
Abstract. Modern optical physics provides means to detect and
resolve ultrafast processes on a time scale of tens of attose-
conds. The physical interpretation of such measurements, how-
ever, remains the focus of heated debate. In its conceptual
dimension, this debate reflects fundamental difficulties in defin-
ing time in quantum mechanics. En route toward resolving this

difficulty, we are led to extend universal uncertainty relations to
ultrafast light±matter interactions. Such a generalized uncer-
tainty sets a lower bound on the response time inherent in
attosecond electronic dynamics driven by ultrashort laser
pulses, dictating a speed limit for next-generation photonic
information systemsÐsystems of petahertz optoelectronics.

Keywords: optical physics, ultrashort laser pulses, quantum me-
chanics, uncertainty relations

1. Introduction: attosecond electron dynamics,
petahertz optoelectronics, and the problem
of `lost time' in quantum mechanics

Rapidly progressing methods of ultrafast optics open unique
possibilities for time-resolved studies of ultrafast phenomena
in atomic and molecular systems [1±10], solids [11±35], and
biological systems [36]. As one of the most significant recent
discoveries in this area, ultrafast photoionization was found
to give rise to a unique regime of laser±matter interaction
whereby a dielectric can be reversibly switched to a conduct-
ing state on the time scale of tens to hundreds of attoseconds
[12, 13, 19, 37±40]. Spectral analysis of high-order harmonics
generated as a part of this process has been shown to enable
an all-optical detection of attosecond photoelectron pulses
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produced via such photoionization and to provide a probe for
attosecond electron wave-packet dynamics [15, 19, 20, 22, 23,
25, 28, 34, 35].

Experiments of the past few years open the routes toward
unprecedented data-processing speeds, giving rise to a new
optical technologyÐpetahertz optoelectronics [37, 38].
Understanding the limitations on the performance of such
systems requires a precise clocking of the laser-ionization-
driven dielectric±conductor transition. The modern tool box
of ultrafast optics provides means for adequately accurate
time-resolved measurements on the time scale of 10±
100 attoseconds [1±6, 16, 17, 41±49]. The time of photoioniza-
tion is difficult to define not because of technical, but, rather,
because of conceptual problems. These problems reflect the
fundamental difficulties of the definition of time in quantum
mechanics [50±60].

In its canonical version, quantum mechanics has no time
operator in its repertoire, nor does it offer any consistent
recipe to define time in terms of a quantum-mechanical
expectation value. Quantum dynamics is a result of inter-
ference of an infinite manifold of `prehistories,' which can be
viewed as quantum paths. However, a quantum-path view of
tunneling photoionization leads to a purely imaginary
photoionization time. Imaginary time plays an important
role in different physical settings [61±63], including a broad
class of problems in thermodynamics and cosmology [64±67].
Whether or not this concept can help understand the
photoionization time is open to debate, making many of
time-resolved photoionization studies open to reinterpreta-
tion. The initial optimism regarding such measurements gives
way to more cautious assessments. Below, we provide a
review of some of the breakthroughs, new ideas, most
significant achievements, and the main difficulties in this
rapidly growing area of modern physics.

2. The hard problem of time in quantum
mechanics: quantum jumps, uncertainty
relations, and Pauli's theorem

Serious difficulties in the definition of time have been realized
already in early days of quantum mechanics [68, 69]. We find
it instructive to briefly summarize the main arguments related
to the notion of time that the founders of quantum physics
have put forward in early-era debates about the principles of
quantum physics as these arguments have helped expose the
central difficulties of the definition of time in quantum
mechanics and outlined the horizons of the quantum theory
of time-resolved measurements for the forthcoming century.

2.1 Bohr's theory, quantum jumps,
and uncertainty of time measurements
Debates on time start to heat up right after the publication of
the 1913 `quantum trilogy' by Bohr [70±72]. Rutherford and
Slater object to Bohr's idea of `quantum jumps' between
electron orbitals that give rise to emission and absorption of
radiation by atoms. They point out that the idea of quantum
jumps is inconsistent with the properties of atomic absorption
and emission spectra with their signature narrow spectral
lines. In search for the ways out of this conundrum, Einstein
resorts to a statistical description of atomic spectra in terms of
probabilities of electronic transitions [73]. Heisenberg
searches for the solution in the framework of matrix
mechanics, which abandons the whole concept of electron
orbitals. In his 1927 Zeitschrift f�ur Physik paper [74], he

proposes a new approach to the notion of time in quantum
mechanics. From the perspective of this approach, the instant
of time at which a system makes a quantum transition
changing its energy by DE can only be resolved with an
uncertainty Dt � �h=�2DE�. Heisenberg also suggests an
operator relation between the time and energy,

Etÿ tE � ÿi�h : �1�

He does not specify, however, the form ofE and t, nor does he
discuss whether an operator of time can be defined at all.1 A
year later, in his 1928 Nature paper [75], Bohr, with a
reference to ``relations well known from the theory of optical
instruments,'' arrives at

DtDE � h ; �2�

interpreting DE as ``the highest possible accuracy in the
definition of energy ... associated with the wave-field.''

In the years and decades to come, the uncertainty relation
between energy and time expressed in the form of Eqn (2) will
become one of the central points in a debate on themeaning of
time in quantum dynamics and quantum measurements. The
energy±time uncertainty relation would be then re-thought
and re-interpreted a multiple number of times in the course of
this debate, remaining one of the central pressing questions in
quantum physics that still need to be resolved.

2.2 Pauli's theorem
As one of the milestones in the early debate on time in
quantum theory, Pauli, as a part of his critique of the
Heisenberg and Bohr arguments, comes up with a proposi-
tion [76] that later became known as Pauli's theorem. Pauli
points out that that no unitary Hermitian energy shift
operator T̂ can be defined for Hamiltonians Ĥ whose discrete
eigenvalue spectra are bounded from below. Because it rules
out the existence of Hermitian T̂ for a certain class of
Hamiltonians, Pauli's argument has long been understood
as a fundamental no-go for time as a quantum-mechanical
observable, relegating time to the role of a parameter that
cannot be represented in the operator form.

In modern quantummechanics, however, Pauli's theorem
is viewed [68, 69, 77] not as a total prohibition of the time
operator, but rather as a limitation on the class of Hamilto-
nians that allow, in principle, the existence of such an
operator. Indeed, provided that for any e 2 RR;

exp

�
ieT̂
�h

�
Ĥ exp

�
ÿ ieT̂

�h

�
� Ĥ� eÎ ; �3�

the spectrum of eigenvalues of Ĥ should span the entire RR.
While this result is fully consistent with Pauli's theorem, it
does not imply, however, that a consistent definition of the
time operator is completely forbidden. It does not rule out,
for example, the existence of Hermitian time operators for
Hamiltonians with unbounded spectra or spectra consisting
of countably infinite sets of eigenvalues [78]. In some cases,
non-Hermitian time operators may also prove possible and
even productive [68, 69].

