
Abstract. The nature of randomness and constructive and prov-
ablemethods to obtain (extract) it from observations of physical
systems are discussed. True randomness, which exists only in a
microcosm in the quantum-mechanical description of physical
systems, is a fundamental property of quantum systems, which
manifests itself in the outcomes of measurements upon quantum
systems. The classical description of physical systems does not
include any randomness and, in fact, it is introduced `manually'
by means of uncertaintyÐunknown initial conditions. Meth-
ods to really `feel' quantum randomness are discussed using the
example of a quantum device, a random number generator.
Issues related to the `proof' of randomnessÐ testing of numer-
ical sequencesÐare reviewed, and logical constructions that
underlie such testing are analyzed. Amathematical apparatus is
used to this end, which does not require special academic train-
ing, so standard knowledge from university courses on quantum
mechanics and probability theory is sufficient. The authors aim

to track a unified logical path from the origin of randomness in
the quantum domain to its extraction, physical implementation,
and testing.
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The most incomprehensible thing about the universe

is that it is comprehensible.

Albert Einstein

1. Introduction.
On the nature of randomness and the basics
of constructing quantum generators
of random numbers

Random numbers are widely used in various fields of science
and technology, for example, in the simulation of physical
processes by the Monte Carlo method. Every person comes
across random numbers in everyday life: computer access
passwords and PIN codes of smart cards and other electronic
devices.

Random numbers are especially widely used in crypto-
graphy. A random number generator (RNG) is an integral
part of cryptographic information protection systems; its
quality largely determines the cryptographic robustness of
such systems.

Encryption of large information arrays requires frequent
changes of secret keys generated using random number
generators. If the key changes frequently, the amount of
information that is encrypted on individual keys will be
small, thus making the secret communication reliable.

Secret keys are changed in classical symmetric encryption
systems at the transmitting and receiving sides using devices
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of input from digital media of a limited volume. This, in turn,
limits the rate of changing keys, since it requires regular
replacement of key information carriers. Frequent key
changes during the entire life of the cryptosystem becomes
virtually impossible. Therefore, in classical systems, secret
keys are used as a rule in the form of master keys to obtain
session keys derived from them, which, in general, does not
provide high cryptographic robustness. Modern systems of
quantum cryptography can provide a frequent change of secret
keys, but, at the same time, the generation of each secret key
requires a large number of random numbers.

How many should there be?
The quantum cryptography system is a distributed

system of matching and hashing into a secret final key of
random bit sequences on the transmitting and receiving
sides, which are formed by transferring quantum quasi-
single-photon (ideally single-photon) states via an optical
channel [1].

We estimate for illustration the number of random
numbersÐ random bitsÐ required to obtain a secret key
for a fiber-optic line length of, for example, 100 km. The
100-km distance to the receiver can be passed in a standard
optical fiber with a specific loss of � 0:2 dB kmÿ1 by, on
average, one in 102 photons.

Since there are no exactly single-photon sources, highly
attenuated coherent laser radiation is used instead. A
coherent state is a superposition of Fock states with the
number of photons k � 0; 1; . . ., with the corresponding
weights; only the average number of photons m is specified
in the state. The attenuation of the coherent state to the
average number of photons per pulse at the level m � 0:1 leads
to the situation where approximately only one out of
10 radiation pulses contains a single-photon Fock state,
while the remaining nine pulses contain a vacuum state of
the field.

Quasi-single-photon states are detected using avalanche
photodetectors, whose efficiency is much less than unity.
Typical values of the quantum efficiency of single-photon
avalanche photodetectors are Z � 0:1, a factor which
further reduces the rate of secret key generation by about
10 times.

To ensure the cryptographic secrecy of the general final
256-bit-long key, random bit sequences on the transmitting
and receiving sides approximately 104 bits in length should be
processed and compressed (hashed).

The generation of a single 256-bit secret key requires as a
result a random sequence from the RNG output with a length
no less than

102�losses in the line� � 101�m� � 101�Z�
� 104�hashing� � 108 bit:

This example shows that, to implement quantum cryptogra-
phy systems, random number generators with a high genera-
tion rate and a provable `randomness' of the output sequence
are required.

Randomness understood at the intuitive level as a process
in which each next step is unpredictable seems to be quite
comprehensible, but a closer examination shows that the
concept of randomness turns out to be far from trivial. How
can `good' or, more accurately, true randomness be created,
and how can it be determined whether that randomness is
good and, as a maximum, is it possible to obtain true
randomness?

It is fundamentally important that, in developing random
number generators, it is not enough that the sequences
generated by them be tested for randomness using some
criterion. This is just a necessary condition. Of fundamental
importance is the source of primary randomness that is used to
obtain an equidistributed sequence of 0 and 1 and which would
really be a source of randomness for reasons independent of the
recommended tests (for example, a source of randomness as a
measurement process in a quantum system (see Eqns (3)±(8)
below). Many pseudo-random random number generators,
typical of which are closed-loop shift registers, have been
successfully tested but are not truly random.

The necessary information about the concepts and
methods of testing finite bit sequences with regard to
randomness are presented in Sections 11 and 12, which are
quite independent and can be recommended to the reader
who is not familiar with the subject of this study, indepen-
dently of other sections.

Summarizing the above, we come to the conclusion that,
strictly speaking, the very concept of randomness requires an
additional mathematical definition. We discuss first the
situation at a qualitative level.

Random numbers arise as a result of the RNG operation.
Random number generators 1 can be divided into two classes:
mathematical and physical. It should be noted from the very
beginning that, to generate keys in symmetric encryption
systems that claim high cryptographic robustness, physical
RNGs alone are used.

Mathematical generators are transformations, usually
recursive ones:

xi � F�xiÿ1� � F
ÿFÿF�. . .F�x0��

��
; �1�

where F is some function and x0 is the initial value (seed),
which is selected `manually'.

Is the sequence of numbers fxig random? Apparently not,
because, if the seed and the transformation F itself are
known, the entire sequence is known. It is for this reason
that such generators are referred to as pseudo-random, since
they completely depend on the initial conditions: the entire
`randomness' is concentrated in the unknown `seed' value x0
and partly in the transformation F , possibly hidden from an
illegitimate party. Thus, a mathematical transformation
cannot provide true randomness.

Physical generators are based on measuring the state of a
physical system, and they can also be divided into two types:
classical and quantum.

The first type of generator is classic.
The output bit sequence in classical generators is a

function of actually observed physical quantities generated
by a nondeterministic physical system. From the standpoint
of the axiomatic construction of the theory of probability, a
rigorous proof of randomness (independence and equiprob-
ability) of the output sequence requires setting the initial
probabilistic space in which the actually observed physical
quantities would be random variables (functions of space
elements) and, through appropriate transformations of a
random number generator, would generate either a provably
independent and equiprobable bit sequence or a sequence

1 In the Russian-language literature on cryptography and various docu-

ments, the phrase `random number transmitter' is often used instead of

`generator'.
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close to it within the limits of established probability-theoretic
requirements. 2

If we now abstract from the axiomatic theory of
probabilistic assumptions and, in turn, hypothesize that the
system evolves according to the laws of classical physics, i.e.,
evolution is described by differential equations, the random-
ness of themeasurement result will only be associatedwith the
unknown initial conditions. As above, it can be said that the
sequence of measurement results is in this case pseudoran-
dom, since it is determined under the known law of evolution
by the uncertainty of the initial conditions alone.

It is often argued in favor of classical physical systems that
their evolution is complex, and the trajectories corresponding
to close initial conditions diverge exponentially rapidly in the
phase space. Nevertheless, they are still trajectories, and if the
initial conditions are known, the trajectories are exactly
predictable.

A good example that illustrates the `determinism' of
classical systems is the `Galton board' [2], used to demon-
strate the law of the normal distribution of probabilities as a
result of the application of the central limit theorem.3

The Galton board is a system with hard metal balls that
fall from the center of the upper part of the board through a
large number of thin pins located below in a checkerboard
pattern (Fig. 1). The system is a purely classical one. Falling
down, the ball undergoes elastic reflections (deflections) in
one direction or the other from the pins it encounters on its
way and eventually falls into one of the boxes located
horizontally below. The resulting horizontal displacement is
interpreted as the sum of individual randomdeviations (as the
sum of a large number of random variables), whose prob-
ability distribution according to the central limit theorem
should be normal. This is confirmed by the visual similarity of
the final picture of the distribution of balls by boxes
(histograms) with the density of the normal distribution.

Can such a system that behaves according to the laws of
classical physics lead to the generation of randomness?
Apparently it can't.

The trajectory of each ball and its final position, namely
the box in which it arrives, can be reliably predicted if the
angle and speed at which the ball enters the first row are
known. Small but known deviations in the initial angle of
incidence and initial velocity of each ball lead to divergence of
trajectories and, ultimately, to a distribution over the boxes,
similar to the normal one.

We emphasize once again that if all the initial angles and
velocities are known, the entire distribution over the boxes is
unambiguously predictable. The apparent `randomness' is only
associated with the unreliability of the initial conditions.

It is of importanceÐand this is a property of any classical
systemÐthat, if it is prepared at the initial moment in the
same initial conditions and undergoes the same evolution, it
evolves to the same final result. Classical physical generators
are in this sense pseudo-random. The evolution of any

complex classical system is completely predictable at the
fundamental level (can be calculated and predicted) provided
initial conditions are known.

The `output' of the Galton board in this example is not
truly random. However, if the origin of `randomness' is not
known a priori, i.e., it is not known in advance that the
distribution of balls over boxes is governed by known initial
conditions, such a source can be taken as truly random. This
example also shows why it is of importance to know and
control the source of primary randomness.

Special attention to the origin of primary randomness
extracted from physical generators is given in symmetric
cryptography systems.

In conditions where no cryptographicmethods of decreas-
ing the strength have been found that use the algorithmic
weaknesses of the encryption transformation, the strength of
the cryptosystem is determined solely by the secrecy of the
key, i.e., by how close the selection of a key from the key set is
to a random and equiprobable choice.

A situation may be imagined in which an equiprobable bit
key is obtained, for example, using a reduction in sample
values (final deviations) of the Galton board: if the sample
value is greater than the average value, the bit is assumed to
be 1; if less, the bit is 0. However, if the generator operates
as a black box, i.e., outputs only the distribution of balls
without control of the initial data, and the attacker is able to
control these data, a key obtained in this way can apparently
be compromised (see also the explanations of Fig. 1).

