Physics— Uspekhi 64 (6) 558 —583 (2021)

© 2021 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences

REVIEWS OF TOPICAL PROBLEMS

PACS numbers: 01.65. +g, 05.65.+b, 05.70.Ln, 87.23.—n

Maximum entropy production principle: history and current status

L M Martyushev

DOI: https://doi.org/10.3367/UFNe.2020.08.038819

Contents

1. Introduction

558

2. First formulations of the maximum entropy production principle 559
2.1 Maximum entropy production principle in theoretical physics; 2.2 Maximum entropy production principle in

physics applications

3. Current generalized formulation of the maximum entropy production principle. Justification and

limitations of the principle
3.1 Locality; 3.2 Complexity

561

4. Maximum entropy production principle and other known assertions on the behavior of entropy 563
4.1 Nonnegativity of entropy production; 4.2 Minimum entropy production principle; 4.3 Jaynes’s information

approach. Falsifiability of the maximum entropy production principle; 4.4 Fluctuation relations
5. Nonequilibrium (kinetic) phase transitions and the maximum entropy production principle 566
5.1 Examples; 5.2 Description of nonequilibrium transitions based on the maximum entropy production principle;

5.3 Full phase diagrams. Metastability

6. Current directions for the development of the maximum entropy production principle 575
6.1 Classical directions of development; 6.2 Maximum entropy production principle in biology; 6.3 New promising

applications of the maximum entropy production principle in recent years

7. Conclusions
References

Abstract. The maximum entropy production principle (MEPP)
was repeatedly and independently proposed in the mid-20th
century in various fields of physics and proved to be extremely
effective in various nonequilibrium problems. We describe the
main areas of research that laid the foundations for this princi-
ple and discuss its modern form and limitations. We give special
attention to a discussion of nonequilibrium phase transitions
based on the MEPP and to the relation between the MEPP
and other known assertions about the behavior of entropy. We
discuss the role of this principle in the analysis of various
modern problems in both physics and biology, including the
laws of evolution and the definition of life.
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One of the principal objects of theoretical research

in any department of knowledge is to find the point of view
from which the subject appears

in its greatest simplicity.

J W Gibbs (1881)

1. Introduction

A hypothesis that emerged in the mid-20th century states that
the second law of thermodynamics can be supplemented with
the assertion that the value of entropy production not only
remains positive but is also maximized in the course of the
evolution of a nonequilibrium system. This hypothesis or
some other assertions very close to it appeared independently
in different branches of theoretical physics, as well as
in applied hydrodynamics, materials science, chemistry,
and biology. As a result of its simplicity, profundity, and
consistency, as well as its usefulness in solving many
theoretical and applied problems, it came to be known as
the maximum entropy production principle (MEPP) and is
regarded as an important principle in modern nonequilibrium
physics. There was great interest in this subject in the early
21st century, which resulted in numerous dedicated seminars
and conferences, including those in Bordeaux (France) (2003—
2005), Split (Croatia) (2006), Jena (Germany) (2007-2010),
Kyoto (Japan) (2008), and Canberra (Australia) (2011).
Publications of collected papers, special journal issues, and
reviews in leading journals resulted from this fruitful work
(see, e.g., [1-7]).

The avalanche-like increase in the number of publications
associated with the MEPP has started slowing down in the
last five to ten years. This means that this area of research
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has completed a prolonged initial phase of formation and
explosive growth and entered the maturation stage. This is
the time to once again discuss the principle, recall those
responsible for its inception, refine the formulation of the
MEPP, and highlight its limitations, which have not been
given due attention previously.! This is also the time to
consider the relation of the principle to other known
statements about entropy and to discuss modern studies and
prospects of applying the principle. Almost 15 years has
passed since our first review dedicated to the MEPP [4]; at
that time, much was unknown or not fully understood.
Reviews that have been occasionally appearing recently,
related to the MEPP in one way or another, are focused on
very specific MEPP-related problems, such as hydrodynamics
or materials science. Understandably, these studies do not
provide a coherent picture of the MEPP, of the place it
occupies in science, or of the influence that it exerts on
various applications. All this was the motivation in writing
this review. The main attention is here focused on work that
appeared in the last 10 to 15 years and is arguably important
for the development of MEPP studies.

An important goal addressed in this review is to have a
broader circle of researchers working not only in different
domains of physics but also in related areas, from materials
science to biology, become acquainted with the MEPP. This
determined our desire to make the presentation broadly
accessible by making a choice in favor of the relative
simplicity of the material. This explains why formulas are
scarce and specialized terms are not abundant.? At the same,
naturally, we try to maintain a due level of rigor. If the reader
is for some reason not satisfied with the resulting compromise
between accessibility and rigor, a reasonable course of action
would be to address the original papers following the
references given throughout this review.

2. First formulations
of the maximum entropy production principle

We discus the main areas of the work that laid the foundation
of the MEPP. We follow the chronological order and attempt
to be concise, limiting ourself to only the highlights, because
this theme was covered in sufficient detail in our review [4].
But in discussing the MEPP in this section, we also give some
new information that was largely overlooked previously.

2.1 Maximum entropy production principle

in theoretical physics

2.1.1 Work of M Kohler and J Ziman (1948-1956). It is well
known that a popular strategy to solve the linearized
Boltzmann kinetic equation is to use the variational method
proposed by Enskog [12] (1917) and Hellund [13] (1939). This
is a valid strategy for gases in which (1) the mean free path of a
molecule is much longer than that range of intermolecular
forces and at the same time less than the characteristic size of
the problem; (2) the properties of the gas slightly deviate
from equilibrium ones. In 1948, Kohler [14] reformulated
this variational method by adopting the entropy production

! This has given rise to a number of critical studies (see, e.g., [8—11]).

2 Another reason is the extreme diversity of the material that has to be
considered (ranging from different branches of theoretical physics to
materials science, biology, and medicine). Had another approach been
adopted in this review, it would have become a multivolume encyclopedia
with its own notation and special terms.

extremization, together with some other constraints, as a
basic requirement. Kohler was apparently among the
pioneers to use this method to describe the transport of
electrons in metals. Ziman [15, 16] (1956) was a pioneer in
reformulating Kohler’s principle in essentially the modern
form and in giving it the status of a physical law (principle),
rather than a simple mathematical trick used to solve the
Boltzmann equation. The Kohler—Ziman principle is stated
as follows: in nonequilibrium gaseous systems, the distribution

function of molecules over velocities is such that, at fixed

gradients of the temperature, concentration, and mean velo-
city, the entropy production density is maximal. In [15], Ziman
noted that Boltzmann’s H-theorem is often regarded as a kind
of molecular—kinetic proof of the second law of thermo-
dynamics and suggested that, by extension, the variational
method for solving the Boltzmann equation can give proof at
the molecular level of a sufficiently general statement on the
behavior of entropy production in nonequilibrium systems
(the MEPP).

These ideas were generalized to dense (including quan-
tum) systems with strong interparticle interaction by Nakano
(1959-1960), who noted not only the maximum entropy
production but also the maximization of transport coeffi-
cients evaluated in the framework of the linear response
theory [17-19]. Independently of Nakano, such a general-
ization was given by Christoph and Ropke [20] in 1985. In the
framework of the so-called method of a nonequilibrium
statistical operator, the entropy production maximization
principle was considered in detail by Zubarev [21] (2002) in
discussing variations in the system response parameters in
fixed external fields.

2.1.2 Work of H Ziegler (1957-1987). The area to which
Ziegler’s work belongs is classical nonequilibrium thermo-
dynamics, with the postulated existence of local equilibrium
in the system. In this case, the local entropy s of the system
depends on local thermodynamic parameters o, as is the case
in full equilibrium, and the rate of entropy emergence in a
local element of the volume (entropy production ¢) as time ¢
progresses is expressed as [22]

Os do;

We regard the variation in entropy due to a variation in o; as
the cause of an irreversible process, and call X; the thermo-
dynamic force. We say that the rate of change of «; with time
(response of the system) is the thermodynamic flux J;.
Relation (2.1) then becomes

O'IZXI‘J,'.
i

The relation between thermodynamic fluxes and forces can
be arbitrary (and in a particular case, the simplest one, is
linear) [22].

Working in plasticity theory, Ziegler noted that the
principle of the maximum rate of mechanical energy dissipa-
tion due to R Mises (1913) was applicable there. In 1963,
Ziegler generalized Mises’s approach by proposing an original
version of a deductive construction of nonequilibrium thermo-
dynamics (both linear and nonlinear) based on a variational
principle [22-25]. Ziegler’s principle can be stated as follows
[22]: if thermodynamic forces X; are preset, the true thermo-
dynamic fluxes J; satisfying auxiliary equation (2.2) give the

(2.1)

(2.2)
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maximum entropy production density ¢(J). Mathematically,
this principle can be written with the use of a Lagrange
multiplier p as

3y |:O’(Jk) - #(U(Jk) - Z:X,»J,-)L =0.

Taking the variation in (2.3) with respect to thermodynamic
fluxes at constant forces yields a relation between fluxes and
forces:

(2.3)

a(J) 0o
S (J;00/0J;) oJ;

1

X = (2.4)

It follows from (2.4) that the relation between thermo-
dynamic fluxes and forces can be both linear and nonlinear.
This is an important corollary of Ziegler’s principle. Relation
(2.4) was called the orthogonality condition (because geome-
trically it means that the thermodynamic force X; correspond-
ing to the flux J; is orthogonal to the surface o(J;) = const).
Ifo =", R Ji Ji (Where Ry is a matrix of coefficients),
then (2.4) readily implies the basic relations of Onsager’s
linear nonequilibrium thermodynamics (1931), including the
reciprocity relation for kinetic coefficients Ly (= R; ') [4, 22]:

Ji=Y LaXy,
k

Ly = Ly .

(2.5)

(2.6)

Relations (2.5) and (2.6) close the system of energy,
momentum, and mass transfer equations, which then allows
solving that system.

Ziegler’s principle can also be stated in the space of forces
in the case where entropy production depends only on Xj
and thermodynamic fluxes are fixed. According to Ziegler,
entropy production as a function of fluxes (or forces) must be
known and must also be convex (which ensures a single-
valued relation between flows and forces).

Admittedly, Ziegler’s presentation was quite formal in
nature, and the examples of the application of the principle
that he discussed were limited to some problems in plasticity
theory and chemical kinetics [22-25], which could also be
solved by alternative methods. This, together with the exist-
ence in nonequilibrium thermodynamics of other variational
formulations applicable to the nonlinear case, led to little
interest in Ziegler’s principle at the time; it remained largely
unknown.

2.1.3 Work of G Beretta and S Gheorghiu-Svirschevski (1987—
2001). In dealing with the challenge of combining two
successful theories, thermodynamics (including the irrevers-
ible one) and quantum theory, several researchers — Hatso-
poulos, Gyftopoulos, and Beretta— proposed so-called
quantum thermodynamics (see, e.g., [26-31]). Quantum
thermodynamics posits that a system has a much vaster
collection of states than that considered in traditional
quantum mechanics and is based on a certain new nonlinear
equation of motion. This dynamics reduces to the standard
quantum dynamics of Schrodinger—von Neumann only in
special conditions, as follows from the natural tendency of an
isolated system to move from any nonequilibrium state into
an equilibrium, higher-entropy state. On the other hand, in
quantum thermodynamics, the laws of thermodynamics and
irreversibility emerge as consequences of the quantum-

dynamics behavior of elementary constituents of a given
material system, microscopic or macroscopic, simple or
complex.

The theory developed along these lines faced several
difficulties. An important step in this direction from the
standpoint of this review was made by Beretta [32] (1987),
who showed that the proposed nonlinear evolution occurs
along the direction corresponding to the steepest entropy
ascent at given constraints in the system. Initially, no
particular importance was assigned to the fastest increase in
entropy, which was considered merely a mathematical method
(ansatz) of gradient extremization based on the good old
effective method for minimizing nonlinear functions. But in
about 14 years, Gheorghiu-Svirschevski [33, 34] (2001), who
was unaware of [26-32], independently arrived at the dynamic
equation and a number of conclusions similar to those reached
by Beretta. Gheorghiu-Svirschevski used an explicit varia-
tional principle based on maximizing the entropy production
under certain constraints imposed on energy and probability.
At the same time, it was stipulated in [33] that the new principle
does not contradict the known principle of Prigogine, because,
according to Prigogine, entropy production evolves towards
a minimum of the maximum values at each moment. This
conclusion, as we show below, is somewhat closer to modern
concepts.

Papers [33, 34] rekindled Beretta’s interest in the subject.
In [35], he analyzed the results of Gheorghiu-Svirschevski
and gave a more explicit derivation of the equation of motion
in the spirit of the fastest increase in entropy. We also note
Beretta’s very interesting results on the maximum possible
quantity of entropy production and the relation of this
quantity to Heisenberg’s energy—time uncertainty principle
[35, 36]. After an avalanche of papers related to the MEPP
and largely initiated by review [4], Beretta started consider-
ing his method of the fastest increase in entropy to be a
version of the MEPP [36] and obtained a number of interest-
ing corollaries of this principle in the framework of classical
approaches to nonequilibrium physics, going beyond the
limits of his preceding work on quantum thermodynamics
(see, e.g., [37]).

2.2 Maximum entropy production principle

in physics applications

We briefly discuss only the most prominent work where the
MEPP (or similar principles) is introduced to solve specific
problems. Other examples can be found, e.g., in [1-7].