1 Here, we keep the Heisenberg notations for E and t [74] by writing them

in boldface. In what follows, whenever necessary for clarity, operators will

be labeled with `hats,' in line with contemporary textbook notation.
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3. Faces of time in quantum mechanics

3.1 Internal and external time
As an important starting point, we need to figure out what
role is assigned to the time in a specific physical setting. In
quantum mechanics, time has more than one assignment. In
the equations of quantum dynamics, time appears as a
variable that clocks the evolution of a quantum system.
When serving in this capacity, time plays the role of an
external parameter, read out from an external, laboratory
clock (Fig. 1a), and is often referred to as external or
laboratory time [68, 69]. External time is disconnected from
the dynamic variable of the quantum system and commutes
with operators representing such dynamic variables.

It is the external time that the Heisenberg- and Bohr-type
energy±time uncertainty relations can connect to,

DtDE0
�h

2
; �4�

with DE understood as the minimal error of energy measure-
ments performed within a time interval Dt.

Time t is read out in quantum mechanics via sequential
measurements on a dynamic variable A (Fig. 1b), represented
by a time-dependent operator Â, which generally evolves in
time as Â�t�. The time found by solving quantum evolution
equations for Â�t� can be represented as an operator T̂,
expressed via Â�t�. Such time is often referred to as the
internal time [68, 69].

The notion of internal time entails a vast variety of
energy±time uncertainty relations similar to Eqn (4). The
content ofDt in such relations is, however, distinctly different
from Dt in the inequalities of the form (4) for the external
time. In energy±time uncertainty relations for the internal
time, Dt is understood as a fundamentally unavoidable
uncertainty of time as dictated by quantum uncertainty
relations, as opposed to instrumental errors and apparatus
functions. Important examples of such relations are discussed
in Section 4.

3.2 Time as a quantum observable and the time operator
Finding a suitable operator for internal time T is often
difficult and not solvable within the class of friendly, closed-
form T̂ operators. To illustrate these difficulties, we follow the
treatment of Peres [79] and consider a free particle with a
momentum p andmassm. The Hamiltonian of such a particle
is H � p 2=�2m�. Introducing T � mq=p, where q is the space
coordinate, we find for the Poisson bracket of T and H:
fT;Hg � 1. The operator T is thus a natural choice for the
internal time, providing a convenient clock for a classical free
particle.

In quantum mechanics, this simple and natural definition
of the time operator runs into difficulties. Quantum extension
of T � mq=p leads to [79]

T � i
�hm

2

�
1

p

q
qp
� q
qp

1

p

�
: �5�

Such an operator obeys the commutation relation
�T;H� � i�h, as necessary. Solving for the eigenfunctions of
the equation Tc � tc yields

c � ���
p
p

exp

�
ÿi p 2

2m�h
t

�
: �6�

As can be seen from Eqns (5) and (6), neither the T
operator nor its eigenfunctions allow any physically clear
interpretation, offering no physically transparent method of
measurements. Thus, in questions related to the definition of
time, solutions based on straightforward classical analogies
fail even for systems as simple as a free particle.

Especially difficult are the questions related to the defini-
tion of time for quantum processes that have no classically
analogs, such as a tunneling of quantum particles through
potential barriers. In search for the duration of the time
interval t that a quantum particle spends in the region O
under the potential barrier (Fig. 2), we represent the wave

a

b
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B

B

Figure 1. (Color online.) (a) Internal and (b) external time in quantum

mechanics.
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Figure 2. (Color online.) Quantum evolution as an interference of

prehistoriesÐquantum paths. The range of the potential U�x�, O, is
shown with shading.
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function c�x; t� in the form of an integral [54±58]

c�x; t� �
� t

0

F�x; tjt� dt : �7�

The functions F�x; tjt� in the expansion (7) represent the
subset of trajectories for which the time that the particle
spends in O is exactly t,

F�x; Zjt� �
�
dx
�
x�0�; x�Z�

Dx�t� dÿtO�x�t��ÿ t
�

� exp

�
i
S
�
x�t��
�h

�
c�x; 0� ;

where S�x�t�� � � Z0 �m _x 2=2ÿU�x�� dt, Dx�t� is the sum over
all the trajectories starting at �x; 0� and terminating at �x; Z�,
tO�x�t�� �

� Z
0 YO�x�t�� dt, and Y�x� � 1 for x 2 O and

Y�x� � 0 for x 62 O.
Since the wave function c�x; t� is the solution to the

Schr�odinger equation, F�x; tjt�meets the equation

i�h
qF�x; tjt�

qt
� ÿ �h 2

2m

q2F�x; tjt�
qx 2

�U�x�c�x; t�

ÿ i�hYO�x� qF�x; tjt�qt
:

It can nowbe seen that Eqn (7) sorts particle trajectories in
times t. The state of a particle at a point x2 at the moment of
time t2 is thus represented as the sum of an infinite number of
interfering `prehistories' (see Fig. 2). Similar to the celebrated
double-slit diffraction, where the number of interfering trajec-
tories is two, detection of individual trajectories destroys the
interference pattern, that is, c�x; t�. The overall wave func-
tionc�x; t�, on the other hand, does not offermeans to resolve
individual F�x; tjt�. Information on individual quantum
trajectories, each representing a well-defined t, is lost. The
answer to the question of how long the tunneling time is thus
cannot be answered without answering the question of how
the measurement is performed (see Fig. 2). The reading of the
clock whose location is fixed in space, r � rt, will differ from
the reading of the clock read out at a fixed moment of time,
t � tr.

3.3 Delay time
The time delay operator is an important example of a
consistently defined Hermitian operator that can adequately
represent a physical quantity related to time in quantum
mechanics. The idea of this operator traces back to the
arguments put forth by Eisenbud [80], Bohm [81], and
Wigner [82], suggesting that, for a wave packet with a phase
j, the delay time Dt can be defined via the derivative of the
phase in energy or momentum:

Dtph � me�h

p0

�
qj
qp

�
p�p0

; �8�

where me is the electron mass and p0 is the momentum
corresponding to the center of the wave packet.

Applied to the scattering matrix Ŝ�E� considered as a
function of time, this relation between the delay time and the
phase of a wave packet allows a self-adjoint delay time
operator to be defined as [59, 83]

T̂ � ÿi�hŜÿ1 dŜ

dE
� T̂ y : �9�

Delay time defined in accordance with Eqn (9) proves
useful for a vast class of quantum dynamics problems.
Figures 3a and 3b present the numerical solution [84] of the
time-dependent Schr�odinger equation (TDSE) for the energy
distribution function of photoelectrons produced via ioniza-
tion of a hydrogenlike atom with a linearly polarized laser
field. The z-axis in these simulations is chosen along the laser
field and the energy of photoelectrons, e, is shown along the
abscissa axis in Figs 3a and 3b. The photoelectron energy
distribution function in Figs 3a and 3b is found by solving the
TDSE for a wave packet of tunneling photoelectrons of the
form cf�r; t� � jcf�r; t�j exp �iZ�r; t��. The phase delay of this
wave packet is calculated as Dtph�e� � me=��hpz�q~Z�pz�=qpz,
where ~Z�pz� is the phase of the momentum-space wave
function ~cf�pz; t�, found as a momentum representation of
cf�r; t�, with pz being the z-component of the photoelectron
momentum.