Thus, the output of any random number generator that
uses measurements in the classical system as primary
randomness cannot be considered truly random.

The very concept of probability is absent in classical
physics in the sense that mathematical probability theory is
a separate mathematical discipline, in no way `linked' to
classical physics. More precisely, the theory of probability is
one external to classical physics: a theory that is introduced

2 In our opinion, such a fully natural approach to justifying the random-

ness of the output sequence of physical generators of random numbers,

apparently due to the complexity of the problem, has not been presented in

research publications, including reviews, on this topic (see, for example,

[2]). The authors of publications usually limit themselves to issues of

practical implementation, using the unpredictability of a particular

physical process (for example, the phenomenon of jitter [3] or metast-

ability [4]) as the basis for constructing an RNG.
3 The Galton board was initially used for illustration in questions

concerning the inheritance of genetic traits [5].

a b

Figure 1. Galton board is an example of a classical physical system that

illustrates the emergence of `randomness' under unknown initial condi-

tions. A speculative example of the extraction of `randomness':

(a) `random' bit 0 is assigned if, after dropping balls, the number of balls

in the left half of the cells is larger than in the right half; (b) `random' bit 1 is

assigned if, after dropping balls, the number of balls in the right half of the

cells is larger than in the left half. If such a generator of `random' 0s and 1s

operates as a black box (only the distribution of balls among the boxes is

available at the output, but not the initial conditions), the attacker can

control the primary randomness at his/her discretion (set the initial

position and speed of the balls) and the sequence of 0s and 1s will be

compromised; as a result, the key will be fully known rather than being

secret.

June 2021 Extraction of quantum randomness 619



into classical physics `manually' in an explicit or implicit way
through the uncertainty of the initial conditions. The laws of
classical physics are true for `macro-objects' and lose their
validity as the size of the system decreases.

We now explain this assertion using the example of the
Galton board. The positions of the fixed pins definitely
undergo zero fluctuations, which, if strictly taken into
account, should lead to a deviation from the trajectory
calculated in the `classical' way. Will such a contribution to
the `classical' trajectory be of significance? The velocity
inaccuracy in comparison with classical estimates after
collision with the pin due to its position Dx can be estimated
from the uncertainty relation

Dv � �h

Dx
� 10ÿ27 cm sÿ1 �2�

with a pin mass of 1 g. Such a contribution of quantum
effects, of course, cannot be noticed. As the size of the system
decreases, neglecting this contribution results in increasingly
larger errors.

We now turn to the analysis of physical generators of the
second typeÐquantum ones (see, for example, review [6]).
Extraction of randomness in such a generator is based on the
measurement of a quantum system.

Unlike measurements in classical physics, measurements in
a quantum system, each time prepared in a certain and the same
state, yield a random result, which is a fundamental law of
nature in the microcosm. Therefore, only quantum random
number generators can be truly random.

The evolution of a quantum system is, generally speaking,
also described by differential equations and depends on the
initial conditions. However, even if initial conditions are
known, it is fundamentally impossible to predict the outcome
of measurements in a quantum system. The result of
observations or measurements is fundamentally unpredict-
able under the same initial conditions and the same evolution
of a quantum system. This is the main difference between
quantum systems and classical ones.There are no fundamental
prohibitions in classical physics on measuring the state of a
classical system without perturbing it.

The following example is usually given as a speculative
situation that illustrates the fundamental unpredictability of
the result of measurement in a quantum system (Fig. 2).

The source emits each time the same single-photon
packet, which hits a 50=50 symmetric beam splitter, behind
which are located two detectors, D0 and D1. The response of
only one detector can be recorded, and with the same initial
conditionsÐpreparation of a single-photon packet and its
evolutionÐ it is fundamentally impossible to predict which
of the detectors will be activated. True randomness only takes
place in the quantumdomain, in which probability is built into
the apparatus of quantum mechanics, in contrast to prob-
ability in classical physics, into which it is introduced from the
outside.

Details of this assertion should be clarified.
The result of measurements in a quantum system in state

jci is reduced to projecting the state of the system onto one of
the states of the measurement basis fjfiigNi�1, where fjfiigNi�1
are orthonormal states and N is the number of measurement
outcomes (we only consider von Neumann's orthogonal
measurements). The squared modulus of scalar product

Pc�i� �
��hfijci

��2 �3�

is interpreted as a probability. This actually reflects the Born
interpretation of the squared modulus of the state vectorÐ
the wave function. The sum of probabilities for all measure-
ment outcomes is equal to one:

XN
i�1

Pc�i� �
XN
i�1

��hfijci
��2 �XN

i�1
hcjfiihfijci

� hcj
 XN

i�1
jfiihfij

!
jci � hcj�I �jci � 1 ; �4�

where I is the unit operator. Probability is in this sense built
into the apparatus of quantum mechanics.

Thus, the measurement of quantum systems yields a
probability built into the measurement process itself, and
the measurement result cannot be predicted in principle, in
contrast to that in classical systems.

An important step in developing a quantum random
number generator is to find a suitable quantum system and
a way to make a measurement in it to extract quantum
randomness in the `purest' form. Examples of such quantum
processes are a-decay and the photoelectric effect. It should
be noted that quantum effects were used to create random
number generators in cryptography earlier, for example,
based on sources of radioactive radiation. The resulting
generators were technically flawed and slow. It was difficult
to reconcile conflicting requirements: to preserve the quan-
tum nature of the process and provide a high generation rate.
This is already possible, however, at themodern technological
level. We now consider the current situation in more detail.

The photoelectric effect was discovered byAGStoletov at
Moscow University even before the very concept of quanta
had appeared; therefore, it was not explained at that time. A
consistent explanation of the photoelectric effect on the basis
of quantum theory was given by Albert Einstein [7]. 4 The
root cause of the randomness (Poisson statistics) of photo-
counts in the detection of laser radiation being fundamentally
quantum in nature is due to the absorption of photons by
atoms (see details in [8, 9]).

In creating quantum generators of random numbers in a
real situation, it is necessary to attenuate the laser radiation to
a quasi-single-photon level to make photocounts not too
frequent. This requirement is associated, on the one hand,
with the need to obtain for measurements a truly quantum (if
possible, single-photon) process, and, on the other hand, with

D0

D1

Figure 2. Simple example of a quantum system that illustrates the

fundamental unpredictability of the results of measurements in a quan-

tum system.

4 Although the word `quantum' itself was not used explicitly in [7], the

discreteness of the radiation energy was employed.
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the finite recovery time of the photodetector after registra-
tion. The recovery of the photodetector before the next
registration event ensures the statistical independence of
successive photocounts.

We consider first the ideal situation. We choose photo-
detection of an attenuated coherent state as a suitable
quantum process. A coherent state is a superposition of
states with different Fock numbers of photons:

jai � exp

�
ÿ jaj

2

2

�X1
n�0

an����
n!
p jni ; �5�

where jaj2 � m is the average number of photons in a coherent
state.

The detection process is formally reduced to projection
onto a subspace with the Fock number of photons k5 1. Real
avalanche photodetectors do not distinguish the number of
photons and only register either the presence or absence of a
photocount. Such a measurement is described according to
the projection postulate of measurements by the decomposi-
tion of the unit:

I � j0ih0j �
X1
k�1
jkihkj : �6�

Each elementary event is associated with its own projec-
tion operator, while measurement (6) has two outcomes: the
absence and occurrence of a photocount.

The absence of a photocount is a projector P0 � j0ih0j
onto a subspace with a zero Fock number of photons (the
vacuum component of the state), while the occurrence of a
photocount is a projector Pk5 1 �

P1
k�1 jkihkj onto a sub-

space with the Fock number of photons k5 1.
The probability of photocount ��� is expressed as (see, for

example, [8])

P ��� � Tr
�jaihajPk5 1

	 � 1ÿ exp �ÿm� ; �7�

consequently, the probability of the absence of a photocount
�t�
P �t� � Tr

�jaihajP0

	 � exp �ÿm� ; P �t� � P ��� � 1 : �8�

Strictly speaking, state (5) is monochromatic (formally
infinitely extended). If measurements are carried out within
a finite time windowT, a substitution m! mT should be made
in Eqns (7) and (8) (see details in [8]). Such a substitution is
intuitively understandable, since mT is the fraction of the
average number of photons which accumulate in the time
window 5 T. The inequality mT 5 1 should definitely be
fulfilled.

Events � and tÐthe occurrence and absence of a
photocountÐwill be taken as the basis for extracting
randomness.

It is shown below that only the statistical independence of
photocounts in time windows T is required in the procedure for

extracting randomness, while the probabilities P ��� and P �t�
per se can be arbitrary. If the requirement of independence is
fulfilled, the photodetection procedure leads to a Bernoulli
test scheme based on quantum phenomena.

It is fundamentally important that the probability of
outcomes be of a quantum natureÐ the outcomes are funda-
mentally unpredictable, statistically independent, and truly
random.

Any classical scheme obtained in any way from a classical
physical system (for example, by reducing the final deflection
of a ball for the Galton board) is not truly randomÐthe
outcome is exactly predictable if the initial conditions and
evolution of the classical system are known.

The main experimental problem in implementing a high-
speed quantum random number generator based on the
detection of photocounts is the need to fulfil contradictory
requirements: on the one hand, the quantum nature of the
signal with a small average number of photons per pulse
should be ensured, and, on the other hand, a high rate of
generation of random numbers should be obtained. A real
avalanche photodetector has a quantum efficiency Z < 1; in
this case, probabilities (7) and (8) retain their form, but with
the replacement mT ! ZmT.

The absorption of an individual photon in the solid-state
structure of an avalanche photodetector leads to the produc-
tion of an electron-hole pair, which is `amplified', i.e., gives
rise to an avalanche of charge carriers, whose current pulse is
detected. After an avalanche is triggered, it dissolves, which
takes a certain amount of time. The photodetector is not
ready for a new detection event until the avalanche dissolves;
otherwise, it will lead to a correlation of photocounts and
distortion of Poisson statistics, i.e., the photocounts, espe-
cially those detected in close time windows, will no longer be
independent.