2.2.1 Work by G Paltridge in geophysics (1975-2001) and
investigations of hydrodynamics by W Malkus (1954-2003).
Starting in 1975, a series of publications appeared in which
Paltridge calculated global climate using a certain zone model
augmented with the MEPP [38—42]. The idea of the approach
was as follows. The climate model was based on a collection
of cells, characterized by parameters providing an averaged
description of the atmosphere and ocean: surface tempera-
ture, cloud coverage, horizontal energy fluxes through
boundary zones in the atmosphere and ocean, etc. Energy
balance equations are written for each cell. Because these
balance equations are not sufficient for finding all the
characteristics of the cell, it was necessary to introduce an
additional assumption that overall (atmospheric and oceanic)
horizontal heat fluxes are established in each cell such that the
integral entropy production over the cells is maximal [39-41].
Using this model, Paltridge derived annual average distribu-
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tions of the temperature, heat fluxes, and cloud coverage on
Earth, which agreed well with the observed ones. As a result,
Paltridge’s approach to maximize entropy production
became quite popular in studies of Earth’s climate and that
of other planets of the Solar System [I-3]. An essential
problem faced by Paltridge and others working in the same
vein was the justification of the postulated MEPP. The most
important supporting argument was provided by Malkus’s
studies. We describe them briefly.

Starting with his first work in 1954—1958, for nearly half a
century, Malkus theoretically and experimentally defended
the hypothesis that, when becoming turbulent, a fluid flow
maximizes some functional under given constraints on the
flow [43—47]. Turbulent flows under both heat convection and
a pressure gradient were studied, demonstrating the fruitful-
ness of the assertion that at a given Rayleigh (Reynolds)
number, the turbulent mode is realized, ensuring the max-
imum heat transfer (dissipation) among all possible station-
ary modes of the flow. In the conclusion of [47], Malkus, in
particular, writes: ““...the observed solutions of the Navier—
Stokes equation will be those solutions whose mean flows
have the maximum dissipation rate.” In that same paper,
Malkus identifies the average dissipation rate of mean flows
with entropy production. These ideas have had considerable
impact on the development of the theory of turbulent motion,
stimulating new research strategies, in particular, Howard’s
variational method for obtaining upper bounds of dissipative
functionals [48-50].

2.2.2 Work on nonequilibrium crystallization (1946-1990). In
the physics of nonequilibrium crystallization, the MEPP
occurred naturally from the principle of the maximum
crystallization rate. Apparently, the first to use the principle
of maximal growth rate of a crystal was Zener [51] (1946). In
studying the problem of selecting the rate and characteristic
size in the formation of perlite, Zener hypothesized that,
among the possible values satisfying his model, stable perlite
has the structure that maximizes its formation rate. Studying
similar problems, Cahn [52] (1959) arrived at the following
conclusion: “The assumption that the system chooses to
maximize the free energy decrease proved to be useful, and it
is felt that such an assumption should be drivable from more
basic kinetics assumptions.” It is easy to show (see, e.g., [4])
that this assertion is identical to the MEPP.

Subsequently, maximization of the rate of nonequilibrium
dendritic crystallization was proposed independently by
Temkin [53] (1960) and Tiller and collaborators [54] (1961). In
the latter study, the relation among the rate maximization and
entropy production and, importantly, Prigogine’s principle is
discussed. Having found that their solutions do not satisfy
this principle, the authors of [54] write: “Either the minimum
entropy production was not the proper optimization
condition or we neglected an important, but not obvious
contribution to the entropy production during the den-
dritic growth process.”” Starting in 1964, Kirkaldy [55-57], in
analyzing the data of Zener and Cahn, noted that experi-
mental and theoretical results tend to be in favor not of the
principle of the maximal rate but of the maximization of
entropy production under variations of free characteristics
of the system (those not fixed by external conditions, for
example, the characteristic size).

A milestone in work on this subject was provided by
studies and conclusions by Ben-Jacob [58, 59] (1989-1990),
who put forward the following principle: the dynamically

selected morphology in nonequilibrium crystallization is the
one with the fastest growth. In other words, whenever more
than one morphology can exist, only the fastest-growing one
is nonlinearly stable and therefore observable. We note that
Ben-Jacob in [58, 59] proposed the hypothesis that the
criterion for morphology selection under crystallization is in
the general case not the crystal growth rate but entropy
production. This idea did not go unnoticed.

Of interest in the context discussed here was Hill’s work
[60], where he used experimental data on jump-like changes
in the growth direction (from (110) and (100)) of ammonium
chloride dendrite branches in crystallization from solution
at a change in supersaturation. Hill used linear functions to
approximate the dependence of the growth rate of the main
branch of the dendrite on supersaturation before and after the
morphological transition. Using these data, he constructed a
dependence of the entropy production on supersaturation for
(110) and (100) dendrites. Supersaturation corresponding to
the intersection point of these curves differed by no more that
3% from the observed supersaturation at which the transition
occurred, in the direction from the structure with lower to
the structure with greater entropy production. With such
a remarkable agreement between theoretical and experi-
mental results, Hill substantiated Ben-Jacob’s hypothesis that
entropy production governs the selection of structures under-
going nonequilibrium crystallization.

3. Current generalized formulation
of the maximum entropy production principle.
Justification and limitations of the principle

A unified principle derived by generalizing the information
about the MEPP available from various applications origin-
ated from the work by Sawada [61]. Back in 1981, unaware
of the existing thermodynamic and kinetic formulations of
the MEPP (see Section 2.1), Sawada proposed an original
particular thermodynamic formulation of the MEPP. Today,
this formulation and Sawada’s arguments, partially based on
the second law of thermodynamics, are only of historic
interest. But the indisputable value of Sawada’s work is that
he related the MEPP to the experimental data, available at the
time, on crystallization and hydrodynamics (see Section 2.2)
and also to the Lotka principle in biology (see Section 6.2).
In addition, Sawada emphasized that the maximal entropy
production state is most stable to perturbations among all
possible (metastable) states. To substantiate this conclusion,
he performed numerical computations of dissipative struc-
tures under electroconvection, in nonlinear chemical reac-
tions (Brusselator), and during crystal growth [62—64].
Sawada was among the first of those who had to reconcile
their formulation of the MEPP with Prigogine’s assertion of a
minimum of the same quantity to consider the applicability
domain of the principle and to engage in the debate in print
with the critics of the MEPP from the standpoint of chemistry
[65].

From the history of the subject, we now turn to modern
concepts. It follows from the information given in Section 2
that assertions on the entropy production maximization have
occurred in different branches of science independently and
were used in discussing diverse systems and different scales
(modes) of description. These assertions were instrumental
in problem solving. All this resulted in 2010 in the modern
generalized formulation of the MEPP [6, 66, 67]: at every
level of description with preset external constraints, the local
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relationship between a cause and the response of a non-
equilibrium system is established such that the entropy
production density maximizes.

We clarify this generalized formulation with the example of
nonequilibrium crystallization from solution. Let supersatura-
tion (the concentration gradient) be fixed. At the kinetic level
of the description of the system, the distribution function of
molecules over velocities, and hence the diffusion coefficient,
are established, such that the entropy production density is
maximized. At the thermodynamic level of the description, the
relation between the flow of matter and concentration gradient
(thermodynamic force) is established, such that the corre-
sponding production entropy density is maximized. In the
course of nonequilibrium growth, a crystal whose size exceeds
a certain critical value can lose morphological stability. As a
result, the shape of the crystal essentially changes, for example,
a transition from a regular polygon to a dendrite occurs. The
cause of this transition lies in different local supersaturation
levels in the solution near the crystallization front. The system
responds to this action by an increase in the flow of particles
from the solution to the crystal due to the increasing area of the
crystal (and hence the added complexity of its shape). Such a
bifurcation transformation is also consistent with the max-
imization of local entropy production. Thus, in this simplest
example, there are at least three levels of description to which
the generalized MEPP is applicable.

As can be seen from the material in Section 2, the principle
emerged as a useful hypothesis that served to either concisely
generalize the known regularities or to successfully solve some
problems. Naturally, the question arises as to whether a
justification of this principle is possible. As is well known, a
rigorous theoretical proof of any fundamental principle is
impossible by definition: the principle itself lies at the
foundation of the theory being constructed. Therefore, any
proof of a principle can be only somewhat conventional. In
particular, a principle that allows arriving at sufficiently
many successful generalizations and predictions is often
considered substantiated. Another possible substantiation of
a principle can consist of establishing its relation to other
principles and laws. We now discuss the MEPP from this
standpoint.

From the standpoint of nonequilibrium thermodynamics,
Ziegler showed that, in a number of cases (in particular, when
entropy production is a homogeneous function of thermo-
dynamic fluxes or forces), it is easy to obtain the orthogonality
condition and then the extremality principle itself [4, 22, 23].
Another possible thermodynamic justification of the MEPP
was given in [68]. Its essence is as follows. We assume that
the second law of thermodynamics is valid (i.e., entropy
production is positive, ¢ = 0). Let one thermodynamic force
X = const = 0 be given and the task consist of proving that
the system selects the maximum possible thermodynamic flux
J (and hence o, which is known to equal X/J; see (2.2)). We
assume that there are several different fluxes. All of them must
be nonnegative because ¢ > 0 (the flows are directed toward
the decrease in the thermodynamic force). The choice of the
zero level of fluxes for an observer inside the system under
consideration is arbitrary in the general case; we choose it
such that the maximum flux among all those possible in the
system is equal to zero. In the chosen frame, all the other
fluxes are then negative and hence the entropy production
corresponding to each of them is negative. But this contra-
dicts the second law of thermodynamics. Assuming that the
second law is a universal law of nature and is independent of

the transformations described (which can in fact be adopted
here as a postulate, a kind of generalized Galilei transforma-
tion), we conclude that, at a fixed thermodynamic force, only
the maximal possible flux, and therefore the maximal entropy
production, is realized.

Justifications of the MEPP from the standpoint of
statistical physics are mainly constructed based on the
information entropy and the related approach proposed by
Jaynes [69, 70] (1957). The most cited papers in this area are
by Dewar [71, 72] (2003, 2005) (references to other works
can be found in [4]). In [71, 72], Dewar tried to relate the
maximum information trajectory entropy and the MEPP.
These studies are useful and interesting without a doubt, but
they hardly belong to the class of studies where this problem is
solved. Indeed, as can be seen from their critical analysis (see,
e.g., [4,73]), Dewar’s argument not only involves a number of
nonobvious fundamental assumptions but also is nonrigor-
ous and erroneous in a number of points. The general
methodological weaknesses of Jaynes’s approach to the
justification of principles are discussed in Section 4.3.

Like any other principle, the MEPP has its own applic-
ability domain and a number of limitations. There are two
main limitations [6, 74, 75] which, as an analysis of the
literature suggests, are most frequently ignored in work
devoted to applications of the principle. This leads to errors
in its justification and to confusion [8—11]. We discuss these
two main limitations of the MEPP in Sections 3.1 and 3.2.

3.1 Locality

Mathematical formalization of phenomena occurring at the
minimal possible scale of a chosen level of description is the
most complicated in theoretical analysis. This is because,
when artificially coarse-graining space and/or time (discre-
tizing it to indivisible elements), we must somehow take the
existence of the underlying levels of the description into
account. The accepted smallest scale (element) is the most
important for the entire description, because it is located at its
base. It is on this scale that the MEPP is valid and its use is
most effective and error-free. With the MEPP used to find
linear or nonlinear relations between cause and response in
the system on this lowest scale, we can then go up the ‘ladder
of scales,’ taking the conservation laws relevant to the system,
the imposed constraints, the boundary conditions, etc. into
account. On ‘higher’ scales, entropy production can behave
arbitrarily, depending on the specific features of a given
problem. The simplest example is provided by heat transfer
in a rod: at the thermodynamic level of description, we first
use the MEPP to determine a linear local relation between the
heat flux and the temperature gradient (the Fourier law).
Next, invoking the heat balance equation and integrating, we
can calculate the temporal and spatial distributions of
temperature in the rod for the given constraints. The
constraints and initial conditions can be diverse, and there-
fore any behavior of entropy production can in general be
obtained at this second stage [76]. No conclusions follow from
the MEPP as regards the properties of the solutions of those
equations.

In this sense, the MEPP is a local rather than an integral
principle. We emphasize once again that entropy production
is maximized and the resulting cause-and-response relations
are established for a certain lowest level of the description of a
spatial/temporal element. Obviously, the characteristic size of
the element can be different in various problems, being
directly related to the level of description. The MEPP may
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well be not satisfied in the integral case, i.e., in the analysis of
the integral (over space and time) entropy production. For
such systems, the MEPP can turn out to be valid only in some
special cases (in particular, for relatively small deviations
from equilibrium).

3.2 Complexity
The principle holds for complex systems. This limitation was
already discussed in detail by Ziegler [23]. The notion of
complexity can be formalized in terms of a special property of
the system: entropy production of the full system (process) is
not an additive function of entropy production of the
subsystems (subprocesses). For example, in the linear
thermodynamic approximation, entropy production in a
complex process consisting of two subprocesses character-
ized by the fluxes J; and J, is known to have the form
JE+J3 +2J1J2 up to some factors. The last term here is
precisely responsible for the nonadditivity.

Systems can exist in nature that preserve the additivity
‘in the making’ from subsystems. Such systems are called
compound [23]. For compound systems, the MEPP is not
valid in general. An example of a compound system is a
system of chemical reactions proceeding independently. It is
obvious that in this case the entropy production due to
independent reactions in the system is the sum of indepen-
dent terms pertaining to different reactions. Each reaction
separately obeys the MEPP [75, 77-79], but, taken together,
they make up a compound system and do not necessarily obey
the MEPP. This is somewhat similar to the locality discussed
in Section 3.1: the MEPP is applicable to each local element
(reaction), but when the sum over local elements is taken, the
MEPP may be invalid for the integral (compound) system.