The right axis in Figs 3a and 3b presents the phase time as
a function of the photoelectron energy, e, found by solving the
TDSE and by using the semiclassical model of a laser-driven
electron wave packet [85, 86]. The discrepancy between the
predictions of the fully quantum and semiclassical models is
almost entirely due to an extra phase delay induced by the
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Figure 3. (Color online.) The electron energy distribution function (left

axis) and the phase delay time (right axis) calculated by solving the time-

dependent Schr�odinger equation (blue and navy solid lines) and using the

semiclassical model with (pink dotted and red dashed lines) and without

(dash±dotted and solid green lines) correction for the delay due to the

interaction with the potential of the atomic core. The central wavelength

of the laser pulse is 0.8 mm (a) and 1.6 mm (b). The peak intensity of the

laser pulse is 400 TW cmÿ2 (a) and 200 TW cmÿ2 (b).
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interaction of electrons with the potential of the parent ion
[87]. With adequate corrections for this extra phase delay, the
agreement between the semiclassical and fully quantum
models is radically improved (Figs 3a, b).

4. Mandelstam±Tamm uncertainty relation

The paper ``The uncertainty relation between energy and time
in nonrelativistic quantum mechanics,'' published by Man-
delstam and Tamm in the spring of 1945 [88],2 is one of the
most significant milestones along the way toward under-
standing the fundamental quantum uncertainty of time. All
the earlier energy±time uncertainty relations were postulated
either without any proof or by analogy with other uncertainty
relation, such as the position±momentum uncertainty or
uncertainties as dictated by the properties of the Fourier
transform, known in signal analysis [89± 91].

Mandelstam and Tamm have shown in their 1945 paper
[88] that energy±time uncertainty relations can be derived
via a rigorous analysis of quantum evolution equations.
Although the relations obtained by such an analysis can
take the form of Eqn (2) or (4), their physical content is
much deeper. The Mandelstam±Tamm uncertainty relations
extend well beyond the uncertainty of energy and time
measurements. Among their most important corollaries,
these relations lead to a realization of the fundamental
upper bound for the rate of quantum evolution, quantum
information processing, and quantum communication.

As an introduction to their work,Mandelstam and Tamm
offer their critique of the energy±time uncertainty relation in
the form of Eqn (2),3 pointing out that, at the time of their
writing, this relation did not have any rigorous justification or
proof. ``In nonrelativistic quantummechanics, the energy can
be treated as an observable,4 in Dirac's sense, corresponding
to the Hamilton operator of a mechanical system. When
defined this way, the energy is, of course, not identical to the
frequency of a monochromatic oscillation times h. The
aforesaid justification thus loses its validity, while Eqn (2)
ceases to be meaningful... At the time of this writing, there
seems to be no general justification of Eqn (2) or any other
similar uncertainty relation concerning the energy that would
be based on the fundamental principles of quantum
mechanics.''

Analysis provided byMandelstam and Tamm is based on
the evolution equation for an operator R̂ representing a
physical observable,

qR̂
qt
� i

�h
�Ĥ; R̂� ; �10�

where Ĥ is the stationary Hamiltonian, i.e., the Hamiltonian
that does not depend on time explicitly.

Since for any R̂ and Ŝ

DSDR5
1

2

��
�Ŝ; R̂���� ; �11�

where �DO�2 � hÔ 2i ÿ hÔi2, Eqn (10) leads to

DHDR5
�h

2

�����qR̂qt
����� : �12�

Inequality (12) can be rewritten in the form of an energy±
time uncertainty relation:

tRjDHj5 �h

2
; �13�

where

tR � jDRj
�����qR̂qt

�����ÿ1 : �14�

Inequality (13) is one of the widely recognized forms of the
Mandelstam±Tamm uncertainty relation. However, the
analysis that Mandelstam and Tamm present in their 1945
paper [88] is not limited to the derivation of this relation. They
proceed by considering a projection operator defined by

L̂c � �c0c�c0 ; �15�

where

�c0c� �
�
c �0c dx : �16�

Since one of the eigenvalues of L̂ is 1, while all the other
are equal to zero, the expectation value of this operator, hL̂i,
meets the inequality hL̂i4 1. Combining this result with
Eqn (12) yields

DH
�hL̂i ÿ hL̂i2�1=2 5 h

2

���� dhL̂idt

���� :
Wenow assume that, at the initial moment of time, the system
is in the statec0, that is, hL̂�0�i � 1.We can then integrate the
inequality above for t5 0 to find

p
2
ÿ arcsin

ÿhL̂i1=2�5 DH
�h

t : �17�

It is convenient to rewrite this relation as

hL̂i5 cos2
�
DH
�h

t

�
: �18�

Representing the states c0 and ct � c as state kets jc�0�i
and jc�t�i and defining the angle between these kets (Fig. 4) as

#�c0;ct� � arccos
ÿ��hc0jcti

��� ; �19�

we arrive at the following uncertainty relation:���� d#dt
����4 DH

�h
: �20�

We can now use Eqn (20) to find that the time t required
for a quantum system initially residing in a state jc�0�i to
evolve to a state jc�t�i orthogonal to jc�0�i, such that
hc�0�jc�t�i � 0, meets the following inequality:

t5tMT � p
2

�h

DH
� p

2

�h

DE
; �21�

where

�DE�2 � �DH�2 � hĤ 2i ÿ hĤi2 : �22�

Inequality (21) can be represented in a form similar to
Eqn (2), that is, in the form of the Heisenberg and Bohr

2 This paper was published in a special issue of Izv. Akad. Nauk SSSR, Ser.

Fiz., dedicated to thememory of academician L IMandelstam (1879±1944).
3 Equation (2) in the Mandelstam and Tamm paper is the same as Eqn (2)

in this review.
4 In English in the original.
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uncertainty relations [74, 75] used as an argument in the
Bohr±Einstein debates. However, in its physical and formally
mathematical content, Eqn (21) is distinctly different from
Eqn (2). In Eqn (21), the energy uncertainty DE is no longer
the highest accuracy of energy reading, but is a measure of the
Hamiltonian variance. As one of its key insights, analysis by
Mandelstam and Tamm relates quantum uncertainty to the
physical limit on the rate of quantum dynamics.

5. Quantum fidelity and quantum speed limit

Equation (20) suggests a physical quantifier for the physical
similarity of quantum states c0 and ct at a given moment of
time. For pure quantum states, this quantifier, referred to as
the quantum fidelity, is defined as [92, 93]

F�c0;ct� �
��hc0jcti

��2 : �23�

As can be seen from Eqns (19)±(21), for 04DHt=�h4p=2,
the function F�c0;ct�meets the inequality

F�c0;ct�5 cos2
�
DH
�h

t

�
: �24�

The evolution time t required for the system to reach a
state ct whose fidelity to c0 does not exceed F�c0;ct� is
bounded from below by

t5
�h

DH
arccos

n�
F�c0;ct�

�1=2o
: �25�

The Mandelstam±Tamm treatment thus not only provides
a rigorous quantum-mechanical justification of the energy±
time uncertainty relation, but also reveals the fundamental
physical limit on the evolution rate of parameters in a
quantum system, setting this limit at the lower bound on the
uncertainty as defined by Eqns (14) and (21),

w0 � 1

t0
� 1

tMT
: �26�

Viewed in the context of quantum information processing
and quantum communication, Eqn (26) defines a `quantum

speed limit' [93±101],

tQSL � tMT ; �27�

suggesting the means for `quantum control' [102]Ðquantum
Hamiltonian engineering. Quantum control studies reveal
important properties of the quantum speed limit for a broad
range of physical parameters and a vast variety of quantum
information processing and quantum communication set-
tings. These findings offer deeper insights into the manifesta-
tions of energy±time uncertainty [100±102].