The recovery of the photodetector before the next
detection event is the first of two conditions under which the
statistical independence of successive photocounts is ensured.
The second condition is the stability of the intensity of the
laser optical field. The distribution �P ���;P �t��will be in this
case stationary, and successive photodetection events (regis-
tration of photons) will be strictly independent [10].

The avalanche dissolution time is an intrinsic character-
istic of the photo detector. This time sets a limitation on the
photodetection rate and, consequently, on the rate with which
a random sequence is generated. Typical times range from
several ten to several hundred nanoseconds, which sets a
limitation on the generation frequency, even in the optimistic
case, varying from 10 to 100 MHz.

The first problem consists in a controllable and provable
method of obtaining a primary `quantum' randomnessÐa
Poisson random process. The closest approach to solving this
problem at the physical level is to use an SiPM (Silicon Photo
Multiplier) array of photodetectors for detection (see Sec-
tions 9 and 10).

The second problem is to efficiently extract a uniformly
distributed random sequence of 0s and 1s from a Poisson
random process.

The second problem is divided into two stages. The first is
the implementation of a physical device that provides a
`quantum' randomness in the form of a Bernoulli sequence
of events � and tÐthe occurrence or absence of a photo-
count. The second stage is the extraction of a random and
equiprobable sequence of 0s and 1s from the Bernoulli
sequence.

5 The quantities m and mT are dimensionless. The physical meaning of m is

the number of photons (for small m5 1) which can be detected if a

coherent state of length L � c=�do� is completely available for measure-

ment (c is the speed of light and do is the width of the spectrum of the

state). For the monochromatic state do! 0, the length is L!1. If only

the length DL of the entire length is available (consequently, the time

interval T � DL=c), the fraction mT � mDL=L will be detected in this

window.
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2. Relationship between the amount
of information and the amount of randomness

It is intuitively clear that a certain number of truly random
and equiprobable bits can be extracted from any finite
random sample. In measuring a physical process, it is of
importance to know the upper bound of this true randomness
to establish the efficiency of each particular method.

We define a discrete random variable A with the distribu-
tion PA�a�, a 2 fa1; . . . ; amg. Measurements in the physical
system are represented in the form of an n-multiple sample,

Ln � �ai1 ; . . . ; ain�; aij 2 fa1; . . . ; amg; j � 1; n ;

from the distribution of the random variable A.
Let n1; . . . ; nm be the frequencies of occurrence of the

outcomes fa1; . . . ; amg in the sequence Ln. For large n, in
accordance with the law of large numbers, the frequencies
become close (nonstrictly) to the probabilities, i.e.,
n1 � nPA�a1�; . . . ; nm � nPA�am�. Then, the probability

P �Ln� �
Ym
k�1

P nk
A �ak� �

Ym
k�1

ÿ
PA�ak�

�nP �ak� � 2ÿnH �A� ;

whereH �A� is the Shannon entropy of the distribution of the
random variable A,

H �A� � ÿ
Xm
k�1

PA�ak� logPA�ak� ;

all logarithms here and below are taken to base 2.
This implies at the qualitative level that almost all possible

sequences �ai1 ; . . . ; ain� that can be obtained by measuring a
physical process are equiprobable, and their number is 2n

0
,

n 0 � nH�A� (we consider it to be an integer). These are the
sequences, which we refer to as typical, in which the number
of places occupied by the outcomes fa1; . . . ; amg is virtually
equal to fnPA�a1�; . . . ; nPA�am�g,

Pm
k�1 nPA�ak� � n.

We now arrange in order (number) the typical sequences
as �a � j �i1

; . . . ; a
� j �
in
�, j � 0; 2 n 0 ÿ 1. We then assign to each

typical sequence �a � j �i1
; . . . ; a

� j �
in
� a binary sequence

�e � j �1 . . . e � j �n 0 �Ða binary expansion of the number j, populat-
ing in this way the entire set of bit sequences:

a
�0�
i1
; . . . ; a

�0�
iN

! 0 . . . 0
. . . ! . . .

a
� j �
i1
; . . . ; a

� j �
in

! e � j �1 . . . e � j �n 0
. . . ! . . .

a
�2n 0 ÿ1�
i1

; . . . ; a
�2n 0 ÿ1�
in

! 1 . . . 1

8>>>>><>>>>>:

9>>>>>=>>>>>;
: �9�

Then, when measuring the physical process after obtainment
of �a � j �i1

; . . . ; a
� j �
in
� and selection of the corresponding

�e � j �1 . . . e � j �n 0 �, we obtain an equiprobable selection of bit
sequences of length n 0, i.e., extract a truly random sequence.

Suppose that, in implementing some actual algorithm for
extracting randomness, we extract n 0 random equiprobable
bits from a random sample of size n. It is reasonable to adopt
the relative value l � n 0=n as the `amount of randomness'
measured in bits per measurement of the physical process in
extracting a binary equiprobable sequence.

The algorithm for extracting randomness described above
is optimal; the `amount of randomness' is the maximum
possible for this algorithm,

lmax � n 0

n
� H �A� ;

but it cannot be effectively implemented in practice, since it
requires enormous memory to build and store Table (9).
The quantity lmax � H �A� is the upper bound which can be
used to assess the effectiveness of a particular actual
algorithm.

The result on the equipartition and the corresponding
cardinality of the set of typical sequences, formulated above
at the qualitative level, is one of the fundamental results of
information theory presented in Shannon's theorems for a
discrete source of messages without memory [11±14]. The
entropy H �A� is also known as the amount of information
contained in the probabilistic scheme A.

In the terminology of information theory, the outcomes
fa1; . . . ; amg are letters (of the alphabet), typical sequences are
randommessages of a discrete source, and binary decomposi-
tion (3) is a set of coded messages. The value H �A�,
Shannon's entropy, is the amount of information measured
in bits per letter of the message that characterizes the
minimum length of the binary representation of messages
for their transmission over a communication channel without
errors.

Thus, the Shannon entropy per letter for a discrete source
of random messages is the measure of the maximum amount
of true randomness.

The amount of randomness (in the asymptotic limit) for
an alphabet ft; �g with a probability distribution
fP �t�;P ���g is

h
ÿ
P ���� � h

ÿ
P �t�� < 1 ; �10�

where it is taken into account that P �t� � P ��� � 1 and
h�x� � ÿx log2 �x� ÿ �1ÿ x� log2 �1ÿ x� is the Shannon
binary entropy function.

The length of the processed block n is in a real situation
always finite. In addition to typical sequences, atypical
sequences will emerge in such a situation with, naturally, a
lesser, but not vanishing, probability. Such sequences also
contain some truly random number, 0 and 1, which is
preferable not to lose.

The asymptotic case considered above provides a general
way to extract random 0s and 1s. The main idea of the
extraction of randomness is based on the fact that typical
sequences are equiprobable, since they contain (asymptoti-
cally) the same set of frequencies n1 � nPA�a1�; . . . ; nm �
nPA�am� of the emergence of symbols a1; . . . ; am, and only
differ by their permutation.

All sequences can be divided for finite n into several
classes that differ in the set of frequencies n1; . . . ; nm: typical
sequences form one of these classes. The sequences differ
within each class by permutation of symbols and are
equiprobable. The sequences can be numbered for each
class, and an attempt can be made to extract truly random
bits from equiprobable numbers.

The next question to be answered is: how can an efficient
way to number sequences be found within each class? The
number of sequences is enormous (exponential in n� even for
sufficiently small block lengths n. Straightforward numbering
is exponentially complex, and therefore practically impossible
to implement. However, we show in Sections 9 and 10 that
there is an efficient way to extract truly random bits, which
has polynomial complexity in terms of the block length n,
provided that the original symbols are independent. This
method is implemented in actual devices [15±18], an example
of which is given in Section 9.
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3. Von Neumann method

Before presenting a polynomial algorithm for extracting
random 0s and 1s, which guarantees true randomness and
extracts it from all, not just typical, sequences, it is convenient
to present a particular method for extracting random 0s and
1s from a Bernoulli sequence that was proposed by von
Neumann6 back in 1951.

We now describe the von Neumann method using the
example of the alphabet ft; �g with the probability distribu-
tion fP �t�;P ���g.

A sequence of events �; t of length n is divided into
consecutive pairs without engagement, which are viewed `on
the fly'. The encountered pair combination ��;t� is replaced
by zero, while the combination �t; �� is replaced by one. The
other two paired combinations, ��; �� and �t;t�, are dis-
carded. The resulting sequence of 0s and 1s is an equiprobably
distributed random sequence, since the probability of zero
P �0� � P ���P �t� is equal to the probability of unity
P �1��P �t�P ���. Thus, the equalities P �0��P �1��1=2 are
valid in the remaining part, regardless of the values of P ���
and P �t�.

It is of importance to emphasize that this method is
applicable for any initial probabilities P ��� and P �t�.

It is easy to see that in the von Neumann method, even in
themost favorable case, whenP ���;P �t� are close to 1=2, the
amount of randomness extracted is no more than 1=4 bit per
character of the sequence of events �;t, while the maximum
amount of randomness that, in principle, can be extracted
from a sequence of events �;t is equal to lmax �
h�P ���� � h�� 1=2�, i.e., very close to 1.

Some much more general and important results can be
can be obtained from this obvious, simple, and elegant
method.

The method may be conveniently presented in the form of
a table:

�t;t� ! discarded ;

�t; �� ! 0 ; �11�
��;t� ! 1 ;

��; �� ! discarded :

The following steps of the randomness extraction algorithm
can be derived from representation (11) of the von Neumann
method.

(1) Step 1: the length n of the processed block of the
original sequence is selected; in this case, n � 2.

(2) Step 2: all blocks of length n are split into different
classes so that all representatives (blocks) from the same class
have the same number of t and �, and, therefore, the same
probability.

(3) Step 3: the classes that consist of one block are
discardedÐ the tt class and the �� class.

(4) Step 4: all equiprobable blocks within the class are
numbered and presented as a correspondence table:
�t; �� ! 0, ��;t� ! 1; here, 0 and 1 are block numbers.

(5) Step 5: the block of length n � 2 obtained in the
experiment is compared with the table; the block number is
determined; a binary representation of the block number, in
this case 0 or 1, is output.

