10 and 80 Co atoms.
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now characterized not by three but by six frequencies: n1�,
n2�, and n3�. Repeating the above calculations, we obtain

t�B�� 1

2�1ÿ aÿ�
�

aÿ
n3ÿ
� �Nÿ2��1ÿ aÿ� � �aÿ ÿ a�SNÿ2

n3��1ÿ a�

� SNÿ2 ÿ �aÿ � aa��SNÿ3 � aa�aÿSNÿ4
n1�a�

�
; �91�

where a��1ÿ�=b, SN��1ÿaN�=�1ÿa�, a��n3�=�n2ÿ�n3��,
aÿ � n3ÿ=�n2� � n3ÿ�, and b � n3�=�n3ÿ � n3��. In the limit
B! 0, formula (91) becomes formula (90).

Formula (91) can be used to study magnetodynamical
properties of atomic chains at temperatures belowTmax. If the
magnetic induction B depends on time, B � B�t�, then the
magnetization reversal rates of the atomic chain also depend
on time: n"!#�t� � 1=t�B�t�� and n#!"�t� � 1=t�ÿB�t��. The
probability of finding the chain in a state where magnetic
moments of all atoms are directed up is to be found from the
master equation

dP"
dt
� P#n#!" ÿ P"n"!# ; �92�

where P" � P# � 1. If the atomic chain magnetization is
measured in dimensionless units M 2 �ÿ1; 1�, then
M � P" ÿ P#, and Eqn (92) implies an equation for the
atomic chain magnetization

dM�t�
dt

� A�t�M�t� �B�t� ; �93�

whereA � ÿn"!# ÿ n#!"andB � n#!" ÿ n"!#.Equation(93),
taken together with the initial condition M�0� �M0, is a
Cauchy problem, which is to be solved numerically.

The described method can be generalized to the case of
double ferromagnetic or antiferromagnetic chains [231, 232].
The exchange interaction between atoms inside the chain is
then described by an exchange integral J, and the interaction
between atoms of neighboring chains, by an exchange integral
J 0 (Fig. 30d) in the case of both weak (J 0N9J ) and strong

(J 0 lnN0J ) coupling between the chains. The results
obtained from analytic formulas are in good agreement with
the results of KMCM modeling. In Fig. 35, we show
magnetization curves of atomic and double ferromagnetic
chains of Co on a Pt(997) surface. We see that the results of
KMCM modeling and of the numerical solution of Cauchy
problem (93) practically coincide. The analytic method
expounded above does not require collecting statistics and
therefore allows constructing magnetization curves much
more quickly than the KMCM modeling does.

6. Conclusions

The analysis of extensive experimental data performed in this
review has shown that, among numerous epitaxial systems,
the most promising ones as regards the formation of atomic
chains aremetallic vicinal stepped surfaces and the surfaces of
metals and semiconductors with low Miller indices. The
formation and evolution of atomic chains and wires have
been described using simple theoretical models. The condi-
tions for growing one-dimensional structures are shown to
depend on both the epitaxial system and external parameters.
Studies by the kinetic Monte Carlo method have shown that
the transition from one equilibrium state to another under
heating or cooling occurs via nonequilibrium states, and
therefore the distribution of lengths of such structures
depends on the duration of the experiment. By controlling
the annealing time and temperature, we can control the sizes,
and therefore the properties, of one-dimensional atomic
structures.

The study of the electronic and magnetic properties of
atomic chains has revealed a number of physical processes
and phenomena that are important for designing new
methods of information storage and transmission. In atomic
wires with the gigantic Rashba effect in a nonvanishing
magnetic field directed along the wire, electrons are polarized
in the magnetic field direction. Taking the finite length of the
wire into account then leads to the following effects: (1) near
the electrodes, electrons are polarized in the direction
perpendicular to both the external magnetic field and the
axis along which the effective field acts due to the spin±orbit
coupling; (2) oscillations of spin polarization and of the spin
current projection are observed; (3) spin polarization pene-
trates from the wire into the bulk of the electrodes. As the
temperature increases, states with different quantum num-
bers mix, which leads to the appearance of the spin
polarization current running through the wire, even in the
absence of a magnetic field. In addition, the current running
through the wire can be changed using an external electric
field directed perpendicular to the nanowire. These properties
of atomic wires with the gigantic Rashba effect can be used in
designing various devices such as field transistors.

We especially note theoretical studies of the magnetic
properties of atomic chains and wires. This is because only
theoretical approaches allow proceeding from the knowledge
of the individual magnetic properties of atoms to the
consideration of collective magnetic properties of chains,
and subsequently assessing their prospects for practical
applications. Theoretical methods for studying the magnetic
properties of atomic chains can be divided into three large
classes: (1) quantum mechanical methods, (2) classical mag-
netic dynamics in the framework of the Landau±Lifshitz±
Gilbert approximation, and (3) classical statistical methods
based on the Monte Carlo method. Each next class, being a
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Figure 35. Magnetization curves of atomic and double ferromagnetic

chains of Co on a Pt(997) surface [231]. The effective Hamiltonian

parameters are N�100, J � 7:5 meV, K � 2:0 meV, m � 2:4mB, and T �
16 K for the atomic chain; 2N � 200, J � J 0 � 7:5 meV, K � 0:34 meV,

m � 2:4mB, and T � 40 K for the double chain. The rate of change of the

external magnetic field is jdB=dtj � 130 T sÿ1 in both cases. Dots show the

results of KMCM modeling, averaged over 1000 cycles of magnetization

reversal, and solid lines show solutions to the Cauchy problem (93).
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rough approximation of the preceding one, allows studying
the properties of longer chains over longer time intervals.

Our results of studying the magnetic properties of atomic
chains suggest their strong dependence on the material of the
substrate. Typically, the substrate is made of a crystal of an
insulator, a semiconductor, or a normal-state metal. If the
magnetic moments of the chains weakly interact with
insulator substrates, then such atomic chains can be used for
the quantum transmission of information. Conversely, the
interaction of atoms in the chain with metallic substrates can
lead to the appearance of giganticmagnetic anisotropy, which
is promising as regards designing new-generation informa-
tion storage devices, where a bit of information can
represented by both ferromagnetic and antiferromagnetic
atomic chains.
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