6. Energy±time uncertainty
for systems with time-dependent Hamiltonians

Mandelstam±Tamm analysis is performed for a quantum
system whose quantum dynamics is governed by a stationary
Hamiltonian Ĥ. Because of this limitation, the Mandelstam±
Tamm energy±time uncertainty relation, at least in its original
form, cannot be directly extended to a broader class of
problems, including the problems of laser±matter interac-
tion, where a description of quantum dynamics requires a
time-dependent Hamiltonian, Ĥt. As one of the central
difficulties of such an extension [103], for a system with a
time-dependent Hamiltonian Ĥt, the evolution operator Ût

can no longer be represented as

Û � exp

�
ÿi Ĥ

�h
t

�
: �28�

When the Hamiltonian is time-dependent, the right-hand
side of Eqn (28) is only the first term in the expansion [104]:

Ût � exp

�
ÿi Ôt

�h

�
; �29�

Ôt �
� t

0

dt1 Ĥt1 ÿ
i

2�h

� t

0

dt1

� t1

0

dt2 �Ĥt1 ; Ĥt2 � � . . . : �30�

A formal generalization of the Mandelstam±Tamm
uncertainty relation to a system with such a Hamiltonian
leads to [103]

t5
�h

D ~Et
#�c0;ct� ; �31�

where D ~Et is given by

D ~Et � 1

t

��
c0jÔtjc0

��� : �32�

Nominally, Eqn (31) has the form of the Mandelstam±
Tamm energy±time uncertainty relation. Equation (32),
however, does not give any simple and clear recipe for the
calculation ofD ~Et and is therefore rather formal. Except for a
few special cases, including the case of adiabatic quantum
evolution (see, e.g., [103]), such a recipe has not been found so
far. In Section 7, we will provide a more detailed discussion of
the difficulties encountered in the generalization of the
Mandelstam±Tamm uncertainty relation to systems with
time-dependent Hamiltonians. Based on the analysis of
laser-driven quantum dynamics [105±107], we will show that
whether or not ameaningful energy±time uncertainty relation
can be formalized for a given Hamiltonian depends not only
on the form of the Hamiltonian, but also on the regime of
laser-field±quantum-system interaction.

#

jc�t�i

jc�t�i

jc�0�i

Figure 4. (Color online.) The initial state ket, jc�0�i, and the state kets at

the current and final moments of time, jc�t�i and jc�t�i. Also shown are

the segment of the geodesic line connecting the initial and final states of the

system (solid line) and quantum paths corresponding to the actual

evolution of the system (dashed lines).
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7. Laser-driven quantum dynamics

We will now apply the methods and relations discussed in the
previous sections to understand the limit tÿ10 for the rate of
quantum evolution driven by ultrashort laser pulses. With
this aim in mind, we represent the governing Hamiltonian as

Ĥt � Ĥ0 � V̂�t� ; �33�

where Ĥ0 is the stationary Hamiltonian of the system in the
absence of the laser field,

V̂�t� � ÿeEr sin �ot� �34�

is the time-dependent part of the Hamiltonian, describing the
electric-dipole coupling of the quantum system with a dipole
moment d � ÿer to an electromagnetic field with an
amplitude E � E�t� and frequency o.

We consider the evolution of a quantum system that is
initially, at t � 0, in a state jc�0�i � c0 and that obeys the
Schr�odinger equation

i�h
q
qt

��c�t�� � Ĥt

��c�t�� : �35�

According to the Pfeifer theorem [108], the population
q�t� � jhjjc�t�ij of an arbitrary quantum state j is bounded
at any moment of time 04 t4T� by

qÿ�t�4 q�t�4 q��t� ; 04 t4T� ; �36�

where

q��t� � sin
ÿ
d� w�t�� ; �37�

d � arcsin
ÿ��hjjc0i

��� ; �38�

w�t� � 1

�h

� t

0

min fDHj;DHc0
g d# ; �39�

�DHc�2 �


cjĤ 2

# jc
�ÿ 
cjĤ#jc

�2
; �40�

c0 � c�0� is the initial state of the system, and T� are found
from the equations q��T�� � 1 and qÿ�Tÿ� � 0.

Choosing j � c0, where c0 � c�0� is the initial state of
the system, we find d � p=2. With such a choice of j, the first
inequality in Eqn (36) leads to [108]��
c0jc�t�

���5 qÿ�t� � cos
�
F�t�� ; �41�

where

F�t� � 1

�h

� t

ÿ1
DHc0

�#� d# : �42�

Inequality (41) sets a limit for the rate of evolution of a
quantum system from the initial state c0. Moreover, this
inequality relates the maximum rate of such an evolution to
the variance of the Hamiltonian in the state c0. In this sense,
inequality (41) extends the Mandelstam±Tamm energy±time
uncertainty relation to the dynamics of a quantum system
governed by a time-dependent Hamiltonian (33) with an
interaction operator (34), typical of laser±matter interactions.

Unlike the canonical original version of theMandelstam±
Tamm uncertainty relation (21), valid for stationary Hamil-

tonians, inequality (41) operates with the time integral of the
energy variance, F�t�, rather than the energy variance itself.
In a general case, Eqns (41) and (42) lead to a complicated
nonlinear relation between the maximum rate of quantum
evolution and the energy variance of the system in the initial
state [109].

8. Uncertainty relations and the speed limit
of electron dynamics

We now consider the case when the state ket jji is orthogonal
to jc�0�i � c0. The second inequality in Eqn (36) then leads
to the following limitation on the population rate [108, 110]:��
j��c�t����5 q��t� � sin

�
F�t�� : �43�

As can be seen from Eqn (43), the population rate of the
state whose state ket is orthogonal to the initial state ket is
bounded. Similar to the speed limit of quantum evolution
from state c0, the maximum population rate of a state whose
state ket is orthogonal toc0 is determined by the time integral
of the energy variance in the state c0.

Suppose that, at the initial state, the quantum system is in
a state that can be approximately described with the ground-
state wave function of a hydrogenlike atom. Then, taking the
field in the form of a linearly polarized pulse,

E�t� � e0E f �t� sin �ot� j0� ; �44�

choosing the z-axis along e0, and taking into consideration
that, for the ground state of the hydrogen atom, hzi0 � 0 and
hz 2i0 � hr 2i0=3 � a0, where a0 is the radius of the first Bohr
orbit, we find

DHc0
�#� � eEa0 f �#�

��sin �o#� j0�
�� ; �45�

F�t� � eEa0
�h

� t

ÿ1
f �#���sin �o#� j0�

�� d# : �46�

Alongside the time-dependent variance DHc0
, it is

instructive to consider the Hamiltonian variance averaged
over the field cycle T0 � 2p=o,

DH0 � 1

T0

� T0

0

DHc0
d# : �47�

For ultrashort field waveforms (44) with a pulse width t0
on the order of the field cycle T0, the variance DH0 can no
longer provide a meaningful measure for the mean energy
variance. Yet, as will be shown below, even for very short field
waveforms, the mean Hamiltonian variance as defined by
Eqn (47) continues to serve as an important quantifier for the
time scale of quantum dynamics.