The fundamental step of the von Neumann method,
which we use in what follows, is the division of all possible
blocks into classes of equiprobable blocks that contain the
same number of � and t and only differ in the permutation of
elements. Equation (11) shows three classes are obtained in
the von Neumann method. Class 1 and class 3 contain one
element each. These classes are discarded. Class 2 contains
two equiprobable elements: �t; �� and ��;t�. The number of
elements in class 2 is equal to a power of two, namely 21, and
the number of truly random bits extracted is log 21 � 1.

It is shown in Section 2 that, to extract all randomness
close to the asymptotic limit, large blocks should be
numbered. Attempts to solve this problem in a straightfor-
ward way using a table of the form (9) turn out to be
infeasible; namely, they are exponentially complex in terms
of the length n of the processed block.

If, for example, n � 64, to record the table, a storage size
of n� 2 n � 237 GB is required. The search for the required
number based on the composition of the observed block and,
consequently, the binary decomposition of its number
requires viewing the entire table and consists on average of
2 n � 1019 steps.

We discuss in Sections 5±7 an efficient polynomial way of
numbering and extracting true randomness `on the fly'. The
method requires a storage size of n3 � 25 kB.

4. Limiting the number of equiprobable bits.
Accurate statements

We now formulate an accurate statement about the limiting
number of equiprobable bits that can be extracted from a
nonequiprobable sequence that consists of events � andt and
has a length n with n!1.

All sequences of length n can be divided into disjoint
classes Rn�k�, k � 0; n; within which the sequences contain k
events � and, consequently, nÿk events t. The number of
sequences in the class is��Rn�k�

�� � Ck
n �

n!

k!�nÿ k�! ; �12�

all sequences from a given class have the same probability:

Pn�k� � �1ÿ p�nÿkpk; p � P ���; 1ÿ p � P �t� : �13�

We denote

`n�k� �
�
log �Ck

n �
�
; �14�

where �x� is the integer part of the number x.
We associate each sequence from the class Rn�k� with a

binary sequence from the set f0; 1g`n�k�. If logCk
n is not an

integer, we discard the `unnecessary' sequences from the class
Rn�k�, i.e., delete them from the real sample.

This choice is equiprobable provided that a sequence of
length n is chosen from the class Rn�k� (taking into account
the deleted sequences); therefore, the selection of binary
sequences of length `n�k� also becomes equiprobable.

The average number of random equiprobable bits is
defined as

Ln �
Xn
k�0

`n�k�Ck
n �1ÿ p�nÿkpk �

Xn
k�0

`n�k�Ck
n Pn�k� : �15�

6 Von Neumann was also the first to propose a software-based pseudo-

random number generator [19].
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Proposition 1. The limit

lim
n!1

1

n
Ln � h�p� ; �16�

where h�p� is the Shannon binary entropy function,

h�p� � ÿp log �p� ÿ �1ÿ p� log �1ÿ p� :

Proof. We use Stirling's formula

n! �
��������
2pn
p

nn exp �ÿn�ÿ1� o�1�� ;
log �n!� � n log n

ÿ
1� o�1�� �17�

to estimate binomial coefficients.
There is also an asymptotic representation for the sum of

the probabilities of the Bernoulli distribution beyond the
deviation of ln n

���
n
p

from the np-mathematical expectation,
n!1 [20]:X

k=2�npÿln n ��np ; np�ln n ��np �Ck
n Pn�k� � o�1� : �18�

We also present

`n�k� � logCk
n ÿ en�k� ; �19�

where 04en�k�4 1. Also, sinceXn
k�0

Ck
n � 2 n ; �20�

for any k � 0; n, the following inequality holds true:

logCk
n 4 n : �21�

It is easy to follow then the following chain of relations:

1

n
Ln � 1

n

Xn
k�0

`n�k�Ck
n Pn�k� � 1

n

Xn
k�0

ÿ
logCk

n

�
Ck

n Pn�k�

�O

�
1

n

�
� 1

n

X
k2 �npÿln n ��np ; np�ln n ��np �

ÿ
logCk

n

�
Ck

n Pn�k�

� o�1� � 1

n

ÿ
n log nÿÿnp log np� n �1ÿp� log n�1ÿp���

�
X

k2 �npÿln n ��np ; np�ln n ��np �Ck
n Pn�k�

ÿ
1�o�1���h�p�ÿ1�o�1�� :

�22�

Therefore, limit (22) is equal to

lim
n!1

1

n
Ln � h�p� : �23�

Proposition 1 proved is closely related to Shannon theorems
[11±13] for a discrete source of memoryless messages, which
are fundamental results of classical information theory.

It follows from Shannon theorems that, for a source of
random memoryless messages, i.e., with an independent
choice of letters (in our case, � and t), virtually all messages
have (asymptotically) the same probability 2ÿnh �p�

(1st theorem), and their number is equal to 2 nh �p� (2nd
theorem). These are the so-called typical sequences that

make up a set of sequences, the probability of which is very
close to 1. The length of the binary encoding or binary
numbering of all typical sequences apparently requires
log 2 nh �p� � nh�p� binary digits, or h�p� binary digits per
letter of the message. This corresponds to the limiting mean
value in (23) (see a qualitative illustration of the set of all
sequences and the set of typical sequences in Fig. 3). It is
apparent that we obtain for an equiprobable choice of typical
sequences an equiprobable choice of binary vectors that
correspond to the binary representation of the numbers of
typical sequences.

Source entropy h�p� < 1 is the limiting (maximum)
number of truly random bits per symbol of the primary
Bernoulli sequence of events � and t.

5. Practical numbering

The assertions made in Section 4 are valid in the asymptotic
limit n!1. Asymptotic results are insufficient for the
construction of quantum generators of random numbers for
two reasons.

Reason 1. The Shannon coding theorem for a source is, in
fact, an existence theorem, since it does not provide a
constructive, algorithmically efficientÐpolynomialÐway
of numbering.

Reason 2, or rather the question: how do we proceed
with sequences that are not typical? It should be recalled
that typical sequences (asymptotically) are those in which
the numbers of events � and t are very close to the mean
values nP ��� and nP �t�. The number of events � and t at a
large but finite length n `breathes', i.e. experiences notice-
able fluctuations relative to their mathematical expecta-
tions. Such sequences, of course, also contain a certain
number of truly random bits that should not be lost.
Atypical sequences emerge with a much lower overall
probability than typical ones, but, nevertheless, this prob-
ability is not zero.

For this reason, in order to extract all the randomness
that is contained in all Bernoulli sequences (blocks) of finite
length, it is desirable to obtain a provable method for
extracting truly random 0s and 1s from all sequencesÐ
with any number of � and tÐand not only from typical
ones.

2nH�A�

2nN

Figure 3. Illustration of the complete set and the set of typical sequences

generated by a discrete memoryless source: each point in the set is a

sequence. Both sets have an exponentially large size in the length of the

sequences; nevertheless, the probability of getting into the set of typical

sequences for a large series of usage of the source tends to one;

consequently, the probability that the sequence falls into an exponentially

large set of atypical sequences tends to zero.
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To solve this problem, we use the binary coding method
discovered by V F Babkin [21] in 1971, a technique for
enumerating Bernoulli sequences with polynomial resources
in time and memory. The method originated in the theory of
arithmetic coding (another name is lossless coding), and, in
our opinion, it should long ago have attracted attention in the
development of random number generators. This method is
undoubtedly a gem of the coding theory.

We now proceed to a description of the method. We
consider a block of length n, in which k events � occurred at
places i1; i2; . . . ; ik, 14 i1 < i2 < . . . < ik 4 n.

Assigned to the block is a number,

Num �i1; i2; . . . ; ik��C 1
i1ÿ1�C 2

i2ÿ1�. . .� Ckÿ1
ikÿ1ÿ1�Ck

ikÿ1 ;

�24�
where, as usual, we set Ci

j � 0 if j < i. This equality is the
essence of the numbering method proposed by Babkin.

Given the exceptional importance of creating a high-speed
RNG and to promote Babkin's scientific heritage, we present
here two propositions that establish a one-to-one correspon-
dence between the composition �i1; i2; . . . ; ik� of the processed
block and its numberNum �i1; i2; . . . ; ik� calculated as the sum
of binomial coefficients (24) [21].

Proposition 2. The following relations hold:

min
i1; i2;...; ik

Num �i1; i2; . . . ; ik� � 0 ;

max
i1; i2;...; ik

Num �i1; i2; . . . ; ik� � Ck
n ÿ 1 : �25�

Proof. Indeed, it is easy to verify that

min
i1; i2 ;...; ik

Num �i1; i2; . . . ; ik� � Num�1; 2; . . . ; k� � 0 : �26�

Next,

max
i1; i2 ;...; ik

Num �i1; i2; . . . ; ik�

� max
i1 ; i2;...; ik

ÿ
C 1

i1ÿ1 � C 2
i2ÿ1 � . . .� Ck

ikÿ1
�

� Num �nÿ k; nÿ k� 1; . . . ; n�

�C 1
nÿkÿ1 � C 2

nÿk � . . .� Ck
nÿ1 � Ck

n ÿ 1: �27�

The last equality can be easily obtained by the consistent
application of the well-known relation

Ck
n � Ckÿ1

nÿ1 � Ck
nÿ1 : �28�

Proposition 3. The relationship between blocks with k
events � at places i1; i2; . . . ; ik and numbers Num �i1; i2; . . . ; ik�
is a one-to-one correspondence.

Proof. Consider two blocks with numbers

Num �i �1�1 ; . . . ; i �1�s ; is�1; . . . ; ik� ;

Num �i �2�1 ; . . . ; i �2�s ; is�1; . . . ; ik� ;
�29�

and let i
�1�
s > i

�2�
s be the first number (starting from the

right) at which the blocks are `separated' by the positions of
event �.