This shows that systems of reactions that are sometimes
discussed in the literature (Schlogl model, etc.) and which
allegedly disprove the MEPP [9, 10] are nothing new. Such
models represent a small collection of consecutive or parallel
chemical reactions, which have no influence on one another. If
the properties of individual reactions (in particular, their rate
constants of reactions) are known, then the behavior of the
chemical process made up of them can be completely described
(calculated); if the entropy production values are known for
individual reactions, then the entropy production of the total
process is completely determined (because the overall entropy
production is just the sum of entropy productions of separate
processes). From the standpoint described in the foregoing,
this system is obviously not complex. Therefore, the behavior
of entropy production for such a compound (not complex)
system cannot obey the MEPP. It is unlikely, moreover, that
any general law or principle can be found to govern such
systems, in view of their being totally deterministic. We here
fully agree with Landauer’s conclusions in [80, 81]. Indeed,
any accomplished chemist or radio engineer can build a
system from elements (with known properties that remain
unchanged when combined into a system) such that entropy
production or any other quantity behaves in any prescribed
way in that system. We note that the assumption that the
reactions are independent, which turned out to be very
productive in chemical kinetics, is not general: numerous
violations are known. Abundant examples can be found
among such reactions as coupled, chain, photochemical, and
catalytic [82, 83]. Evidently, whenever the assumption of the
independence of reactions is violated, the system of chemical
reactions becomes complex, with the MEPP applicable to its
description.

The notion of a complex system means much more. As
is known [84-86], a system consisting of a large number
of diverse elements coupled to each other nonlinearly
acquires new, sometimes quite unexpected, properties, which
are difficult (or impossible) to deduce from the study of
individual elements or constraints. This property is generally
called emergence and is the most important property of truly
complex systems. Aristotle’s adage that the whole exceeds the
sum of its parts applies here. For example, the properties of a
large collection of molecules (of the order of Avogadro’s
number) of a sufficient density are not additive with respect to
the properties of individual molecules, * and the properties of
a biological population are not reducible to only the proper-
ties of individual creatures. From the standpoint of entropy
production, the complexity (emergence) of a system manifests
itself in the nonadditivity of this quantity under system
formation from its constituent subsystems.

4. Maximum entropy production principle
and other known assertions
on the behavior of entropy

4.1 Nonnegativity of entropy production

If we postulate the MEPP, then the assertion of the
nonnegativity of entropy production (the most important
part of the second law of thermodynamics for nonequilibrium
processes) can be obtained as a corollary [4]. Indeed, we
suppose that entropy production can be negative in some
hypothetical thermodynamic system. In accordance with the
thermodynamic formulation of the MEPP, the physically
realized flux is the one that ensures maximum entropy
production. In other words, entropy production in the
system is equal to the maximum positive value among all
possible ones. If we assume that there are no thermodynamic
fluxes associated with a given thermodynamic force with
positive entropy production, then it is always possible to
choose a flux equal to zero (Fig. la). Therefore, entropy
production is also zero, and this value is maximal in this
exotic example. Hence, in accordance with the MEPP, no
physically realizable states with negative entropy production
can exist.

4.2 Minimum entropy production principle

The minimum entropy production principle was formulated
by Prigogine in 1945-1947. It can be stated as follows [76-78]:
let the basic relations of linear nonequilibrium thermo-
dynamics (2.5) and (2.6) be satisfied in a system and let some
of the total number of thermodynamic forces X; be kept
constant; then, the necessary and sufficient condition for the
stationarity of the nonequilibrium system is the minimum of
the entropy production density.

Two points are typically considered the main drawbacks
of this principle (see, e.g., [6, 76]). The first is that the principle
is valid only for /inear nonequilibrium thermodynamics. The
second, and more significant one, is that the principle is not
constructive, because the information necessary for its use
must be so comprehensive that the principle adds nothing
new, and solving the problem directly with the use of
conservation laws and Eqns (2.5) and (2.6) is typically easier
than using Prigogine’s principle. The principle of a minimum,
3 This, notably, is the origin of some known complications when solving

the Bogoliubov—Born-Green—Kirkwood—Yvon equations in the physics
of liquids.
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Omin
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Figure 1. Geometric interpretation of the (a) maximum and (b) minimum
entropy production principles in a system with two thermodynamic fluxes
(forces) [6].

introduced and proved as a local (differential) one, has been
used in attempts to find the spatial distribution of physical
quantities, i.e., in attempts to extend the principle to the
integral case (see, e.g., [77]). But it has been shown (see, e.g.,
[76]) that such an extended reading of the principle is mostly
erroneous.

Prigogine’s principle can be considered a corollary of the
MEPP. Indeed, as noted in Section 2.1, the basic relations of
linear nonequilibrium thermodynamics, Eqns (2.5) and (2.6),
can be obtained from the MEPP. Therefore, with several
additional constraints, we can prove the minimum entropy
production principle following Prigogine. That the same
quantity (entropy production) can be both maximal and
minimal may cause misunderstanding. The resolution lies in
the extra conditions that are used in problems in varying the
entropy production, and these are essentially different. The
geometric interpretation in the case of two fluxes and ¢ =
Ry,J? +2R2J1J> + Ry, J3 is illustrated in Fig. 1. According
to the MEPP (Fig. 1a), the maximum entropy production
density is sought with respect to J; and J, on a cross section of
the paraboloid ¢ = R|;J? + 2R1> J1J> + R,,J3 by the plane
perpendicular to vectors with the components X; = const and
X, = const (this plane is located at an angle to the vertical
axis). In Prigogine’s method (Fig. 1b), the extremum is sought
with respect to J, on the cross section of the same paraboloid
by the plane J; = const.

The result of maximizing by Ziegler’s method gives the
relation between thermodynamic fluxes and forces, Eqn (2.4)
(or (2.5) and (2.6) for the particular form of ¢(J) considered in

the above example), whereas, in applying Prigogine’s method
(with Eqns (2.5) and (2.6) postulated), it turns out that J, = 0
corresponds to the minimum entropy production density.

Because of the difference between the characteristic times
of the processes, extremizations can be done consecutively in
time in a single system [6]. Indeed, let thermodynamic forces
be constant within some interval of time 7. According to the
maximum principle, the system then arranges its thermo-
dynamic fluxes such that entropy production is maximal. If
entropy production is a quadratic function, then, as a result of
such an arrangement, a linear relation between fluxes and
forces sets in and the system passes into a stationary non-
equilibrium state on time scales 7 longer than 1.

As an example, we consider a local element of size L in a
sufficiently dense medium, and assume that diffusion and
heat transfer can occur in it. As is known, transport
coefficients are proportional to the mean free path 4 of a
molecule times the mean velocity v. The characteristic time
needed for fluxes to be tuned to forces is then 7y o< 4/v, and
the characteristic time of change in thermodynamic forces is
tox L2/ (Jw) = 19L?/7>. In the case under consideration,
L/2> 1, and hence t > 19. Thus, indeed, there are two
essentially different characteristic times in the system, such
that the fluxes occurring in Ziegler’s scenario (relations (2.5)
and (2.6)) start decreasing the thermodynamic forces, which
decrease flows, and so on, resulting in entropy production
reaching a minimum. A hierarchy of processes is then
observed: at short times, the system maximizes entropy
production under fixed forces, which results in linear
relations between fluxes and forces, and, on long time scales,
the system ‘varies’ its free thermodynamic forces so as to
decrease entropy production.

4.3 Jaynes’s information approach.

Falsifiability of the maximum entropy production principle

A unique approach (the so-called MaxEnt) to the derivation
of basic relations of statistical physics based on information
entropy was proposed by Jaynes [69, 70] in 1957. Presently,
this approach is quite widely used in statistical physics,
including in discussions of the MEPP [71, 72, 87, 88]. In
describing nonequilibrium processes with the MaxEnt, the
trajectory entropy is made extremal with the aim to find the
distribution function of trajectories in phase space. The
formula for calculating the trajectory entropy is then
considered identical to Shannon’s formula for information
entropy. According to Jaynes, this algorithm is the most
objective (unbiased) way to find the distribution function.
This maximization is done with the existing (or assumed)
constraints taken into account. The obtained distribution
function is then used to calculate the relevant nonequilibrium
properties of the process. An important feature of this
approach is that the disagreement between the predicted
properties and the results of experiment is attributed to the
wrong constraints having been adopted. The constraints are
then refined and the procedure is repeated. Hence, the
information approach is in fact a method for establishing a
self-consistent set of constraints and experimental data.

We comment on this approach as follows [4, 6].

(1) This approach is apparently the simplest method to
construct statistical thermodynamics (classical and quan-
tum), based in fact on a single hypothesis and free of a
number of complications (the ergodic hypothesis, etc.).

(2) Although information theory was initially created with
the help of some notions borrowed from statistical physics,



June 2021

Maximum entropy production principle: history and current status 565

presently, following Jaynes, the information approach can
be considered the basis for constructing statistical physics.
The formalism of statistical mechanics then amounts to a
sequence of actions that allow obtaining the best estimate,
given essential limitations in the knowledge about the micro
world (this is a statistical method for preventing possible
errors).

As noted in Section 3, several attempts, mostly unsuccess-
ful, have been made to use the MaxEnt to justify the MEPP,
with a number of nonobvious assumptions and constraints
adopted [71, 72]. Let us note the principal methodological
problem inherent in such attempts [71, 72, 87, 88]. Jaynes’s
method is a parsimonious algorithm for obtaining a known
(generally accepted) solution. But if the solution is not known
(or several solutions are possible), then any desired result
(equation, law, or principle) can be derived with this method
by selecting the corresponding constraints; or, if this is too
complicated, other forms of information entropy can always
be used, which have recently proliferated in number (for
example, Rényi entropy, Tsallis entropy). In this sense,
Jaynes’s method is highly subjective. This mathematical
procedure can generate a set of all possible procedures, but
the value of such mathematical exercises is doubtful in
physics. Ideas about a close relation between the MaxEnt and
MEPP, which are inspired by these exercises, sometimes go as
far as the claim that the MEPP, just like the MaxEnt, is not an
important principle in physics (in the classic sense) but only
some algorithm (method) for making decisions in predicting
the behavior of nonequilibrium processes [87, 88]. This is
obviously erroneous. Indeed, if one embraces that informa-
tion standpoint, then both the second law of thermodynamics
and other known assertions in physics can be considered not
laws or principles but merely useful algorithms that we apply
(because one can always choose constraints and the func-
tional form of the information measure so as to obtain any
desired law using the MaxEnt, and then directly relate them).

Historically, the MEPP emerged based on the analysis of
theoretical and experimental data as a result of extensive and
long-term work by various researchers. This makes it akin to
other laws and principles accepted in physics. Thus, the
MEPP is a physical principle that is fundamentally different
from the MaxEnt. The MEPP itself is a key objective
constraint on the existing world and on us, the cognizing
subjects in this world, similarly to the first and second laws of
thermodynamics or the charge conservation law and Heisen-
berg’s uncertainty principle.

That the MEPP is a principle of nature, rather than a
mathematical procedure for obtaining the best prediction for
the behavior of a system in the conditions of insufficient
knowledge about the system, is supported by considering the
MEPP from the standpoint of Popper’s falsifiability. The
opportunities to falsify the MEPP in the sense of Popper are
numerous. The simplest experiment* on falsifying the MEPP
is provided by the measurement of entropy production at the
instant of bifurcation of a complex system in the course of its
spontaneous evolution.® The system must satisfy the basic
constraints indicated in Section 3. If the most probable
realizable state of the system, among several possible states,
turns out to not be the maximum entropy production state,

4 1t is precisely experiment that has to be considered here, because any
theoretical model is only a reflection, fairly rough and often one-sided, of
some part of the phenomenon, whereas the MEPP is a principle that
embodies dissipative properties observed in nature, not in a model.

3 Such experiments are discussed in Section 5.1.

then, according to Popper, the MEPP would be disproved.
Hence, from the standpoint of Popper’s ideas and those of
his followers, the MEPP is falsifiable and is therefore a
scientific principle. On the contrary, the MaxEnt can never
be disproved by any result of an experiment, and therefore
it is only a mathematical procedure.

We believe, however, that the question of disproving any
principle (not only the MEPP) is more complicated than can
appear at first glance. Considering this question only from the
standpoint of Popper’s work is an oversimplification, espe-
cially after the appearance of the critical work by I Lakatos
(1970-1978) on the methods of research programs in science.
In accordance with philosophical meditations by Lakatos, the
basic criterion of whether an approach (in our case, theories
relying on the MEPP) is scientific is an increase in factual
knowledge due to the predictive power of the method. The
recent growth of the number of publications related to the
MEPP and the obtained interesting results in different areas
of science, from physics to biology, are the best proof that the
MEPP is scientific and is important. Some examples are given
in Sections 5 and 6.