For the ground state of a hydrogenlike atom, Eqn (47)
leads to the following result for the Hamiltonian variance
averaged over the field cycle T0:

DH0 � 4�h

gKT0
� 2�h

ptK
; �48�

where

gK �
o
eE0
�2meI0�1=2 �49�
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is the Keldysh parameter [111], I0 is the field intensity, and

tK � gK
o
� �2meI0�1=2

eE0
: �50�

Following the terminology accepted in a vast literature on
quantum tunneling [51, 52, 112, 113], we will refer to the
parameter tK as to the Keldysh time.

The Keldysh parameter gK plays a fundamental role in
laser-driven ionization dynamics, defining the borderline
between weak- and strong-field regimes in laser±matter
interactions and providing a quantitative measure for the
adiabaticity of photoionization. In the limit of large Keldysh
parameters, g4 1, the Keldysh theory of photoionization
yields closed-form equations for the photoionization rate,
which recover the well-known weak-field perturbation-
theory results for multiphoton ionization. In the opposite
limit of g5 1, the Keldysh formula for the photoionization
rate recovers the signature exponential typical of quantum
tunneling. In the low-frequency limit, this equation is reduced
to the celebrated result for the rate of electron tunneling
through a finite potential barrier representing the joint effect
of the ion-core potential and the external field.

As one important finding, Eqn (48) relatesDH0 to gK, thus
revealing the role of the Keldysh parameter, as well as the
pertinent Keldysh time, as a measure of the field-cycle-
averaged electron energy variance in the ground state of a
hydrogenlike atom in the presence of a laser field.

In a general case of an ultrashort field waveform (44), the
equation for F�t� can be conveniently rewritten as

F�t� � 1

tK

� t

ÿ1
f �#���sin �o#� j0�

�� d# : �51�

Introducing the dimensionless time Z � t=tK, we find

F�Z� �
� Z

ÿ1
f �Z 0���sin �gKZ 0 � j0�

��dZ 0 : �52�

The Keldysh parameter tK thus sets a natural time scale
of quantum evolution in the presence of an external field.
Moreover, in its capacity as the measure of the energy
variance, the Keldysh parameter, as can be seen from Eqns
(48), (50), and (52), is in charge of the evolution rate of such a
system.

In the weak-field limit, gK 4 1, integration in Eqn (52) for
a pulse with t0 4T0 leads to

F�t� � 2

p
t

tK
f �t� : �53�

In this limit, the phase F�t� is a gradually growing
function of time (the dashed line in Fig. 5a). The functions
q��Z� and qÿ�Z� define the maximum evolution rate of the
system whose initial state is c0 and the maximum population
rate of the state ket orthogonal to c0 (the solid and dash±
dotted lines in Fig. 5a). These functions saturate their bounds
at the moment of time t1 found from F�t1� � p=2. Solving
this equation for t1 near the maximum of the pulse envelope
with an assumption that the field variation within the time t1
is negligible, i.e., f �t� � 1, we find

t1 � p2

4
tK : �54�

Combining Eqn (54) with Eqn (48) gives

t1 � p
2

�h

DH0
: �55�

This result for t1 is quite remarkable as it formally
recovers the lower bound tMT in the Mandelstam±Tamm
uncertainty relation (see Eqn (21)).Moreover, when rewritten
as a suitable inequality, Eqn (54) recovers the Mandelstam±
Tamm uncertainty relation. It should be emphasized here
that, in contrast to the analysis leading to the Mandelstam±
Tamm uncertainty relation, Eqn (55) was derived for the
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time-dependent Hamiltonian Ĥt, while the energy variance
DH0 in Eqn (55) is defined, in accordance with Eqn (47), as the
field-cycle-averaged variance of Ĥt.

In the opposite limit of a strong laser field, gK 5 1, the
Keldysh time scale tK is much shorter than the field cycle T0.
Figure 5b illustrates typical time dependences of the phase
F�Z� and the functions q��Z� and qÿ�Z� in this regime. As can
be readily seen from this figure, the phase F�t� displays
significant changes in this limit already within T0. For very
short field waveforms, the field intensity at the peak of the
central half-cycle (jZj � 7:5 in Fig. 5b and jZj � 5 in Fig. 5c) is
much higher than the field intensity outside this field half-
cycle. For such field waveforms, the central half-cycle appears
as a well-resolved peak against the overall time envelope
(Figs 5b, c). Such a behavior of F�t� is readily understood
from the viewpoint of Eqns (51) and (52). In contrast to the
weak-field regime, where the phase F�Z� is a gradually
growing function of time (Fig. 5a), in the limit of gK 5 1,
this function exhibits sections of a steep, almost stepwise
growth near the peaks of the field intensity, followed by off-
peak sections where its variations are much less drastic. It
should be noted here that, outside the time interval bounded
by T�, the functions q� are no longer the bounds of q�t�. Yet,
these functions still offer important insights into the behavior
of the phase F�t�, including the inherent properties of this
phase that manifest themselves in the time dependence of the
photoionization current.

For a qualitative understanding of quantum dynamics in
this regime, we take into consideration that the most drastic
changes in the phase F�t� are confined within short time
intervals around the peaks of the driver intensity. Specifically,
near the maximum of the driver field, #p � �p� 1=2�p=o,
where p is an integer, the change in F�t� for j0 � 0 and
f �#p� � 1 is given by

DF�t� � 1

tK

� #p�t
#pÿt

f �z���sin �oz��� dz � 2

gK
sin �ot� : �56�

Equation DF�t2� � p=2 then yields

t2 � 1

o
arcsin

�
p
4
gK

�
� 1

o
arcsin

�
p�h

T0DH0

�
: �57�

In the limit of gK 5 1, we have

t2 � p
4

gK
o
� �h

2DH0
: �58�

The properties of F�Z� are remarkable in many respects.
As can be seen from TDSE simulations (Fig. 6a), the
signature stepwise growth typical of F�Z� in the gK 5 1
regime is also observed in the time dependence of the
tunneling ionization rate for gK 5 1, as well as in the related
photoelectron current [16, 19, 114±117]. Tunneling ionization
dominates photoionization in the gK 5 1 regime. It is in this
limit that well-resolved `steps' of rapid growth show up in
F�Z� (Fig. 5b). In the opposite limit of gK 4 1, the phase F�Z�
is a smoothly growing function of time (Fig. 5a). The same
tendency is observed in the time dependence of the photo-
ionization current [118, 119]. In the regime of multiphoton
ionization, whose criterion is also written as gK 4 1, the time
dependence of the photoionization current becomes smooth,
closely following the time integral of the driver intensity
envelope (Fig. 6b).