Toproveaone-to-onecorrespondenceusingProposition2,
it is sufficient to show that the numbers of two different
blocks in Eqn (29) do not coincide for any values of the

positions of event �. This will be the case if the difference
between the numbers in (29) is positive. We have

Num �i �1�1 ; . . . ; i �1�s ; is�1; . . . ; ik�
ÿNum �i �2�1 ; . . . ; i �2�s ; is�1; . . . ; ik�
5 min

i
�1�
1
;...; i

�1�
sÿ1

Num �i �1�1 ; . . . ; i
�1�
sÿ1; i

�1�
s ; is�1; . . . ; ik�

ÿ max
i
�2�
1
;...; i

�2�
sÿ1

Num �i �2�1 ; . . . ; i
�2�
sÿ1; i

�2�
s ; is�1; . . . ; ik� : �30�

We find

min
i
�1�
1
;...; i

�1�
sÿ1

Num
ÿ
i
�1�
1 ; . . . ; i

�1�
sÿ1; i

�1�
s ; is�1; . . . ; ik

�
� Num

ÿ
1; . . . ; sÿ 1; i �1�s ; is�1; . . . ; ik

�
� 0� Cs

i
�1�
s ÿ1
� ÿCs�1

is�1ÿ1 � . . .� Ckÿ1
ikÿ1ÿ1 � Ck

ikÿ1
�
: �31�

Weuse formula (27) with n � i
�2�
s , k � s and take into account

that i
�2�
sÿ1 < i

�2�
s . We then obtain

max
i
�2�
1
;...; i

�2�
sÿ1

Num
ÿ
i
�2�
1 ; . . . ; i

�2�
sÿ1; i

�2�
s ; is�1; . . . ; ik

�
� max

i
�2�
1
;...;i

�2�
sÿ1

�
C 1

i
�2�
1
ÿ1 � C 2

i
�2�
2
ÿ1 � . . .� Csÿ1

i
�2�
sÿ1ÿ1

�

� ÿCs�1
is�1ÿ1 � . . .� Ckÿ1

ikÿ1ÿ1 � Ck
ikÿ1
�

� C 1

i
�2�
s ÿsÿ1

� C 2

i
�2�
s ÿs
� . . .� Csÿ1

i
�2�
s ÿ2
� Cs

i
�2�
s ÿ1

� ÿCs�1
is�1ÿ1 � . . .� Ckÿ1

ikÿ1ÿ1 � Ck
ikÿ1
�

� ÿCs

i
�2�
s

ÿ 1
�� ÿCs�1

is�1ÿ1 � . . .� Ckÿ1
ikÿ1ÿ1 � Ck

ikÿ1
�
: �32�

Consequently, taking into account equalities (31) and (32)
and the inequality i

�1�
s > i

�2�
s , we have

Num
ÿ
i
�1�
1 ; . . . ; i �1�s ; is�1; . . . ; ik

�
ÿNum

ÿ
i
�2�
1 ; . . . ; i �2�s ; is�1; . . . ; ik

�
5 min

i
�1�
1
;...; i

�1�
sÿ1

Num
ÿ
i
�1�
1 ; . . . ; i

�1�
sÿ1; i

�1�
s ; is�1; . . . ; ik

�
ÿ max

i
�2�
1
;...; i

�2�
sÿ1

Num
ÿ
i
�2�
1 ; . . . ; i

�2�
sÿ1; i

�2�
s ; is�1; . . . ; ik

�
� Cs

i
�1�
s ÿ1
ÿ Cs

i
�2�
s

� 15 1 : �33�

This fact establishes a one-to-one correspondence between
the blocks from setRn�k� and their numbers [21].

We now give another simple heuristic proof of Proposi-
tion 2 based on recursion.

Let the number of the sequencewith k events � in positions
i1; i2; . . . ; ik be Num �i1; i2; . . . ; ik�. Further, let the number of
the sequence with kÿ 1 events � in positions i1; i2; . . . ; ikÿ1 be
Num �i1; i2; . . . ; ikÿ1�.

The sequence numbers �i1; i2; . . . ; ik� and �i1; i2; . . . ; ikÿ1�
differ by a certain number of sequences.We count this number
of sequences: it is equal to the number of ways to place
sequences with k �, in which the kth photocount � is located
in position ik ÿ 1, the position that is previous compared to
the sequence in which event � is located in the position ik. The
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number of such sequences is equal to the number of ways to
place photocounts in ik ÿ 1 boxes, i.e., Ck

ikÿ1.
Thus, we obtain a recurrent formula `descending' from the

major numbers

Num �i1; i2; . . . ; ik� � Num �i1; i2; . . . ; ikÿ1� � Ck
ikÿ1

� Num �i1; i2; . . . ; ikÿ2� � Ckÿ1
ikÿ1ÿ1 � Ck

ikÿ1 � . . .

� C 1
i1ÿ1 � C 2

i2ÿ1 � . . .� Ckÿ1
ikÿ1ÿ1 � Ck

ikÿ1 : �34�

6. Complexity of numbering. Pascal's triangle

Blocks are numbered sequentially, `on the fly', as events � and
t arrive. The block size n is set, and the table of binomial
coefficients (Table 1) with the size �nÿ1� � n is calculated
once. The value of k is not fixed in advance; cases k � 0 and
k � n are excluded from consideration as unlikely. No more
than n binary digits are required to store each binomial
coefficient, which directly follows from the relations
logCk

n 4 log 2n � n. Thus, the total memory for storing
Table 1, which is `Pascal's triangle', or more accurately, half
`triangle', requires no more than n3 binary digits.

Numbering of the sequence is reduced to motion along a
certain trajectory on Pascal's triangle with successive summa-
tion of binomial coefficients (see the example in Fig. 4).

If event � was encountered for the first time at the place
m1, the value of the binomial coefficient is taken at the
intersection of the row with the number i1 (first event �) and
the column with the number m1.

If event * is encountered for the second time at the place
m2 (m2 > m1), the value of the binomial coefficient is taken at
the intersection of the row with the number i2 and the column
with the number m2 and added to the previous value of the
binomial coefficient.

If the event occurs for the sth time at the place ms

(ms > msÿ1), the value of the binomial coefficient at the
intersection of the row number is and the column number ms

is taken and added to the previous sum of the binomial
coefficients.

The process halts when the entire block of size n has been
scanned. In accordance with Section 5, the number of block
with events � and t is obtained in the form of a binary
representation, but these bits are not yet random.

After the number of a specific sequence consisting of t
and � is obtained, a block of truly random 0s and 1s is derived
from its binary representation.

7. Extracting randomness

The cardinality of the set of blocks with k events � and nÿ k
events t is jRn�k�j � Ck

n . According to Eqn (24), the blocks
Rn�k� � Ck

n are numbered from 0 to Ck
n ÿ 1.

Let n be even, which is convenient for computer
implementation. The method described below is operable
for any n. We consider the representation of jRn�k�j as a
sum:

jRn�k�j � 2 rm � . . .� 2 r1 � 2 r0 ; rm > rmÿ1 > . . . r1 > r0 :

�35�

Suppose now that a block has been realized that has the
composition �i1; i2; . . . ; ik� of events �. The block number has
a binary decomposition of the form

Num �i1; i2; . . . ; ik� � erm�12
rm�1 � erm2

rm

� ermÿ12
rmÿ1 � . . .� e12 1 � e02 0; er 2 f0; 1g ; �36�

and the corresponding binary representation �erm�1;
erm ; ermÿ1; . . . ; e1; e0�.

The block feg of random 0s and 1s is extracted from the
binary representation �erm�1; erm ; ermÿ1; . . . ; e1; e0�; the extrac-
tion is carried out in different ways, depending on the range of
numbers between 0 and Ck

n ÿ 1 into which the number
Num �i1; i2; . . . ; ik� of the current block falls. Namely:

Number Block feg of random 0 and 1

04Num �i1; i2; . . . ; ik�4 2 r0ÿ1 ; er0ÿ1; . . . ; e0 ;

2 r0 4Num �i1; i2; . . . ; ik�4 2 r0 � 2 r1ÿ1 ; er1ÿ1; . . . ; e0 ;

2 r0 � 2 r1 4Num �i1; i2; . . . ; ik�4 2 r0 � 2 r1 � 2 r2ÿ1 ; er2ÿ1; . . . ; e0 ;

. . . . . .

2 r0 � . . .� 2 rm 4Num �i1; i2; . . . ; ik�4 2 r0 � . . .� 2 rmÿ1 ; ermÿ1; . . . ; e0 :

�37�
We now number the rows (inequalities) as 0; . . . ; j; . . . ;m.
Then, the jth row, the subclass, contains 2 rj different
equiprobable numbers Num �i1; i2; . . . ; ik�, which correspond
in a unique way to binary vectors from the space f0; 1grj .
Then, for each current number Num �i1; i2; . . . ; ik�, the
corresponding block feg of random 0s and 1s is output
(Table 2).

We consider an example that illustrates the general
method for n � 8 and k � 2. In this case,��Rn�k�

�� � 8!

2!6!
� 28 � 24 � 23 � 22;

m � 2; rm � 4; r1 � 3; r0 � 2 : �38�

Table 1. `Pascal's triangle'.
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. . .
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nÿ1

C 2
nÿ1

C 3
nÿ1

. . .
1

10

inÿ1

nÿ 1 n

i3

i2

i1

C3
nÿ2 C3

nÿ1

C2
nÿ1C2

nÿ2

C1
nÿ1C1

nÿ2C1
2

0 1

. . . . . . . . . . . .. . . . . . . . . . . . . . .

0 0 1 . . .0

. . .

. . .

0 1 . . .0

2 3 4 5 . . .1

0 0 0 0 . . .0

C1
3 C1

4

C2
3 C2

4

C3
4

Figure 4. Example of `Pascal's triangle' that illustrates the calculation of

the number of the sequence of photocounts `on the fly', as the photocounts

emerge. An example of a sequence with three photocounts �. The

numbering is reduced to motion along a trajectory on `Pascal's triangle'

and the sequential summation of the binomial coefficients in the table. In

the example, the position number of the first photocount is i1 � 3, the

second i2 � 5, and the third i3 � n.
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8. True randomness

We show below that, if Babkin's numbering method is
implemented and blocks feg of random 0s and 1s are
extracted from it as its result, any output binary sequence of
any length L will be equiprobable, i.e., truly random. It
should be noted once again that this is only possible under
the initial assumption that the sequence of events consisting
of � and t (at the physical level, the photocounts) is the
Bernoulli type, i.e., independent.