4.4 Fluctuation relations

In the last two decades, the theory of nonequilibrium
processes, including those far from equilibrium, has been
enriched by proofs of a series of theorems, similar in content,
generally called fluctuation theorems (see [89-93]). The main
claim is that the probability P(4+Q) of a deviation of the
dissipative functional Q toward equilibrium and the prob-
ability P(—Q) of a deviation of the dissipative functional in
the opposite direction are related as

P(+Q)
P(—Q)

In =Q. (4.1)

The proof of (4.1), which is based on quite general and
fundamental ideas of statistical physics, has been obtained
for different nonequilibrium systems (statistical ensembles).
The most important quantity involved in the fluctuation
theorem (FT), the dissipative functional, is defined as a
logarithm of the relative probability of direct and reverse
trajectories in the process under consideration. The general-
ized nature of this functional allows formulating (4.1) for a
very broad class of systems, including (which is especially
important) those with a very small number of particles, where
it is necessary to take fluctuations into account. In the
interpretations of (4.1) that aspire to even greater impor-
tance, it is claimed (see, e.g., [93]) that the FT essentially
generalizes and augments both classical ideas due to Boltz-
mann and Gibbs on the behavior of thermodynamic entropy
(and the second law of thermodynamics associated with it)
and Onsager’s approach developed to describe weakly non-
equilibrium systems [77]. It is then assumed that in ‘particular’
cases (a large number of particles, the existence of local
equilibrium, the smallness of deviations from equilibrium,
etc.), Q reduces to a variation in thermodynamic entropy,
which is the basic notion in the classical studies referred to
above. This interpretation, if it were valid, would allow using
the FT to justify other assertions of nonequilibrium thermo-
dynamics, those already associated with thermodynamic
entropy, and the MEPP in particular.

The relation between the MEPP and the FT was
discussed, in particular, in [71, 72, 87, 88]. But it was shown
in a number of examples that Q2 does not always reduce to a
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variation in thermodynamic entropy. In [94], in particular,
this was demonstrated for the classical nonlinear Schlogl
reaction in the case of local equilibrium and a large number
of particles. In [95], several examples described by the
nonlinear Langevin equation were also used to show that
identifying the dissipative functional with entropy production
leads to the wrong results. This shows that the importance of
the FT for practical investigations of nonequilibrium systems
is overestimated. The existence of some dissipative functional
(generalized entropy production, and not thermodynamic
entropy production), which is necessary for the theorem to
hold, is not sufficient, because the form of this dissipative
functional and the procedure for its experimental determina-
tion are very individual for each of the nonequilibrium
systems and require essential information about the struc-
ture of the system (the connections and processes existing in
it). This information might be available either in working
with mathematical models of nonequilibrium processes or in
considering the simplest experiments in and of themselves. As
a result, the value of the information provided by the FT
drastically decreases: the FT does not give new information
on an insufficiently studied complex (black box) but estab-
lishes the equivalence between two different ways of writing
some relation (dissipative functional) whose form is not
known for the (unexplored) system under study. This is a
major drawback of the FT compared with the MEPP. ¢

5. Nonequilibrium (kinetic) phase transitions
and the maximum entropy production principle

Equilibrium phase transitions have been thoroughly studied
for a long time. These are transitions from one equilibrium
thermodynamic phase to another under variations in thermo-
dynamic parameters. Typical examples are given by transi-
tions from a crystal to a liquid (melting) and then to vapor
(boiling) with an increase in temperature. Traditionally, these
transitions are divided into first and second order, depending
on the jump-wise or continuous change in some thermo-
dynamic parameters under the phase transition (in particular,
specific volume and entropy change jump-wise under first-
order transitions and are continuous under second-order
ones). Kinetic or nonequilibrium transitions conventionally
comprise transitions from one nonequilibrium process (mode
or phase) to another under a change in a control parameter
[102, 103]. The most natural choice of such a parameter in
the thermodynamic description is given by a thermodynamic
force.

Examples of nonequilibrium transitions are abundant.
In particular, these include the transition from bubble boil-
ing to film boiling and the transition from heat transfer
due to thermal conductivity to convective transport as the
temperature gradient increases; nonequilibrium crystalliza-
tion attended by a change in the kinetics and the growth
pattern of crystals with changes in supersaturation or sub-
cooling; transitions from one type of discharge in plasma to
another with a change in voltage; and the transition from
the laminar to turbulent flow with a change in the pressure
gradient.

The study of general regularities of nonequilibrium transi-
tions has not yet reached the degree of maturity characteristic

6 This conclusion does not apply to the area of work close to the FT,
associated with the Bochkov—Kuzovlev and Yarzhinskii equalities [96—
101], wherein the main emphasis is on the experimentally measurable
quantities.

of equilibrium transitions, and is to a large extent being
constructed by analogy with its elder cousin. In particular,
the same division into first- and second-order transitions
is often used based on the jump-wise or continuous varia-
tion in certain transfer parameters, phase (nonequilibrium,
morphological) diagrams are being constructed, and a
number of notions are invoked such as a binodal (the
boundary of the absolute phase stability domain), a meta-
stable domain, a spinodal (boundary of the absolute phase
instability domain), and a critical point (see, e.g., [59, 60,
66, 67, 102-107]).

The most important question raised by the strategy to
construct a thermodynamic theory of nonequilibrium transi-
tions ‘by analogy’ is as follows: what is the analogue of the
thermodynamic potential under a nonequilibrium transition?
Until this question is resolved, the development of a thermo-
dynamic theory of nonequilibrium transitions remains mainly
of a terminological, superficial nature, and no mathematical
approach similar, e.g., to Landau’s theory of equilibrium
phase transitions [108, 109] can be constructed. We recall that
the notion of thermodynamic potentials was fully legitimized
in the physics of equilibrium phase transitions after the
introduction of the notion of entropy and the formulation of
the second law of thermodynamics — the assertion about the
entropy maximum in an isolated system. For nonequilibrium
processes, the most important characteristics are the rates or
times of transformations. The entropy and time can be used to
construct the quantity well known in nonequilibrium thermo-
dynamics, entropy production. Therefore, the idea was
expressed in a number of papers to use entropy production
as the nonequilibrium potential [56-67, 106]. Based on the
MEPP, the following corollary can be formulated [66, 106]:
under a nonequilibrium phase transition in a local’ element
of the system, its stable state is the one (mode or process)
corresponding to maximum entropy production. If two non-
equilibrium phases have the same entropy production, they
can coexist (i.e., can be observed together for a sufficiently
long time). In other words, the equality of entropy production
of two nonequilibrium phases allows determining the transi-
tion binodal.

In the case of nonequilibrium phase transitions, as for
the equilibrium ones, stability is understood as the invariance
of the system state under perturbations (either controlled or
not). Evidently, such actions lead to attenuation and change
the effect that various constraints exert on the system.
Consequently, a cause-and-effect relation is established in
accordance with the MEPP in this new situation. The position
and size of the domain in which such a transition occurs
must be directly related to both the features of the non-
equilibrium system under consideration and the perturba-
tions (their type, amplitude, energy characteristics, etc.). In
turn, the absence or insufficient level of perturbations in the
domain where a nonequilibrium transition is possible can lead
to establishing a cause-and-effect relation inconsistent with
the entropy production maximum. Such a relation can
naturally be called metastable. An increase in the perturba-
tion then takes the system into a stable state with the entropy
production maximum.

Below, we discuss a number of experimental examples
illustrating this corollary (Section 5.1), present the simplest
version of the construction of a theory of nonequilibrium
transitions like the Landau theory (Section 5.2), and give the

7 In the spatial, temporal, energy, etc. sense.
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results of numerical computations that confirm the hypo-
thesis formulated above (Section 5.3).

5.1 Examples

(1) Shibkov and his collaborators [110, 111] investigated
nonequilibrium growth of ice in a film of supercooled
double-distilled water. About a thousand measurements
were made, with the error in the rate being less than 5%.
Several results are shown in Fig. 2. The experiments were
performed at atmospheric pressure, and the range of
investigated supercoolings was up to 30 °C. Several different
nonequilibrium growth patterns and hence several non-
equilibrium (in this case, morphological) phase transitions
were observed in that range. Only one phase transition was a
nonequilibrium first-order type: from a stable needle to a
platelet, occurring at supercooling to 7.5°C.

Following [107], we now discuss this transition from the
MEPP standpoint. According to the above experimental
data, the dependence of the rate J on the supercooling AT
near the transition point is described well by a linear function
V = L(AT — 0), where L and 0 are some empirically deter-
mined dimensional coefficients. The values of L and 0 can
easily be determined from Fig. 2: they are 0.31 cm (°C s)_1
and 3.5°C for a stable needle and 0.78 cm (°C's) ™" and 5.0°C
for the platelet. From the standpoint of local nonequilibrium
thermodynamics, the above expression can be regarded as a
kind of relation between the thermodynamic flux (evidently,
proportional to the rate of transition from the melt to a
crystal) and the thermodynamic force (proportional to super-
cooling). Because the experimental datain[110, 111] are given
for the local growth rate (for example, of the top of the
needle), the thermodynamic flow also has a local meaning.
But the melt is supercooled by AT in [110, 111] for the entire
sample, and the supercooling is then different from the local
supercooling near the boundary, whose growth rate is being
measured. Therefore, the coefficient 6 can be regarded as
a correction to the thermodynamic force occurring in the
transition to local supercooling near the boundary and
depending on the curvature and surface tension of the
morphological phase under consideration.

Entropy production o, equal to the thermodynamic
force times the flux (see (2.2)), can then be represented as
0 =kV(AT —0) or as ¢ = kL(AT — 0)*, where k is some
dimensional constant. The dependence of entropy produc-
tion on supercooling for the needle and the platelet is shown
in Fig. 3. As can be seen from the figure, in the domain of
existence of the crystal structures under consideration,
(AT > 5—-7°C), the entropy production for the platelet
becomes greater than that for the needle starting with just
AT =~ 7.5°C, i.e., starting with the value at which a morpho-
logical transition from the needle to the platelet is indeed
observed in the experiment. We note that the crystal growth
rate under the transition at this point changes jump-wise by
approximately 30%. We can therefore conclude that the use
of the approach based on the MEPP has allowed quantita-
tively determining the nonequilibrium transition point to
within the experimental error.

(2) In the work by Kondepudi’s group [112-114], a simple
system of conducting balls 4 mm in diameter immersed in oil
was studied. The system was taken out of equilibrium by a
strong electric field. For this, a voltage in the range of 15—
30 kV was applied between the central electrode located at a
distance of about 5 cm above the surface of the oil and the
grounded ring-shaped electrode placed in the oil (Fig. 4). The

0 2 4 6 8 10 12 14 16 18
AT,°C

Figure 2. Dependence of the maximal velocity of the tip of the crystal on
the original supercooling of distilled water. Dark dots correspond to
dendrites, light dots correspond to stable needle-like crystals, and dark
and light triangles correspond to respective compact needle-like branches
and platelets. (Based on data in [110, 111].)

o, arb. units

AT,°C

Figure 3. Dependence of entropy production ¢ at nonequilibrium crystal-
lization of ice on supercooling AT. The dashed curve relates to the needle
and the solid curve, to the platelet. The left-hand parts of the parabolas
have no physical meaning. (From [107].)

strong electric field caused strong convection flows in the oil
and motion of the balls. Entropy production X in this system
at a fixed voltage is directly related to the magnitude of the
current, and it was calculated by the well-known formula for
Joule heat depending on current measurements (temperature
variations in the system were no more than 0.2 °C and did not
affect the calculation) [112-114]. The magnitude of the
current depends in a complicated way on the coordinate of
the ball and on the velocity of motion of the liquid.

Under the action of the field, the balls self-organize into
a dendritic structure rooted on the ring-shaped electrode.
After its formation, this tree can move along the electrode
in a complicated fashion, with slight changes in its shape.
Interestingly, if the resistance of the ring-shaped electrode
was changed by using a different coating, the root of the tree
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Figure 4. (Color online.) Self-organization of a dendrite-like structure
with application of voltage [112]. (a) Setup in which U = 26 kV voltage
between two electrodes is applied to conducting balls placed into 60 ml of
oil. (b—e) Four configurations following one another in time. (e) The tree
overall, undergoing slight changes, can move while preserving contact
with the annulus. (f) Entropy production rate 2 in the course of formation
of a dendrite-like structure. When the tree comes into contact with the
grounded electrode, 2 sharply increases.

avoided locations with higher resistance. It was found (see,
e.g., Fig. 4) that this complicated self-organization in each
case results in the system arriving at the state with the
greatest entropy production (while the structures them-
selves can have different forms). The value of that max-
imum depends on the number of balls, on the voltage, and so
on. Having arrived at a state with maximum 2 and staying
there, the tree can somewhat modify its shape. Such systems
differ only little in entropy production. Thus, an apparent
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Figure 5. (Color online.) (a) Center of the electrode is displaced and motion
of the root of the tree is constrained, which leads to lower entropy
production X; when the constraints are removed, the tree rapidly moves
so as to increase 2. (b) The system is tilted by 5° for 577-582 s; as a result,
the tree moves and acquires a lower value of X; when the horizontal
position is restored, the tree returns to a higher-X state. (From [112].)

coexistence of different structures occurs, with approxi-
mately equal entropy production values.

The maximum entropy production state is stable. This can
be seen from Fig. 5, which shows that the system returns to
the maximum X state after a temporary restriction of the
possibility of movement along the electrode of the base of the
tree or after a temporary tilt of the system.

Another case demonstrating the high stability of the
maximum-2 state is shown in Fig. 6 [114]. If, for example,
vibration results in disrupting the stem of the tree, it is
restored as time progresses. Under small perturbations, the
original dendritic structure and entropy production are
rapidly fully restored. Under large perturbations, the tree is
restored up to the initial value of 2 (but in a shape somewhat
different from the original) in a longer time, which varies from
trial to trial.

(3) A much more complicated system was studied
experimentally by Bezryadin’s group [115, 116]. Carbon
nanotubes 2 to 24 nm in diameter and 0.5 to 15 mm in length
were spread (suspended) in toluene. The concentration of
nanotubes was varied from 0.05 to 0.2 g 17!, which is much
below the percolation threshold. This suspended mixture was
placed between two electrodes with a voltage applied to them
(Fig. 7). It was found in the experiment that, under the action
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Figure 6. Self-reconstruction of a damaged tree [114]. (a) Entropy
production X as a function of time. (b—e) States of the tree corresponding
to the times indicated by vertical lines in Fig. a.
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Figure 7. Formation of nanotube chains [115]. The distance between the
electrodes is 1 cm, the applied voltage is 400 V, the series resistance Ry is
100 MQ, and Ry is the resistance of the suspended mixture (liquid with
suspended nanotubes). (a) Diagram of the experimental installation and a
photograph taken before applying the voltage. Photographs taken in
(b)45s, (¢) 90 s, and (d) 1500 s after applying the voltage.