9. The Keldysh parameter
and the petahertz limit of optoelectronics

Equations (51)±(58) suggest that the Keldysh parameter gK is
not only the parameter that defines the borderline between
multiphoton and tunneling ionization, but is also the key
control of laser-driven quantum dynamics. Since the times t1
and t2 in Eqns (55) and (58) are defined as the times within
which a quantum system evolves from its initial state to a state
that is orthogonal, F�t1; 2� � p=2, that is, maximally `dissim-
ilar' to the final state (Figs 4, 7a), we come to realize that, in
the gK 4 1 regime, the Keldysh parameter defines the number
of field cycles needed for a system to evolve into an
orthogonal state, M � t1=T0 � �p=8�gK 4 1. Such a view of
gK is fully consistent with the perturbative treatment of
multiphoton ionization [120±124], which helps appreciate
multiphoton ionization as a process that spreads out in time,
spanning over many field cycles.

In the regime of tunneling ionization, gK 5 1, the Keldysh
parameter defines the ratio of the time it takes for a system
to evolve into an orthogonal state to quarter the field cycle,
t2=�T0=4� � gK 5 1. This inequality indicates a high rate of
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quantum evolution, such that a quantum system can evolve to
a maximally dissimilar state (Fig. 7a) on a time scale as short
as gK�T0=4�5T0=4. For a laser field with a central
wavelength of 800 nm and field intensity corresponding to
gK � 0:1, we find t2 � 0:067 fs � 67 attoseconds. Viewed as
the minimum response time, such a value of t2 translates into
a speed limit on optical data processing at the level of
wt � 1=t2 � 1:5� 104 THz � 15 petahertz (PHz). Figure 7b
compares the time t2 calculated with Eqn (58) with the results
of numerical simulations for a typical photoionization time
te, defined from the delay time of the pulse of photoelectron
current relative to the peak of the laser field intensity. As can
be seen from this comparison, Eqn (58) provides an accurate
estimate for the typical time scale of photoelectron current
buildupÐ from � 60 to � 100 attoseconds for the range of
parameters covered by calculations in Fig. 7b.

Of special interest for advanced information-processing
technologies is subfemtosecond photoionization in solids [12,
13, 33, 37, 38]. A detailed understanding of field-cycle-
resolved photoionization dynamics in solids is central for
achieving the limiting time resolution in attosecond time-
resolved studies, shedding light on the fundamental aspects of
quantum tunneling, harnessing subfemtosecond dielectric±
conductor switching in solids, as well as implementing a high-
speed tailoring of optical signals in fiber-optic systems [125±

128] and semiconductor waveguide microresonators [129]. As
one of the most powerful instigations, research along these
lines opens new horizons in high speed electronics, paving the
waves toward petahertz optoelectronics [12, 13, 33, 37, 38].

Shown in Fig. 8 are the results of supercomputer
simulation [130, 131] of laser-induced reversible ionization
in the bulk of diamond. The properties of laser-induced
photoelectron current are studied in this simulation by
solving the field evolution equation for the laser pulse jointly
with the Schr�odinger equation for the electron wave function
[132]. As an important reference, the red dashed line in Fig. 8
presents the results of the analytical treatment of laser-driven
ionization in diamond [133] based on the short-pulse
extension of the Keldysh photoionization theory for solids
[111, 134]. This treatment is applicable [135] for laser pulses of
any pulse width and shape, allowing the photoionization rate
to be calculated without averaging over the field cycle, thus
providing a powerful tool for the analysis of laser-driven
ionization in solids with arbitrary, not necessarily parabolic
electron bands. Comparison with supercomputer simulations
(cf. the blue solid and red dashed lines in Fig. 8) verifies a high
predictive power and accuracy of the analytical treatment of
photoionization.

Both supercomputer simulations and analytical modeling
suggest that, when the laser driver pulses are sufficiently
short, photoelectron current pulses as short as tc � 1:2t2
can be produced. This regime of laser±matter interaction
opens the routes toward high-performance solid-state infor-
mation processing microcircuits with a speed limit at the level
of 10 PHz.

Although the properties of the phase F�Z� have been
found to strongly correlate with the properties of the laser-
driven ionization current, the phase F�Z� is not intended to
accurately quantify the rate of laser-driven ionization.
Instead, in accordance with its definition (42), this function
provides a measure of the fidelity of quantum states jc�0�i
and jc�t�i, connecting to the maximum rate of quantum
evolution from state jc�0�i to state jc�t�i (Figs 4, 7). That the
function F�Z�, defined as the measure of quantum fidelity,
reproduces the key properties of photoionization dynamics
suggests a frameworkwhereby universal uncertainty relations
can be extended to ultrafast light±matter interactions as a way
to reveal and understand the upper bounds on the rates of
ultrafast processes involved in such interactions. In this
framework, attosecond electron dynamics can be described
and understood, as the following section will show, in terms
of a suitable information-geometric metric of quantum
evolution.

10. Mandelstam±Tamm uncertainty relations
and the information-geometric measure
of quantum evolution

10.1 Geometry of quantum evolution
When expressed via the angle # and represented in the form of
inequality (20), the Mandelstam±Tamm uncertainty relation
proves to be especially instructive as it reveals one of the most
remarkable properties of this relation and provides the key to
the solution of a vast class of problems not only in quantum
science and quantum technologies, but also, as we will show
below, in thermodynamics. One such remarkable and inmany
respects unexpected property of the Mandelstam±Tamm
uncertainty relation is that its lower bound, t � tMT,
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defining the maximum rate of quantum evolution, is achieved
[94, 95, 98, 136] if and only if the system evolves along the
geodesic line connecting the states jc�0�i and jc�t�i in the
suitable Hilbert space (see Fig. 4).

An angle in a Hilbert space, such as the angle #�c0;c�,
defined in accordance with Eqn (19), is the only Riemannian
metric for a set of rays, e.g., jc�0�i and jc�t�i, that remains
invariant with respect to unitary transformations. Such a
metric is also in many ways the most natural metric [136]. It is
therefore hardly surprising that similar metrics can be found
in statistical analysis. Standing out as one of the most
important example of such metrics is the metric related to
the Fisher information [137±142], defined as the mathema-
tical expectation

F�X� �
�
p�xjX�

�
q ln p�xjX�

qX

�2
dx �59�

of an outcome x given the condition X with a conditional
probability density p�xjX�.5 According to the Chentsov
theorem [143, 144], the Fisher information metric is the only
Riemannianmetric that is invariant under sufficient statistics.

10.2 Quantum fidelity and the Fisher information
In the general case, when a pure-state description of a
quantum system is impossible or impractical, the angle
between the state kets of a quantum system at different
instants of time can be defined in terms of the density
operator r̂t � r̂�t� [92±98, 145±151],

#�r0; rt� � arccos
� ��������������������

FB�r0; rt�
p �

; �60�

where

FB�t� � FB�r0; rt� �
h
tr
ÿ �����

r0
p

rt
�����
r0
p �1=2i2 �61�

is the fidelity of quantum states described by pertinent density
matrices.