We consider a random independent sequence of events
consisting of � and t, which we split into a sequence of blocks
of length n. We then obtain an independent sequence of pairs
of numbers �ki; ji�, i � 1; 2; . . . ; where ki is the number of
events � in the ith block, and ji is the number of the subclass in
which the block number falls with a joint distributionP �k; j �,
whose exact form, as is shown below, is insignificant. It is only
important that the sequence of pairs �ks; js�; s � 1; 2; . . . be
statistically independent.

We fix k, the number of events � in a block of length n.
Then, the block number Num �i1; i2; . . . ; ik� falls randomly
into one of the subclasses (see Eqn (37) and Table 2), which
are numbered (see Section 7) with numbers 0; . . . ; j; . . . ;m.
We denote this subclass as Rn�k; j �; its size (cardinality) by
construction (see Table 2) is equal to 2 rj (rj, generally
speaking, depends on k). The subsets of the numbers
Rn�k; j � do not overlap and are a partition of the entire set
Rn�k� of numbers Num �i1; i2; . . . ; ik�:Rn�k��

Sm
j�0Rn�k; j �.

So, the entire randomness is now set on the original
Bernoulli sequence of events � and t.

Let an eventÐa block of size n with a fixed pair �k; j �Ð
occur. The question may be asked then: what is the

probability that a specific number Num �i1; i2; . . . ; ik� from
the jth subclass of numbers Rn�k; j � will be chosen provided
that it falls there?

The probability of interest to us is the conditional
probability, which has the form

P
ÿ
Num �i1; i2; . . . ; ik�jNum �i1; i2; . . . ; ik� 2 Rn�k; j �

�
� P

ÿ
Num �i1; i2; . . . ; ik�

�P
Num ��i1 ; i2 ;...; ik�2Rn�k; j � P

ÿ
Num ��i1; i2; . . . ; ik�

�
� Pk���Pnÿk�t�

2 rjPk���Pnÿk�t� � 2ÿrj : �39�

Since, by construction, each number Num �i1; i2; . . . ; ik� from
the jth subclass is associated with the corresponding binary
block erjÿ1; . . . ; e0, it follows from (39) that, for fixed pair
�k; j �, an equiprobable scheme for choosing binary vectors
�erjÿ1; . . . ; e0� from the space f0; 1grj is realized. It is also easy
to see that, if the pair �k; j � is fixed, the bits of any part of the
�erjÿ1; . . . ; e0� segment will also appear in a random and
equiprobable way.

We now show that for any binary sequence �e1; e2; . . . ; eL�
extracted from the original sequence of events � and t its
probability is

P �e1; e2; . . . ; eL� � 1

2L
:

By construction (see Section 7), for a fixed block size n, a
specific binary sequence �e1; e2; . . . ; eL� can be obtained from
any sequence of events � and t, the length of which is limited
by the value of nM for some maximum M, where n is block
size. Each such sequence generates a sequence of pairs
�k1; j1�; �k2; j2�; . . . ; �kM; jM�, which are realizations of pos-
sible values of ks, the number of events � in blocks, and js, the
numbers of subclasses, s � 1;M; the pairs �ks; js� form
individual binary segments of the �e1; e2; . . . ; eL� sequence.

It is easy to see from this that a specific binary sequence
�e1; e2; . . . ; eL� can be obtained from any sequence of pairs
�k1; j1�; �k2; j2�; . . . ; �kM; jM�.

Let the pair �k1; j1� generate a bit segment e1 �
�e1; . . . ; em1

� of length m1, the pair �k2; j2� generate a bit
segment e2 � �em1�1; . . . ; em1�m2

� of length m2, etc., and the
pair �kM � ; jM � � generate a bit segment eM � �
�em1�1�...�mM �ÿ1�1; . . . ; em1�...�mM � � of length mM � so that

m1 �m2 � . . .�mM � � L; M �4M : �40�

We denote by KJ the set of all sequences �k1; j1�;
�k2; j2�; . . . ; �kM; jM�, P �KJ � � 1. We then have the repre-
sentation

P �e1; e2; . . . ; eL� �
Xÿ

�k1 ; j1�;�k2; j2�;...; �kM; jM�
�
2KJ

� P
ÿ
e1; e2; . . . ; eM � ; �k1; j1�; �k2; j2�; . . . ; �kM; jM�

�
: �41�

*Due to the independence of the original sequence, random
pairs

�k1; j1�; �k2; j2�; . . . ; �kM � ; jM � � �42�
are independent, and hence independent are the `triplets'ÿ

e1; �k1; j1�
�
;
ÿ
e2; �k2; j2�

�
; . . . ;

ÿ
eM � ; �kM � ; jM � �� : �43�

Table 2. Example of extraction of truly random blocks.

Positions of �
and t (i1; i2)

Number N�i1; i2� Binary
representa-

tion

Random block
feg �erjÿ1 ; . . . ; e0

� � t t t t tt

j � 0

0
1
2

3 � 2 r0 ÿ 1

00000
00001
00010
00011

00
01
10
11

j � 1

4
5
6
7
8
9
10

11 � 2 r1 � 2 r0 ÿ 1

00100
00101
00110
00111
01000
01001
01010
01011

100
101
110
111
000
001
010
011

j � 2

t t t t t t � �

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27�2 r2 � 2 r1 � 2 r0 ÿ 1

01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011

1100
1101
1110
1111
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
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The conditional equiprobability of the choice of binary
vectors obtained in (39) implies that

P�esjks; js� � 2ÿms ; s � 1;M � :

Hence, using the independence of `triplets' (43), we obtain

P �e1; e2; . . . ; eL�

�
Xÿ

�k1; j1�;�k2; j2�;...;�kM ; jM�
�
2KJ

YM �

s�1
P
ÿ
es; �ks; js�

� YM
s�M ��1

P �ks; js�

�
Xÿ

�k1; j1�;�k2; j2�;...;�kM ; jM�
�
2KJ

YM �

s�1
P �esjks; js�P �ks; js�

YM
s�M ��1

P �ks ; js�

�
Xÿ

�k1; j1�;�k2; j2�;...;�kM; jM�
�
2KJ

YM �

s�1
2ÿmsP �ks; js�

YM
s�M ��1

P �ks; js�

� 2ÿL
Xÿ

�k1; j1�;�k2; j2�;...;�kM ; jM�
�
2KJ

YM
s�1

P �ks; js� � 2ÿL : �44�

Thus, we have shown that any output binary sequence of
any length extracted from sequential blocks is equiprobable,
i.e., truly random. The equiprobability of a binary sequence is
a consequence of the Bernoulli nature (independence) of the
initial physical sequence of events � and t, which is provided
at the physical implementation level (see Sections 9±12).

To assess the efficiency of extraction of 0s and 1s,
depending on the values of P ���, P �t� and the block length
n, a computer simulation was carried out, the results of which
are shown in Fig. 5.

9. Physical implementation
of a quantum random number generator

To illustrate the ideas outlined in Sections 2±8, we provide in
this section an example of a quantum random number
generator.

In creating a high-speed quantum random number
generator with a sequence of photocounts controlled by
quantum laws, a compromise among mutually contradictory
requirements has to be found.

For the source of primary randomness to have a quantum
nature, the coherent state must be a quasi-single-photon one,
i.e., the average number of photons should be mT 5 1. The
small average number of photons leads to a low probability of
detection in the time window T. The probability of detection
is proportional to ZmT , where Z < 1 is the quantum efficiency
of the photodetector.

We consider the photodetection process, omitting techni-
cal details. The generation of random numbers in photo-
detection is actually a rather subtle physical experiment in the
sense that, as in any physical experiment, verification of any
theoretical hypothesis requires elimination of the factors that
introduce undesirable distortions. As applied to our situation,
the main problem is to implement quantummeasurementsÐ
photodetection of quasi-single-photon states of radiationÐ
in such a way that the probability really reduces to projecting
(see Eqns (3)±(8)). The only devices acceptable for this
purpose are avalanche photodetectors.

The event of detecting a photon (Fig. 6) looks like a
current (or voltage) pulseÐa `click' from an avalanche of
carriers at the photodetector output generated by the
absorption of the photon.

Suppose that there is a single-photon state at the input of
the photodetector. The photon is absorbed by a particular
atom inside the semiconductor structure of the detector,
which results in the emergence of an electron-hole pair.
However, it is virtually impossible to detect a current pulse
from a single electron-hole pair due to its small value.
Therefore, the initial electron-hole pair is accelerated in the
semiconductor structure and generates an avalanche of
nonequilibrium carriers, or a current surge, which is detected.

This circumstance leads to the appearance of dead timeÐ
the time of avalanche dissipation. The detector is not ready to
register the next photon until dissipation has completed. For
this reason, the frequency (clock frequency) of polling the
detector cannot be less than the dead time. In addition, in
solid-state avalanche detectors, there are so-called afterpul-
sing effects, which are false alarms after the detection of a real
photon. Nonequilibrium carriers can `stick' to structural
defects and then recombine and emit a false photon, which
is detected, i.e., parasitic counts occur after detecting a real
photon.

Thus, the rate with which a sequence of photocounts is
generated is limited by both the small average number of
photons and the dead time of the detector.

To eliminate parasitic counts, rather than using single
avalanche photodetectors, we use a matrixÐa silicon
photomultiplier (SiPM) [22] that contains more than a
thousand avalanche detectors. The average number of
photons in the time window T, which is determined by the
clock frequency, does not exceed one thousandth of a photon
per pixel, i.e., per individual detector in the SiPM. Therefore,
after a photon is detected by a particular individual photo-
detector, the probability that the next photon will hit the same
detector is extremely small. The dead time of a single
photodetector does not affect in this case the detection of
photons by other detectors in the array, which makes it
possible to increase the clock frequency. In fact, only one
event of SiPM detection takes place in each time window.
Owing to this, it is possible to achieve the Bernoulli property
or independence of the photocount sequence in a controlled
manner, which can be reliably verified experimentally.