>

of the electric field, the suspended mixture passes into an
electrically conducting state in a wide range of parameters.
This self-organization was attended by a release of heat,
which turned out to be proportional to the entropy produc-
tion (changes in temperature were negligibly small).

It was revealed that the stable state is the one with the
maximal entropy production; having reached it in time 7, the
system then remains in that state® (Fig. 8). The transition to
this maximal state can be either continuous (S1) or jump-like

8 This time, as is shown in [116], depends on the applied voltage.

Figure 8. Entropy production normalized to the maximum as a function
of time. The concentration of nanotubes is 0.075 g 17!, R, = 10 MQ. The
S1 curve corresponds to U = 75V, S2 to U = 325 V. At t, the dissipated
power reaches a maximum. (From [115].)

(S2) (see Fig. 8). The second path is therefore metastable
until 7y. The choice of the path in this complex system depends
on a number of factors, including the applied voltage. An
important conclusion of the study in [116] is that entropy
production is maximized only in the suspended mixture,
whereas the global production of entropy of the entire
electric circuit (see Fig. 7) is not maximal. This observation
confirms the locality of the MEPP.

(4) In [107], the transition from laminar to turbulent
motion in a smooth round pipe under the action of a pressure
gradient was considered from the MEPP standpoint; the
problem addressed by the authors was to predict the lowest
critical Reynolds number under arbitrary perturbations of
the fluid flow. In the case of local perturbations of the flow
near the entry to the pipe or in another part [117-122], the
experiment shows that the lowest Re. is approximately 1760
[118, 119]. Due to the mechanism of their production, these
perturbations have relatively short wavelengths. The case of
long wave perturbations has been studied less. It is much
more complicated to generate such perturbations and analyze
the structure of the flow in the vicinity of the transition. Such
perturbations can be achieved, for example, by rotating the
pipe about a vertical axis. In that case, a volume element of
the moving fluid is subjected to the action of the Coriolis
force, which results in perturbations of the fluid flow relative
to the pipe axis being observed, with a very long wavelength.
This amplitude of such a perturbation depends on the
Coriolis force, and hence on the angular velocity of the pipe.
Such a system was studied experimentally in [123].

An important experimental result obtained in [123] is
presented in Fig. 9. As can be seen, as the perturbation
amplitude increases in the case of longwave perturbations,
Re, decreases and asymptotically approaches 1200. Numer-
ical calculations of the flow in a round pipe [118, 124, 125] also
show the first manifestations of the transition to turbulence:
three-dimensional structures, so-called traveling waves, with

° In another limit case (infinitesimal perturbations, in progressively more
and more accurate experiments), the transition to turbulent motion can be
substantially delayed by shifting Re, to 10° or more [117, 118]. However, it
can be shown analytically that the considered flow is linearly stable for any
Re, and therefore the problem under consideration apparently has no
upper bound for the transition from the laminar to turbulent mode (no
transition spinodal) [118].
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Figure 9. Boundaries of different flows in a pipe. The axes show the
standard Re and the so-called oscillation Reynolds number Re,, (propor-
tional to the angular velocity, which is directly related to the perturbation
amplitude). Diamonds correspond to strictly laminar flow, dots, to a
nearly laminar flow in the absence of turbulent mixing, squares, to a
nonlaminar flow that is transitional to turbulence, and triangles, to strictly
turbulent flow. (From [123].)

a different azimuthal symmetry appear at Re, = 1250, which
corresponds to structures with small azimuthal symmetry
(i.e., with a long wavelength).

Entropy production in the motion of liquid in a pipe is
directly related to the dissipation of mechanical energy due to
forces of pressure (pressure drop Ap between the pipe ends). At
constant temperature and density of the liquid, we can assume
that the entropy production in the flow under consideration
is directly related to the so-called friction (resistance) factor
/(Re): Ap ~ /(Re)Re?, 6 ~ ApRe ~ /(Re)Re® [126-128].

Therefore, the analysis of the behavior of entropy
production at a given Re can be replaced with an analysis of
A. For a laminar flow, the resistance (Hagen—Poiseuille) law
has the form A = 64/Re, and for turbulent flow (Blasius
law),'% 1 = 0.316/Re%? [126, 127]. In passing from laminar
to turbulent flow, the drag factor (and therefore entropy
production) experiences a jump from lower values (relating to
the Hagen—Poiseuille curve) to large values (relating to the
Blasius curve). Following the MEPP, we use the equality of
entropy production to find the binodal of the nonequilibrium
transition (i.e., just the lowest value of Re, that still allows the
transition from laminar to turbulent flow) [107] (Fig. 10).
This Re, is approximately 1200. Thus, with one of the best-
studied nonequilibrium transitions, it has been shown that
the transition from laminar to turbulent flow in a round pipe
occurs in accordance with the MEPP.

5.2 Description of nonequilibrium transitions

based on the maximum entropy production principle

At the beginning of Section 5.1, we discussed the example of
an analytic calculation of the point of transition from one
nonequilibrium pattern of crystal growth to another under
changes in supercooling. A feature of that calculation was
that, based on experimental data for each nonequilibrium

10 Tn the turbulent domain, in contrast to the laminar one, numerous other
dependences 4(Re) have been found empirically [127, 129]. But the Blasius
formula, despite having been among the first to appear, is the best
approximation at relatively low Reynolds numbers (which is just the case
of interest to us here) [129].

Figure 10. Dependence of the friction factor 4 (or entropy production o) on
the Reynolds number Re. The dashed curve relates to a laminar flow
(Hagen—Poiseuille curve), and the solid curve, to a turbulent flow (Blasius
curve). (From [107].)

phase, the thermodynamic flux J was represented as a linear
function of the thermodynamic force X, J = a;(X — b;), with
a; and b; being some empirical coefficients characterizing the
ith nonequilibrium phase. As we have noted, the parameter b;
is necessary for transformation from the average thermo-
dynamic force typically known in experiment to a local force.
A local value for the flux follows directly from experiment.
The use of local values is a consequence of the locality of the
MEPP. Next, with the found dependences, expressions of the
form a;(X — b,-)2 were written for the entropy production of
each phase, and their equality was used to determine the
thermodynamic force at which the nonequilibrium transition
occurs. We note that the flux (growth rate in the example
under consideration) experienced only a positive jump under
the nonequilibrium transition, which was indicative of a first-
order transition. But how universal is this result? What would
happen if the values of @; and b; were arbitrary or the
dependences of J on X differed for the two nonequilibrium
phases in the vicinity of the transition? We now follow [67] to
discuss the result of a theoretical analysis of these questions.

Let the dependence of the thermodynamic flux on the
force be linear for one phase and cubic for the other:

leal(X—bl), (51)
D =a (X —b)’. (5.2)

Then, the dependence of entropy production on the thermo-
dynamic force for the two phases takes the form

21 :al(bel)z,
22 :az(X—b2)4.

(5.3)
(5.4)

The condition that entropy production be positive and equal
to zero at zero force implies that

X=by, X=by, a1>0, a>0. (5.5)

For convenience in what follows, we move to new
variables

x=X- b2 N (5.6)
Ji
yi= o (5.7)
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Table 1. Results of analysis for the model in (5.10), (5.11) [67].

Nonequilibrium phase Constraints Transition point coordinate Jump of the thermodynamic flux
transition type on the coefficients at the transition point
b>0, 1 < b
First-order ' Xo=—=(14+1\1+ 4b\//:> Ay, == (1 +\ 1+ 4b\/Z)
k>0 2vk 2
b=0, 1
Second-order ' Xo =—= Ay, =0
k>0 vk
1 b
——=<b<0, Aygr=—5 1+ 1+4bVk ),
Reentrant Xo=—=1£\1+4bVk
k>0 2vk b
Ay =5 (1= V1 +4bVk

In terms of the new variables, the dependence of the flux on
the force becomes [67]

n=x+b, (5.8)

(5.9)

and entropy production in the two phases, Eqns (5.3) and
(5.4), can be expressed as

y2:kx37

o1(x) = (x+ b)?,
o2 (x) = kx*, (5.11)

where b = by — b1,k =ay/a; > 0,and o, = X;/a;.

An analysis of the problem [67] shows that not only a first-
order transition, jump-like in the flux, but also a continuous
second-order transition (with only the first derivative of
the flux experiencing a jump) become possible in this model.
The final results for this nonsymmetric model are shown in
Table 1.

The transitions listed in Table 1 are illustrated in Figs 11—
13. Apparently, the most interesting one is the recurrent
transition (see Fig. 13), consisting of a transition from the
second phase to the first and then back to the second. We note
that, under the second transition, the thermodynamic flux
experiences a negative jump. Hence, a negative jump in the
flux does not contradict the MEPP: a thermodynamic flux
can decrease jump-wise, but the entropy production directly
proportional to it passes from a lower value to a higher one.
This example shows the falsity of conclusions made in a
number of experimental studies (see, e.g., [105]) that the
jump-like decrease in thermodynamic flow observed there
under a nonequilibrium transition disproves the MEPP.

The obtained constraints on the model coefficients and the
revealed relations between the transition type and the form of
the dependence of the thermodynamic flux on a force are
important for constructing a phenomenological theory of
nonequilibrium phase transitions and for describing and
classifying transitions of dissipative structures. The approach
considered in [67], which had emerged largely under the
influence of Landau’s theory, well-proven in the physics of
equilibrium phase transitions [108, 109], is in need of further
analysis, generalizations, and development.

5.3 Full phase diagrams. Metastability

In Section 5.1, we gave examples of the application of the
MEPP to the available experimental data. Here, we discuss
the case where the use of the principle allowed making a
prediction that was subsequently confirmed in a numerical
experiment. In the same numerical experiment, the MEPP
applicability domain was revealed. We consider this example.

-1 0 1 X

Figure 11. Nonequilibrium first-order phase transition [67]. Dependence
of (a) thermodynamic flux and (b) entropy production on the thermo-
dynamic force (in terms of dimensionless quantities). The solid curve
corresponds to the first nonequilibrium phase, and the dashed curve, to the
second one. The bold line shows the stable phase in accordance with the
MEPP, and the thin line, the unstable phase. b = 2v/3/9 + 1, k = 1.

In[106, 130—133], a nonequilibrium phase transition in the
course of diffusive growth of particles was studied theoreti-
cally in the case where, for certain parameters, morphological
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Figure 12. Nonequilibrium second-order phase transition [67]. The solid
curve corresponds to the first nonequilibrium phase and the dashed curve,
to the second. Bold line shows the stable phase in accordance with the
MEPP, and the thin line, the unstable phase. » =0,k = 1.

stability was lost, starting with some particle size, and a
transition occurred from a regular growth pattern (spheri-
cal, cylindrical) to a much more complicated pattern.
Morphological stability was studied in the setting traditional
for this type of problem: quasistationarity of the process
(valid for a relatively small supersaturation) and the isotropy
of the kinetic coefficient of crystallization and of the surface
tension. The mathematical setting of the problem is as
follows:

AC=0, (5.12)
oC .
D a , = ﬁ(Cin[ _ Cm(i) r, (513)
Clro) = Cux (5.14)
D oC
=—— . 1
4 Csol - Cint e r (5 5)

Here, f is the kinetic coefficient of crystallization, C is the
concentration in solution, C,, and C;, are concentrations of
the dissolved substance far from the crystal and near its

surface, C,;{ is the equilibrium concentration of the dissolved

~
L~

—0.5 0

Figure 13. Reentrant nonequilibrium phase transition [67]. The solid curve
corresponds to the first nonequilibrium phase, and the dashed curve, to the
second. The bold line shows the stable phase in accordance with the
MEPP, and the thin line, the unstable phase. The inset shows the range
x €[0.1, 0.3] enlarged. k = 1,5 = —/3/9.

substance near the surface, Cy is the density of the crystal, ris
the radial coordinate of the crystal surface, e is the normal to
the crystal surface, D is the diffusion coefficient, r,, is the
radial coordinate far from the crystal, and ¥V is the local
growth rate of the crystal.

Traditionally, the stability analysis is done using a
perturbation of the original growth pattern (a disc, a
cylinder, or a ball) by individual harmonics of a mode k with
an amplitude 4. From the solution of (5.12)—(5.15), a minimal
critical size of the crystal is then found at which the growth
rate of the perturbation amplitude changes sign from negative
to positive. Thus, the critical size is the basic characteristic of a
morphological transition. We next discuss the results in [132,
133] only for a round crystal; other growth patterns show only
quantitative differences, and the corresponding details can
safely be omitted here.

If we assume that the perturbation amplitude is infinite-
simal and restrict ourselves to the linear perturbation theory,
then the critical stability size RS for the growth of a round
crystal can be expressed as [132, 133]

o LAk ) + V(i +1241k(k + 1))+ dak(k + 1) |
(5.16)

where o = D/(fR*) is a dimensionless combination char-
acterizing the growth mode (at small o, growth is limited by
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diffusion, and at large o, by surface phenomena), 4, is a
dimensionless combination related to r,,, R* is the critical
nucleation radius, and R® in (5.16) is normalized to R*.