Introducing a quantum analog of the Fisher information
for the estimation of parameter t as [98]

FQ�t� � FQ�r0; rt� � tr
�
r̂�t�L̂2

c�t�
�
; �62�

where L̂c�t� is the Hermitian operator found as a solution to

2
dr̂�t�
dt
� r̂�t�L̂c�t� � L̂c�t�r̂�t� ; �63�

we arrive at

FB�rt; rt�dt� � 1ÿ FQ�t�
4
�dt�2 �O�dt�3 : �64�

As can be seen from Eqn (64), the quantum Fisher
information FQ�t� defines the square of the instantaneous
rate at which the distance between close states rt and rt�dt
changes at instant t. Given the evolution r�t�, the path length
can thus be found as [98]

DQ � 1

2

� t

0

�
FQ�t�

�1=2
dt : �65�

The distance between r1 and r2, defined by the angle
#�r1; r2�, along the geodesic line is always shorter than the
path length DQ as dictated by the actual evolution r�t�,

#4
1

2

� t

0

�
FQ�t�

�1=2
dt : �66�

When written in a differential form, Eqn (66) leads to the
quantum Cram�er±Rao bound, dt5F
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Figure 8. (Color online.) Attosecond dynamics of intraband (a, b) and interband (c, d) currents driven by a laser pulse (black solid line) in bulk diamond.

The central wavelength of the laser pulse is 1.6 mm. The peak intensity of the laser field is 0.02 TW cmÿ2 (a, c) and 2.2 TW cmÿ2 (b, d). Also shown are the

results of supercomputer simulations (blue line) and calculations performed with the use of the generalized photoionizationmodel [133] (red dashed line).

5 Because the metrics of this class are so natural, they have been known

in the early literature even before the seminal work by Fisher (see, e.g.,

Refs [137, 141]).
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10.3 Uncertainty relation and the Cram�er±Rao bound
To gain deeper insights into how the energy±time uncertainty
relation connects to the quantum Fisher information, it is
instructive to examine quantum evolution of pure states
governed by a unitary evolution operator Û�t�. Using the
definition (62) and solving Eqn (63) for pure states,
�r�t��2 � r�t�, we find [95, 98]

FQ�t� � 4

�h 2


�
DK�t��2� ; �67�

where

�
DK�t��2� is the variance of a Hermitian operator

defined as

K̂�t� � �h

i

dÛ y�t�
dt

Û�t� : �68�

The quantum Cram�er±Rao bound, dt5F
ÿ1=2
Q , then sets

the following limit on the error of t estimation:

dt5
�h

2DK
: �69�

In the general case of a time-dependent Hamiltonian Ĥt,
DK 6� DHt, the limit of Eqn (69) differs from the lower bound
in the Mandelstam±Tamm energy±time uncertainty relation
(21). This bound, however, is recovered [95, 98] for stationary
Hamiltonians, Ĥt � Ĥ. For such Hamiltonians, Û�t� �
exp �ÿiĤt=�h� and K̂�t� � Ĥ. Setting #�r1; r2� � p=2, as
necessary to reproduce the Mandelstam±Tamm relation (21),
derived with hc�0�jc�t�i � 0, and applying inequality (69),
we arrive at

t5
p
2

�h

DH0
; �70�

where DH0 is the variance of the stationary Hamiltonian Ĥ
with respect to the initial state c0.

Inequality (70) recovers the Mandelstam±Tamm uncer-
tainty relation (21) and saturates simultaneously with the
quantum Cram�er±Rao bound.

11. Nonquantum nature
of the quantum speed limit

Until recently, the quantum speed limit dictated by the
Mandelstam±Tamm uncertainty relation has been viewed as
a purely quantum phenomenon that has no classical analog.
Indeed, analysis presented in the original work by Mandel-
stam and Tamm is based on quantum evolution equations
and involves quantum-mechanical averaging, yielding
inequalities for quantum-mechanical expectation values.
That the Mandelstam±Tamm energy±time uncertainty
vanishes in the �h! 0 limit is broadly interpreted as a
manifestation of the quantum nature of the speed limit as
defined by Eqns (26) and (27).

The latest studies, however, suggest [152, 153] that this
view of the tQSL speed limit should be revised. The Mandel-
stam±Tamm energy±time uncertainty relations prove to be
applicable to a much broader class of systems, remaining
valid even beyond the realm of quantum mechanics. The
`quantum speed limit' turns out to be nonquantum.

To understand whether the quantum nature of a system
and its dynamics is indeed necessary and significant for the
existence of the limit (26), it is instructive to resort to Eqn (10)

as the key point in the derivation of the Mandelstam±Tamm
energy±time uncertainty relation. The evolution of the
operator R̂ in this equation owes its quantumness to the
commutator �Ĥ; R̂�, chosen in such a way as to obey the
general quantization rule. When written in a matrix form,
Eqn (10) leads to the Liouville±von Neumann equation for
the density operator r�r; t�,

i
qr�r; t�

qt
� L̂r�r; t� ; �71�

where L̂ is the Liouville operator. For quantum systems, this
operator is defined in such a way as to postulate a suitable
quantization rule,

L̂r̂�r; t� � �hÿ1
�
Ĥ; r�r; t�� : �72�

However, the domain of validity of Eqn (71) is in no way
limited to quantummechanics. This equation is satisfied for a
vast class of physicalÐnot necessarily mechanicalÐ systems
allowing description in the framework of the Hamiltonian
formalism. Examples of such systems are widely known in
optics [154±160] and statistical physics [161, 162]. In classical
mechanics, the Liouville equation is formulated for a
probability distribution r�r; t� in an N-dimensional phase
space spanned by generalized coordinates qj and canonically
conjugate momenta pj, r � �x1; . . . ; xN; p1; . . . ; pN�. The
Liouville operator in this setting is defined via the Poisson
bracket,

iL̂r�r; t� �
XN
j�1

�
qH
qpj

qr
qqj
ÿ qH

qqj

qr
qpj

�
; �73�

where H�r� is the Hamilton function.
As can be seen from Eqns (10) and (71)±(73), it is the

specific choice of the bracket operator rather than the general
properties of the solutions of the Liouville±von Neumann
equation that makes tMT vanish in the limit of �h! 0,
tMT ! 0. That the form of the bracket operator defines the
granularity of the phase space is well known in signal analysis
[163±165]. Instructive examples of such granularity are
readily found in Hamiltonian optics. Liouville-equation
analysis of systems of this type is fully analogous to the
description of quantum evolution. Specifically, the diffrac-
tion limit of spatial resolution can be viewed as an optical
analog of quantum uncertainty as dictated by the general
form of the evolution equation. Formally, the diffraction
limit is recovered by replacing �h in quantum uncertainty
relations with l=2p, l being the radiation wavelength. The
limiting transition l!1 then gives tMT ! 0 and corre-
sponds to ray-optic approximation [155, 156, 166]. Position±
momentum uncertainty relations have the same form in
optics and quantum mechanics, DxDpx 5k=2. Their physical
content is, however, different. In quantum mechanics, k � �h,
this inequality is known as the Heisenberg uncertainty
relation. In optics, k � l=2p, this inequality expresses the
diffraction limit [155, 156].