Detection in one pixel may in principle affect detection in
another pixel due to electrical interference in the SiPM circuit
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Figure 5. (Color online.) Efficiency of extraction of random bits from the

Bernoulli sequence of � and t at various values of the probabilities P ���
and P �t� as a function of the length of the processed block n. The

sequences of photocounts of � and t was generated using a mathematical

generator of pseudorandom numbers. These dependences are required for

a preliminary estimate of the block length n and an estimate of the onset of

the asymptotic regime n!1 for given experimental values of P ��� and
P �t�.
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(so-called crosstalk), which can lead to a distortion of
photocount statistics. It should be noted that the possible
parasitic effect of cross-talk between neighboring pixels on
the statistics of photocounts was studied earlier [23], and no
distortion of statistics has been found.

A schematic functional diagram and the appearance of the
quantum random number generator are displayed in Fig. 6.

The probability of photon detection in the generator
under consideration is P ��� � 0:3 in the time interval that
corresponds to the clock frequency f � 200 MHz of the
electronics. In the asymptotic limit, when the length of the
processed block is n!1, the theoretical limit on the rate of
generation of a random sequence is

h
ÿ
P ���� f � 0:88� 200 � 176 Mbit sÿ1 :

A detector array was used as the SiPM, the technology of
which was developed at MEPhI-Pulsar (Moscow, Russia).
The matrix was manufactured at the Technological Center of
the National Research University Moscow Institute of
Electronic Technology (MIET) (Zelenograd, Russia). The
SiPM array, whose sensitive area is approximately 1� 1 mm,
consisted of Npix � 1156 pixels with an active area of
32� 32 mm. The operating voltage (several volts above
breakdown) was 40 V [22]. The detector temperature was
stabilized at 25 �C. A Sony laser light-emitting diode
(SLD3143VL) with an operating wavelength of 405 nm was
used as a radiation source. Post-processing, in which
mathematical algorithms were implemented, was performed
using an FPGA (Field Programmable Gate Array, Intel
FPGA (Altera)) with a clock frequency of 200 MHz. USB
2.0 was used as the external interface for power supply and
output in a continuous mode of the resulting binary random
sequence. An additional advantage of the SiPMmatrix is that

it has a large pull-up resistanceRq, which exceeds 1MO. This
leads to rapid avalanche dissipation and a low probability of
post-pulse effects. Another very important feature of such an
SiPM is the rather short signal from a pixel, whose duration is
about 1 ns.

10. Statistics of photocounts,
estimated average number of photons per pixel

To be confident that the generator actually operates in the
quantum mode, the average number of photons incident on a
single SiPM pixel per clock cycle should be estimated. In the
case of a purely quantum regime and Poisson statistics of the
number of photons in a pulse, successive records (photo-
counts) form a Bernoulli sequence. Integer intervals in the
number of clock cycles k between successive records are a
random variable x 2 f0; 1; . . .g with the geometric distribu-
tion

P �x � k� � ÿ1ÿ P ����kP ��� : �45�

The logarithm of the probability lnP �x � k� (k is the number
of clock cycles) should be, in the case of Poisson statistics, a
linear function of k. Figure 7 shows the experimental
histogram (dependence ln�N�k��, N�k� is the number of
counts in the kth `box' of the histogram) obtained at the
`effective' sample length of 6� 109 clock cycles.

The linearity of the plot in Fig. 7 shows the Poisson
statistics. If the distance between the photocounts is large, the
probability P �x � k� is very small, which gives a noticeable
error on the graph for values k > 30.

To extract randomness, the block length was chosen equal
to n � 64 clock cycles, a value which is convenient for
practical implementation based on the FPGA architecture.

a b

c

FPGA

...01001USB 2.0Output
random
sequence

S
iP
M

L
E
D

Block length n=64

* * *

Clock
generator

1

2

Figure 6. (a) Functional diagram of a quantum random number generator: 1Ðconversion of counts into a sequence number using a table with a Pascal

triangle, 2Ðconversion of the block number into random bits; FPGA is a programmable integrated logic circuit. (b) External view of the device.

(c) Example of current pulses that represent the photodetection process.
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We now estimate mT, the average number of photons per
clock cycle, which follows from the experimental data.

The experimental histogram shown in Fig. 7 is a linear
relationship. The total sample size is Ntot � 6� 109; the
number of counts in the histogram zero box N�0� �
1;897;992;414. Given these values and taking into account
Eqn (45), the following estimate can be obtained:

P ��� � P �x � 0� � N�0�
Ntot

� 1; 897; 992; 414

6� 109
� 0:3 : �46�

This probability may be represented as

P ��� � mT ZNpic ;

where mT is the average number of photons per pixel in the
SiPM per cycle, Z � 0:1 is the quantum efficiency of a pixel,
and Npic � 1156 is the number of pixels in the matrix.

We obtain as a result mT � P ���=�ZNpic� � 2:6� 10ÿ3

photons in one clock cycle per pixel, i.e., there are several
thousandths of `photon fractions' per pixel per clock cycle.
For a coherent state with a Poisson distribution with the
parameter mT, the probability of the emergence of one photon
is P1 � exp �ÿmT�mT � mT � 2:6� 10ÿ3, and the probability
of the emergence of two photons is P2 � exp �ÿmT�m2T=2 �
3:4� 10ÿ6. Thus, it can be argued that a virtually single-
photon regime is implemented in the quantum part of the
generator.

We now estimate the efficiency of extracting random 0s
and 1s in comparison with the theoretical asymptotic limit
h�P ���� f � 0:88� 200 � 176 Mbit sÿ1. For a block length of
the processed sequence n � 64, a clock frequency of 200MHz,
and the rate of generation of random 0s and 1s at a
photocount probability P ��� � 0:3 (see Fig. 5, curve 5,

which corresponds to 1ÿ P ��� � 0:7), we obtain
� 160 Mbit sÿ1, a value which is close to the theoretical
asymptotic limit of 176 Mbit sÿ1.

11. How to check for randomness.
Statistical tests of random sequences

Absence of evidence is not evidence of absence.

Cryptographic slang 7

The `aphorism' cited as an epigraph to this section, which is
often quoted in discussing randomness tests, fully reflects a
fundamental principleÐ the absence of a `ruler' that may be
used to measure randomness. It is fundamentally impossible
to prove that a given sequence of 0s and 1s is truly random,
i.e., the fact that the events corresponding to the occurrence of
0 and 1 are strictly equiprobable and independent; it can only
be proved that this sequence does not contradict the
hypothesis of randomness by some statistical criterion. This
implies that the assertion that the sequence is random
depends in this sense on the choice of the randomness
criterion.

We are dealing with studies with a certain finite sequence
or sample that consists of 0s and 1s. The general concept of
testing a sequence for randomness is reduced to the following.

We assume that the sequence of 0s and 1s under
investigation originated from a source of true randomness,
where the probabilities are P �0� � P �1� � 1=2, and the
choice of 0 and 1 is independent.

Figure 7. Example of `real' experimental data used to check the Bernoulli character of photocount sequences. The FPGA column shows the number of

photocounts in the histogram versus the number of `blank' pulses between sequential photocounts. The histogram corresponds to the logarithm of the

geometric distribution. The rate of random bit generation from a sequence of photocounts is 160.80Mbit sÿ1. The length of the processed block is n � 64.

7 Another saying popular in relation to this topic is: ``The absence of proof

of guilt is not proof of innocence,'' implying that there is no presumption of

randomness for the tested sequence.
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The latter assumption is axiomatic and only implies that
the probability of any binary sequence �e1; . . . ; en�, ei 2 f0; 1g
is set equal to

P �e1; . . . ; en� �
Yn
i�1

P �ei� � 2ÿn : �47�

This is a fundamental issue. All other mathematical results,
one way or another related to the development of a
randomness testing system, follow from two equalities (47):
the first implies independence, while the second, equiprob-
ability.

What is the essence of the testing system?
If we only have available a binary sequence, generally

speaking, of a very large size, and nothing else, we cannot say
anything definite about this sequence. It is desirable to obtain
some manageable set of values closely related to the binary
sequence, which would represent it in a concentrated form
and allow development of a reasonable criterion regarding
whether this sequence is `good' or not.

For example, the first value that is most natural is the
number of ones in the S1 sequence. The intuitive under-
standing of equiprobability is that the value of S1 should be,
for a `good' sequence, close to n=2.

Binary sequences apparently have a different composition
of zeros and ones; therefore, the calculated value of S1 will
deviate from n=2. In relation to this, we handle the value of S1

as a statistic, i.e., as a variable defined in a set of observa-
tionsÐequiprobable binary sequences. It is clear that it is not
possible to obtain exactly n=2; therefore, the next question
that arises in developing a criterion is to decide which
deviations in statistics can be considered natural for a `good'
binary sequence, and which can not.

This issue is solved using probabilistic methods. An
asymptotic n!1 probability distribution of the statistics
S1 is found under the conditions of independence and
equiprobability (47): in this case, a normal distribution. The
asymptotic distribution is `good' for two reasons:

Ð its analytical form is known, and there are not so many
limiting distributions in the probability theory at all;

Ð it `works' for arbitrary but, of course, sufficiently large
n.

The asymptotic normal distribution enables obtainment
of the probability of deviation for the statistic S1 in the form

P

�����S1 ÿ n

2

���� > t

���
n
p
2

�
� 2
ÿ
1ÿ F�t�� ; t5 0 ; �48�

where F�t� is the standard normal distribution function,

F�t� � 1������
2p
p

�t
ÿ1

exp

�
ÿ t 2

2

�
dt :

Let probability (48) be small. This implies that the deviation
of the S1 statistics from n=2 by more than t

���
n
p

=2 is unlikely,
i.e., such a deviation is unacceptable if the tested sequence is
`good'.

We set a small value of the probability a and find the value
of ta from the equation 2�1ÿ F�t�� � a.

We are now ready to formulate a criterion of agreement
with hypothesisH regarding the independence and equiprob-
ability of a binary sequence:

Ð if jS1 ÿ n=2j4 ta
���
n
p

=2, the hypothesis H is accepted,
and the sequence is `good';

Ð if jS1 ÿ n=2j > ta
���
n
p

=2, the hypothesis H is rejected,
and the sequence is `bad'.

The problem seems to have been resolved: we set a specific
numerical value a, which is the level of significance of the
criterion (usually a � 0:001ÿ 0:1), and start using the
criterion to test the sequences output from the random
number generator.

However, a circumstance emerges that somewhat ruins
our harmonious picture.