Formula (5.16) fully determines the stability of the
growing round particle under infinitesimal perturbations.
Evidently, using the terminology from the physics of equili-
brium phase transitions, this size can be considered a spinodal
of the morphological transition. Classical linear analysis
states nothing when the perturbation amplitude is not
infinitesimal. But finding the stability conditions for arbi-
trary-amplitude perturbations of shape is a very important
problem for both theory and practice. To solve that problem,
the MEPP was invoked in [132, 133] and the hypothesis was
put forward that this allows finding the binodal of the
transition under consideration. !

The local entropy production 2 in a volume element of a
solution in the vicinity of a crystal surface was written as [132,
133]

X~ 12de, (5.17)
where dQ is the volume element of the solution near the
crystal surface.

With the adopted hypothesis, solving the equation
AXY =0 for the crystal size R, we can find the transition
binodal (here, AX is the difference between local entropy
production near the surface of two morphological phases !2).
Solving the equation AX = 0 in the framework of mathema-
tical model (5.12)—(5.15) for a round crystal in the first order
in the perturbation amplitude yields the binodal [132, 133]

1 ok
b—_ —
R 2{1 2k71+
YA .
2k —1 2k — 1
(5.18)

which, as in (5.16), is normalized to the critical nucleation
radius. It turns out that, for any parameters R® < R®, and
also for R > RP, entropy production in the new (perturbed)
phase is greater than in the original one (particle of a round
shape).

The domain between R® and R® was assumed to be
metastable in [132, 133]. In this domain, depending on the
perturbation amplitude, a morphological transition occurs,
starting with R = R® (at arbitrary amplitudes) and up to
R = R°® (at an infinitesimal amplitude). Closer to the spinodal
size, smaller-amplitude perturbations are capable of causing a
nonequilibrium transition. With the use of (5.16) and (5.18),
full morphological phase diagrams of the domains of stable,
metastable, and unstable crystal growth were constructed
analytically in [132, 133]. For a wide domain of parameters,
an overlap of metastable domains belonging to different
perturbing harmonics was observed, which is indicative of
the possible coexistence of a large number of morphological
phases. It was also found that the crystal mass increases jump-

24;k(k? 1)
2%k —1

24,k(k2 —1)7?
2k —1

2 _
L gy K2k 1)}7

' In accordance with the terminology of the theory of phase transitions, a
binodal is understood as the boundary separating the domain of an
absolutely stable phase from the domain of a metastable or unstable
phase.

12 In this case, one morphological phase is understood as the original
round growth pattern, and the other, as the shape perturbed by a certain
harmonic.

like under morphological transitions. The magnitude of the
jump decreases as the kinetic coefficient of crystallization
decreases, as the relative supersaturation decreases, as the
surface tension coefficient increases, or as the number of
perturbing harmonics increases.

Approximately seven years after the analytic predictions
were made in [132, 133], problem (5.12)—(5.15) was numeri-
cally investigated in [134, 135] for stability under arbitrary-
amplitude harmonic perturbations of the crystal boundary.

Numerical calculations have shown that, for any mode of
growth (in the range from diffusion-limited to kinetic) and
any mode of initial harmonic perturbations, the dependences
of the critical size R. on ¢ are similar and have two char-
acteristic special points: R® as d — 0 and a minimum point R
(Fig. 14). The first size R® is the spinodal, which were well
studied for stability by analytic methods of classical linear
analysis, but the existence of R® appears to be a rather non-
trivial result. By its meaning, R® coincides with the binodal
predicted previously. Indeed, let there be a growing round-
shape particle and assume that its growth occurs in a medium
where perturbations are possible, for example, with some
definite mode k and an arbitrary amplitude. According to
the results of the calculation (see Fig. 14), the transition from
stable to unstable growth then occurs at some critical size
corresponding to a minimum in the dependence of R on ¢. If
the experiment is performed more ‘carefully,’ i.e., the level
(amplitude) of the perturbation in the medium is below some
critical value, then, according to the calculation, the size of the
stability domain increases (and the critical radius becomes
equal to R*® in the limit of zero amplitude). Thus, depending
on the level of perturbation, the transition to unstable growth
can be observed in the range from R to R®, which is called the
metastable domain.

In Fig. 15, we show the behavior of the metastable domain
depending on the growth mode for different harmonics. This
diagram was obtained by numerical calculations [134]. In
the domain o < 1, which corresponds to diffusion-limited
growth, the metastable domains corresponding to different
harmonics do not overlap. In the transition domain
1 < o < 10, the binodal of the (k + 1)th harmonic and the
spinodal of the kth harmonic come closer to each other, and
at o > 10 they intersect, with the result that metastable
domains of critical radii overlap for neighboring harmonics.
For values o > 100 (corresponding to strictly kinetic growth),
intersections of three or more metastable domains are
possible. Consequently, in the intermediate and kinetic
growth modes, in the case of growth in a medium where
perturbations of different amplitudes and modes are present,
a large number of particles of different shapes—different
morphological phases—can coexist and develop from a
round seed.

We illustrate the foregoing with a specific example. Let
numerous round particles grow in a medium where perturb-
ing actions with k>4 and an arbitrary amplitude are
possible, leading to boundary distortions. We assume that
the larger-amplitude perturbations appear less frequently (in
both time and space), and, conversely, there are infinitely
many perturbations with an infinitesimal amplitude. Let
physical and chemical parameters of the medium and the
particles located in it correspond to the value o = 100. Then,
the particles grow along the straight line CE (see Fig. 15).
Before point C, all particles have a round shape. In the
interval CD, particles of two types can be observed simulta-
neously: round ones (which are more likely to occur under the
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Figure 14. Numerically obtained dependence of the critical size R. of morphological stability on the perturbation amplitude ¢ for different growth modes

o and perturbing modes k. (From [134].)
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Figure 15. (a) Dependence of the spinodal R* (solid curve) and the binodal R® (dashed curve) on the growth mode « for different perturbing modes k.
(b) Possible time evolution of particles growing in a medium (corresponding to the CDE trajectory). (From [134].)

above assumptions regarding the statistics of perturbations)
and those that have lost stability with respect to perturbations
with k = 4. After point D (which is the binodal for perturba-
tions with k = 5), the appearance of particles of the third type
is possible in the medium, due to the loss of stability by round
particles under perturbations with k = 5. Hence, the co-
existence of three morphological phases is observed in the
interval DE. After point E (which is the spinodal for
perturbations with k = 4), all the remaining round particles
lose stability with respect to perturbations with k = 4.

It thus follows (see Figs 14 and 15) that metastable crystal
growth behavior in the mathematical setting under considera-
tion does exist, as was indeed predicted in [132, 133] based on
the MEPP. But the most important question is how well the
binodal radius calculated with the help of entropy production
coincides with the numerically predicted one. A quantitative
comparison of the results for a round crystal is given in
Table 2.

As can be seen from Table 2, the accuracy of the predic-
tion of binodals based on (5.18) for diffusion and intermedi-

ate particle growth regimes is quite good irrespective of the
perturbation mode, the discrepancy being in the range of
only 2 to 10%. But in the transition to the kinetic mode
for perturbations with small values of k, the discrepancy
becomes much greater (for k = 2, it reaches 35%). A possible
explanation is that the MEPP is a principle of nonequilibrium
physics and is poorly applicable to systems very close to
equilibrium. Indeed, the more we recede from the diffusion
growth mode (by increasing o), the more homogeneous the
diffusion field becomes at the particle surface. In addition, the
more longwave the boundary perturbation is, the closer the
curvature (and hence the equilibrium concentration of such
perturbed particles) is to its nonperturbed value. As a result,
both the absolute value of entropy production and the
difference between entropy productions for the perturbed and
unperturbed crystal growth patterns are very small.

The conclusion from analytic and numerical work in [130-
135] can be that the MEPP indeed allows finding the most
stable state in nonequilibrium growth. The transition point
defined with the help of the principle is then in quantitative
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Figure 16. Schematic of a radial Hele-Shaw cell. / —displacing fluid, 2—
displaced fluid.

Table 2. Binodal radii for a round crystal obtained numerically [129] and
analytically (5.18) [132].

o k R® R®

0.1 2 11.3 10.8
3 23.6 24.6

4 41.7 432

5 63.8 66.6

6 93.7 94.9

1 2 11.8 10.6

3 239 24.4

4 42.0 43.0

5 63.8 66.5

6 92.5 94.5

10 2 14.2 9.2
3 25.1 23.0

4 40.9 41.7

5 60.8 65.2

6 89.3 93.6

agreement with the results of independent numerical analysis
for morphological stability. Such a verification has been done
not only for the round crystal considered here but also for
spherical crystals.

Besides crystallization, the MEPP has also been used to
calculate the binodal and stability in another classical
problem, that of morphological stability of an interface of
two fluids in the case of displacement in a Hele-Shaw cell
[136—138]. In this problem, as is known, if the viscosity of the
displacing fluid is less than the viscosity of the fluid being
displaced, then, starting with some size, the originally round
displacement front is broken and so-called ‘fingers’ occur.
The standard mathematical formulation of the problem is as
follows. In a radial Hele-Shaw cell, stationary displacement of
two immiscible and incompressible liquids takes place (with
the displacing fluid viscosity g, less than the viscosity i, of the
fluid being displaced; Fig. 16). The cell has a thickness » and
size R,,. From the center of the cell through an aperture of
radius Ry comes the displacing fluid with a constant surface
flow rate Q. The mathematical problem setting has the form
[136-138]

10/ op: 1 8%p;
Il iy ) — = .1
ror (r ar) +r2 02 0, (5-19)
op 0
— M, — = 5.20
: on Ro 21‘ER07 ( )

op op2
M - — - .
! on - 2 on l,s’ (5.21)
2¢ mKe
— A 22
prop| =gt (5.22)
J2 =0, (5.23)

where p; is the pressure in the fluid (i = 1, 2 for the respective
displacing and displaced fluid), ¢ is the surface tension at the
interface between the fluids, n is the normal to the surface,
M; =b?/(12y,), and K is the curvature of the distorted
interface surface. The initial boundary between the liquids is
perturbed harmonically, ry = R + cos (k¢), where R is the
radius of the boundary, ¢ is the perturbation amplitude, & is
the perturbation mode, and ¢ is the polar angle.

With the help of linear analysis for morphological stabil-
ity and the MEPP, the transition spinodal and binodal were
determined, and domains of the coexistence of different
morphological phases under radial displacement were pre-
dicted in the mathematical setup in Eqns (5.19)—(5.23) [136—
138]. In [139-141], an experiment was performed that
qualitatively confirmed predictions of the theory. Quantita-
tive differences are related to the fact that the entirety of
approximations used in the classical theory cannot be taken
into account in experiment. In the numerical experiment in
[142], classical system (5.19)—(5.23) was investigated under
conditions fully coincident with theoretical ones. In this
experiment, the perturbation of the interface was assumed to
be harmonic with an arbitrary amplitude. The theoretically
predicted values of the binodals were confirmed in the numer-
ical experiment. Quantitative differences did not exceed 10%.
As in the case of diffusive crystal growth, theoretical
predictions based on the MEPP and numerical calculations
give better results, the more nonequilibrium the displacement
process is (i.e., the greater the displacement rate and the
difference in viscosity, and also the more the boundary shape
differs from the round one).

6. Current directions for the development
of the maximum entropy production principle

6.1 Classical directions of development
1. Theory of nonequilibrium processes. Not much has been
done here recently. We note three areas of work.

The first [37, 143] is related to Beretta’s idea about the
fastest increase in entropy (steepest entropy ascent), men-
tioned in Section 2.1. Starting in 2014, Beretta has been
advertising and developing his method as a uniform con-
structive realization of the MEPP for solving nonequilibrium
problems at different levels of description. The key role is
played here by a geometric metric with respect to which the
trajectory length is measured in the state space. With an
appropriate metric field defined for an arbitrary nonequili-
brium state, it is possible, as Beretta believes, to construct
most of the existing nonequilibrium theories such that the
nonequilibrium state spontaneously develops in the state
space along the path of the fastest increase in entropy
among the paths compatible with the existing constraints. In
the framework of this method, Beretta discusses statistical
models of relaxation, kinetic models like the Boltzmann
equation, rational extended thermodynamics, macroscopic
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nonequilibrium thermodynamics, chemical kinetics, etc. In
fact, the approach presented in [37, 143] is a generalization
and significant extension of Ziegler’s orthogonality relations
(see Section 2.1).

In the second area [144], a generalized nonequilibrium
thermodynamics is proposed, where the local equilibrium
hypothesis and the assumption of a known local connection
of fluxes and forces are replaced with the postulate of the
scale invariance of such a relation, i.e.,

D= " Ly, Jral )
r,...,p=1 (61)

o+t +y, =k,

where D is a positive dissipative homogeneous function of
degree k/m, defined as the product of generalized forces
(causes) and generalized fluxes J (responses) in the system;
and k,m,r,l,....p, @, pB;...,y, are nonnegative integer
numbers. In the case of local equilibrium, D coincides with
entropy production.

It has been shown in [144] that the proposed formula-
tion (mainly based on (6.1)) not only allows deducing the
fundamental results of classical linear nonequilibrium ther-
modynamics but also yields a number of known assertions
in the nonlinear case (the MEPP, the condition of macro-
scopic reversibility, and generalized reciprocity relations); the
applicability of these assertions is the subject of a discussion
in the literature. Dropping the hypothesis of local equilibrium
essentially extends the applicability domain of the obtained
results, first and foremost due to the greater freedom to
choose fluxes and forces compared with the local-equilibrium
case. An interesting corollary of the approach proposed in
[144] is a possibility (for k < m) of the inversely proportional
dependence between fluxes and forces. In that case, as a
thermodynamic force decreases, the thermodynamic flux
increases, and, in the limit of zero force, the flow is infinitely
large (we note that D vanishes in this case). Such an exotic
relation between a flux and a force can be very important in a
number of systems ! for which classical thermodynamics is
inapplicable, for example, because of the absence of thermo-
dynamic equilibrium.