As shown by Okuyama and Ohzeki [153], the overlap
factors #�t� � hrajra�t�i, defined for a distribution function
r�t� with ra � ra�0�, meet the relation

t5t �a�CSL �
�

#�0�
hrajL̂2jrai

�1=2
arccos

�
#�t�
#�0�

�
�74�

for any real a.
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Thus, similar to the evolution rate of a quantum system,
the evolution rate of a classical system is bounded from
above. Inequality (74) sets an upper bound for this rate,
providing a classical analog of the energy±time uncertainty
relation.

12. Thermodynamic uncertainty limit

12.1 Information metric and thermodynamic uncertainties
The ray-geometric view of state-ket evolution in the statistics
space discussed in Section 10 provides a framework that
enables a unified description of the dynamics of a quantum
system and a thermodynamic ensemble. In this framework,
fluctuations in a thermodynamic system obey relations
similar to the quantum uncertainty relations [167±171].
These relations reveal fundamental thermodynamic limita-
tions on the performance of complex biomolecular and
microbiological systems [172±178], such as molecular motors
and pumps [179, 180], Brownian biological clocks [181±183],
membrane proteins [184±189], as well as distributed neural
networks involved in complex brain functions, such as
information processing and memory formation [190±194].
COVID-19-related research of the past fewmonths provides a
unique material that enables a detailed thermodynamic
analysis of the affinity of spike proteins of SARS-CoV and
SARS-CoV-2 coronaviruses whereby these viruses recognize
receptor enzymes and hijack the biomolecular machinery of a
host cell [200, 201].

To understand the information-statistical content of
thermodynamic uncertainty relations, it is instructive to
resort to Eqn (59) and examine the Fisher information F�z�
for the estimation of a thermodynamic parameter z. The
energy variance due to fluctuations of z can be expressed
through this Fisher information as [167]

F�z� � b 2

*��
qE
qz

�
ÿ qE

qz

�2
+
; �75�

where b � 1=�kBT �, T is the temperature, and kB is the
Boltzmann constant.

Choosing the inverse temperature as the control thermo-
dynamic parameter, z � b, we find from Eqn (75)

F�b� � 
ÿhE i ÿ E
�2�

: �76�

Applying the inequality for the Cram�er±Rao bound [202,
203],
��bÿ b�2�5 1

F�b� ; �77�

we arrive at

DEDb5 1 ; �78�

where, by definition, �Db�2 � h��bÿ b�2i.
Eqn (78) can be represented as

DED
�
1

T

�
5 kB : �79�

Defining the Fisher information as a function of other
variables and using the inequalities for the pertinent Cram�er±

Rao bounds, we can derive similar uncertainty relations for
other thermodynamic parameters. Specifically, when applied
to the fluctuations of the entropy, the volume, and the
number of particles, this procedure leads to [168±171]

DSDT5 kBT ; �80�
DVDP5 kBT ; �81�
DNDm5 kBT ; �82�

where P is the pressure and m is the chemical potential.

12.2 The thermodynamic limit
for the temperature threshold of membrane proteins
Uncertainty relations for thermodynamic parameters
(Eqns (78)±(82)) shed light on the fundamental physical and
chemical properties of complex biological systems. As an
important example, we consider a thermodynamic model of
thermosensitive ion channels in cellular membranes. Ion
channels of this type (TRP channels) can respond to
temperature variations by switching between closed- and
open-gate states, controlling via such gating the density of
ions on different sides of a membrane, thus inducing an
electric potential [184±189, 204±214]. Advanced biotechnol-
ogies [215±221] enable a genetic encoding of the expression of
thermosensitive membrane channels in cells of a certain type
or even in certain intracellular compartments [204, 208±214,
222±227], targeted via a suitable virus vector delivery. The
cells that express the thermosensitive channels can be
controlled with local changes in temperature.

As their key property, thermosensitive membrane chan-
nels can respond to small temperature variations in the
intercellular space. Within the framework of a two-state
thermodynamic model, this property of thermosensitive
channels is described [186±189] in terms of the probability of
channel switching between the open- and closed-gate states:

pg � 1

1� exp �ÿDSg=R� exp
�
DHg=�RT �

� ; �83�

whereR is the universal gas constant andDHg andDSg are the
enthalpy and entropy changes related to channel gating.

Within a temperature range where jDHgj=�RT �4 1 and
jDHgj4T jDSgj, Eqn (83) can be approximated as

pg � exp �ÿbNADHg� ;

where NA is the Avogadro number. Within this temperature
range, the probability of channel gating is exponentially small
(Fig. 9)Ðmost of the channels remain closed. In the opposite
limit, when jDHgj=�RT �5 1 and jDHgj5T jDSgj, the prob-
ability of channel gating saturates, tending to a constant
determined by the entropy change jDS j (see Fig. 9). Finally,
near the temperature Tc � jDHg=DSgj, the probability of
channel gating is a rapidly growing function of temperature.
Expanding the channel gating probability as a power series in
dT � Tÿ Tc about Tc, we find

pg � 1

2

�
1� dT

2DT0

�
; �84�

where

DT0 � RT 2
c

DHg
: �85�
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As can be seen from Eqns (84) and (85), the channels are
gated within a small interval of temperatures Tc � DT0 near
the critical point Tc (shown by the vertical dotted lines in
Fig. 9b). The width of this interval controls the temperature
sensitivity of the channel. For a gating enthalpy of
DHg � 100 kcal molÿ1, typical of TRPV channels [186, 187]
with Tc � 300 K, we find DT0 � 1:8 K. A group of a few
thermosensitive channels can thus provide a temperature
sensitivity at the level of 0.1 K.

To gain deeper insights into this result, it is instructive to
represent Eqn (85) in a form analogous to the energy±time
uncertainty relation:

DT5DT0 � RT 2
c

DHg
: �86�

As can be seen from Eqn (86), the enthalpy change DHg

plays the role of the key parameter controlling the sensitivity
of the channel to temperature variations. The role of DHg in
thermosensitive channel gating is thus similar to the role of
energy variance in quantum dynamics.

13. Conclusion

Rapidly progressing optical physics and laser technologies
provide a unique toolbox for time-resolved studies of
ultrafast phenomena, offering means to detect extraordina-
rily brief transient events on a time scale of tens of
attoseconds. However, the most difficult questions related
to the physical content and interpretation of such measure-
ments remain open, reflecting the fundamental difficulties in
the definition of time encountered in quantummechanics. En
route toward resolving this difficulty, we are led to extend
universal uncertainty relations to ultrafast light±matter
interactions. Such a generalized uncertainty sets a lower
bound on the response time inherent in attosecond electronic
dynamics driven by ultrashort laser pulses, revealing a
fundamental limitation on the performance of the next-
generation photonic information systemsÐsystems of peta-
hertz optoelectronics. The ray-geometric view of state-ket
evolution in the statistics space provides a framework that
enables a unified description of the dynamics of a quantum
system and a thermodynamic ensemble. Within this frame-
work, attosecond electron dynamics can be described and
understood in terms of a universal information-geometric
metric of quantum evolution. The quest for the time lost in
quantum mechanics leads to a realization of fundamental
thermodynamic limitations on the performance of complex
biomolecular and microbiological systems, as well as dis-
tributed neural networks involved in complex brain func-
tions, including information processing and memory forma-
tion.
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