A sequence is considered `bad', albeit with a small but
not zero probability a (hypothesis H is rejected), while
actually it is `good'. Thus, performing the test, for exam-
ple, N times, we go beyond the criterion in about aN cases,
provided that the sequence is `good'. How do we proceed
with these sequences? Should they be excluded from
consideration? And what about the entire combined sample
of size nN ? Should it be allowed for `use' if, for example, the
obtained relative number of events of going beyond the
criterion boundary is actually close to a? What degree of
closeness should be considered `acceptable'? We are at risk
of going in circles.

There is another subtle point.What should be done if in all
N tests the statistics never go beyond the criterion, i.e., the
agreement is `too good'? For example, the deviation for a
regular sequence 0101010101::: will be zero in all tests....

The methodological recommendations published by the
US National Institute of Standards and Technology (NIST)
[24], which are currently generally accepted practice, suggest
the following concept of testing. We consider it using as an
example the statistics z of deviation from the average number
of ones of the form

z � jS1 ÿ n=2j��������
n=4

p ;

which has the distribution function Fz�t� � 2F�t� ÿ 1. The
NIST recommendations are based on the mathematical
observation that the distribution of the random variable
x � 1ÿ Fz�z� is uniform in the interval �0; 1�. This result
remains valid for any random variable z with its own
distribution function Fz�t�.

Let N binary sequences of length n each be tested, as a
result of whichN deviations z �i� �jS �i�1 ÿn=2j=

��������
n=4

p
, i � 1;N,

and, consequently, N values x �i� � 1ÿ Fz�z�i�� are calculated,
which are referred to as the p-value.

The deviations of z �i� include, of course, the values of z �i
0�

that are large or even go beyond the ta criterion. It is easy to
see that the p-value x �i

0� � 1ÿ Fz�z �i 0�� for them `tends' to
zero. If the values of z �i

00� are small, i.e., the agreement is `very
good', the values x �i

00� � 1ÿ Fz�z �i 00�� `tend' to unity.
No individual segments of the binary sequence, even the

`bad' ones, are discarded; p-values are not excluded.
A histogram is plotted of the frequencies of the events

when the values of the p-value x �i� � 1ÿ Fz�z �i��, i � 1;N fall
in the intervals of the division of the unit segment into 10
equal parts �0; 0:1�, �0:1; 0:2�; . . . ; �0:9; 1�:

n1; n2; . . . ; n10;
X10
k�1

nk � N :

If the agreement is `bad', the histogram is skewed to the left; if
`good', to the right.

Now, it is this histogram that is tested for uniformity
according to the w-square goodness test.
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Statistics are calculated,

w �
X10
k�1

�nk ÿNpk�2
Npk

; pk � 1

10
;

which have an asymptotic w-squared distribution with m � 9
degrees of freedom and the distribution function

Fw�z� � 1

2m=2G�m=2�
�z
0

exp

�
ÿ x

2

�
xm=2ÿ1 dx ;

where G�y� is the gamma function. The value a � 0:0001 is
set, and za is calculated from the equation 1ÿ Fw�z� � a. The
probability that the statistics w go beyond the boundary za is
equal to a.

If

w �
X10
k�1

�nk ÿNpk�2
Npk

> za ; �49�

then the cumulative binary sequence of size nN is considered
to have failed the criterion based on the statistics of the
number of units S1.

A similar procedure is proposed in the NIST guidelines
[24] for a number of statistics presented there, each of which is
aimed at `detecting' a certain type of deviation of the
distribution of the binary sequence from hypothesis H; the
recommended values are n � 106;N � 102.

As a result of the study, all the goodness-of-fit criteria are
listed; those criteria where statistics w go beyond the za
boundary, i.e., the criterion is not passed, are noted. It is left
to the experimentalist to make a general conclusion regarding
the suitability of the random number generator for usage.

Several recommended sets of tests (goodness of fit,
statistics) for randomness have been developed [24±26] to
date. TheNIST test set [24], which is theminimum required, is
the basis for examining sequences using other special test
suites.

From the point of view of passing the randomness criteria
by a binary sequence, a situation cannot be ruled out in which
a sequence can be disguised as a randomoneÐa limited set of
statistics behaves in the same way as a set of statistics for a
truly random sequence.

In particular, it is well known that the output binary
sequences of all state-of-the-art means of cryptographic
information protection pass any criteria for randomness,
but they are not such in the true sense. With a key length of
256 bits, they reflect the randomness (equiprobability) of
choosing from a set of 2256 binary vectors, but in no way from
2n vectors, where n is the length of the output sequence.

True randomness can only be guaranteed by a quantum
random number generator with proper tuning of its technical
parameters.

12. Checking the results
of various tests (statistics) for homogeneity.
Experimental results

The level of significance a of a criterion (test, statistics) can be
understood as the probability with which an ideal generator
can generate sequences that will look nonrandom. We set the
level a ourselves, usually a 2 �0:001; 0:1� [24].

Each test tries to find its own `evidence of nonrandom-
ness', for example, unequal probability, the presence of

correlations, hidden periods, Markov dependence, or an
enhanced probability of the occurrence of some binary
`pattern'. It may be said that each test is focused on detecting
its own, specific, deviation from a truly random sequence.
This deviation is also called a competing hypothesis.

If the sequence is truly random, and the significance level
is the same for all tests, then it should pass different tests in a
`uniform way'. This implies from amore formal point of view
that, for a large number of tests, the proportion of sequences
that passed each test for a given a should be approximately
the same, namely, approximately equal to 1ÿ a, and not
depend on the test.

Therefore, an additional check for randomness can be a
check for `uniformity' (Fig. 8) of the number of sequences that
passed the test for a set of criteria. For this reason, this
secondary validation (often referred to in Russian-language
publications as secondary labeling) is sometimes referred to as
a `test of tests'. This procedure does not have a strict rationale
and is based, in fact, on qualitative considerations.

Let each test be applied to M different binary sequences.
The relative proportion of sequences that have passed the test
should fit in the `three sigmas' interval for each test [27]:

�1ÿ a� � 3

�����������������
a�1ÿ a�

M

r
:

An example of the calculation of the relative proportion of
sequences that have passed testing for a set of criteria is
displayed in Table. 3. The total length is 8� 109 bits (more
precisely, the value was 8,000,000,464) (see Fig. 1), the
number of sequence blocks is M � 2000, each with a length
of L � 4� 106 bits, and a � 0:01. The `three sigma' interval
is �0:983; 0:997�.

13. Conclusions

Algorithms for obtaining random binary sequences and
methods for testing them were until recently primarily the
domain of specialists in cryptography. The physical scientific
community also used randomness for its own purposes, for
example, tomodel processes in nuclear and statistical physics.
Due to the objective isolation of cryptographers and
physicists, each research community developed its own
algorithms and formed its own understanding of the essence
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Figure 8. (Color online.) Example of a p-value uniformity test for 16 NIST

testsÐ p-value histogram for each of the 16 tests. M � 2000 sequences

were tested, each of length L � 4� 106 bits. The red horizontal lines show

the `three sigma' interval. The plot shows that the test for uniformity of

values is passed with a margin.
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of randomness. The emergence of quantum informatics, in
particular, quantum cryptography, has recently initiated the
inevitable mutual penetration of these research communities
and the methods they develop.

We made an attempt in this publication to show that
obtaining quantum randomness and testing its properties do
not essentially differ from any physical experiment in which a
theoretical law is tested. Any experiment of this kind is
reduced to isolating in a `pure form' those factors that should
be checked, while eliminating undesirable external effects that
distort the results of the experiment. Any physical experiment
is repeated a finite number of times under the same
conditions, after which a conclusion is reached about the
confirmation or refutation of the law under study. However,
there are no logical grounds to believe that a repeated
experiment will lead to the same results.

For clarification, it is reasonable to draw a parallel
between the `test of tests' for checking randomness and a
physical experiment. Let a large series of experiments be
carried out to test a physical law, which confirms its validity.
However, any physical experiment contains some error. The
agreement of the experiment with the theory is accepted if the
results of the experiment fit into an error range. The choice of
the permissible error is carried out, in fact, `manually' and has
no mathematical justification. Let each series of experiments
be repeated many times. If the result of a series goes beyond
the margin of error, should we consider the physical law not
to be valid, or should this be attributed to the `impurity' of a
specific series? If the proportion of such unsuccessful series is
small according to some criterion, these outliers should be
discarded. The criterion for smallness is again selected
`manually'. Deviations from the ideal (theoretical model)
should be uniform across the series in the rest of the
successful series. A clear analogy with the `test of tests' used
in checking for randomness can be seen here.

This fully applies to experiments to obtain randomness but,
possibly, in an even more distinct and concentrated form.

Let a 109-bit-long sequence of 0s and 1s be generated.
There are in total 210

9

such sequences. It should be kept in
mind that the estimated number of atoms in the visible part of
the Universe is 2256 � 1077. A speculative approach implies
that, to check the equiprobability of all 210

9

sequences, it is
necessary to generate at least such a number of these
sequences and find the frequency with which they occur.

This is apparently not possible. By testing only one sequence,
we are actually trying to infer the properties of an exponen-
tially large `set'.

The source (laser) prepares a quantum (quasi-single-
photon) state 8 which is subject to measurements. If the
projection postulate (Eqn (3)) is valid and the experiment was
carried out `purely', the primary sequence of photocounts is the
Bernoulli-type one. If the sequence is the Bernoulli-type one, a
truly random sequence of 0s and 1s is extracted from it (and this
is a strictly provable mathematical fact). According to this
logic, checking the sequences for randomness actually implies
checking the Bernoulli nature of the sequence of photocounts,
which is a consequence of the projection postulate (Eqn (3))Ð
one of the fundamental postulates of quantum mechanics.

Checking for randomness is in this sense in no way
different from the interpretation of any physical experiment.
Nevertheless (see the epigraph at the beginning of the notes),
not even being able to write down such enormous sequences,
we can make judgments about their properties.

Research in this area has been initiated by fairly practical
goals. The above example of a quantum generator is on the
conceptual level a simple physical device, whose principles of
operation are based on the fundamental laws of quantum
physics and can be understood without special knowledge. In
this regard, the authors indulge in the pleasure of citing the
following aphorism: ``Everything you need is simple; what is
complicated is not needed'' (M T Kalashnikov).
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