In the third area of work, the relation between the MEPP
and the Kolmogorov—Sinai entropy maximization procedure
[145, 146] is discussed. The analysis is limited to the simplest
Markov chain, the so-called ASEP (asymmetric simple
exclusion process), which describes the transport of particles
between two reservoirs via direct and reverse probabilities
along some one-dimensional chain. This model is one of the
most important ones for describing nonequilibrium systems,
similarly to the Ising model in the theory of critical phenom-
ena. In working with the ASEP, it is usually assumed that the
relation between transition probabilities is known, and the
task is to solve the problem exactly for the steady flow. Here,
by contrast, this relation is assumed to not be known
exactly, and by varying the parameter of the relation,
different stationary states are then obtained, and thermo-
dynamic entropy production and the Kolmogorov—Sinai
entropy are calculated as functions of this parameter. The
authors of [145, 146] show that the dynamical rules that
maximize entropy production and the rules that maximize the
rate of change of the Kolmogorov—Sinai dynamical entropy

13 Such systems are encountered in branches of science such as nano- and
astrophysics and neuropsychology.

agree with each other with high accuracy. The accuracy
actually depends on the system size, the degree of non-
equilibrity, etc. The revealed relation between two entropies
is very important for the further development of the theory of
nonequilibrium systems. The authors also note the relation of
the above principles to the principle of minimizing the time
that the system takes to reach a stationary state (the mixing
time) [146, 147].

2. Work on hydrodynamics. We note three groups of recent
work in this field.

In the work by Glimm’s group [148] (see also [149]), the
current crisis in numerical modeling of turbulence is noted.
This crisis is related to the well-known problem of choosing
the computation grid scale and methods of data coarsening
in strongly developed turbulence. As the authors mention,
this problem only becomes more acute as the computation
power increases. They discuss several popular algorithms for
a numerical solution to the problem based on different
physical approaches. The analysis of old and new results
shows that the best solution strategy agrees with the MEPP.
We note that the authors of [148, 149] radically insist that a
condition necessary for the quality and applicability of
numerical algorithms is given by their consistency with the
MEPP (which, similarly to a conservation law, must serve as
one of the criteria for certification of a numerical method). In
recent paper [150], Glimm and collaborators mathematically
confirm in a sufficiently general form that maximal entropy
production is a necessary condition for selecting a physical
solution of the Euler equations for an incompressible fluid.
Their results on modeling turbulence actually extend the ideas
of Robert and Sommeria, first proposed in 1992 in [151] (a
review of this and other papers can be found in [4]).

Overall, to generalize the assertion expressed in [148, 149],
any mathematical (or numerical) model for studying non-
equilibrium processes must satisfy the MEPP. Consequently,
if a model does not satisfy the MEPP, then this is a deficiency
of the model, but not a manifestation of the falsity of the
principle.'* However, the ‘falsity’ of the MEPP or the options
for ‘improving’ it are still being sought along that path. For
example, the authors of recent paper [152], using one of the
generally accessible software packages for numerically solv-
ing problems in fluid mechanics, consider transitions between
different structures under thermal convection and conclude
that the MEPP must be refined and improved in a number of
cases.

The second direction of work that we note is related to the
further development of Paltridge’s ideas (see Section 2.2). In
[153], after a brief critical review of the modern state of
climate modeling (including the MEPP-related one), a rela-
tively simple MEPP-reliant model of climate is constructed in
order to find vertical energy fluxes and the temperature
distribution in the atmosphere. The model differs from the
previous ones by a detailed description of energy transforma-
tions. Various contributions, including that of the chemical
composition of the atmosphere, were taken into account in
the modeling. The result of computations in [153] are closer to
observations than the results of previous models. In [153],
the effect that variations in carbon dioxide concentration
exert on climate was also investigated. The authors express
the hope that the MEPP models of climate similar to the one
that they considered can be very promising in the class of

14 See also footnote 4.
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models that have a small number of fitting parameters, but at
the same time are in good agreement with long-duration
observations.

In the third area of work [154], the morphological stability
of a bubble surface was investigated in the inertial regime of
bubble growth described by the Rayleigh equation. In this
approximation, the motion of the boundary is entirely deter-
mined by the difference between pressures inside and outside
the bubble, while thermal processes due to evaporative
cooling of the liquid are disregarded (this approximation is
valid for growth of small bubbles in a strongly overheated
liquid or at decreased pressure). The conclusion consists of
the morphological stability of the bubble surface under
infinitesimal perturbations in the inertial growth regime.
For the first time, a thermodynamic calculation of morpho-
logical stability of a bubble was done with the use of entropy
production and the MEPP. In accordance with the results of
the thermodynamic calculation, bubble inertial growth is
always morphologically unstable (unstable to perturbations
of an arbitrary, not necessarily infinitesimal, amplitude).
This theoretical result for the first time allowed explaining
the instability (roughness) of the bubble surface observed in
experiment. Previously, explanations of this experimental
result required a much more involved mathematical model
of bubble growth.

3. Work in materials science. Modern investigations, like
the preceding ones, are concentrated here on nonequilibrium
crystallization and work on deformations, ongoing since
Ziegler’s time. These investigations are mostly aimed at
solving specific problems of practical importance for technol-
ogy and are hardly of interest to a broad group of researchers;
we therefore very briefly mention only some of the recent
work. !

Paper [156] is a review, augmented with some original
results, on rapid solidification of microstructures and the
additive manufacturing with beam surface heating (laser,
electron flux, etc.). The parameters of the structure (includ-
ing the scale of the smallest microstructure), temperature,
and fluid flow velocity are calculated as functions of the
beam parameters. A theory based on the MEPP is used in
calculations. In [157] (a paper by Sekhar’s research group),
experimental results for dilute alloys during solidification
are compared with those obtained using a model based on
the MEPP. In particular, experimentally determined solute
diffusion constant in dilute binary Pb—Sn alloys is compared
with predictions of various models; the MEPP model is noted
as the preferable one.

Modeling the microstructure evolution under structural
phase transformations is currently a complicated subject,
mainly because of the competition between potential pro-
ducts of the transformation and the multiscale nature of the
relevant processes. In a paper devoted to this subject,
Ref. [158], a probabilistic MEPP-type model is developed in
which a Fokker—Planck-type equation is derived for the
evolution of many microstructure parameters of the resul-
tant phases. The final model, which is free of fitting para-
meters, is used to study sedimentation in Al—Cu alloys and
yields results on the sedimentation sequence and its kinetics,
which agree with experimental data.

In [159, 160], a simple phenomenological model based on
the MEPP was proposed, which predicts an explicit depend-
ence of the velocity v and size p of a dendrite tip on

15 A review of work done prior to 2015 can be found in [4, 75, 155].

supercooling 4 under dendritic crystallization. By applying
the principle to the simplest local heat balance equation on
the crystal surface, it follows that v = c4?> + dA® and p =
a/A+ b (where a, b, ¢, and d are some phenomenological
coefficients). These dependences were checked against the
existing experimental data on stationary growth of dendrites
of succinonitrile (SCN) in terrestrial conditions and in
microgravity, and their improved quantitative correspond-
ence compared with earlier approximations was observed
[159]. Subsequently, the growth of ammonium chloride
dendrites from aqueous solution was studied experimentally
[160]. The growth rate and the curvature radius of the primary
and secondary branches in nonstationary and stationary
growth were found as functions of relative supersaturation.
It was shown that the results of experiment can be quantita-
tively described by a phenomenological MEPP model [159]. A
hypothesis is also put forward that the values of the ¢ and »
coefficients for the primary and secondary branches of the
dendrite coincide.

In [161, 162], in experimental studies of nonstationary
growth of dendritic and seaweed structures in nonequili-
brium crystallization of ammonium chloride in a thin planar
capillary, it was revealed that the specific increase in mass (in
area for the quasi-two-dimensional system under considera-
tion) is the same for the coexisting different parts of the
structure (including the primary and secondary dendrite
branches). In [75, 163], this was explained using the MEPP.
Indeed, as noted above, a corollary of the principle consists in
the equality of specific entropy productions in simultaneously
growing parts of the crystal. In this case, we can approxi-
mately write [75, 163] j1Ap,/R1 = jaAu,/ R, for the first and
second parts of the crystal, where j; and j, are the fluxes of
the crystallizing component toward the boundaries of the first
and second parts of the crystal, and Ay, /R; and Ap, /R, are
chemical potential gradients at characteristic distances R,
and R, for the first and second parts. The differences between
chemical potentials near the coexisting parts of the crystal
under consideration are approximately equal (Au; = Ap,). In
accordance with the mass conservation law at the boundary,
we have j = 71/ R* up to constants (where 7 is the change in
time of the crystal mass m2). Substituting the expression for the
flux in the above equality, we obtain 7 /R} ~ riy/ R or,
dividing by the density of the crystal, 71y /m; = n1y/m;. Thus,
the use of the MEPP allows explaining the experimentally
observed equality of specific mass increments for different
coexisting parts of a crystal undergoing nonequilibrium
growth.

In [164], an analytic three-dimensional model is worked
out based on the MEPP for describing a stable state in the case
of strong plastic deformation resulting from continuous
welding by friction. No a priori hypotheses or measured
parameters of the response to the action are assumed. The
exactness and universality of the model have been confirmed
by experiments with eight types of alloys. The results of the
experiments have shown that the model can be used to make
precise predictions of the temperature, axial shortening rate,
and the welding power based only on the initial condition,
sizes, and heat-transfer properties of the materials. The
friction factor, traditionally regarded as an empirical para-
meter, is also amenable to prediction.

6.2 Maximum entropy production principle in biology
The MEPP found wide use in biology about 20 years ago. We
briefly summarize some work areas.



578 L M Martyushev

Physics— Uspekhi 64 (6)

Based on the MEPP, Jureti¢ and collaborators investi-
gated a number of relevant problems of bacterial photo-
synthesis and chemotaxis [165-167] and the evolutionary
laws of the efficiency of enzymes (see, e.g., [168—170]).
Applying nonequilibrium thermodynamics and the MEPP,
Kleidon [171-173] studied the role of biota in energy fluxes
on Earth (atmospheric circulation, hydrology cycle, bio-
geochemical cycles).!® Vallino and collaborators [174-176]
modeled natural microbial systems using the MEPP.!7
Making comparisons with the results of field observations,
they conclude that the model is extremely viable, although it
requires fewer parameters than previous models do. Dewar
showed in [177] how the MEPP invites a unified view of dif-
ferent optimization theories proposed previously to describe
the life-sustaining activity and evolution of plants.

In what follows, we focus on one research avenue that is of
special interest and importance.

Work devoted to biological evolution. A huge number of
researchers have touched upon the subject of evolution from
the standpoint of approaches related to the MEPP in one way
or another. The origin of this subject can be traced back to the
classics of the 19th century. Boltzmann’s phrase (1886) is well
known: “The general struggle for existence of animate beings
is therefore not a struggle for raw materials — these, for
organisms, are air, water and soil, all abundantly avail-
able—nor for energy which exists in plenty in any body in
the form of heat (albeit unfortunately not transformable), but
a struggle for entropy, which becomes available through the
transition of energy from the hot Sun to the cold Earth™ [178].
Attempts to relate the driving force of Darwin’s evolution —
natural selection — to some specific thermodynamic charac-
teristic are numerous. Starting in 1922, these investigations
were greatly influenced by the work of Lotka [179-181], who
stood for the principle that evolution occurs in the direction
that makes the general flow of energy through the system
maximal among energy flows for all systems compatible with
the existing constraints. In other words, species compete for
the acquisition of accessible (free) energy, and those that are
more successful in obtaining and using it become the winners.
In [182, 183], a modern analysis of Lotka’s principle is given,
and its relation to the MEPP is discussed. In principle, this
relation is obvious: an increase in energy flow inevitably leads
to an increase in heat dissipation, because real possibilities of
increasing the efficiency factor are very limited.

An important step on the path to the modern formulation
of the MEPP was made by Kirkaldy in [184]. His studies were
already mentioned in Section 2.2. In 1965, heuristically, he
practically guessed the modern view of evolution from the
standpoint of thermodynamics, noting that evolution occurs
by alternating maximization and minimization of entropy
production. He related the maximization of the entropy
production of an evolving system to fluctuations resulting in
the appearance of new internal relations, and minimization of
entropy production to the relaxation of these fluctuations. In
1968, Dolnik used experimental data to show that, as living
creatures increase their complexity from protozoa to mam-

16 These questions pertain to the widely known Gaia paradigm, according
to which life is responsible for maintaining homeostatic conditions on
Earth. Influence is exerted by tuning Earth’s albedo, the carbon dioxide
content, etc. Studies by Kleidon [171-173] contain important and
extensive information on energy and entropy flows in different geospheres.
17" A metabolic network is used in the model to represent microbial
oxidation-reduction reactions, with the biomass distribution and the
reaction rate determined by solving an optimization problem.

mals and birds, specific heat release noticeably increases [185].
The next important work was the study by Ulanowicz and
Hannon [186] (1987), where they proposed a number of
arguments supporting the hypothesis that living systems
produce more entropy compared with the amount that
would be produced in the absence of life. We must also
mention the studies by Aoki [187, 188], who, starting in
1989, performed calculations of entropy production for
different organisms and lake ecosystems and argued for the
assertion that, at the initial stage of development of an
organism (ecosystem), entropy production increases, and at
the final stage, decreases. These arguments give good support
to Kirkaldy’s ideas and the MEPP.

After 2000, the number of papers discussing evolution
(not only the biological one but also cosmic, technological,
etc.) from the standpoint of the MEPP or closely related
principles drastically increased. We refer the interested reader
to reviews [2, 6, 183, 189-199].

We outline the views on evolution from the MEPP
standpoint that have taken shape to this day. In accordance
with the generalized formulation of the principle, on any
occasion at any hierarchical level, a nonequilibrium system in
the course of self-organization selects the state that maximizes
the entropy production density; or, even more concisely,
nature in its development prefers systems that produce
more specific entropy.!® An obvious corollary of this is the
emergence of life on Earth, the increase in complexity of living
creatures in the course of evolution, the emergence of human
beings, and the entire course of the development of our
civilization (from humans that started using fire to humans
widely using oil fuel and atomic energy).!® As a result, the
MEPP turns out to be the most important principle explain-
ing the direction (progression) of biological and techno-
logical evolution. According to this principle, the increase in
complexity in the process of evolution is determined by the
fact that, at the fixed constraints of the surrounding world
(in general, strongly nonequilibrium), systems with max-
imum entropy production emerge (cells, organs, organisms,
communities, etc.). The tendency toward an increase in
entropy production is fundamental for both the emergence
of biological material and in many cases for natural selec-
tion. The MEPP allows a rather original combination of
Lamarck’s idea of the tendency toward perfection and
Darwin’s idea, which was its antithesis at a time, of natural
selection. Following the MEPP and ‘selecting’ in accordance
with it, organisms naturally become more complex because
higher levels of organization and complexity require con-
suming more free energy, which, being transformed, pro-
duces more entropy.

Such increases in complexity in the course of evolution
(usually called progressive) is a rather rare evolutionary
event. The frequency of such transitions is much lower than
the frequency of transformations occurring at a constant,
already established, level of complexity. Transitions to the
next evolutionary level (establishing new relations between
driving forces and the emerging functions) occur in accord-
ance with the MEPP, but, at a given (already attained) stage
of system development, its long-term optimization is possible
(involving competition and selection), which can notably
decrease entropy production (for systems not too far from

I8 In many cases, we can speak not of entropy but of usual heat released.
19 Indeed, this occurs with a progressively greater specific release of
entropy (heat); numerous substantiations can be found in [185-189, 191,
192, 196].
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equilibrium). We give the following example. Humanity, in its
development, moved to mass use of electric power, which led
to a jump-like increase in released heat. However, this was
attended by work on more effective (economical) production
and consumption of electrical energy. Clearly, this will not
bring humanity back to the preceding level of heat release, but
is merely a slow-down of civilization before the next dash in
the use of energy.

The MEPP offers a nonconventional view of the prob-
lems associated with the progress and future of humanity.
Currently, because of climate warming, measures are being
planned or are already underway on some limitations of heat
release and greenhouse gas emissions. In making these plans,
the MEPP is currently not taken into consideration. But
without due account of this principle, the measures taken to
combat climate change can be inadequate or even dangerous
for the future of humanity. Indeed, nature follows the
underlying principles, including the MEPP. The intentions
of human who cares about preserving their habitat are
clearly different. If we limit ourselves in transforming
available energy, then we might engage in a conflict with
our originator, nature. In this case, will Nature choose
systems that are more evolutionarily progressive from its
point of view, displacing us from the top to which it has
previously placed us? These new systems would produce
more heat using all the available energy. We are used to
looking at the world, placing ourselves and our needs in its
center, but if we look from the point of view of Nature, the
Universe.... As a result, taking care of our habitat, preserving
it for future generations, do we not fall into a trap leading to
the death of humanity?

Using the MEPP, we can answer the primal question of
biology: what is life? As is known, this question has been
discussed many times, but no universally accepted answer has
been given. There are more than a hundred definitions [200].
According to the definition proposed in 1994 by NASA when
addressing the problem of searching for life in the Universe
[201], “life is a self-sustaining chemical system capable of
Darwinian evolution.” But this definition was then heavily
criticized. One of the shortest definitions of life is ‘self-
reproduction with variations’ [200]. All the existing defini-
tions of life involve notions that are often difficult to define
rigorously, let alone to measure?’ [200-202]. This entails
enormous complications in the search for extraterrestrial life.

Another common important drawback of existing defini-
tions is that a researcher, defining life, ignores the point of
view of nature and its laws, chooses the point of view of
organisms that are close and understandable to him. This is
the origin of notions such as DNA, protein, carbon, water,
metabolism, mutation, and reproduction appearing in defini-
tions of life. We should not search for our own kind, from our
biased standpoint, and confer the rank of ‘living’ onto them.
But in our search for life we must seek systems that are at the
same level of development as we are from the standpoint of
the Universe and the laws governing its evolution. Such a
definition of life would allow us to be unbiased and get rid of
our habitual ego- and anthropocentrism. Just that possibility
is offered by the MEPP. From that standpoint, based on the
results in [2, 6, 189-193], we can propose the following
definition of life (which might still need refinements in the
future): life is a space—time domain with the specific entropy

20 For example, notions such as ‘complexity,” ‘self-reproduction with
variations,” and ‘self-sustained.’

production in the range of 10°—10° of the specific entropy
production of a star in the vicinity of which this domain is
located.

This definition of life and the MEPP implies many
corollaries (the state of nonequilibrium characteristic of
living organisms, stability, emergence, the ability to evolve,
etc.), but this could be the subject of another paper. We make
only three important remarks.

(1) The specific production of entropy is calculated per
volume. Based on the data in [203] (see also [189, 191, 192]),
living organisms release heat in a range from approximately
0.1 to 10 W kg~!, which for standard conditions and quasi-
stationary processes corresponds to specific entropy produc-
tion in the range of 0.1-10 W (m® K)~! (by order of
magnitude). Specific entropy production on the Sun is of the
order of 107* W (m? K)~!' [204-206]. This yields the ratio
given in the definition. Importantly, specific (per volume)
entropy production for a main-sequence (MS) star is equal to
the solar one with good accuracy [204-206]. Therefore,
normalization to this quantity is sufficiently universal for
the vast majority of stars (we note that specific, per mass,
entropy production changes strongly even for MS stars).
Specific production is calculated per volume rather than
mass, because volume is a quantitative characteristic
(measure) of space, whereas mass is a characteristic of
matter—energy in space. Another important reason for that
choice is the simplicity of measuring volume rather than mass
in astronomical observations.

(2) The domain mentioned in the definition can be
inhomogeneous (mosaic-like) in space as regards the level of
specific entropy production. In accordance with the MEPP,
maximal values of specific entropy production in the domain
increase with time.

(3) The proposed definition is not applicable to the next
level of organization of living matter (societal, technological,
etc.), characterized by the use of energy sources outside the
body (for example, fire, electric power facilities). Such
systems can easily be given a definition by analogy with the
above definition of the living, using estimates based on data
on heat release, e.g., in [191, 192].

6.3 New promising applications of the maximum entropy
production principle in recent years

Several studies using the MEPP have recently appeared in
different areas of science where this principle had not been
widely used previously. We briefly mention two promising
areas.

6.3.1 Astrophysics of stars. The entropy production of several
thousand stars was calculated in [204, 205] based on BV-
photometry. It was found, in particular, that specific (per
volume) entropy production Xy for MS stars is in a narrow
range near the solar value of (6£2) x 107> W K~! m™3.
Because stars remain in the MS for the most part of their lives,
this state can be considered stable (an attractor). In this state,
stars coexist with each other for a relatively long time. The
equality of Xy for coexisting nonequilibrium subsystems in
approximately similar external conditions, as we have already
mentioned several times, is a corollary of the MEPP. That
equality was used in [206] to obtain a relation between the
luminosity L and the effective temperature 7 for MS stars. A
characteristic feature of this derivation compared with the
results of the classical approaches used previously and relying
on the analysis of equations for the stellar structure is its



580 L M Martyushev

Physics— Uspekhi 64 (6)

logo(L/Ls)

(=

| | .

0.3 0 logo(7/75)

Figure 17. Dependence L(T') of luminosity on temperature obtained by
processing photometric data is shown with circles; lines show the
theoretical dependence with various errors taken into account. 7t, and
L, are the effective temperature and luminosity of the Sun. (From [206].)

simplicity and total absence of semiempirical constants. The
obtained law has the form log(L/Ly) = 10log(T/Ts),
where T, and L, are the effective temperature and luminos-
ity of the Sun. The available photometric data for more than
7.5 thousand stars show that the obtained luminosity—
temperature dependence is better than dependences used
previously [206]. In Fig. 17, we present experimental data
and the theoretically obtained L(7 ) law. The fruitfulness
of nonequilibrium thermodynamics and the MEPP,
demonstrated in [206] in solving the important problem
in astrophysics of MS stars, is apparently not accidental.
In the future, it would be interesting to apply this
approach to calculate the parameters of other-type stars,
and also to analyze the evolution of stars from their
formation to death.

6.3.2 Brain and mind. The first discussion of processes
occurring in the brain from the standpoint of extremizing
entropy production can be traced to 1965, to a study by
Kirkaldy [207], who has been mentioned several times in the
foregoing and who considered the brain an irreversible
system that receives energy flows and information from
the environment. Processes in the brain are attended, in
Kirkaldy’s view, by both a minimization in entropy
production (e.g., in learning and deduction) and maximiza-
tion (e.g., in creative work and induction). Interesting and
promising was Kirkaldy’s idea that the subjective feeling of
time is related in the human brain just to the level of entropy
production. However, paper [207] was practically unno-
ticed, and only very recently have researchers started
expressing interest in processes in the brain from the
standpoint of the MEPP.

About 25 and 50 years later, in [208] and [209], Kirkaldy’s
ideas were largely reproduced from the standpoint of the
MEPP, then under development. Intellectual activity is
considered from the standpoint of nonequilibrium thermo-
dynamics to be a complex dissipative process that produces
entropy in interaction with the environment. Maximum
entropy production is a necessary condition for this process.
An evolving dissipative process (cogitation) can have several
states, with transitions occurring between them in inter-

action with the environment in accordance with the MEPP, 2!
which guarantees the stability of each new state. This is the
physical foundation for psychological concepts: perception
and action. Functions of the brain are considered in this
approach in the framework of so-called ecological psychol-
ogy, i.e., as an extremely complex emergent process of the
interaction of a dissipative system with the environment. It is
then obvious that this approach to the description of the mind
is opposite to the one where the brain is represented as a
program containing a list of algorithms for actions in
response to all possible stimuli. Work [208, 209] had an effect
on the recent investigation [210], where motivational mechan-
isms of cognitive activity are considered, this being under-
stood as a variation of ‘dissipative adaptation.” According to
[210], the MEPP determines the goal of this adaptation, and
better explains the origin of cognition as a motivational activ-
ity. Such MEPP approach provides an opportunity to explain
the infinite variety of task-oriented behavior through differ-
ent manifestations of a single base motive.

The above conclusions about the relation of brain activity
to entropy production are quite speculative, being expressed
by amateurs in neuropsychology. Recently, however, studies
have appeared by Perez Velazquez and collaborators, who
directly deal with experimental data on the electric activity
of the brain obtained with electro- and magnetoencephalo-
graphy, as well as other methods [211-213]. Introducing
entropy as the measure of complexity of organized and
consistent behavior of different cell ensembles of the brain,
these authors show, based on the observed signals, that a
decrease in that entropy is a signature of pathological states of
the brain. On the contrary, high entropy values correspond to
normal cognitive activity, a very important role in which is
played by the formation and dissipation of energy gradients in
ensembles of brain cells (the greater the dissipation, the higher
that activity) [213]. Investigations by Perez Velazquez’s group
[211-213] are important, because they represent the first
attempts to relate traditional methods for analyzing signals
of the electric activity of the brain (calculation of coherency,
phase synchronicity, mutual information, etc.) to thermo-
dynamic characteristics such as energy dissipation and
entropy production.??

7. Conclusions

The maximum entropy production principle invites us to view
the world around us from a common standpoint, without
having to divide it into the living and nonliving. At the deepest
levels of this world, some ‘primitive’ physico-chemical
processes occur, which obey the MEPP. The construction of
higher levels, relating to biology and psychology, is underway
before our eyes, and also occurs in compliance with this
principle. As a result, the simple and primitive constantly give
rise to the progressively more complex and highly organized.

The goal of this review was to show that the MEPP is a
universal and very fruitful approach in many branches of
science. It has deep roots, a diversified present, and, pinning
our hopes on the readers of this review, a very promising

21 This largely repeats what was already said in Section 5, which also
includes a discussion of very instructive results of experiments by
Kondepudi, who is the author of the thermodynamic concept of the mind
outlined here.

22 A promising direction for the development of these ideas may apparently
be the use of Mihelich’s results [145, 146] (see also Section 6.1) on the
relation between the MEPP and Kolmogorov-Sinai entropy.
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future. Among the promising fundamental directions in
physics where manifestations of this principle are to be
found, in our opinion, are modern cosmology, the ‘eternal’
problem associated with the introduction of the notion of
time in physics. The origins of the first direction can be found
in [214], where it is proposed the anthropic principle be
replaced with another principle that resembles the MEPP at
its foundation, and then the cosmological constant of our
Universe is calculated with outstanding precision. The origins
of the second direction are described in [215-217], where the
notion of time is introduced based on entropy production
and a strategy is outlined to derive the dynamical laws of
mechanics, including an analogue of the law of gravity. We
believe that the further development of these two directions
will open up new horizons for the maximum entropy
production principle in constructing a unified scientific
worldview.
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